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Abstract

A many body Hamiltonian involving the mean field for a projected spherical single particle

basis, the pairing interactions for alike nucleons, the dipole-dipole proton-neutron interactions in

the particle-hole (ph) channel and the ph dipole pairing potential, is treated by the projected gauge

of fully renormalized proton-neutron quasiparticle random phase approximation (PGFRpnQRPA)

approach. The resulting wave functions and energies for the mother and the daughter nuclei are

used to calculate the 2νββ decay rate and the process half life. For illustration, the formalism is

applied for the decays 100Mo→ 100Ru and 116Cd→ 116Sn. The results are in good agreement with

the corresponding experimental data. The Ikeda sum rule (ISR) is obeyed.

PACS numbers: 23.40.Hc,23.40.-s,21.10.Tg,21.60.Jz, 13.10,+q
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I. INTRODUCTION

Double beta decay is one of the most exciting topic of nuclear physics because of the

possible existence of neutrinoless ββ decay modes, which are very searched since they are

connecting to the neutrino mass and neutrino nature. The calculation of the nuclear matrix

elements for these decay modes is a challenge in the study of ββ decay process; however,

this calculations implies the calculation not only of Gamow-Teller transitions but also of

Fermi and tensor transitions.

The 2νββ process is interesting by its own but is also very attractive because it consti-

tutes a test for some of the nuclear matrix elements (m.e.) which are used for the process of

0νββ decay. Discovery of this process may provide an answer for the fundamental question,

whether neutrino is a Mayorana or a Dirac particle. The subject development is reflected

be several review papers [1–7]. Our contribution described in this paper concerns the 2νββ

process, which can be viewed as two consecutive and virtual single β− decays. The formal-

ism yielding closest results to the experimental data is the proton-neutron random phase

approximation (pnQRPA) which includes the particle-hole (ph) and particle-particle (pp) [8]

as independent two body interactions. The second leg of the 2νββ process is very sensitive to

changing the relative strength of the later interaction, denoted hereafter by gpp. It is worth

mentioning that the two body interaction of ph type is repulsive while that of pp nature

is attractive. Due to this feature there is a critical value for gpp for which the first root of

the pnQRPA equation vanishes. Actually, this is the signal that the pnQRPA approach is

no longer valid. Moreover, the gpp value which corresponds to a transition amplitude which

agrees with the corresponding experimental data is close to the mentioned critical value.

That means that the result is not stable to adding corrections to the pnQRPA picture.

One improvement for the pnQRPA was achieved by one of us (AAR), in collaboration, in

Refs.[9, 10], by using a boson expansion (BE) procedure. Another procedure of going beyond

pnQRPA is to renormalize the dipole two quasiparticle operators by replacing the scalar

components of their commutators by their average values [11]. Such a renormalization is

inconsistently achieved since the scattering operators are not renormalized. This lack of

consistency was removed in Ref. [12, 13] where a fully renormalized pnQRPA (FRpnQRPA)

is proposed.

Unfortunately, all higher pnQRPA procedures mentioned above have a common drawback
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of violating the Ikeda sum rule (ISR) by an amount of about 20-30% [14]. It is believed

that such a violation is caused by the gauge symmetry breaking. Consequently, a method

of restoring this symmetry was formulated by the present authors in Ref. [15].

In this paper the results of Ref.[15] are improved in three respects: a) aiming at providing

a unitary description of the process for the situations when the nuclei involved are spherical

or deformed, here we use the projected spherical single particle basis defined in Ref.[16]

and used for double beta decay in Refs.[17, 18]. b) the space of proton-neutron dipole

configurations is split in three subspaces, one being associated to the single β−, one to the

β+ process, and one spanned by the unphysical states. c) the correlations for the second leg

of the process are mainly determined by the ph dipole-pairing term. A compact expression

for the dispersion equation of energies is obtained from the linearized equations of motion

of the basic transition operators corresponding to the two coupled processes. The numerical

application is made for the 2νββ processes 100Mo→100 Ru and 116Cd→ 116Sn.

We shall describe the formalism and results according to the following plan. The single

particle basis is briefly presented in Section II. The model Hamiltonian is given in Section

III. The FRpnQRPA approach is discussed in Section IV, while the projected gauge of FRp-

nQRPA (PGFRpnQRPA) is the objective of Section V. The Gamow-Teller (GT) amplitude

for the 2νββ process is given in Section VI. Numerical applications are shown in Section

VII, while the final conclusions are drawn in Section VIII.

II. PROJECTED SINGLE PARTICLE BASIS

In Ref. [16], one of us (A.A.R.), and his collaborators, introduced an angular momentum

projected single particle basis which seems to be appropriate for the description of the single

particle motion in a deformed mean field generated by the particle-core interaction. This

single particle basis has been used to study the collective M1 states in deformed nuclei

[16, 19, 20] as well as the rate of double beta process [17, 21, 22].

In order to fix the necessary notations and moreover for the sake of a self-contained

presentation, we describe briefly the main ideas underlying the construction of the projected

single particle basis.
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The single particle mean field is determined by a particle-core Hamiltonian:

H̃ = Hsm + Hcore −Mω2
0r

2
∑

λ=0,2

∑

−λ≤µ≤λ

α∗
λµYλµ. (2.1)

where Hsm denotes the spherical shell model Hamiltonian, while Hcore is a harmonic

quadrupole boson (b+
2µ) Hamiltonian, associated to a phenomenological core. The inter-

action of the two subsystems is accounted for by the third term of the above equation,

written in terms of the shape coordinates α00, α2µ.The monopole shape coordinate is to

be determined from the volume conservation condition and thus expressed in terms of the

quadrupole coordinates. These are related to the quadrupole boson operators by the canon-

ical transformation:

α2µ =
1

k
√

2
(b†2µ + (−)µb2,−µ), (2.2)

where k is an arbitrary C number.

Averaging H̃ on a given eigenstate of Hsm, denoted as usual by |nljm〉, one obtains a

deformed quadrupole boson Hamiltonian whose eigenstate is an axially symmetric coherent

state:

Ψg = exp[d(b+
20 − b20)]|0〉b, (2.3)

with |0〉b standing for the vacuum state of the boson operators and d a real parameter

which simulates the nuclear deformation. On the other hand, averaging H̃ on Ψg one

obtains a single particle mean field operator for the single particle motion, similar to the

Nilsson Hamiltonian. Concluding, by averaging on a factor state of the particle core space

the rotational symmetry is broken and the mean field mentioned above may generate, by

diagonalization, a deformed basis for treating the many body interacting systems. However,

this standard procedure is tedious since the final many body states should be projected over

the angular momentum.

Our procedure defines first a spherical basis for the particle-core system, by projecting

out the angular momentum from the deformed state

Ψpc
nlj = |nljm〉Ψg (2.4)

One can prove that the subset of projected states :

ΦIM
nlj (d) = N I

nljP
I
MI [|nljI〉Ψg] ≡ N I

nljΨ
IM
nlj (d). (2.5)
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forms an orthogonal basis for the particle-core system. The main properties of these pro-

jected spherical states have been presented in our previous works [17, 21, 22].

To the projected spherical states, one associates the ’deformed’ single particle energies

defined as the average values of the particle-core Hamiltonian H ′ = H̃ −Hcore.

ǫI
nlj = 〈ΦIM

nlj (d)|H ′|ΦIM
nlj (d)〉. (2.6)

The deformation dependence of the new single particle energies is similar to that shown

by the Nilsson model [23]. Therefore, the average values ǫI
nlj may be viewed as approximate

expressions for the single particle energies in deformed Nilsson orbits [23]. We may account

for the deviations from the exact eigenvalues by considering, at a later stage when a specific

treatment of the many body system is performed, the exact matrix elements of the two body

interaction.

As explained in Ref.[12], the redundancy problem concerning the number of degenerate

states can be solved by changing the normalization of the model functions:

〈ΦIM
α |ΦIM

α 〉 = 1 =⇒
∑

M

〈ΦIM
α |ΦIM

α 〉 = 2. (2.7)

Due to this weighting factor the particle density function is providing the consistency result

that the number of particles which can be distributed on the (2I+1) sub-states is at most

2, which agrees with the Nilsson model. Here α stands for the set of shell model quantum

numbers nlj. Due to this normalization, the states ΦIM
α used to calculate the matrix elements

of a given operator should be multiplied with the weighting factor
√

2/(2I + 1).

The projected states might be thought of as eigenstates of an effective rotational invariant

fermionic one-body Hamiltonian Heff , with the corresponding energies given by Eq.(2.6).

HeffΦ
IM
α = ǫI

α(d)ΦIM
α . (2.8)

As shown in Ref. [16] in the vibrational limit, d→ 0, the projected spherical basis goes

to the spherical shell model basis and ǫI
nlj to the eigenvalues of Hsm.
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III. THE MODEL HAMILTONIAN

We suppose that the states describing the nuclei involved in a 2νββ process are described

by a many body Hamiltonian which may be written in the projected spherical basis as:

H =
∑

τ,α,I,M

2

2I + 1
(ǫταI − λτα)c†ταIMcταIM −

∑

τ,α,I,I′

Gτ

4
P †

ταIPταI′ + 2χ
∑

pn;p
′

n
′
;µ

β−
µ (pn)β+

−µ(p′n′)(−)µ

−χ1

∑

pn;p
′

n′ ;µ

(
β−

µ (pn)β−
−µ(p

′n′) + β+
−µ(p′n′)β+

µ (pn)
)

(−1)1−µ, (3.1)

where c†ταIM(cταIM) denotes the creation (annihilation) operator of one nucleon of the type

τ(= p, n) in the state ΦIM
α , with α being an abbreviation for the set of quantum numbers nlj.

In order to simplify the notations, hereafter the set of quantum numbers α(= nlj) will be

omitted. The Hamiltonian H contains the mean field term, the pairing interaction for alike

nucleons and the Gamow-Teller dipole-dipole interaction in the ph channel and the dipole ph

pairing interaction. The corresponding strengths for the mentioned two-body interactions

are denoted by Gτ (τ = p, n), χ, χ1, respectively. All of them are separable interactions, with

the factors defined by the following expressions:

P †
τI =

∑

M

2

2I + 1
c†τIMc†

τ̃ IM
,

β−
µ (pn) =

∑

M,M ′

√
2

Î
〈pIM |σµ|nI ′M ′〉

√
2

Î ′
c†pIMcnI′M ′. (3.2)

The remaining operators from Eq.(3.1) can be obtained from the above defined operators,

by Hermitian conjugation.

Passing to the quasiparticle (qp) representation through the Bogoliubov-Valatin trans-

formation:

a†
τIM = UτIc

†
τIM − sIMVτIcτI−M , sIM = (−)I−M , τ = p, n, U2

τI + V 2
τI = 1, (3.3)

the first two terms of H are replaced by the independent quasiparticles term,
∑

EτIa
†
τIMaτIM ,

while the two-body dipole-dipole interactions are expressed in terms of the dipole two qp

and the dipole qp density operators:

A†
1µ(pn) =

∑
CIp In 1

mp mn µa†
pIpmp

a†
nInmn

, A1µ(pn) =
(
A†

1µ(pn)
)†

,

B†
1µ(pn) =

∑
C

Ip In 1
mp −mn µa

†
pjpmp

anInmn
(−)In−mn , B1µ(pn) =

(
B†

1µ(pn)
)†

. (3.4)
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IV. THE FULLY RENORMALIZED PNQRPA

In Ref.[12], we showed that all these operators can be renormalized as suggested by the

commutation equations:

[
A1µ(k), A†

1µ′(k′)
]
≈ δk,k′δµ,µ′


1− N̂n

Î2
n

− N̂p

Î2
p


 ,

[
B†

1µ(k), A†
1µ′(k′)

]
≈

[
B†

1µ(k), A1µ′(k′)
]
≈ 0,

[
B1µ(k), B†

1µ′(k′)
]
≈ δk,k′δµ,µ′


N̂n

Î2
n

− N̂p

Î2
p


 , k = (Ip, In). (4.1)

Indeed, denoting by C
(1)
Ip,In

and C
(2)
Ip,In

the averages of the right hand sides of (4.1) with the

renormalized RPA vacuum state, the renormalized operators defined as

Ā1µ(k) =
1√
C

(1)
k

A1µ, B̄1µ(k) =
1√
|C(2)

k |
B1µ, (4.2)

obey boson like commutation relations:

[
Ā1µ(k), Ā†

1µ′(k′)
]

= δk,k′δµ,µ′ ,
[
B̄1µ(k), B̄†

1µ′(k′)
]

= δk,k′δµ,µ′fk, fk = sign(C
(2)
k ). (4.3)

Further, these operators are used to define the phonon operator:

C†
1µ =

∑

k

[
X(k)Ā†

1µ(k) + Z(k)D̄†
1µ(k)− Y (k)Ā1−µ(k)(−)1−µ −W (k)D̄1−µ(k)(−)1−µ

]
,

(4.4)

where D̄†
1µ(k) is equal to B̄†

1µ′(k′) or B̄1µ(k) depending on whether fk is + or -. The phonon

amplitudes are determined by the equations:

[
H, C†

1µ

]
= ωC†

1µ

[
C1µ, C

†
1µ′

]
= δµµ′ . (4.5)

Interesting properties for these equations and their solutions are discussed in our previous

publications [12, 13].
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V. THE PROJECTED GAUGE OF THE FULLY RENORMALIZED PNQRPA

The renormalized ground state, i.e., the vacuum state for the phonon operator defined

by the FRpnQRPA approach, is a superposition of components describing the neighboring

nuclei (N −1, Z +1), (N +1, Z−1), (N +1Z +1), (N −1, Z−1). The first two components

conserve the total number of nucleons (N+Z) but violates the third component of isospin,

T3. By contrast, the last two components violates the total number of nucleons but preserve

T3. Actually, the last two components contribute to the violation of the ISR. However,

one can construct linear combinations of the basic operators A†, A, B†, B which excite the

nucleus (N, Z) to the nuclei (N − 1, Z + 1), (N + 1, Z − 1), (N + 1, Z + 1), (N − 1, Z − 1),

respectively. These operators are:

A†
1µ(pn) = UpVnA

†
1µ(pn) + UnVpA1,−µ(pn)(−)1−µ + UpUnB

†
1µ(pn)− VpVnB1,−µ(pn)(−)1−µ,

A1µ(pn) = UpVnA1µ(pn) + UnVpA
†
1,−µ(pn)(−)1−µ + UpUnB1µ(pn)− VpVnB

†
1,−µ(pn)(−)1−µ,

A
†
1µ(pn) = UpUnA†

1µ(pn)− VpVnA1,−µ(pn)(−)1−µ − UpVnB
†
1µ(pn)− VpUnB1,−µ(pn)(−)1−µ,

A1µ(pn) = UpUnA1µ(pn)− VpVnA
†
1,−µ(pn)(−)1−µ − UpVnB1µ(pn)− VpUnB†

1,−µ(pn)(−)1−µ.

Indeed, in the particle representation these operators have the expressions:

A†
1µ(pn) = −

[
c†pcñ

]
1µ

, A1µ(pn) = −
[
c†pcñ

]†
1µ

, (5.1)

A
†
1µ(pn) =

[
c†pc

†
n

]
1µ

, A1µ(pn) =
[
c†pc

†
n

]†
1µ

. (5.2)

In terms of the new operators the many body Hamiltonian is:

H =
∑

τjm

Eτja
†
τjmaτjm + 2χ

∑

pn,p′n′;µ

σpn;p′n′A†
1µ(pn)A1µ(p

′n′)− χ1

∑

pn;p
′

n′ ;µ

σpn;p′n′

×
(
A†

1µ(pn)A†
1,−µ(p

′n′) +A1,−µ(p
′n′)A1µ(pn)

)
(−)1−µ,

σpn;p′n′ =
2

3ÎnÎn′

〈Ip||σ||In〉〈Ip′||σ||In′〉. (5.3)

Here EτI denotes the quasiparticle energy. If instead of the dipole ph pairing interaction we

consider the proton-neutron two-body pp interaction, then the third term of H would be:

H3 = −2χ1

∑

pn;p
′

n′ ;µ

σpn;p′n′A
†
1µ(pn)A1µ(p′n′). (5.4)
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Since we are interested in describing the harmonic modes which preserve the total number

of nucleons, the term H3 would not contribute at the RPA level. Indeed, this term defines

a deuteron type excitation, and consequently modifies the total number of nucleons.

The equations of motion of the operators defining the phonon operator are determined

by the commutation relations:

[
A1µ(pn),A†

1µ′(p′n′)
]
≈ δµ,µ′δjp,jp′

δjn,jn′


U2

p − U2
n +

U2
n − V 2

n

ĵ2
n

N̂n −
U2

p − V 2
p

ĵ2
p

N̂p


 . (5.5)

The average of the r.h. side of this equation with the PGFRpnQRPA vacuum state is

denoted by:

D1(pn) = U2
p − U2

n +
1

2In + 1
(U2

n − V 2
n )〈N̂n〉 −

1

2Ip + 1
(U2

p − V 2
p )〈N̂p〉. (5.6)

The equations of motion show that the two qp energies are renormalized too:

Eren(pn) = Ep(U
2
p − V 2

p ) + En(V 2
n − U2

n). (5.7)

The space of pn dipole states, S, is written as a sum of three subspaces defined as:

S+ = {(p, n)|D1(pn) > 0, Eren(pn) > 0, } , S− = {(p, n)|D1(pn) < 0, Eren(pn) < 0, } ,

Ssp = S − (S+ + S−) ,

N± = dim(S±), Nsp = dim(Ssp),

N = N+ +N− +Nsp. (5.8)

The third line of the above equations specify the dimensions of these subspaces. In S+ one

defines the renormalized operators:

Ā†
1µ(pn) =

1√
D1(pn)

A†
1µ(pn), Ā1µ(pn) =

1√
D1(pn)

A1µ(pn), (5.9)

while in S− the renormalized operators are:

F̄ †
1µ(pn) =

1√
|D1(pn)|

A1µ(pn), F̄1µ(pn) =
1√

|D1(pn)|
A†

1µ(pn). (5.10)

Indeed, the operator pairs A1µ,A†
1µ and F1µ,F †

1µ satisfy commutation relations of boson

type. An RPA treatment within Ssp would yield either vanishing or negative energies. The

corresponding states are therefore spurious.
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The equations of motion for the renormalized operators read:

[
H, Ā†

1µ(pn)
]

= Eren(pn)Ā†
1µ(pn) + 2χ

∑

(p1n1)∈S+

σ(1)
pn;p1n1

Ā†
1µ(p1n1)− 2χ1

∑

(p1n1)∈S−

σ(1)
pn;p1n1

F̄ †
1µ(p1n1)

+ 2χ
∑

(p1n1)∈S−

σ(1)
pn;p1n1

F̄1−µ(−1)1−µ(p1n1)− 2χ1

∑

(p1n1)∈S+

σ(1)
pn;p1n1

Ā1−µ(−1)1−µ(p1n1),

[
H, F̄ †

1µ(pn)
]

= |Eren(pn)|F̄ †
1µ(pn) + 2χ

∑

(p1n1)∈S−

σ(1)
pn;p1n1

F̄ †
1µ(p1n1)− 2χ1

∑

(p1n1)∈S+

σ(1)
pn;p1n1

Ā†
1µ(p1n1)

+ 2χ
∑

(p1n1)∈S+

σ(1)
pn;p1n1

Ā1−µ(−1)1−µ(p1n1)− 2χ1

∑

(p1n1)∈S−

σ(1)
pn;p1n1

F̄1−µ(p1n1)(−1)1−µ,

[
H, Ā1µ(pn)

]
= −Eren(pn)Ā1µ(pn)− 2χ

∑

(p1n1)∈S+

σ(1)
pn;p1n1

Ā1µ(p1n1) + 2χ1

∑

(p1n1)∈S−

σ(1)
pn;p1n1

F̄1µ(p1n1)

− 2χ
∑

(p1n1)∈S−

σ(1)
pn;p1n1

F̄ †
1,−µ(p1n1)(−1)1−µ + 2χ1

∑

(p1n1)∈S+

σ(1)
pn;p1n1

Ā†
1−µ(p1n1)(−1)1−µ,

[
H, F̄1µ(pn)

]
= −|Eren(pn)|F̄1µ(pn)− 2χ

∑

(p1n1)∈S−

σ(1)
pn;p1n1

F̄1µ(p1n1) + 2χ1

∑

(p1n1)∈S+

σ(1)
pn;p1n1

Ā1µ(p1n1)

− 2χ
∑

(p1n1)∈S+

σ(1)
pn;p1n1

Ā†
1,−µ(p1n1)(−1)1−µ + 2χ1

∑

(p1n1)∈S+

σ(1)
pn;p1n1

F̄ †
1−µ(p1n1)(−1)1−µ,

(5.11)

where:

σ(1)
pn;p1n1

=
2

1̂În

〈p||σ||n〉|D1(pn)|1/2 2

1̂În1

〈p1||σ||n1〉|D1(p1n1)|1/2 ≡ TpnTp1n1
. (5.12)

The phonon operator is defined as:

Γ†
1µ =

∑

k=(pn)

[
X(k)Ā†

1µ(k) + Z(k)F̄ †
1µ(k)− Y (k)Ā1−µ(k)(−)1−µ −W (k)F̄1−µ(k)(−)1−µ

]
.

(5.13)

with the amplitudes determined by the equations:

[
H, Γ†

1µ

]
= ωΓ†

1µ,
[
Γ1µ, Γ

†

1µ′

]
= δµ,µ′ . (5.14)

Thus the phonon amplitudes are obtained by solving the PGFRpnQRPA equations:




A11 A12 B11 B12

A21 A22 B21 B22

−B11 −B12 −A11 −A12

−B21 −B22 −A21 −A22







X(pn)

Z(pn)

Y (pn)

W (pn)




= ω




X(p1n1)

Z(p1n1)

Y (p1n1)

W (p1n1)




. (5.15)

where the following notations have been used:

(A11) = Eren(pn)δpn;p1n1
+ 2χσ(1)T

p1n1;pn,
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(A12) = −2χ1σ
(1)T
p1n1;pn,

(B11) = −2χ1σ
(1)T
p1n1;pn,

(B12) = 2χσ(1)T
p1n1;pn,

(A21) = −2χ1σ
(1)T
p1n1;pn,

(A22) = |Eren(pn)|δpn;p1n1
+ 2χσ(1)T

p1n1;pn,

(B21) = 2χσ(1)T
p1n1;pn,

(B22) = −2χ1σ
(1)T
p1n1;pn. (5.16)

Here the index T suggests the fact that the matrix is transposed. Matrix dimension for A11

and B11 is N+ ×N+ while for A22 and B22 is N− ×N−. The off diagonal sub-matrices A12

and B12 have the dimension N+ ×N− while A12 and B12 are of the N− ×N+ type.

In order to solve Eqs.(5.15) we need to know D1(pn) and, therefore, the averages of the

qp’s number operators, N̂p and N̂n. These are written first in particle representation and

then the particle number conserving term is expressed as a linear combination of A†A and

F †F chosen such that their commutators with A†,A and F †,F are preserved. The final

result is:

〈N̂p〉 = V 2
p (2Ip + 1) + 3(U2

p − V 2
p )(

∑

n
′
,k

(p,n
′
)∈S+

D1(p, n
′

)(Yk(p, n
′

))2 −
∑

n
′
,k

(p,n
′
)∈S−

D1(p, n
′

)(Wk(p, n
′

))2),

〈N̂n〉 = V 2
n (2In + 1) + 3(U2

n − V 2
n )(

∑

p
′
,k

(p′ ,n)∈S+

D1(p
′

, n)(Yk(p
′

, n))2 −
∑

p
′
,k

(p′ ,n)∈S−

D1(p
′

, n)(Wk(p
′

, n))2).

(5.17)

Eqs. (5.15), (5.17) and (5.6) are to be simultaneously considered and solved iteratively.

It is worth mentioning that using the quasiparticle representation for the basic operators

A†
1µ,F †

1µ,A1,−µ(−1)1−µ,F1,−µ(−)1−µ, one obtains for Γ†
1µ an expression which involves the

scattering pn operators. Thus, the present approach is, indeed, the PGFRpnQRPA.

It is worth noting that the compatibility condition for the PGpnQRPA equations (5.15)

can be written in a compact form as a dispersion equation for the excitation energies. This

is explicitly given in Appendix A.
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VI. THE 2νββ PROCESS

The formalism presented above was used to describe the 2νββ process. If the energy

carried by leptons in the intermediate state is approximated by the sum of the rest energy

of the emitted electron and half the Q-value of the double beta decay process

∆E = mec
2 +

1

2
Qββ, (6.1)

the reciprocal value of the 2νββ half life can be factorized as:

(T 2νββ
1/2 )−1 = F |MGT (0+

i → 0+
f )|2, (6.2)

where F is an integral on the phase space, independent of the nuclear structure, while MGT

stands for the Gamow-Teller transition amplitude and has the expression :

MGT =
√

3
∑

k,k′

i〈0||β+
i ||1k〉ii〈1k|1k′〉f f〈1k′||β+

f ||0〉f
Ek + ∆E + E1+

. (6.3)

In the above equation, the denominator consists of three terms: a) ∆E, which was already

defined, b) the average value of the k-th PDFRpnQRPA energy normalized to the particular

value corresponding to k=1, and c) the experimental energy for the lowest 1+ state. The

indices carried by the β+ operators indicate that they act in the space spanned by the

PGFRpnQRPA states associated to the initial (i) or final (f) nucleus, respectively. The

overlap m.e. of the single phonon states in the initial and final nuclei respectively, are

calculated within PGFRpnQRPA. In Eq.(6.3), the Rose convention for the reduced m.e.

is used [24].

Note that if we restrict the pn space to S+ and moreover the χ1 interaction is missing, MGT

vanishes due to the second leg of the transition. Indeed, the m.e. associated to the daughter

nucleus is of the type f 〈0|(c†ncp)1µ(c
†
ncp)1µ|o〉f , which is equal to zero due to the Pauli principle

restriction. In this case the equations of motion are of Tam Dankoff type and therefore the

ground state correlations are missing. In order to induce the necessary correlations we have

either to extend the formalism in the space S−, or to allow the ph excitations to interact

via a pairing like force. Here the two effects are simultaneously considered. Also, we remark

that the operator Ā†
1µ plays the role of a β− transition operator, while when F̄ †

1µ is applied

on the ground state of the daughter nucleus, it induces a β+ transition. Therefore, the ββ

decay cannot be described by considering the β− transition alone.

12



d k Gp[MeV] Gn[MeV] ISR logft χ [MeV] χ1[MeV]

100Mo -1.5 5.5 0.18 0.288 15.995 100Mo
β+/EC← 100Tc 0.232 1.406

4.45+0.18
−0.30 4.65

100Ru -0.6 5.5 0.15 0.255 12.002 100Tc
β−

→100Ru 0.232 1.406

4.66 4.12

116Cd -1.8 12. 0.15 0.282 20.07 116Cd
β+/EC← 116In 0.2 1.308

4.39+0.1
−0.15 4.29

116Sn -1.2 12. 0.12 0.2458 16.007 116In
β−

→116Sn 0.2 1.308

4.662 4.08

TABLE I: The deformation parameter d, the pairing interaction strengths for protons (Gp) and

and neutrons (Gn) and the GT dipole interaction χ used in our calculations. We also give the

parameter k relating the quadrupole coordinates and bosons (this is involved in the expression of

the single particle energies) as well as the resulting logft values characterizing the β+/EC and β−

transitions of 100Tc and 116In, respectively. The results for logft values, given in the right column,

are compared to the experimental data from the left column.

VII. NUMERICAL APPLICATION

For illustration, we present the results for the transitions 100Mo→100Ru and 116Cd→116Sn

. For these cases the energy corrections involved in Eq.(6.3) are:

∆E(100Mo) = 2.026MeV, E1+(100Tc) = 0.0MeV.

∆E(116Cd) = 1.916MeV, E1+(116In) = 0.0MeV. (7.1)

The parameters defining the single particle energies are those of the spherical shell model,

the deformation parameter d and the parameter k relating the quadrupole coordinate with

the quadrupole bosons as shown in Eq.(2.2).

These are fixed as described in Ref.[18]. The core system for the two decays is defined

by (Z, N) = (20, 20). Labeling the states according to their energies ordering, the single

particle space is defined by the indices interval [11, 55] and [11, 65], respectively. The di-

mensions for the spaces (S+,S−,S) are (137, 1, 163) and (139, 2, 175) for 100Mo and 100Ru ,

while for the mother and daughter nuclei of the decay 116Cd→116Sn, they are (189, 0, 219)

and (182, 4, 219), respectively. For the both processes considered here eight iterations were

13
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FIG. 1: One third of the single β− strength for the mother nucleus, 100Mo (upper-left panel) and

116Cd (bottom-left), and one third of the β+ strength for the daughter nucleus, 100Ru (upper-right

panel) and 116Sn (bottom-right panel), folded by a Gaussian function with a width of 1 MeV, are

plotted as functions of the corresponding energies yielded by the present formalism. Note that

for a given nucleus the difference B
′(−)
GT − B

′(+)
GT is to be compared with the reduced ISR value

i.e.,N − Z. 14



necessary in order that the iteration process reaches the convergence. The strength of the

dipole pn two-body interaction is usually taken to be

χ =
5.2

A0.7
MeV. (7.2)

This expression was obtained by fitting the positions of the GT resonances in 40Ca, 90Zr and

208Pb [25]. This expression provides for χ the values 0.207 and 0.187 for 100Mo and 116Cd,

respectively.These values yield for the log ft values of the intermediate odd-odd nuclei

results which deviate much from the corresponding experimental data. For this reason we

fixed χ by fitting the log ft value characterizing the β+/EC process of the intermediate

nuclei. Results for χ obtained in this way are slightly different from those provided by the

expression (7.2). The parameter χ1 was fixed such that the log ft value characterizing the

β− decay of the intermediate odd-odd nuclei is close to the corresponding experimental data.

The results obtained for the nuclei involved in the two processes are given in Table 1.

We note that the ISR is satisfied both for mother and daughter nuclei. In our calculation

the ISR is sensitive to the dimension of the single particle basis. Indeed, chosing a basis of a

smaller dimmension the ISR would be underestimated. Another parameters which influence

the magnitude of ISR are the pairing strengths. Indeed ISR is increasing by increasing Gn

or decreasing Gp. Variation of χ and χ1 does not affect much ISR. However by varying

these parameters the single beta strengths are modified according to the interaction nature.

The strength is transfered to the lower energy by the attractive interaction (χ1) and pushed

up by the repulsive one (χ).

Using these input data we calculated the distribution of the β± strengths with the result

shown in Fig.1. The energy intervals where both distributions are large, contribute signifi-

cantly to the double beta transition amplitude. In plotting the β+ strength we ignored the

values smaller than 0.01. The β∓ strengths are fragmented among the pnQRPA states, re-

flecting the fact that the single particle states are deformed. Note that the first peak for the

β− strength is the highest one while the one centered at higher energy has a large width and

a fine substructure. The low energy peak is mainly determined by the attractive two-body

interaction while the broad peak, i.e. the GT giant resonance, by the GT interaction. The

β+ strength is small in magnitude and less fragmented than the β− strength. Also we note

that the highest energy peak is the largest one.

Calculating first the GT transition amplitude and then the Fermi integral with GA =
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MGT T1/2[yr]

[MeV−1] present Exp. Ref.[18] Refs. [30,31] Refs.[32,33,34]

100Mo→100Ru 0.221 8.79·1018 (8.0±0.16) · 1018 a) 4.4·1018 2.9·1018 3) 1.8·1018 1)

(0.115+0.03
−0.02) · 1020 b)

0.033+0.02
−0.01 · 1020 c,d)

116Cd→116Sn 0.15998 2.02·1019 (3.2±0.3) · 1019 e) 3.86·1019 5.1·1019 5) 8.3·1018

3.75·1019 6)

TABLE II: The Gamow-Teller amplitude for the 2νββ decay, in units of MeV−1, and the cor-

responding half life (T1/2), in units of yr, are listed for two ground to ground transitions. The

experimental half lives for the transitions of 100Mo ( a) Ref.[26], b) Ref.[27] c) Ref.[28], d) Ref.[29])),

116Cd (e) Ref.[36]), are also given. In the second last column the results reported in Refs. [30] 3)

and [31] 5) are given. Comparison is also made with the theoretical results from the last column

reported in Refs.[32] (1)),[33] (unmarked) and [34] (6)).

1.254, as in Ref.[4], we obtained the results given in Table II.

From Table II, one may see that the present approach provides for the half life of the

double beta decay, values which are quite close to the experimental data. The results are

compared with other theoretical calculations using different formalisms. Thus, in Ref.[18]

a schematic Gamow-Teller proton-neutron interaction, in the particle-hole and particle-

particle channels, is treated within a projected spherical single particle basis by a pnQRPA

approach. The results correspond to a large value of the parameter gpp. Indeed, for the

two nuclei considered here, 100Mo and 116Cd, the parameters (χ, gpp) are (0.06,1.6) and

(0.238,1.68) respectively. In Refs.[30, 31], a realistic Bonn-interaction is treated by a higher

pnQRPA approach, using a single particle basis corresponding to the Woods-Saxon poten-

tial. Of course, the ISR is not obeyed given the fact that a higher pnQRPA approach is

used. The results shown in the last column were obtained using for proton-neutron inter-

action the Paris potential in both the ph and pp channel and a pnQRPA formalism. It is

worth mentioning that although within the pnQRPA approach the ISR is obeyed the large

value for the pp interaction strength raises the question whether the used formalism is still

valid. On the other hand the higher pnQRPA approach yielding the results shown in Table

II on the column of Refs.[30, 31], leads necessarily to a violation of the ISR. We remark
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Nucleus 100Mo 116Cd

0.6
∑

B(GT )− 28.96 36.2

∑
B(GT )Exp

− 26.69 32.7

TABLE III: The experimental summed strength for the β− transition (second row) is compared

with the corresponding theoretical values quenched by a factor 0.6, for the two considered double

beta emitters.

that these week points are not present in the present formalism. In Ref.[37] the standard

renormalized pnQRPA was applied for calculating the rate of double beta transitions of

many isotopes. Unfortunately, the list does not include the isotopes considered here and

consequently we cannot compare the predictions presented here with those from the quoted

reference. Another fully renormalized procedure which obeys the ISR was formulated in

Ref.[38]. The dependence of single beta decay strengths on the particle-particle interaction

was studied numerically in Ref.[39]. By contrast, in our case the pp interaction does not

contribute to the ground state correlations. Actually for this reason we replaced it by a

dipole pairing interaction. This interaction brings important contributions to the backward

going RPA amplitudes. However, even if this two-body interaction is missing the ground

state correlations would not vanish due to the presence of the amplitudes F in the phonon

operator expression. At its turn this is caused by the split of the pn dipole configurations in

two orthogonal subspaces, one associated to the β− transition while the other one to the β+

decay. Also the ISR is obeyed. We added however the dipole pairing interaction in order

to describe the log ft values associated to the single beta transitions of the intermediate

odd-odd nuclei. The eigenvalue equations and the restrictions for the averaged quasiparticle

number operators, in the two renormalization approaches, are different from each other.

Another experimental result concerns the summed strength for the β− transition, denoted,

conventionally, by
∑

BGT−. The experimental value of this sum covers only a fraction of the

sum rule limit of 3(N − Z). Therefore in order to get a fair comparison of the calculated

and measured quantity, we have to quench the calculated strength by a factor 0.6 in order

to account for the missing experimental strength. The results are presented in Table III.

The intermediate odd-odd nucleus, 100Tc, can perform the transition β+/EC, feeding

100Mo, or the β− transition to 100Ru. The same is true for 116In which by means of a
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Excited 100Tc 116In

states Ex[MeV] B(GT) Ex[MeV] B(GT)

Exp. Th. Exp. Th. Exp. Th Exp. Th.

GTR1 13.3 11.16 23.1± 3.8 15.63 14.5 12.37 25.8± 4.1 18.9

GTR2 8.0 8.05 2.9±0.5 5.87 8.9 7.87 6.6±1.1 7.2

TABLE IV: The strengths B(GT) of the single β− transitions from the mother nuclei to the

intermediate odd-odd nuclei excited in the states of the two components, GTR1 and GTR2, of

the GT giant resonance are listed. The experimental (Exp.) and theoretical (Th.) values for the

centroid energies of the two resonances are also specified.

EC process may undergo to 116Cd while through a β− decay can feed the nucleus 116Sn.

The measured log ft values for these transitions, are given in Table 1. The corresponding

theoretical results are obtained by means of the expression:

ft∓ =
6160

[l〈11||β±||0〉lgA]2
, l = i, f. (7.3)

In order to take account of the effect of distant states responsible for the ”missing strength”

in the giant GT resonance [4] we chose gA = 1.0. As we already mentioned, these single

beta transitions were used as to fix the strengths of the two body dipole-dipole interactions.

The matrix elements involved in the double beta transition amplitude of the two emit-

ters, 100Mo and 116Cd, have been experimentally investigated in Ref.[36]. The first ma-

trix elements, describing the transitions 0+
i → 1+, were obtained from the reactions

100Mo(3He,t)100Tc and 116Cd(3He,t)116In respectively, at θt ≈ 00, while the matrix elements

for the 1+ → 0+
f were derived from the known log ft value. For both cases the strength

of the first β− transition exhibits two bumps, one broad and called GTR1 while the second

one less spread, located at lower energy and called GTR2. The centroid energies of the two

resonances as well as the strength carried by each of them are compared with the theoretical

results obtained with our approach, in Table IV.

From the mentioned Table we notice that the theoretical centroid energy for GTR1 is

by about 2 MeV smaller than the experimental data. Moreover, the calculated strength

carried by GTR1 is smaller than the corresponding experimental data. A reason for such

a discrepancy might be the relative values for the attractive and repulsive dipole-dipole

interaction intensities which favors the transfer of strength from the GTR states to the states

18



from the resonance of GTR2 and those from around 5 MeV. It is an open question whether

these deviations could be washed out by a better fitting procedure or they constitute the price

we have to pay for restoring the gauge symmetry. Note that the centroid for GTR2 of the

100Mo→ 100Tc transition is fairly well described by our approach. As for the transition 116Cd

→116In the predicted centroid of GTR2 is 1 MeV lower in energy than the corresponding

experimental data. The calculated strengths for GTR2 are larger than the corresponding

experimental data. It is worth mentioning that the summed strength of the two resonances,

GTR1 and GTR2, is reasonable close to the corresponding experimental data. A specific

feature for our formalism consists of that states around the GTR1 centroid contribute to

the peak seen in the strength distribution for the single β+ decay of the daughter nuclei.

Also for both nuclei it seams that the resonance around 5MeV for the β− decay does not

contribute at all to the double beta decay. Indeed, in this region the matrix element for the

second leg of transition is almost vanishing. In this respect we notice that in the case of

116Cd, a bunch of states below 2 MeV contribute to the double beta decay rate.

VIII. CONCLUSIONS

Summarizing the results of this paper, one may say that restoring the gauge symmetry

from the fully renormalized pnQRPA, one obtains a realistic description of the transition

rate and moreover the ISR is obeyed. As shown in this paper, it seems that there is no

need to include the pp interaction in the many body treatment of the process. Indeed, in the

framework of a FRpnQRPA approach this interaction violates the total number of particle

and consequently the gauge projection process makes it ineffective.

Note that the hypothesis saying that the double beta process consists of two successive

single β− decays requires a consistent description of the double beta and single beta pro-

cesses. In our formalism, actually, this feature is met since the rate of the double beta decay

and the log ft values associated to the single beta decays of the intermediate odd-odd nuclei

are realistically described. Another issue which is worth to be mentioned refers to the chain

of approximations of the many-body Hamiltonian. A measure of the consistency of all these

approximations is the ISR which in our case is satisfied to a high accuracy.

The attractive interaction of ph dipole-pairing type is responsible for the ground state

correlations. To a less extent these are caused by the F components of the new phonon
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operator. The projection of gauge is essential for restoring the ISR. The gauge projection

of the pnQRPA was previously achieved in Ref.[35] where the ISR is anyway satisfied within

the unprojected picture. By contrast therein the effect of projection is small.

The GPFRpnQRPA equations consist of FRpnQRPA equation (5.12) supplemented

by Eqs. (5.6) and (5.17) which must be simultaneously solved by an iteration procedure.

Since the two-body interaction is a separable interaction, Eq.(5.2) may be replaced by the

dispersion equation (A.1) for energies and Eqs.(A.3) for the four phonon amplitudes. An

extensive study of all existent data, with the formalism described in this paper, will be

presented in a subsequent work.
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IX. APPENDIX A

The compatibility condition for the homogeneous system of equations determining the

phonon amplitudes yields two dispersion equations for ω:

4(χ2 − χ2
1)

[
R+

− −R−
+

] [
R+

+ −R−
−

]

+4χ


∑

S+

T 2
pnE

ren(pn)

ω2 − (Eren(pn))2
+

∑

S−

T 2
pn|Eren(pn)|

ω2 − |Eren(pn)|2


 = 1, (A.1)

with

R+
± =

∑

(p1n1)∈S+

T 2
p1n1

ω ± Eren(p1n1)
, R−

± =
∑

(p1n1)∈S−

T 2
p1n1

ω ± |Eren(p1n1)|
. (A.2)

The phonon amplitudes can be analytically determined. Indeed, the GPFRpnQRPA equa-

tions yield the following expressions for the four amplitudes;

X(pn) = 2
T 2

pn

ω − Eren(pn)
(χX − χ1Y), W (pn) = −2

T 2
pn

ω + |Eren(pn)|(χX − χ1Y),

Z(pn) = 2χ
T 2

pn

ω − |Eren(pn)|(χY − χ1X ), Y (pn) = −2χ
T 2

pn

ω + Eren(pn)
(χY − χ1X ).(A.3)

The constant factors X and Y have the expressions:

X =
∑

S+

Tp1n1
X(p1n1) +

∑

S−

Tp1n1
W (p1n1),

Y =
∑

S+

Tp1n1
Y (p1n1) +

∑

S−

Tp1n1
Z(p1n1). (A.4)
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The two factors are related by:

Y =
1

χ1

[
χ− 1

2(R+
− −R−

+)

]
X ≡ UX . (A.5)

Finally the independent constant factor X is determined from the normalization condition

of the phonon operator. The result is:

X−2 = 4


∑

S+

T 2
pn

(ω − Eren(pn))2
−

∑

S−

T 2
pn

(ω + |Eren(pn)|)2


 (χ− χ1U)2

+ 4


∑

S−

T 2
pn

(ω − |Eren(pn)|)2
−

∑

S+

T 2
pn

(ω + Eren(pn))2


 (χ1 − χU)2 . (A.6)

Having X and Y determined the phonon amplitudes are readily obtained by means of equa-

tions A.3.
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