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The even-even isotopes of the 180−196Pt chain are analyzed in the framework
of two solvable approaches for the quadrupole intrinsic variables, called the David-
son and Spheroidal Approach (DSA) and Davidson and Mathieu Approach (DMA),
respectively. The energy spectra of the ground and first β and γ bands, E2 transition
probabilities between states belonging to these bands and shapes of the ground and
some excited states are determined for each isotope. The numerical results are com-
pared with the corresponding experimental data as well as with those obtained with
two recently proposed models, namely, the Sextic and Spheroidal Approach (SSA) and
Sextic and Mathieu Approach (SMA).
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1. INTRODUCTION

Recently [1], the present authors have applied several solvable approaches as
the Sextic and Spheroidal Approach (SSA) [2], the Sextic and Mathieu Approach
(SMA) [3], the Infinite Square Well and Spheroidal Approach (ISWSA) [4] and the
Infinite Square Well and Mathieu Approach (ISWMA) [1], respectively, to describe
the properties of the even-even isotopes of the 180−196Pt chain. Numerical results for
energy spectra and E2 transition probabilities were compared with the corresponding
experimental data as well as with those yielded by the X(5) [5] and Z(5) [6] ap-
proaches. This comparison revealed that the SSA and SMA offer a better description
of the experimental data than the other approaches. Additionally, the contour plots
of the probability density as a function of the intrinsic dynamic variables pointed out
a shape evolution along the isotope chain.

Properties of the isotopes of Platinum as energy spectra, B(Eλ) transition prob-
abilities, shape coexistence and shape evolution were largely analyzed and discussed
from both theoretical and experimental point of view in many papers [6–19].
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In the present work, other two approaches will be applied for the isotope chain
180−196Pt, namely, the Davidson and Spheroidal Approach (DSA) [20] and Davidson
and Mathieu Approach (DMA), respectively, hopping to bring new contributions in
explaining the experimental data. While the DSA was earlier proposed in Ref. [2],
the DMA is an unedited approach described in Sec. II. Numerical results obtained
with the DSA and DMA are compared with the experimental data of the isotope
chain 180−196Pt as well as with those yielded by the SSA and SMA in Sec. III, in
order to see how these approaches complement each other. In addition, using the
wave functions of the DSA and DMA, the contour plots of the probability density
are represented in polar coordinates for the ground state and some excited states for
each even-even isotope of the chain. Finally, the main conclusions are collected in
Sec. IV.

2. DESCRIPTION OF THE DAVIDSON AND MATHIEU APPROACH

2.1. THE MODEL HAMILTONIAN AND SEPARATION OF VARIABLES

Due to the fact that the SSA, SMA and DSA were proposed and largely dis-
cussed in previous papers [1–3, 20–23], they will not be presented here. Instead, the
Davidson and Mathieu Approach will be described in detail. The starting point is the
Bohr-Mottelson Hamiltonian [24],
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amended with a potential [26, 27]
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, (2)

which allows us to separate the β deformation variable from the other four, the ax-
ial deformation variable γ and the three Euler angles θ1, θ2 and θ3, which remain
coupled due to the rotor term. Q̂k denote the angular momentum components in the
intrinsic reference frame. A full separation of variables is achieved [3] by expanding
the rotor term, denoted hereafter with W , in power series of γ, around γ0 = 300,
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and then averaging the result with the Wigner function WL
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⟨W ⟩ ≈ L(L+1)− 3

4
R2+

(
10L(L+1)− 39

4
R2

)(
γ− π

6

)2
. (4)

RJP 60(Nos. 1-2), 161–178 (2015) (c) 2015 - v.1.3a*2015.2.9



3 Energy spectra, E2 transition probabilities & shape deformations for isotopes 180−196Pt 163

In Eq. (4), L(L+1) and R are the eigenvalues of the operators Q̂2 and Q̂1, respec-
tively. The first term L(L+1) and the rest terms of Eq. (4), multiplied by 1/β2, are
added to the β and γ equations, respectively:[
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In Eqs. (5,6) the following notations are introduced:
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Here, with ⟨β2⟩ is denoted the average value of β2 which further it will be treated as
a free parameter. In Ref. [2] it is shown that this is a reasonable approximation. For
some conditions, concerning the separation of variables, the problem can be exactly
solved [25]. The solutions of the resulting equations (5,6) depend on the potential
forms. In what follows, these equations will be discussed separately.

2.2. SOLUTION OF THE β EQUATION

Considering a Davidson type potential [28] for the β variable,
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and making the change of function f(β) = β−2ψ(β), Eq. (5) is reduced to the form:[
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The potential given by Eq. (8) has a minimum at β0 = a
−1/4
1 a2 which is equal with

a2 when a1 = 1. In numerical calculations a1 will be treated as a free parameter in
order the potential (8) to have a minimum at β0 close to the experimental nuclear
deformation. After a suitable change of function and variable in Eq. (9), the final
solution is expressed in terms of the generalized Laguerre polynomials Lmβ
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where Γ is the Euler gamma function. The corresponding eigenvalues are given by:

Eβ(nβ,L) =
ℏ2
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9

4
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)
, nβ = 0,1,2, ... . (11)

The solution of the β equation with a Davidson potential was used before in Refs.
[6, 20, 29–34]. The new thing here is the use, at a time, of the solution in β just
mentioned and the Mathieu solution for the γ equation, which results in obtaining of
a solvable approach for the generalized Bohr-Mottelson Hamiltonian (1,2), conven-
tionally called the Davidson and Mathieu Approach (DMA).

2.3. SOLUTION OF THE γ EQUATION

The Mathieu solution for the γ variable was proposed in Ref. [4] for axial
symmetric deformed nuclei and then in Ref. [3] to describe triaxial nuclei having γ0
close 300. Hereinafter, the second procedure will be applied. Therefore, a periodic
potential is considered for Eq. (6),

v2(γ) = u2 cos
2 3γ, u2 > 0, (12)

which has a minimum at γ0 = 300. Further, with the change of function ϕ(γ) =
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To obtain the Mathieu equation, other two steps are performed, namely, the approxi-
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In Eq. (15), M(y) is the Mathieu function satisfying the orthonormalization condi-
tion:
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The corresponding energy is easily found from Eq. (16) by using the expression of
the characteristic value anγ :
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The total energy corresponding to the DMA is given by the sum of the β and γ
equation eigenvalues:
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where G = ℏ2
2B and F = 1
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2B . The values for the quantum numbers nβ,nγ ,L,R

corresponding to the ground and first β and γ bands are the following:

nβ = 0, nγ = 0, R= L, L= 0,2,4, . . . ground band,

nβ = 0, nγ = 1,

{
R= L−2,L= 2,4,6, ...

R= L−1,L= 3,5,7, ...
gamma band,

nβ = 1, nγ = 0, R= L, L= 0,2,4, . . . beta band.

(20)

The total wave function of the system is:

|LRMnβnγ⟩=NL,nβ
fL,nβ

(β)

√
6

π
ML,R,nγ (3γ)·

·

√
2L+1

16π2(1+ δR0)

(
DL

MR(Ω)+(−1)LDL
M−R(Ω)

)
,

(21)

where NL,nβ
are the normalization constants of the β functions.

2.4. ELECTROMAGNETIC TRANSITIONS

The reduce E2 transition probabilities,

B(E2, i→ f) = |⟨LiRiMinβinγi||T
(E2)
2 ||LfRfMfnβfnγf ⟩|2, (22)
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written in the Rose’s convention [35] are determined by taking in consideration also
the anharmonic contribution of the quadrupole transition operator:
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Using the argument γ− 2π/3 instead of γ, in Eq. (23), is justified by the fact that
here R, the eigenvalue of the operator Q1, is a good quantum number and not K
which corresponds to Q3. This replacement was also used in Ref. [6], where the
Z(5) approach was proposed.

3. NUMERICAL RESULTS

The Davidson and Mathieu Approach (DMA), introduced here, together with
the DSA will be applied for the description of the isotope chain 180−196Pt. The
applications will be made by taking into account the signatures defined below:

R4+g /2+g
=
E4+g

−E0+g

E2+g
−E0+g

, R0+β /2+g
=
E0+β

−E0+g

E2+g
−E0+g

, (23)

whose values are given for each isotope in Table 1 .

Table 1

The ratios R4+g /2+g
and R0+β /2+g

, given by Eq. (23), corresponding to each isotope of the chain
180−196Pt are compared with those of X(5), Z(5) and O(6).

180Pt 182Pt 184Pt 186Pt 188Pt 190Pt 192Pt 194Pt 196Pt X(5) Z(5) O(6)
R4+g /2+g

2.69 2.71 2.67 2.55 2.52 2.49 2.48 2.47 2.46 2.90 2.35 2.50
R0+β /2+g

3.12 3.23 3.02 2.46 3.00 3.11 3.78 3.86 3.19 5.65 3.91 -

According to the ratio R4+g /2+g
, the isotopes 180,182,184Pt are close to X(5) pic-

ture, while the rest 186,188,190,192,194,196Pt would belong to the O(6) dynamical sym-
metry. For 186Pt, because E2+γ

> E0+β
, we can say that this isotope has a stable γ

deformation rather than a γ−unstable one. Instead, the ratio R0+β /2+g
recommend

the isotopes 192,194Pt as good candidates for Z(5), but not for for X(5). From these
observations we may conclude that this isotope chain manifests partial properties for
critical points of the shape phase transitions U(5)→SU(3) and SU(3)→SU(3), res-
pectively. In conclusion, it is difficult to say exactly which is the most appropriate
description for each isotope. What is interesting instead is that in Ref. [1], the SSA
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and SMA applications for 180−188Pt and 190−196Pt, respectively, were able to ex-
plain some additional properties of these nuclei which couldn’t be reproduced in the
framework of X(5) and Z(5). For example, the SSA eliminated the drawback of X(5)
in explaining the head state of the β band for 180,182,184Pt, especially for the isotope
182Pt which, as suggested in Ref. [14], has some X(5) features. Another example
is that of the SMA which provided a good description for the γ band of 190−196Pt,
especially for the staggering behavior of 192Pt where Z(5) results are far from the
experimental data. Following the same path as in Ref. [1], the DSA and DMA will
be applied for the isotopes 180−188Pt and 190−196Pt, respectively, and the results will
be compared also with those yielded by the SSA and SMA in order to see what are
the new contributions in explaining the corresponding experimental data.

The parameters of the DSA, DMA, SSA and SMA, fixed by fitting some expe-
rimental data, are given in Tables 2,3.

Table 2

Parameters of the DSA and SSA fitted for the experimental data of 180−188Pt.

G [keV] F [keV] u1 u2 a1 a2 a b t1[W.u.]
1
2 t2[W.u.]

1
2

Nucl DSA SSA DSA SSA DSA SSA DSA SSA DSA DSA SSA SSA DSA SSA DSA SSA
180Pt 2.718 1.04 37.91 3.34 -975.5 -821.2 474.2 -1000 4528 1.873 1059 135 1392 1750 0 0
182Pt 2.512 0.812 29.07 5.326 -16.71 -1042 -23.35 -0.001 5344 1.581 1687 186 4215 6561 33465 89567
184Pt 2.555 0.624 28.47 6.248 -99.31 -302.6 12.99 -262 4863 1.582 3030 256 4005 7821 30255 122065
186Pt 1.917 0.846 39.95 3.085 -430.8 1471 219.9 -2326 5635 1.088 1296 170 3792 5061 25902 58515
188Pt 4.957 1.453 34.75 14.55 -500 -466.2 293.1 165.8 1766 0.818 1449 95 1259 1717 0 0

Table 3

Parameters of the DMA and SMA fitted for the experimental data of 190−196Pt.

G [keV] F [keV] u2 a1 a2 a b t1[W.u.]
1
2 t2[W.u.]

1
2

Nucl DMA SMA DMA SMA DMA SMA DMA DMA SMA SMA DMA SMA DMA SMA
190Pt 2.184 1.114 6.287 8.143 133.4 104.6 11040 2.204 3014 84 70.43 96.38 0 0
192Pt 3.581 2.952 7.577 7.867 107.7 121.8 6627 2.583 616.5 22.98 51.11 55.1 878.2 1048
194Pt 3.236 2.957 12.06 14.68 43.04 32.74 9351 2.477 733 33.05 39.48 43.43 1082 1077
196Pt 2.210 0.411 5.148 6.455 221.9 177 14705 2.272 28322 250 54.35 130.2 2071 11224

As seen in Fig.1, they have a smooth dependence on the atomic mass A. Indeed
the values corresponding to the considered isotopes were interpolated by simple poly-
nomial functions. We notice that a1, a2 and u1 have minima either in A = 186 or
for A=188. By contrast the parameters G, F and u2 have maxima in the mentioned
points. The change of sign of the first derivatives for these nuclei might be tentatively
interpreted as a critical point for a phase transition.

The numerical results for the energy spectra are compared with the experimen-
tal data in Figs. 2,3,4. By analyzing the ground band description given by the DSA
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Fig. 1 – The parameters G, F , a1, a2, u1 and u2 are represented as function of A.
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and SSA for the isotopes 180−188Pt we can observe that both approaches are close
to the experimental data and that happens even for high spin states. For the β band,
the DSA has problems in reproducing the energy of the 0+ state, excepting for the
isotope 188Pt. The SSA offers a very good description of the β band of these iso-
topes, especially for the isotopes 182Pt and 186Pt, respectively. In the γ band, some
intermediate experimental energies are missing. For example, for the isotope 180Pt
the intermediate experimental energies 6+ and 8+ are not available, while for 188Pt
energies for 5+ and 7+ are missing. Concerning the γ band description, we can say
that it is only partially well described and that because some states are well repro-
duced, while other not. This is not the case for the isotopes 190−196Pt where the
DMA and SMA, besides the fact that are in good agreement with the experimental
data corresponding to the ground and β bands, reproduce also the behavior of the γ
band. For the isotope 196Pt the experimental energy of 7+ is missing.

In order to see which approach describes better the energy spectrum for all
three bands of each isotope we give in Table 4 the root mean square (r.m.s.) values:

r.m.s.=

√∑n
i=1(E

(i)
th.−E

(i)
exp.)2

n
, (24)

where, with n is denoted the number of states, while E(i)
th. and E(i)

exp. represent the
theoretical and experimental energies of the ground, β and γ bands.

Table 4

The r.m.s. values for the energy spectra corresponding to the DSA, SSA, DMA and SMA given for the

isotopes 180−196Pt.
Nucl 180Pt 182Pt 184Pt 186Pt 188Pt 190Pt 192Pt 194Pt 196Pt

DSA SSA DSA SSA DSA SSA DSA SSA DSA SSA DMA SMA DMA SMA DMA SMA DMA SMA
r.m.s. [keV] 83 58 72 47 104 83 106 107 31 45 40 71 52 76 36 69 47 92

Analyzing the r.m.s. values, we can see that the energy spectra of the isotopes
180,182,184Pt are better described by the SSA than the DSA, for 186Pt the r.m.s. values
are closed to each other, while for the isotope 188Pt the DSA is more appropriate.
For the isotopes 190−196Pt, the balance is clearly inclined in the favor of the approach
proposed here, namely, the Davidson and Mathieu Approach, comparing with the
results of the SMA.

Some reduced B(E2) transition probabilities are given in Tables 5,6 for each
of the isotopes 180−196Pt.

Note that even the SSA describes better the energy spectra of the isotopes
180−184Pt than the DSA, for the transition probabilities the situation is reversed. For
186Pt the DSA remains closer to the experimental data than the SSA. In the case of
the isotopes 188Pt and 190Pt we can’t compare the mentioned approaches due to the
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Fig. 2 – The energy spectra determined with the DSA and SSA are compared with the experimental
data [36, 37, 39] of the isotopes 180,182,184Pt.
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Fig. 3 – The energy spectra determined with the DSA and SSA are compared with the experimental
data [38, 40] of the isotopes 186,188Pt, while those of the DMA and SMA with the experimental data
[41] of 190Pt.
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Fig. 4 – The energy spectra determined with the DMA and SMA are compared with the experimental
data [42–44] of the isotopes 192,194,196Pt.
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lake of experimental data. Analyzing the results for 192−196Pt we can observe that
the r.m.s. values of the SMA are a little better than those of the DMA.

As in the previous work [1], the contour plots of the squared wave function
multiplied by the integration measure,

P (β,γ) = |f(β)ϕ(γ)|2β4|sin3γ|, (25)

are given in polar coordinates by using the transformation:∫ ∞

0

∫ π
3

0
P (β,γ)dβdγ =

∫ ∞

0

∫ ∞

0
P [β(x,y),γ(x,y)]

dxdy√
x2+y2

, (26)

in order to see the shape of each isotope in the ground and some excited states. These
plots are given in Figs. 5,6. These figures reflect the symmetry properties of the wave
functions and Hamiltonian. Details about these properties were given in Ref. [1].
Note that if the results of the DMA from Fig. 6 are similar with those yielded by the
SMA in Ref. [1], this is not the case if we compare the contour plots of the DSA
with those of the SSA, especially for the isotopes 180,186,188Pt for which the DSA
predicts to have a triaxial deformation close to γ0 = 300 rather than a shape close
to an axial deformation. This difference between the DSA and SSA comes from the
fact that in the γ equation of the SSA a term −2

3
1

⟨β2⟩L(L+1) is added from the β
equation in order that the sextic oscillator equation for the β variable to be obtained.
Therefore, this term leads to different values of the parameters u1 and u2 for the two
approaches, and consequently to a difference in the behavior of the functions in the
variable γ. Otherwise, the results of the DSA and SSA concerning the contour plots
of the probability density would be similar.

Table 5

The B(E2) transition probabilities yielded by the DSA, SSA, DMA and SMA are compared with the

corresponding experimental data [8, 36, 38–41] of the isotopes 180−190Pt.
B(E2) [W.u.] 180Pt 182Pt 184Pt 186Pt 188Pt 190Pt
J+
i → J

′+
f DSA Exp SSA DSA Exp SSA DSA Exp SSA DSA Exp SSA DSA Exp SSA DMA Exp SMA

2+g → 0+g 110 153+15
−15 110 163 108+7

−7 167 165 127+5
−5 176 153 113+8

−8 162 82 82+15
−15 82 56 56+3

−3 56
4+g → 2+g 168 140+30

−30 168 228 188+11
−11 226 232 210+8

−8 238 227 188+13
−13 232 143 136 100 92

6+g → 4+g 206 ≥ 50 202 239 284+18
−18 232 248 226+12

−12 243 259 289+23
−23 254 202 171 143 116

8+g → 6+g 244 230 231 253+20
−20 221 244 271+18

−18 232 273 294+29
−29 260 265 200 188 135

10+g → 8+g 285 255 210 266+21
−21 204 227 310+10

−10 214 272 304+26
−26 258 329 226 235 152

12+g → 10+g 327 278 181 158+18
−18 185 203 183+17

−17 193 259 255+26
−26 252 395 249

14+g → 12+g 371 300 149 113+11
−11 164 173 165+17

−17 171 239 225+21
−21 243

16+g → 14+g 141 143+17
−17 150 214 201+36

−36 232
18+g → 16+g 110 80+5

−5 129
r.m.s. [W.u.] 36 36 42 47 36 43 27 36
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Fig. 5 – The contour plots of the density probability (26) are represented. by using the DSA wave
functions, for the states 0+g , 0+β and 2+γ of the isotopes 180−188Pt. s is the step used in contour plots.

RJP 60(Nos. 1-2), 161–178 (2015) (c) 2015 - v.1.3a*2015.2.9



15 Energy spectra, E2 transition probabilities & shape deformations for isotopes 180−196Pt 175

Fig. 6 – The contour plots of the density probability (26) are represented, by using the DMA wave
functions, for the states 0+g , 0+β and 2+γ of the isotopes 190−196Pt. s is the step used in contour plots.
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Table 6

The B(E2) transition probabilities yielded by the DMA and SMA are compared with the corresponding

experimental data [42–44] of the isotopes 192−196Pt.

B(E2) [W.u.] 192Pt 194Pt 196Pt
J+
i → J

′+
f DMA Exp SMA DMA Exp SMA DMA Exp SMA

2+g → 0+g 48.7 57.2+1.2
−1.2 49 22.4 49.2+0.8

−0.8 24.9 30.4 40.6+0.2
−0.2 34.1

4+g → 2+g 72 89+5
−5 73 33 85+5

−5 37 46 60+0.9
−0.9 52

6+g → 4+g 100 70+30
−30 98 47 67+21

−21 51 66 73+4
−73 72

8+g → 6+g 59 50+14
−14 61 86 78+10

−78 87
10+g → 8+g 72 34+9

−9 70
2+β → 0+β 37 5+5

−5 23
3+γ → 2+γ 87 102+10

−10 89
4+γ → 2+γ 13 21+4

−4 15 19 29+6
−29 21

6+γ → 4+γ 27 49+13
−13 29

0+β → 2+g 8.13 0.63+0.14
−0.14 9.13 14 2.8+1.5

−1.5 15.5
2+β → 0+g 0.2414 0.0025+0.0024

−0.0024 0.1976
2+β → 4+g 13.07 0.13+0.12

−0.12 9.83
0+β → 2+γ 0.4 8.4+1.9

−1.9 0.5 0.2 18+10
−10 0.2

2+β → 2+γ 7.87 0.26+0.23
−0.23 7.81

2+γ → 0+g 1.00 0.55+0.04
−0.04 0.93 0.97 0.29+0.04

−0.04 1.29
2+γ → 2+g 88 89+11

−11 88
3+γ → 2+g 1.86 0.68+0.07

−0.07 1.74
3+γ → 4+g 38 38+10

−10 38
4+γ → 2+g 0.60 0.36+0.07

−0.07 0.79 0.25 0.56+0.12
−0.17 0.32

4+γ → 4+g 20 14 19
6+γ → 4+g 0.15 0.48+0.14

0.14 0.19
6+γ → 6+g 10 16+5

−5 10
r.m.s. [W.u.] 15 14 22 20 13 10

4. CONCLUSIONS

In the present work, a new solvable model for the quadrupole intrinsic variables
was proposed, conventionally called the Davidson and Mathieu Approach (DMA).
For the β variable a Davidson potential is used having as solutions the generalized
Laguerre polynomials, while for the γ the Mathieu functions are the eigenstates by
considering a periodic potential which may have a minimum around γ0 = 30. The
DMA together with its analogous, but for axial symmetric nuclei, the Davidson and
Spheroidal Approach (DSA) were applied for the description of the ground, β and
γ bands properties of the even-even isotopes 180−196Pt obtaining a good agreement
with the corresponding experimental data. In a previous paper [1], this isotope chain
was analyzed in the framework of other quadrupole solvable models, namely X(5),
ISWSA, SSA, Z(5), ISWMA and SMA, respectively, with the best agreement with
the experimental data in the favor of the SSA and SMA. In consequence, a compar-
ison of the DSA and DMA numerical results with those of the SSA and SMA was
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an interesting application in order to see what are the new contributions in explain-
ing the experimental data brought by the present work. Therefore, the DSA offers a
better description than the SSA for the energy spectra of 186,188Pt and for the B(E2)
transition probabilities of 180,182,184,186Pt, respectively, while the DMA is clearly
closer to the experimental spectra of the isotopes 190,192,194,196Pt comparing with the
SMA results. Concerning the axial shape deformations, the DMA results are similar
with those of the SMA, while the DSA predicts a triaxiality close to γ0 = 300 for the
isotopes 180,186,188Pt instead of axially deformed shape as predicted by SSA.

Acknowledgements. The authors acknowledge the financial support received from the Romanian
Ministry of Education and Research, through the Project PN 09 37 01 02/2013.

REFERENCES

1. A. A. Raduta and P. Buganu, Phys. Rev. C 88, 064328 (2013).
2. A. A. Raduta and P. Buganu, J. Phys. G: Nucl. Part. Phys. 40, 025108 (2013).
3. A. A. Raduta and P. Buganu, Phys. Rev. C 83, 034313 (2011).
4. A. Gheorghe, A. A. Raduta and A. Faessler, Phys. Lett. B 648, 171 (2007).
5. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
6. D. Bonatsos, D. Lenis, D. Petrellis, P.A. TerzievPhys. Lett. B 588, 172 (2004).
7. U. Garg et al., Phys. Lett. B 180, 319-323 (1986).
8. J.C. Walpe et al., Phys. Rev. C 85, 057302 (2012).
9. Liu Yuan et al., Chinese Phys. Lett. 25, 1633 (2008).

10. G. Dracoulis et al., J. Phys. G: Nucl. Phys. 12, L97 (1986).
11. G. D. Dracoulis, Phys. Rev. C 49, 3324 (1994).
12. K. Nomura et al., Phys. Rev. C 83, 014309 (2011).
13. L. M. Robledo, R. Rodriguez-Guzman and P. Sarriguren, J. Phys. G: Nucl. Part. Phys. 36, 115104

(2009).
14. P. Petkov, et al., J. Phys.: Conf. Ser. 366, 012036 (2012).
15. Kris Heyde and John L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
16. Irving O. Morales, Alejandro Frank, Carlos E. Vargas, P. Van Isacker, Phys. Rev. C 78, 024303

(2008).
17. J. E. Garcı́a-Ramos and K. Heyde, Nucl. Phys. A 825, 39 (2009).
18. J. E. Garcı́a-Ramos, K. Heyde, L. M. Robledo and Rodrı́guez-Guzmán, Phys. Rev. C 89, 034313

(2014).
19. J. E. Garcı́a-Ramos, V. Hellemans and K. Heyde, Phys. Rev. C 84, 014331 (2011).
20. A. A. Raduta, A. C. Gheorghe, P. Buganu and A. Faessler, Nucl. Phys. A 819, 46-78 (2009).
21. A. A. Raduta and P. Buganu, J. Phys.: Conf. Ser. 413, 012029 (2013).
22. P. Buganu and A. A. Raduta, Rom. Journ. Phys. 57, 1103-1112 (2012).
23. P. Buganu, A. A. Raduta and A. Faessler, J. Phys. G: Nucl. Part. Phys. 39, 025103 (2012).
24. A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, no.14 (1952); A. Bohr and B. Mottelson, Mat. Fys.

Medd. Dan. Vid. Selsk. 27, no. 16 (1953).
25. P. Van Isacker and K. Heyde, arXiv:nucl-th/1401.7512v1 (29 Jan. 2014).
26. L. Wilets and M. Jean, Phys. Rev.102, 788 (1956).

RJP 60(Nos. 1-2), 161–178 (2015) (c) 2015 - v.1.3a*2015.2.9

http://arxiv.org/abs/1401.7512v1


178 P. Buganu, A.A. Raduta 18

27. L. Fortunato, Eur. J. Phys. A 26, s01, 1-30 (2005).
28. P. M. Davidson, Proc. R. Soc. 135, 459 (1932).
29. Dennis Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P. P. Raychev, P. A. Terziev, Phys. Lett. B 584,

40 (2004).
30. J. P. Elliot, J. A. Evans, P. Park, Phys. Lett. 169, 309 (1986).
31. D. Bonatsos, D. Lenis, E. A. McCutchan, D. Petrellis, I. Yigitoglu, Phys. Lett. B 649, 394 (2007).
32. I. Yigitoglu and Dennis Bonatsos, Phys. Rev. C 83, 014303 (2011).
33. Dennis Bonatsos, E. A. McCutchan, N. Minkov, R. F. Casten, P. Yotov, D. Lenis, D. Petrellis and

I. Yigitoglu, Phys. Rev. C 76, 064312 (2007).
34. Dennis Bonatsos, P. E. Georgoudis, D. Lenis, N. Minkov and C. Quesne, Phys. Rev. C 83, 044321

(2011).
35. M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
36. S.-C. Wu and H. Niu, Nuclear Data Sheets 100, 483 (2003).
37. Balraj Singh and Joel C. Roedinger, Nuclear Data Sheets 111, 2081 (2010).
38. Coral M. Baglin, Nuclear Data Sheets 99, 1 (2003).
39. Coral M. Baglin, Nuclear Data Sheets 111, 275 (2010).
40. Balraj Singh, Nuclear Data Sheets 95 , 387 (2002).
41. Balraj Singh, Nuclear Data Sheets 99, 275 (2003).
42. Coral M. Baglin, Nuclear Data Sheets 113, 1871 (2012).
43. Balraj Singh, Nuclear Data Sheets 107, 1531 (2006).
44. Huang Xiaolong, Nuclear Data Sheets 108, 1093 (2007).

RJP 60(Nos. 1-2), 161–178 (2015) (c) 2015 - v.1.3a*2015.2.9


