

Characterization of hydrogenated and deuterated silicon carbide films codeposited by magnetron sputtering

D. Pantelica^a, P. Ionescu^a, H. Petrascu^a, M. D. Dracea^{a,d}, M. Statescu^a, E. Matei^b, O. Rasoga^b, C. Stancu^c, V. Marascu^c, V. Ion^c, T. Acsente^c, G. Dinescu^c

^aHoria Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), P.O.B. MG-6, RO-077125, 30 Reactorului St., Magurele, ROMANIA

^bNational Institute for Materials Physics, RO077125, 105bis Atomistilor Str., Magurele-Bucharest, ROMANIA ^cNational Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., RO077125, Magurele-Bucharest, ROMANIA ^dFaculty of Physics, University of Bucharest, 405 Atomistilor Str., RO-077125, P. O. B. MG-11, Magurele-Bucharest, ROMANIA

Introduction

Silicon carbide is a material with many applications, including fusion reactor technology [1] and also fission power reactors.

In the present work we will focus on investigations by Elastic Recoil Detection technique of the H/D content in silicon carbides thin layers deposited on silicon substrate. Deposition was performed by dual magnetron co-sputtering using Ar and mixtures of $Ar/H_2/D_2$ as working gases. Deposition using only Ar were performed at various discharge powers for identifying the parameters for deposition of SiC_{x} thin films with controlled stoichiometry. The material properties of the deposited thin films were investigated using specific techniques (profilometry, SEM, AFM, FTIR and spectroscopic ellipsometry).

RBS and ERDA Measurements:

The SIMNRA code [2] was used for fitting the data

Non Rutherford calculated cross section tables [3] were used in the simulation code for H and D characterisation

• H₂ and D₂ seems to produce the same effect over the deposition rate (compare the rates at 20%H₂, 20%D₂ and 10%H₂+10%D₂).

Elipsometry results

Samples deposited in Ar at

different RF powers

Si power / C power

— 100W /60W (SiC_{0.22})

- The sample deposited only in Ar present specific spectral signatures [4,5]:
 - 600-650 cm⁻¹: ω Si-H wagging mode
 - 650-900 cm⁻¹: v SiC stretching vibrations.
 - 950-1100 cm-1: CH_n rocking or wagging modes;
- Addition of H₂ to deposition mixture leads to: • $2700-3150 \text{ cm}^{-1}$: v C-H stretching modes; • 2090 cm^{-1} : v Si-H stretching band.
- Addition of D₂ produce the following isotopic shifts (represented by red thick curved arrows on the graph):
- v Si-H 2090 cm⁻¹ \rightarrow v Si-D (1550cm⁻¹);

By

• v C-H (2700-3150 cm⁻¹) \rightarrow v C-D (1950-2250 cm⁻¹).

proper choice of

powers applied to both Si and C

the RF

- The sample deposited only in Ar present a pretty smooth surface, slightly influenced by variation of the deposition process parameters (namely RF applied powers);
- Addition of both H_2 , D_2 in the deposition gas leads to roughening of the samples surface, possible due to etching effect of the hydrogenoid species produced in the discharge.

Conclusions:

•Elemental composition and thickness of silicon carbide samples were investigated by RBS.

References:

[1] H Nakamura, J Dietz, P Ladd, Wall conditioning in ITER, Vacuum, 47, 6-8, 653-655, (1996)

[2] SIMNRA home page, ttp://home.rzg.mpg.de/~mar

[3] Nuclear Instruments and Methods in Physics Research B 261 (2007) 401–404

[4] George Socrates, Infrared and Raman Characteristic Group Frequencies, Third Edition, John Wiley & Sons, LTD, 2001. [5] L. Calcagno, F. Giorgis, A. Makthari, P. Musumeci, F. Pirri, Philosophical Magazine B 79 (1999) 1685-1694.

Samples deposited in

 $Ar+H_2+D_2$ mixtures at

 P_{RF} Si=60W and P_{RF} C=100W

—Ar + 20% H

—— Ar + 40% H₂

—— Ar + 60% H₂

— Ar + 20% D₂

The hydrogen and deuterium content were determined by ERDA;

•The samples were prepared by simultaneously sputtering of two targets (silicon and graphite) using Ar or mixtures of Ar with H_2 and D_2 as working gases;

•The dependence of the SiC_x layers stoichiometry over the experimental deposition parameters was investigated;

• The sample deposited only in Ar present a pretty smooth surface, slightly influenced by deposition process parameters; addition of both H_2 , D_2 leads to roughening of the samples surface, possible due to etching effect of the hydrogenoid species produced in the discharge;

•FTIR investigations of the samples revealed the presence of D-C-D and H-C-H chemical bonds in the samples codeposited using Ar/D_2 and Ar/H_2 mixtures, respectively;

•Spectroscopic Elipsometry investigations revealed that optical properties of the deposited SiC layers can be easy adjusted by proper choosing of the deposition process parameters.

Acknowledgments

The National Authority for Scientific Research from The Ministry of Education, Research and Youth of Romania is gratefully acknowledged for the financial support through the project: Core Program No. PN09450103, Partnerships in Priority Areas Program No. 143/2012.