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Abstract

The generalized coherent state model, proposed previously for a unified
description of magnetic and electric collective properties of nuclear systems,
is used to study the ground-state band charge density as well as the E0
transitions from 0+

β to 0+
g . The influence of the nuclear deformation and of

angular momentum projection on the charge density is investigated. The
monopole transition amplitude has been calculated for ten nuclei. The results
are compared with some previous theoretical studies and with the available
experimental data. Our results concerning angular momentum projection
are consistent with those of previous microscopic calculations for the ground-
state density. The calculations for the E0 transitions agree quite well with the
experimental data. Issues like how the shape transitions or shape coexistence
are reflected in the ρ(E0) behavior are also addressed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One body transition density operators play an important role in the microscopic description of
various properties showing up in nuclear systems. For example, the charge density operator
matrix elements corresponding to the ground state of a spherical system can be determined,
with high precision, in elastic electron scattering, which results in having precious information
about the spatial charge distribution. Similarly, the matrix elements between the ground state
and excited states within the ground band might provide information about the nuclear shape
[1]. Indeed, in an electron scattering experiment at large momentum transfer the radial
dependence of the charge distribution can be directly measured. Combining this result with
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other information on electromagnetic interaction in the considered nuclei, in the reference
quoted above, more refined statements on the deformed shapes could be made.

The structure of the spectra in deformed nuclei requires the use of a deformed mean
field. The final state describing an interacting many body system is a deformed state and,
therefore, its use for the description of the transition probabilities requires the projection of
the components with good angular momentum. In particular, in order to account for the
contribution of the tensorial components of the charge density, the many body ground state
built up with deformed single particle states must be projected over the angular momentum [2].
There is no doubt that projection is of paramount importance for transitional and deformed
nuclei. However, the correction brought by projection to the results obtained in the intrinsic
frame depends on the observable under consideration [3, 4]. For example, averaging a model
Hamiltonian on an intrinsic ground state yields the system energy, while averaging it on angular
momentum projected states, a whole band of energy levels is obtained. For instance, for the
collective magnetic dipole state with a deformed single particle basis one obtains K = 1
states which are abusively called 1+ states. To our knowledge there is no rigorous proof that
the admixture with the components of angular momentum 2 is negligible. Another example
we want to comment upon is that of the rotational bands which are considered to be a set
of states characterized by the same quantum number K. However, in the laboratory frame of
reference, K is not a good quantum number and the meaning of a K-state is actually a state with
a dominant K-component. The effect of projection is felt by the operator matrix elements.
There are cases of operators whose matrix elements are affected very little by the angular
momentum projection of the intrinsic states. The simplest case is that when the operator is
just a C-number constant. Its matrix elements in the unprojected and projected states are equal
to each other. At first glance, that would suggest that other operators insensitive to projecting
the angular momentum from the intrinsic wavefunction, would be scalar operators. Of course,
that is not true and an example is the boson number operator in a phenomenological picture.

One issue of the present paper is to study the scalar part of the charge density operator
within the generalized coherent state model (GCSM). Thus, we shall consider the matrix
element of the charge density operator, truncated at its scalar term, on the unprojected ground
state and, alternatively, on the projected Jπ = 0+ state. We also address the question of how
different are these matrix elements from those corresponding to a high angular momentum
projected state. All matrix elements quoted above are studied as a function of nuclear
deformation.

Another scalar operator which is studied here is the E0 transition operator. The monopole
transition is often used to characterize various states of angular momentum equal to zero. Thus,
in [5] two of us (PS and EM) expressed the monopole for the transition 0+

β → 0+
g strength in

terms of the mixing coefficient of the two states characterized by different deformations but
lying close to each other in energy. In this way the transition strength may provide the mixing
coefficient for the two states. In 158Gd several 0+ states have been seen in a (p,t) experiment
[6]. These states have been microscopically interpreted within a projected shell model and,
alternatively, within the quasiparticle-phonon model [7]. The authors of [7] calculated the E2
strength for the transition from the ground state to the first 2+ state, the E0 strength for the
transition from the excited 0+ states to the ground state, and the two-nucleon spectroscopic
amplitudes. The experimental strengths for E0 and E2 transitions are concentrated in one and
two states respectively, while the theoretical results [7] show a large fragmentation of the two
transition strengths. The experimental spectroscopic amplitudes indicate that two states are
mainly populated, which contrasts the theoretical result where the amplitude is fragmented
among several states. From the analysis of [7] it seems that the E0 strength is a signature only
for one excited 0+ state, as in fact was considered in [5].

2



J. Phys. G: Nucl. Part. Phys. 36 (2009) 015114 A A Raduta et al

The project mentioned above will be described according to the following plan. In
section 2 a brief description of the generalized coherent state model will be given. That
will help us to introduce the useful notations and to approach a self-contained presentation.
The charge density expansion in terms of the quadrupole collective coordinates is given in
section 3. The monopole transition amplitude is treated in section 4. The numerical
applications are given in section 5, while the final conclusions are summarized in
section 6.

2. The generalized coherent state model

The description of magnetic properties in nuclei has always been a central issue. The reason
is that the two systems of protons and neutrons respond differently when they interact with
an external electromagnetic field. Differences are due to the fact that in contrast to neutrons,
protons are charged particles, the proton and neutron magnetic moments are different from
each other and, finally, the proton and neutron numbers in a given nucleus are, in general,
different.

Many papers have been devoted to explaining various features of the collective dipole
mode called, conventionally, scissors mode. The name of the mode was suggested by Iudice
and Palumbo who interpreted the dipole mode, within the two rotor model [8], as a scissors
like oscillation of proton and neutron systems described by two axially symmetric ellipsoids,
respectively.

The coherent state model (CSM), proposed by Raduta et al to describe the lowest three
collective interacting bands [9], was extended by including the isospin degrees of freedom
in order to account for the collective properties of the scissors mode [10]. This extension is
conventionally called ‘the generalized coherent state model’ (GCSM).

CSM starts with the construction of a restricted collective space, by projecting out the
components of good angular momentum from three orthogonal quadrupole boson states. These
states are chosen such that they are orthogonal before and after projection. One of the three
deformed states, the intrinsic ground state, is a coherent state of Glauber type with respect to
the zero component of the quadrupole boson, b

†
20, while the other two are obtained by acting

with elementary boson polynomials on the ground state. In choosing the intrinsic excited
states we take care that the projected states considered in the vibrational limit have to provide
the multi-phonon vibrational spectrum, while for the large deformation regime their behavior
coincides with that predicted by the liquid drop model.

In contrast to the CSM, which uses only one boson for the composite system of protons
and neutrons, within the GCSM the protons are described by quadrupole proton-like bosons,
b
†
pμ, while the neutrons by quadrupole neutron-like bosons, b

†
nμ. Since one deals with two

quadrupole bosons instead of one, one expects to have a more flexible model and to find a
simpler solution satisfying the restrictions required by CSM. The restricted collective space is
defined by the states describing the three major bands, ground, beta and gamma, as well as the
band based on the isovector state 1+. Orthogonality conditions are satisfied by the following
six functions which generate by angular momentum projection, six rotational bands:

φ
(g)

JM = N
(g)

J P J
M0ψg, ψg = exp

[(
dpb

†
p0 + dnb

†
n0

) − (dpbp0 + dnbn0)
]|0〉,

φ
(β)

JM = N
(β)

J P J
M0�βψg,

φ
(γ )

JM = N
(γ )

J P J
M2

(
b
†
n2 − b

†
p2

)
ψg,

φ̃
(γ )

JM = Ñ
(γ )

J P J
M2

(
�

†
γ,p,2 + �

†
γ,n,2

)
ψg,
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φ
(1)
JM = N

(1)
J P J

M1

(
b†

nb
†
p

)
11ψg,

φ̃
(1)
JM = Ñ

(1)
J P J

M1

(
b
†
n1 − b

†
p1

)
�

†
βψg.

(2.1)

Here, the following notations have been used:

�
†
γ,k,2 = (

b
†
kb

†
k

)
22 + dk

√
2

7
b
†
k2, k = p, n,

�
†
β = �†

p + �†
n − 2�†

pn,

�
†
k = (

b
†
kb

†
k

)
0 −

√
1

5
d2

k , k = p, n,

�†
pn = (

b†
pb†

n

)
0 −

√
1

5
d2

p,

N̂pn =
∑
m

b†
pmbnm, N̂np = (N̂pn)

†, N̂k =
∑
m

b
†
kmbkm, k = p, n.

(2.2)

Note that a priori we cannot select one of the two sets of states φ
(γ )

JM and φ̃
(γ )

JM for gamma band,
although one is symmetric and the other asymmetric against proton–neutron permutation. The
same is true for the two isovector candidates for the dipole states. In [11], results obtained
by using alternatively a symmetric and an asymmetric structure for the gamma band states
were presented. Therein it was shown that the asymmetric structure for the gamma band
does not conflict any of the available data. In contrast, considering for the gamma states an
asymmetric structure and fitting the model Hamiltonian coefficients in the manner described
in [11], a better description for the beta band energies is obtained. Moreover, in that situation
the description of the E2 transition becomes technically very simple. For these reasons, here
we make the option for a proton–neutron asymmetric gamma band.

All calculations performed so far considered equal deformations for protons and neutrons.
The deformation parameter for the composite system is

d =
√

2dp =
√

2dn. (2.3)

The factors N involved in the expressions of wavefunctions are normalization constants
calculated in terms of some overlap integrals.

We seek now an effective Hamiltonian for which the projected states (2.1) are, at least in a
good approximation, eigenstates in the restricted collective space. The simplest Hamiltonian
fulfilling this condition is

H = A1(N̂p + N̂n) + A2(N̂pn + N̂np) +
√

5
2 (A1 + A2)

(
�†

pn + �np

)
+ A3

(
�†

p�n + �†
n�p − 2�†

pn�np

)
+ A4Ĵ

2. (2.4)

The Hamiltonian given by equation (2.4) has only one off-diagonal matrix element in the basis
(2.1). That is

〈
φ

β

JM

∣∣H ∣∣φ̃(γ )

JM

〉
. However, our calculations show that this affects the energies of

β and γ̃ bands by an amount of a few keV. Therefore, the excitation energies of the six bands
are in a very good approximation given by the diagonal element

E
(k)
J = 〈

φ
(k)
JM

∣∣H ∣∣φ(k)
JM

〉 − 〈
φ

(g)

00

∣∣H ∣∣φ(g)

00

〉
, k = g, β, γ, 1, γ̃ , 1̃. (2.5)

It can be easily checked that the model Hamiltonian does not commute with the components
of the F̂ spin operator

F̂ 0 = 1
2 (N̂p − N̂n), F̂ + = N̂pn, F̂− = N̂np. (2.6)
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Hence, the eigenstates of H are F0 mixed states. However, the expectation values of the
F0 operator on the projected model states are equal to zero. This is caused by the fact that
the proton and neutron deformations are considered to be equal. In this case the states are
of definite parity, with respect to the proton–neutron permutation, which is consistent with
the structure of the model Hamiltonian which is invariant with respect to such a symmetry
transformation. To conclude, in contrast to the IBA2 Hamiltonian, the GCSM Hamiltonian
is not F̂ spin invariant. Another difference to the IBA2, the most essential one, is that the
GCSM Hamiltonian does not commute with the boson number operators. Due to this feature
the coherent state approach proves to be the most adequate one to treat the Hamiltonian in
equation (2.4). The asymptotic behavior of the magnetic state 1+, derived in [10], shows
clearly that the phenomenological description of two liquid drops and two rigid rotors are just
particular cases of GCSM, defined by specific restrictions.

The GCSM seems to be the only phenomenological model which treats simultaneously the
M1 and E2 properties. Indeed, in [11, 12] the ground, beta and gamma bands are considered
together with a Kπ = 1+ band built on the top of the scissor mode 1+. In contrast to the other
phenomenological and microscopic models, which treat the scissors mode in the intrinsic
reference frame, here one deals with states of good angular momentum and, therefore, there
is no need to restore the rotational symmetry. As shown in [13], the GCSM provides for the
total M1 strength an expression which is proportional to the nuclear deformation squared.
Consequently, the M1 strength of 1+ and the B(E2) value for 2+ are proportional to each other,
although the first quantity is determined by the convection current while the second one by
the static charge distribution.

One weak point of most phenomenological models is that they use expressions for
transition operators not consistent with the structure of the model Hamiltonian. Thus,
the transition probabilities are influenced by the chosen Hamiltonian only through the
wavefunctions. By contradistinction, in [11, 12] the E2 transition operator, as well as the
M1 form factor are derived analytically by using the equation of motion of the collective
coordinates determined by the model Hamiltonian. In this way a consistent description of
electric and magnetic properties of many nuclei was attained.

Here we complete the GCSM achievements by considering scalar operators such as those
involved in the ground-state charge density and the monopole transitions, ρ(E0). As we have
already mentioned we address issues like, how sensitive these quantities are to the projection
operation and also what is the influence of the nuclear deformation5.

3. The charge density in the liquid drop model

Suppose that the nuclear charge is distributed uniformly inside the nuclear surface described
by α2μ:

R(θ, ϕ) = R0

⎛
⎝1 +

∑
λ=0,2;μ

α∗
λμYλμ

⎞
⎠ ≡ R0 + R, (3.1)

with αλμ collective coordinates to be quantized later on. The charge density has the expression

ρ(r, θ, ϕ) = ρ0H [R(θ, ϕ) − r], (3.2)

5 Note that in our previous publications the total deformation was denoted by ρ. Here ρ stands for the charge density
while the nuclear deformation for the composite system is denoted by d.
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where H denotes the Heaviside function while ρ0 is the constant density corresponding to
a sphere of radius R0 = 1.2A1/3 fm. Expanding the charge density around the surface
corresponding to vanishing quadrupole coordinates one obtains

ρ(r, θ, ϕ) = ρ0
[
H(R0 − r) + Rδ(R0 − r) − 1

2 (R)2 δ′(R0 − r) + · · · ]. (3.3)

In momentum space the charge density can be written as a sum of tensor operators of various
ranks. For example the term of rank λ and projection μ reads

ρλμ(q) = C
∫

r2jλ(qr)

(∫
ρ(r, θ, ϕ)Yλμ d�

)
dr. (3.4)

Here jλ is the spherical Bessel function of the first kind. The transfer momentum, during the
scattering process with a charged particle, is denoted by q. C is a normalization factor which
might be chosen such that for q = 0 the density ρ0 is obtained. Here we choose C = 1, which
means that in momentum space we deal with the total charge instead of the charge density.

Let us consider first the scalar term involved in the expression of the charge density.
Taking into account the fact that the volume conservation restriction yields a relation between
the monopole and quadrupole coordinates,

α00 = − 1√
4π

∑
μ

|α2μ|2, (3.5)

one obtains

ρ00(q) = 3Ze

qR0
j1(qR0) − 3

8π
ZeqR0j1(qR0)

∑
μ

|α2μ|2. (3.6)

Quantizing the quadrupole collective coordinate we can define the transition monopole
operator, ρ̂00. The elastic monopole form factor is obtained as the expectation value of
ρ̂00 on the ground-state wavefunction in the collective space. Here we consider alternatively
the unprojected ground state and the projected states describing the J -members of the ground
band. In order to calculate the expectation values of the monopole charge density operator in
the states mentioned above, we have to express the coordinates in terms of boson operators
through the canonical transformation

α̂2μ = 1

kp

√
2

(
b†

pμ + (−)μbp−μ

)
,

π2μ = ikp√
2

(
(−)μb

†
p−μ − bpμ

)
.

(3.7)

The transformation relating the coordinates and conjugate momenta with the boson operators,
b
†
pμ, bpμ, is determined up to a multiplicative constant, kp. This is at our disposal and will

be fixed in several alternative ways described along this section. The results for the average
values are

〈ψg|
∑

μ

|α̂2μ|2|ψg〉 = 1

k2
p

(
d2 +

5

2

)
,

〈
φ

g

JM

∣∣ ∑
μ

|α̂2μ|2∣∣φg

JM

〉 = 1

k2
p

(
d2

2
+

5

2

)
+

d2

2k2
p

I
(1)
J (d2)

I
(0)
J (d2)

,

(3.8)

with

I
(0)
J (y) =

∫ 1

0
PJ (x) eyP2(x) dx, I

(1)
J (y) = ∂I

(0)
J (y)

∂y
, y = d2, d =

√
2dp.

(3.9)
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In the above expressions PJ (x) denotes the Legendre polynomial of rank J . Denoting by

A(q) = 3Ze

qR0
j1(qR0), C(q) = − 3

8π
ZeqR0j1(qR0), (3.10)

the matrix elements of the charge operator read

〈ψg|ρ̂00(q)|ψg〉 = A(q) +
1

k2
p

(
d2 +

5

2

)
C(q), (3.11)

〈
φ

(g)

JM

∣∣ρ̂00(q)
∣∣φ(g)

JM

〉 = A(q) + C(q)

[
1

2k2
p

(
d2 + 5

)
+

d2

2k2
p

I
(1)
J (d2)

I
(0)
J (d2)

]
. (3.12)

These expressions correspond to Ze times the elastic form factor in the intrinsic and laboratory
frame, respectively. We refer to them as the total charge Q. The above-defined integrals (3.9)
have been studied analytically in [13–16]. From the results obtained in the quoted papers
one easily obtains simple expressions for the extreme regimes of near spherical and rotational
behaviors. The results for the case of J = 0 state are〈

φ
(g)

00

∣∣∑
μ

∣∣α̂2μ|2∣∣φ(g)

00

〉 = 1

2k2
p

[
d4

5
+ d2 + 5

]
, d = small (d � 1).

〈
φ

(g)

00

∣∣∑
μ

|α̂2μ|2∣∣φ(g)

00

〉 = 1

k2
p

[
d2 + 2 − 2

9

1

d2

]
, d = large (d � 3).

(3.13)

We recall that for well-deformed nuclei d is typically greater than 3. In the low momentum
regime (qR0 	 1), the expression (3.6) is much simplified

ρ00(q) = Ze

[
1 − 1

10
(qR0)

2 − 1

8π
(qR0)

2
∑

μ

|α2μ|2
]

. (3.14)

Let us turn our attention to the quadrupole component of the charge density. Following the
same procedure as in the case of the monopole component, we obtain

ρ2μ =
∫

r2j2(qr)

[∫
ρ(r, θ, ϕ)Y2μ d�

]
dr = ρ0R

3
0j2(qR0)α2μ. (3.15)

Under the restriction qR0 	 1, the result is

ρ2μ = 3Ze

40π
(qR0)

2α2μ. (3.16)

Concluding, in the second-order expansion in the surface coordinates, the charge density is

ρμ(q) = 3Ze

qR0
j1(qR0) − 3

8π
Ze(qR0)j1(qR0)

∑
μ

|α2μ|2 +
3Ze

4π
j2(qR0)α2μ. (3.17)

Thus, ρ is expressed as a second-order polynomial in α:

ρμ(q) = A(q) + B(q)α2μ + C(q)
∑

μ

|α2μ|2, (3.18)

with the coefficients depending on the transferred momentum, defined by equation (3.10) and

B(q) = 3Ze

4π
j2(qR0). (3.19)

In the intrinsic reference frame the expression becomes

ρμ(q) = A(q) + B(q)

(
δμ,0β cos γ + (δμ,2 + δμ,−2)

β sin γ√
2

)
+ C(q)β2. (3.20)
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We note that the surface of constant charge density is of an ellipsoidal form which is consistent
with the liquid drop shape. Coupling a particle to such a core system, the single particle motion
would be determined by a quadrupole deformed mean field. In the boson representation,
defined above, one obtains

ρ̂μ(q) = A(q) +
5C(q)

2k2
p

+
B(q)

kp

√
2

(
b†

pμ + (−)μbp,−μ

)
+

C(q)

k2
p

N̂p +
C(q)

2k2
p

(
b†

pμb
†
p,−μ + bp,−μbpμ

)
(−)μ, (3.21)

where N̂p denotes the proton boson number operator. The boson term
(
b
†
pμb

†
p−μ +

bp−μbpμ

)
(−)μ has diagonal matrix elements in ground and beta bands much larger than

the off-diagonal one. Moreover, the matrix elements do not depend on the angular momenta
of the states involved. For this reason we shall replace it by its average value, which is equal to
2d2

p. Under these circumstances the zero component of the charge density operator becomes

ρ̂0(q) = T +
B

kp

√
2

(
b
†
p0 + bp0

)
+

C

k2
p

N̂p, (3.22)

where

T = A +
C

2k2
p

(d2 + 5). (3.23)

Acting with this boson operator on the unprojected ground state, one obtains

ρ̂0(q)ψg =
[(

T +
B√
2kp

dp

)
+

(
B√
2kp

+
Cdp

k2
p

)
b
†
p0

]
ψg. (3.24)

We recall the fact that the canonical transformation relating the quadrupole coordinate and
conjugate momenta with the boson operators is determined up to a multiplicative constant
which was denoted by kp. Taking for this constant the value

kp = −C

B
d, (3.25)

the unprojected ground state becomes eigenfunction for the boson operator ρ̂:

ρ̂0(q)ψg =
(

A +
B2

2C

5

d2

)
ψg. (3.26)

Considering the low momentum expansion for the coefficients A,B and C, this equation
becomes

ρ̂0(q)ψg = Ze

[
1 − (qR0)

2

10

(
1 +

1

2πd2

)]
ψg. (3.27)

Under these circumstances the parameter kp has a very simple expression

kp = 5

2
d. (3.28)

Alternatively, the canonicity parameter could be determined in the following way. The stability
condition for the average value of ρ̂ on the unprojected ground state against the variation of d
provides the following equation for the deformation parameter d:

2Cd + kpB = 0. (3.29)

However, in our previous investigations d has been fixed by fitting some energies in the ground
band. We could keep those values for d and use equation (3.29) to determine kp. We remark
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Table 1. The values for the kp/d ratio calculated in two alternative ways: (a) according to
equation (3.30), as in [11]. In this case the ratio is equal to β−1

0 , given by equation (3.31), and the
resulting values are given in the first row. (b) The ratio is given by equation (3.25) for a transfer
momentum q = 0.54 fm−1. The corresponding values are listed in the second row.

152Gd 154Gd 156Gd 158Gd 160Gd 154Sm 164Dy 168Er 174Yb 232Th 238U

β−1
0 1.471 1.320 1.176 1.158 1.146 1.129 1.140 1.242 1.261 1.247 1.142

kp/d 1.406 1.393 1.381 1.368 1.355 1.394 1.329 1.303 1.264 0.864 0.820

that the value of kp obtained in this way is twice as much as that given by equation (3.25). In
this case the low momentum regime provides kp = 5d.

At this stage it is worth recalling the way the canonicity parameter kp was fixed within the
GCSM model when the M1 and E2 properties were investigated. In the asymptotic regime,
i.e. d large, the ground band energies can be expressed as [11]

E
g

J =
[
A1 + A2

6d2
+ A4

]
J (J + 1). (3.30)

Equating this expression with that given by the liquid drop model, one finds an equation
relating the nuclear deformation with the parameter d:

β2
0 = π

3.24

h̄2

MN

A−5/3

[
A1 + A2

6d2
+ A4

]−1

. (3.31)

Identifying this deformation with the average value of the second-order invariant in α’s
coordinates and subtracting the zero point motion contribution, one finds

kp = d

β0
. (3.32)

In table 1, the values of β−1
0 are compared with those of kp/d given by equation (3.25). We

note that the two sets of data are quite close to each other.

4. Electric monopole transition

The scattering process where the colliding particle may be inside the target nucleus involves
longitudinal momenta associated with the Coulomb field [17]

M(Cλ,μ) =
∫

ρ(r)fλYλμ(θ, ϕ) dτ, (4.1)

where fλ is a function depending on the radial motion of the particle inside nucleus. If
the monopole Coulomb momentum is expanded in powers of r, then the lowest order term
giving rise to an intrinsic transition is proportional to r2. Therefore, the monopole operator
responsible for the transition with λπ = 0+ is

m(E0) =
∫

ρ(r)r2 dτ, (4.2)

where ρ denotes the electric charge density. Expanding ρ in terms of the liquid drop coordinates
α2μ, we obtain

m(E0) = ρ0R
5
0

(
4π

5
+

√
4πα00 + 2

∑
μ

|α2μ|2
)

. (4.3)
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Using the volume conservation condition for the monopole coordinate α00, the final result for
the monopole moment is

m(E0) = 3

5
ZeR2

0

[
1 +

5

4π

∑
μ

|α2μ|2
]

. (4.4)

The matrix element of this operator gives the amplitude for the transition probability between
the involved states. In particular, for the transition J +

β → J +
g we obtain

ρ(E0) ≡ 〈
φ

(β)

JM

∣∣m(E0)
∣∣φ(g)

JM

〉 = 3
√

5ZeR2
0

8
√

2πk2
p

. (4.5)

Note that the amplitude for the monopole transition is not depending on the state angular
momentum. Moreover, the same expression is obtained if the projected states are replaced by
the unprojected ground and beta states, respectively.

In nuclei which exhibit shape coexistence, calculations of E0 transitions could provide a
test for the mixing amplitudes of states with different deformations, defining the ground state
[5]. For these cases, ρ(E0) can be expressed in terms of the mixing coefficient λ and the
difference between the rms associated with the states involved in the E0 transition, i.e. the
ground state 0+

g and the beta state 0+
β .

In what follows we shall show how the shape coexistence may be investigated within the
GCSM approach. First we show that the monopole transition can be expressed in terms of
rms radii of beta and ground bands. Indeed, using equation (4.4) for m(E0) the rms radii of
the states from ground and beta bands are defined as

〈r2〉gJ = 3

5
ZeR2

0

[
1 +

5

4π

〈
φ

(g)

JM

∣∣ ∑
μ

|α2μ|2∣∣φ(g)

JM

〉]
,

〈r2〉βJ = 3

5
ZeR2

0

[
1 +

5

4π

〈
φ

(β)

JM

∣∣ ∑
μ

|α2μ

∣∣2|φ(β)

JM

〉]
.

(4.6)

Note that dividing the above expressions by Z, one obtains the charge radii in the states of
angular momentum J . Both matrix elements involved in equation (4.6) can be expressed by
the expectation value of the boson number operator N̂ , in the state J + from the ground band:

〈r2〉gJ = 3

5
ZeR2

0

[
1 +

5

8πk2
p

(
d2 + 5 + 2

〈
φ

(g)

JM

∣∣N̂ ∣∣φ(g)

JM

〉)]
,

〈r2〉βJ = 3

5
ZeR2

0

[
1 +

5

8πk2
p

(
d2 + 7 + 2

〈
φ

(g)

JM

∣∣N̂ ∣∣φ(g)

JM

〉)]
.

(4.7)

From these relations we obtain that the difference of the beta and the ground band rms does
not depend on the angular momentum J . Moreover, the mentioned difference is related to
ρ(E0) by a very simple equation

ρ(E0) =
√

5

8

(〈r2〉β0 − 〈r2〉g0
)
. (4.8)

In [10] the projected states used by GCSM have been studied in the intrinsic reference
frame and the result was that each state is a superposition of components with different quantum
numbers K. However, the prevailing components have K = 0 for ground and beta bands and
K = 2 for gamma band. Thus, the model is quite flexible for studying the band mixing.
The question is whether the present formalism can be extended for studying the interaction
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between states of the same angular momenta and K. Indeed, GCSM can be used to describe
the collective properties of both gamma stable, where E0+

β
< E2+

γ
, and gamma unstable nuclei

when the ordering of the had states of beta and gamma bands is opposite to that mentioned
above. For the gamma stable nuclei there are cases where the state 0+

β is low in energy. An
attempting interpretation for such a situation assumes that this state belongs to the second well
of the potential energy in the β variable, while the ground state is located in the well with a
less deformed minimum. In what follows we shall show that our model is able to account
for this kind of shape coexistence. Indeed, if the potential barrier is not high one can expect
that the system is tunneling from one well to another and, therefore, is reasonable to assume
that the real ground state is in fact a linear combination of the states 0+

g and 0+
β . To simplify

the notations hereafter the projected states with angular momentum zero from the ground and
beta bands are denoted by |0+

g〉 and |0+
β〉, respectively. Adding to the model Hamiltonian a

term which couples the states from ground and beta bands, then the new Hamiltonian yields
new eigenstates with angular momentum equal to zero:

|0〉I =
√

λ
∣∣0+

g

〉
+

√
1 − λ

∣∣0+
β

〉
, |0〉II = √

1 − λ
∣∣0+

g

〉 − √
λ
∣∣0+

β

〉
. (4.9)

Using the above results one can calculate the amplitude of the E0 transition, relating the new
states, i.e. 0II → 0I . The final result is

ρI,II (E0) =
[
−

√
λ(1 − λ) + (1 − 2λ)

√
5
8

] (〈r2〉β0 − 〈r2〉g0
)
. (4.10)

Replacing ρII,I (E0) by the corresponding experimental value, the relation (4.10) becomes an
equation for the mixing coefficient λ,

−
√

8λ(1 − λ)

5
+ (1 − 2λ) = F. (4.11)

Here F stands for the ratio between the experimental value for ρII,I (E0) and the calculated
value of ρ(E0) given by equation (4.8):

F = ρ
exp
II,I (E0)

ρ(E0)
. (4.12)

Concluding, due to equation (4.10) the GCSM can provide information about the shape
coexistence. On the other hand mixing states corresponding to different shapes may be used
to improve the description of the E0 transitions.

5. Numerical results

Our numerical studies refer to the scalar term of the charge density as well as to the monopole
transition from 0+

β → 0+
g . In both cases we intend to draw a definite conclusion about the effect

of projection on these quantities. Also, we want to see how the projection effect depends on
the nuclear deformation.

As we have already seen in the previous sections, the matrix elements of the charge density
and monopole transition operator depend on the parameter kp. This parameter is proportional
to the deformation parameter d. In figure 1 we represent kp/d as a function of the product
qR0, where R0 stands for the nuclear radius. In the interval (0, 2) for qR0, the ratio is slowly
decreasing from 2.5 to 2.2. Therefore, the value 2.5 obtained for kp/d in the low momentum
regime could be considered as a reasonable approximation for the whole interval considered
in figure 1.

The matrix elements of the scalar part of the charge operator in the intrinsic and laboratory
frame are given by equations (3.11) and (3.12), respectively. The latter gives the q dependent
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Figure 1. The ratio kp/d with kp , given by equation (3.25), is plotted as a function of qR0. The
curve corresponds to a deformation parameter d = 3.2195 which, according to [11], characterizes
the isotope 156Gd.

charge of the system in the state J + of the ground band given by angular momentum projected
state φ

(g)

JM , while the former expresses the q dependent charge of the intrinsic ground state. In
figure 2 the charge is represented as a function of the deformation parameter d for qR0 = 0.2
and qR0 = 1.2, respectively. Calculations were made with R0 corresponding to 156Gd. For
both qR0 values the charges of the system in the projected J = 0 state and in the unprojected
ground state are indistinguishable. As one increases the angular momentum, the effect of
projection is larger, particularly at smaller d values. The projection effect is vanishing for
d � 2. In the limit of d → 0, the matrix elements (3.12) exhibit the behavior given by〈

φ
(g)

JM

∣∣ρ̂∣∣φ(g)

JM

〉 = A(q) + C(q) +
J

4d2

B2(q)

C(q)
. (5.1)

Due to this feature, for small deformations a large fall down of the curves corresponding to
J = 20 in figure 2 is obtained. For d > 2 the charges corresponding to the unprojected, the
J = 0 and the J = 20 projected states, are about the same. The common value of Q is very
close to the value 64, which is the nuclear charge of 156Gd. Also, the deformation parameter
of 156Gd, determined in [11] to be 3.2195, lies on the saturation plateau. Actually this feature
confirms that for deformed systems the strong coupling limit holds. The fact that for qR0 = 0.2
the charge is close to the value 64, corresponds to the well-known fact that the form factor
is close to 1 when q 	 1/R0, and is consistent with the assumption of fast convergence of
the expansion of the charge density in terms of the quadrupole collective coordinates. Similar
features are seen in figure 3 where the charge is calculated for R0 corresponding to 154Gd.
Here we added the results for J = 2 and J = 4 but we omitted those for the unprojected
ground state since they are practically the same as for the projected ground state.

Concluding, the projection operation does not affect the scalar q dependent charge of
deformed systems in the ground state. A screening of charge for small deformation and large
angular momentum is noted. According to figure 2(b), for large qR0 the screening shows
up also for the unprojected as well as for the projected ground state. Moreover, for small
deformation the deviation of the charge in the state with J = 20 is substantially different from
that corresponding to the ground state. Similar features are seen in figure 3(b) for 154Gd.
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(a)

(b)

Figure 2. The total charge of 156Gd is plotted as a function of the nuclear deformation for
qR0 = 0.2 (panel a) and qR0 = 1.2 (panel b). The results for unprojected ground state cannot be
distinguished from those corresponding to the projected J = 0 state. Moreover, for d > 1 they are
close to the nuclear charge Ze = 64e if qR0 = 0.2. For qR0 = 1.2, the charge for J = 20 deviates
from that corresponding to J = 0 and unprojected cases if d < 3. The three curves converge to a
common value which is close to 55e, at the end of interval. These calculations correspond to the
value of kp given by equation (3.25). The matrix elements for unprojected and projected states
have been calculated with equations (3.11), (3.12), respectively. For the deformation parameter
d = 3.2195 predicted in [11] for 156Gd, the projection has no effect on the charge density.

In contrast to [2], here we deal with that part of the charge density which affects the
elastic scattering cross section. In the mentioned reference, the multipole λ terms of the
charge density are essential in determining the ground to λ+

g excitation. However, these
terms bring contributions also to the J + → J + matrix elements. Indeed, considering the full
expansion ρ0 given by equation (3.18), the matrix elements for unprojected and projected
states respectively, become

〈ψg|ρ0(q)|ψg〉 = A(q) +
d

kp

B(q) +
1

k2
p

(
d2 +

5

2

)
C(q),

〈
φ

(g)

JJ

∣∣ρ̂00(q)
∣∣φ(g)

JJ

〉 = A(q) +
d

kp

B(q)CJ 2 J
0 0 0 CJ 2 J

J 0 J + C(q)

[
1

2k2
p

(d2 + 5) +
d2

2k2
p

I
(1)
J (d2)

I
(0)
J (d2)

]
.

(5.2)

These matrix elements are plotted in figure 6 as a function of d. From this figure we see that the
projection brings a correction of about 1% to the total charge in the states 0+, 2+ and 4+, which
is consistent with the microscopic calculations of [2]. In the quoted reference a correction of
about 15% is noticed in the transition 0+ → 6+. Such a big correction is expected to show up
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(a)

(b)

Figure 3. The total charges of 154Gd in the ground-band states with J = 0, 2, 4, 20, respectively,
are plotted as functions of the nuclear deformation for qR0 = 0.2 (panel a) and qR0 = 1.2 (panel
b). The results for unprojected ground state are almost the same as for the projected J = 0 state
and, therefore, are not plotted here. These calculations correspond to kp given by equation (3.25).
The charge for J = 20 deviates from that corresponding to J = 0, 2, 4 if d < 3. For d = 3.0545
corresponding to the chosen nucleus, the charges for the considered states are the same. However,
a deviation of about ten units from the total charge is to be noticed for qR0 = 1.2.

also in our formalism, if the multipole of rank 6 would be considered in the charge density
expansion.

We note from equations (3.11) and (3.12) that the total charge is determined by summing
two distinct terms, one depending exclusively on the transfer momentum, that is denoted by
A(q), and a term which is a product of two factors depending on q and d, respectively. One
may ask oneself what is the relative contribution of these terms to the total charge for non-
vanishing q values. We addressed this question by studying the ratios Q/A(q) as a function
of qR0 for two values of the deformation parameter d. Thus, from figure 4 we see that the
term depending on deformation may affect the charge of the ground state at most by 15% for
qR0 = 2. In the state with J = 20 and the quoted value of qR0 the deformation relative
contribution is of 40%. For large nuclear deformation, d = 3.2195, the relative contribution
of the deformation is ranging from zero to 5% when qR0 is increased from 0 to 2.

Now let us focus our attention on the monopole transition 0+
β → 0+

g . The transition
amplitude was calculated with equation (4.5). We note that the monopole transition operator
m(E0) has an expression identical with that supplied by the liquid drop model. However, the
wavefunctions are specific to GCSM and they may describe the spherical and deformed nuclei
in a unified way. Another feature which is specific to our description is the canonicity parameter
kp defining the equations which relate the coordinates and conjugate momenta to the boson
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Figure 4. The ratio between the total charge Q and the term A(q) in equation (3.11) and (3.12) is
plotted as a function of qR0 for d = 0.8. In the upper panel the cases of unprojected ground state
and of J = 0 projected states are considered. In the bottom panel the case of projected J = 20
state is presented. In both panels the parameter kp is calculated by means of equation (3.25). The
nuclear radius R0 corresponds to 156Gd.

operators. Within the liquid drop model in its original form the canonicity parameter is chosen
such that the boson Hamiltonian does not contain a term like

∑
μ(−)μ

(
b
†
2μb

†
2−μ + b2−μb2μ

)
.

This idea is not applicable to GCSM, since the starting Hamiltonian is anharmonic and,
moreover, is considered in the boson picture. Here we present the results obtained by fixing
kp in three different ways: (a) From the minimum condition for the charge density and
the low momentum transfer restriction. This provides a simple expression for kp (= 5d).
(b) Requiring that the unprojected ground state is an eigenstate of the scalar part of the charge
density operator. Note the fact that this condition is fulfilled automatically in microscopic
models where a many body Slater determinant is eigenstate of the charge density operator.
For a low momentum regime, the mentioned condition provides kp = 5

2d. (c) As in [11]
i.e., kp = d

β0
, with β0 fixed from the equation obtained by equating the expressions of

the asymptotic energies in the ground band and that of the liquid drop model in the large
deformation regime. The results of our calculations obtained with the three versions of fixing
kp are given in table 2. The predictions are compared with the available experimental data for
11 nuclei. Note that the data from the quoted references have been transformed by multiplying
them with the factor R2

0.
By inspection of table 2, we note that except for the cases of 168Er and 174Yb all the other

data are reasonably well described by choosing kp = 5
2d. For 168Er and 174Yb, it seems that the

version which provides kp = 5d yields a good agreement with the corresponding experimental
data. Using the parameter kp from [11], which corresponds to a consistent description of the
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Table 2. The monopole transition amplitudes predicted by equation (4.5) are compared with the
experimental data taken from [18]a), [7, 19] b), [20]f ), [21]c), [22]d) and [23]e). Equation (4.5)
has been used alternatively for kp for which the charge density operator admits the unprojected
ground state as an eigenfunction (first column) and for kp which were used in [11] to describe the
M1 and E2 properties of the nuclei listed in this table.

ρ(E0)[e fm2]

Th.,kp = 5
2 d Exp. Th., kp = 5d Th., kp from [11]

152Gd 9.105 10.29 ± 1.09 d) 2.276 26.284
154Gd 8.574 11.749 ± 0.101a) 2.143 30.765

12.34 ± 1.13d)

156Gd 7.784 7.469 ± 0.071a) 1.946 35.170
8.55 ± 0.96 d)

158Gd 6.286 5.487± 0.465b) 1.571 29.282
7.87 ± 1.25 d)

160Gd 5.606 1.401 26.688
154Sm 7.116 12.818 ± 2.551e) 1.779 34.912
164Dy 5.804 1.451 27.341
168Er 5.820 1.24 ± 0.51b,f ) 1.455 23.567
174Yb 6.083 <1.85 d) 1.521 23.906
232Th 11.731 13.646 ± 4.88b) 2.933 47.142
238U 11.228 5.502 ± 0.05c) 2.807 53.847

23.2 ± 2.262c)

E2 and M1 properties, one obtains ρ(E0) values which exceed the experimental data by a
factor ranging from 2.6 to 5.

These discrepancies could be attributed to the fact that the collective coordinates
respond differently to the interaction with longitudinal and transverse components of the
electromagnetic external field, respectively. The former components may determine a E0
excitation while the latter one can excite the nuclei through, for example, a E2 transition.

The observation that different kappa’s are needed to reproduce E2 and E0 properties
reflects the fact that these are independent quantities. The E0 properties are not determined
by the E2 ones and this perhaps suggests the necessity of introducing the monopole bosons.

According to table 1 the values of kp provided by the procedure labeled by (c) are
obtainable for a large transfer momentum, while those defined by (a) and (b) are obtained
under the low momentum restriction. The procedure (c) might be suitable to fix the strength
for the quadrupole component of the charge density operator but not for the scalar component
strength. An essential point in understanding these discrepancies is the fact that in [11] the
quadrupole transition operator involves also the polarization effects of the neutron systems.
Therefore the E2 transition is achieved by a combined contribution of proton and neutron
systems. Here only the contribution of protons is considered and therefore the method (c) of
fixing kp is not adequate.

We would like to mention that the model Hamiltonian used by GCSM (2.4) is a fourth order
boson Hamiltonian, while the charge density expansion in collective quadrupole coordinates is
truncated to second order. This lack of consistency might be another source for the discrepancy
between the values of kp obtained here and those given in [11].

Note that the set of nuclei considered in the present paper involves a chain of even isotopes
of Gd. Along this chain the shape undertakes a transition from a spherical to a deformed one.
The critical point of this transition is met in 154Gd [25]. In the group theory language the
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Figure 5. The same as in figure 4 but for d=3.2195.

transition takes place between nuclei with SU(5) symmetry and nuclei having SU(3) symmetry.
Recently it has been suggested that the critical point corresponds to a new symmetry called
X(5) symmetry [26]. This shape transition has been also studied within the GCSM formalism
in [27]. Here we address the question whether this shape transition is reflected in a specific
manner by the behavior of the E0 transition amplitude. To explore this feature we plotted the
predicted as well as the experimental ρ(E0) values as a function of A2/3, in figure 6. Note that
the experimental results exhibit, indeed, a maximum for A = 154. The theoretical results have
been interpolated by a fourth order polynomial which exhibits an inflexion point for the critical
value of A. Thus, we may say that the shape transition is reflected by the fact that an inflexion
point shows up in the behavior of the transition amplitude. The bump seen at 154Gd cannot be
obtained in the present model since kp depends linearly on the deformation parameter which
varies smoothly with the atomic number. Actually it is hard to say whether the behavior of
the energy ratio E+

4

/
E+

2 is the most suited criterion for deciding whether a phase transition
is taking place or not. In the Gd case the critical nucleus 154Gd has a static quadrupole
deformation of about 0.25 while for the preceding isotope β2 ≈ 0.19. Therefore the fact that
ρ(E0) for 154Gd is larger than the values corresponding to the neighboring isotopes might be
determined not by the transition from a spherical to deformed shapes, which is not the case
as we mentioned before, but by another cause. As a matter of fact in [27], the analysis of
the Hamiltonian structure coefficients as a function of the atomic mass suggests that a phase
transition is possible to take place in 152Gd and not 154Gd. The bump which is seen for 154Gd
could be explained by adding the neutron contribution to the E0 transitions. Indeed the data
from the last column of table 2, which correspond to the method (c) of fixing kp, indicate a
bump for 156Gd.
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Figure 6. The total charges of 156Gd in the unprojected ground state and the projected ground-
band states with J = 0, 2, 4, 20 respectively are plotted as a function of the nuclear deformation
parameter d. Here the charge density expansion includes also the quadrupole term. The transfer
momentum was taken as given by the equation: qR0 = 1.2.

Figure 7. The predicted values of ρ(E0) for some even isotopes of Gd are represented as a function
of A2/3. For comparison, the experimental results are also given.

Concerning the model capacity of describing the nuclear shape coexistence, we have
derived a compact formula relating the E0 transition amplitude with the mixing coefficient of
the states describing the nuclear system with different shapes. Indeed, calculating the average
value of the static quadrupole moment with the projected state 0+

β , one finds a value which is
different from that corresponding to 0+

g . Therefore the strength of the E0 transition may give
information about the structure of the states 0+

II , namely whether it involves the component
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0+
g . As mentioned before, mixing states corresponding to different shapes may be used to

improve the description of the E0 transitions. In this context we invoke some microscopic
calculations for nuclear charge radii and electric quadrupole moments [28] which predict for
the even isotopes of Gd oblate equilibrium shapes whose energies are by about 1.5 to 5 MeV
larger than the prolate shape energies. The question we would like to address is how large
should be the mixing amplitude of the states 0+

g and 0+
β , in order that the calculated transition

amplitude ρI,II be equal to the corresponding experimental data? Solving equation (4.11)
for 152,156,158Gd, one finds, for λ, the values: (0.365; 0.03), (0.627; 0.002), (0.737; 0.016),
respectively. As for 154Gd, equation (4.11) has no real solution. Thus, there is no mixing
between 0+

g and 0+
β in the critical nucleus 154Gd.

Several authors consider 74Kr as an example of isotope exhibiting shape coexistence.
Microscopic calculations using Skyrme (Sk3) and a modified version of Skyrme interaction
(SG2), due to Van Giai and Sagawa [29], indicate two equilibrium shapes with close energies
[5]. Indeed, Sk3 calculation predicts a prolate ground state and an oblate state with an
excitation energy of about 0.5 MeV. On the other hand the use of SG2 interaction leads to
an oblate ground state and a prolate excited equilibrium minimum with the energy of about
1 MeV. Although the prolate deformation is quite large (≈0.389) the first excited 2+ is relatively
high (=423.96 keV). The deformation parameter which provides a good description of the
ground band energies is d = 1.9. This deformation value determines a transition amplitude
equal to 7.78 e2 fm2. Taking for the experimental transition amplitude the value 8.76e fm2,
as given in [30], we found for the mixing amplitude the values λ1,2 = 0.360; 0.031.

6. Conclusion

In the previous sections we described the results obtained within the GCSM model concerning
the charge density as well as the monopole transition amplitude. The main results can be
summarized as follows.

The expectation values of the scalar charge density on the unprojected and angular
momentum projected states were evaluated at different q values. Angular momentum
projection effects are unnoticeable for J = 0, irrespective of deformation. For larger angular
momentum (J = 20, as an example) projection gives sizable effects for small values of
deformation. This agrees with results of microscopic studies by Zaringhalam and Negele [2].

Concerning the E0 transition amplitude, a quite good agreement with data was obtained
for kp = 2.5d for most nuclei considered. For this value the unprojected ground state is an
eigenstate of the charge density operator in the low momentum regime. A discrepancy is
obtained for 168Er and 174Yb, where the value kp = 5d, which obeys the stability equation for
the charge of the system when the transfer momentum is small, seems to be more suitable.
Employing for kp the values corresponding to a realistic description of both, the M1 and E2
properties [11, 12], one obtains for the monopole transition amplitudes values which are larger
than the experimental data by a factor of 2.6 to 5.

These large deviations are interpreted as being caused by the different responses of
the nuclear quadrupole coordinates to the interaction with the transverse and longitudinal
components of an external electromagnetic field, respectively. The fact that kp obtained here
and in [11] are different is not an inedit puzzle. We recall that the nuclear deformation obtained
by fitting the hydrodynamic moment of inertia is very different from that obtained by fitting
the reduced probability for the transition 0+ → 2+.

We also addressed the questions whether the E0 transition amplitude might bring
information about shape transitions as well as about shapes coexistence. Indeed, we note
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that for 154Gd, where the critical point for the spherical to deformed shape transition is met,
the transition amplitude ρ(E0) exhibits an inflexion. We suspect that a better method of fixing
the parameter kp would yield for the mentioned function a maximum value for the critical
value A = 154, as actually happens for the experimental data.

We derived a compact formula relating the E0 transition amplitude with the mixing
coefficient of the states describing the nuclear system with different shapes. This formula may
be used to calculate the mixing amplitude once we know the transition amplitude. Reversely,
assuming the state mixing one can calculate the E0 transition amplitude relating the two
independent mixed states. Actually we made the option for the second manner of using the
mentioned formula and applied it for the isotopes of Gd and 74Kr. We pointed out that the
mixing amplitude could serve as a signature for the shape transition in the Gd isotopes. Indeed
for 154Gd we found out that there is no real solution for the mixing amplitude.

Very recently, a paper addressing similar issues, but within the IBA approach, showed
up [31]. The expression of ρ(E0) obtained therein depends on proton and neutron effective
charges and a parameter which is fixed by fitting the peaks of isotope shift. Due to the way
of fixing the two parameters the bump seen for 154Gd is reproduced by the calculation of [31].
It is worth mentioning that, in contrast, we do not use effective charges and we do not have
a parameter which is fixed by fitting the peaks in the isotope shift, which is a phenomenon
closely related to the E0 properties. Despite these differences, both descriptions provide
results for the E0 transitions in Gd isotopes, which agree with the corresponding experimental
data. The agreements obtained in the two descriptions are of similar quality. Exception is for
the bump which shows up at 154Gd. Indeed, our calculations predict an inflexion point rather
than a bump. For comparison the two sets of results, ours and those of [31] for Gd isotopes
were represented on the same graph, in figure 6.

Finally, one could assert that the GCSM model provides results for the diagonal matrix
elements of the charge density operator, which are consistent with the microscopic studies
[1, 2, 24]. Also, the model is able to realistically describe the E0 transitions for the 11 nuclei
considered in the present paper. Comments are made upon the signatures of nuclear shape
phase transition as well as of shape coexistence which might be found in the monopole charge
transition.
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