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Abstract
A time-dependent variational principle is used to dequantize a second-order
quadrupole boson Hamiltonian. The classical equations for the generalized
coordinate and the constraint for the angular momentum are quantized and
then analytically solved. A generalized Holmberg–Lipas formula for energies
is obtained. A similar J (J + 1) dependence is provided by the coherent state
model in the large deformation regime, by using an expansion in powers of
1/x for energies, with x denoting a deformation parameter squared. A simple
compact expression is also possible for the near-vibrational regime. These
three expressions have been used for 44 nuclei covering regions characterized
by different dynamic symmetries or in other words belonging to all the known
nuclear phases. Nuclei satisfying the specific symmetries of the critical
point in the phase transitions O(6) → SU(3), SU(5) → SU(3) have also
been considered. The agreement between the results and the corresponding
experimental data is very good. This is reflected in very small root mean square
values of deviations.

1. Introduction

One of the big merits of the liquid drop model is that it defines in a consistent way the
rotational bands. Many theoretical efforts have been made for the description of excitation
energies as well as of electromagnetic transition probabilities. One of the early claims was to
obtain a closed formula for the ground state band energies which explains the deviations from
the J (J + 1) pattern. Various methods have been proposed which were mainly based on the
principle of variable moment of inertia [1–3]. These approaches proposed for ground band
energies are a series expansion in terms of J (J + 1). The weak point of these expansions is
that they do not converge for high angular momenta. The first attempt to avoid this difficulty
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was made by Holmberg and Lipas [4] who proposed a square root of a linear expression of
J (J + 1). This expression proves to work better than a quadratic expression in J (J + 1).

Here we address the question whether this formula can be improved such that it could be
extended to the region of states with high angular momenta. In the present paper we offer three
solutions for this problem, each of them being obtained in a distinct manner. One solution
is based on a semiclassical treatment of a second-order quadrupole boson Hamiltonian. The
remaining two expressions for the ground band energies are given by asymptotic and near-
vibrational expansions, respectively, of an angular momentum projection formula. The three
expressions obtained for energies are used for a large number of nuclei. The above-sketched
project has been achieved according to the following plan. In section 2 we present the
semiclassical approach in connection with a quadratic quadrupole boson Hamiltonian. In
section 3 the angular momentum projection method is described. Numerical applications are
presented in section 4, while the final conclusions are drawn in section 5.

2. Semiclassical treatment of a second-order quadrupole boson Hamiltonian

For a moment we consider the simplest quadrupole boson
(
b
†
2,μ,−2 � μ � 2

)
Hamiltonian:

H = A1

∑
μ

b†
μbμ + A2

∑
μ

(
b†

μb
†
−μ + bμb−μ

)
(−)μ. (2.1)

Here, we are interested in studying the classical equations provided by the time-dependent
variational principle associated with H:

δ

∫
〈�|H − ih̄

∂

∂t
|�〉 dt = 0. (2.2)

If the variational states span the whole Hilbert space of boson states, then solving the variational
equations is equivalent to solving the time-dependent Schrödinger equation, which is in general
a difficult task. Therefore, we restrict the trial function to a coherent state which we hope is a
suitable state for describing the semiclassical feature of the chosen system:

|�〉 = exp
[
z0b

†
0 − z∗

0b0 + z2
(
b
†
2 + b

†
−2

) − z∗
2(b2 + b−2)

]|0〉. (2.3)

Indeed the coherence property results from the obvious equation satisfied by |�〉:
bμ|�〉 = (δμ0z0 + (δμ2 + δμ−2)z2)|�〉. (2.4)

In order to write explicitly the equations emerging from (2.2) we have to calculate first the
averages of H:

H = 〈�|H |�〉, (2.5)

as well as of the action operator −ih̄ ∂
∂t

. The variational equation (2.2) yields the following
classical equations for the complex coordinates zk and z∗

k :

∂H
∂z0

= −ih̄ż∗
0,

∂H
∂z∗

0

= ih̄ż0,

∂H
∂z2

= −2 ih̄ż∗
2,

∂H
∂z∗

2

= 2 ih̄ż2.

(2.6)

Note that the coordinates zk and z∗
k define a classical phase space while H plays the role of a

classical Hamilton function. In what follows it is useful to bring these equations to a canonical
form. This is achieved by the transformation

qi = 2(k+2)/4Re(zk), pi = h̄2(k+2)/4Im(zk), k = 0, 2, i = k + 2

2
. (2.7)
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Indeed, in the new coordinates the classical equations of motion become

∂H
∂qk

= −ṗk,
∂H
∂pk

= q̇k. (2.8)

In terms of the new coordinates, the Hamilton function is written as

H = A1 + 2A2

2

(
q2

1 + q2
2

)
+

A1 − 2A2

2h̄2

(
p2

1 + p2
2

)
= A

2

(
q2

1 + q2
2

)
+

A′

2h̄2

(
p2

1 + p2
2

)
, (2.9)

where A = A1 + 2A2 and A′ = A1 − 2A2. Equations (2.8) provide the connection between
the generalized momenta and the coordinate time derivatives:

p1 = h̄2q̇1

A′ , p2 = h̄2q̇2

A′ . (2.10)

Taking into account these relations, the classical energy function becomes

H = h̄2

2A′
(
q̇2

1 + q̇2
2

)
+

A

2

(
q2

1 + q2
2

)
. (2.11)

In what follows it is useful to use the polar coordinates

q1 = r cos θ, q2 = r sin θ, (2.12)

for the Hamilton function

H = h̄2

2A′ (ṙ
2 + r2θ̇2) +

A

2
r2. (2.13)

The classical system described byH is exactly solvable since the number of degrees of freedom
is equal to the number of constants of motion. Indeed, taking the time derivatives of H and
L3, the third component of a pseudo-angular momentum acting in a fictitious boson space,
one obtains

Ḣ = 0, L̇3 = 0. (2.14)

The components of the pseudo-angular momentum are defined in appendix A. Here, we need
the conserved component

L3 = 1
2 (q1p2 − q2p1). (2.15)

Its constant value is conventionally taken to be

h̄2

2A′ r
2θ̇ = Lh̄, (2.16)

which allows us to express the angular variable derivative in terms of the radial one:

θ̇ = 2A′L
h̄r2

. (2.17)

Thus, the energy function written in the reduced space becomes

H = h̄2

2A′ ṙ
2 +

2A′L2

r2
+

A

2
r2 ≡ h̄2

2A′ ṙ
2 + Veff(r). (2.18)

We recognize the effective potential energy

Veff(r) = 2A′L2

r2
+

A

2
r2, (2.19)

just as the Davidson potential [5].

3
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Instead of solving the classical trajectories and then quantizing them, here we first quantize
the energy by replacing

h̄2ṙ

A′ → −ih̄
∂

∂r
. (2.20)

Thus, one arrives at the Schrödinger equation[
−A′

2

∂2

∂r2
+

2A′L2

r2
+

A

2
r2

]
u(r) = εu(r). (2.21)

Making use of the change of variable and function

x =
√

A

A′ r
2, u(r) = e− x

2 xsf (x), (2.22)

one obtains the following differential equation:[
x

∂2

∂x2
+

(
2s +

1

2
− x

)
∂

∂x
+

(
2s2 − s − 2L2

2x
+

ε

2
√

AA′ − 1

4
− s

)]
f (x) = 0. (2.23)

This should be compared with the differential equation for the Laguerre polynomials:[
x

∂2

∂x2
+ (m + 1 − x)

∂

∂x
+ n

]
Lm

n (x) = 0. (2.24)

Indeed, the two equations are identical provided the following equations hold:

1 + m = 2s +
1

2
, n = ε

2
√

AA′ − 1

4
− s, 2s2 − s − 2L2 = 0. (2.25)

From the last equation we derive the expression of s as a function of L. The positive solution
is

s = 1
4 (1 +

√
1 + 16L2). (2.26)

The second equation (2.25) yields for the energy ε the following expression:

ε = 2
√(

A2
1 − 4A2

2

)(
n + 1

2 + 1
4

√
1 + 16L2

)
, n = 0, 1, 2, . . . , L = 0, 1, 2, . . . .

(2.27)

An approximate expression may be obtained by expanding first the Davidson potential
Veff around its minimum r0 given by the equation

r2
0 = 2L

√
A′

A
, (2.28)

and truncating the expansion at the quadratic term. The result for the energy function is

H = h̄2

2A′ ṙ
2 + 2A(r − r0)

2 + 2L
√

AA′. (2.29)

Quantizing this Hamilton function we obtain an eigenvalue equation for a harmonic oscillator
whose energy is

EnL = 2
√

AA′(n + 1
2

)
+ 2L

√
AA′ = 2

√(
A2

1 − 4A2
2

)(
n + 1

2 + L
)
, n = 0, 1, 2, . . . .

(2.30)

We remark the fact that the two spectra coincide when L is large:

EnL ≈ εn,L, for L = large. (2.31)

4
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Note that the initial boson Hamiltonian could easily be diagonalized by a suitable chosen
canonical transformation

b̃†
μ = Ub†

μ − V (−)μb−μ, b̃μ = Ubμ − V (−)μb
†
−μ. (2.32)

Indeed, the coefficients U and V may be chosen such that[
b̃μ, b̃

†
μ′

] = δμμ′ ,
[
H, b̃†

μ

] = Eb̃†
μ. (2.33)

The second equation provides a homogeneous system of equations for the transformation
coefficients (

A1 2A2

−2A2 −A1

) (
U

V

)
= E

(
U

V

)
, (2.34)

which determine U and V up to a multiplicative constant which is fixed by the first equation
which gives

U 2 − V 2 = 1. (2.35)

The compatibility condition for equation (2.34) gives E =
√

A2
1 − 4A2

2, and therefore the
eigenvalues of H are

En =
√

A2
1 − 4A2

2

(
n + 5

2

)
. (2.36)

The frequency obtained is half the one obtained through the semiclassical approach. The
reason is that here the frequency is associated with each of the five degrees of freedom while
semiclassically the frequency is characterizing a plane oscillator. Note that the pseudo-angular
momentum L is different from the angular momentum in the laboratory frame describing
rotations in the quadrupole boson space

Ĵ μ =
√

6
(
b
†
2b2

)
1μ

. (2.37)

The expected value of the angular momentum square is

〈�|Ĵ 2|�〉 = 2

[
q2

1 + q2
2 +

1

h̄2

(
p2

1 + p2
2

)]
. (2.38)

Since the variational function |�〉 is not the eigenstate of Ĵ 2, the above-mentioned average
value is not a constant of motion. Indeed, it is easy to check that

∂〈�|Ĵ 2|�〉
∂t

= 6

h̄2 (A′ − A)(q1p1 + q2p2) 
= 0. (2.39)

It is instructive to see whether we could crank the system so that the magnitude of the angular
momentum is preserved, i.e.

〈�|Ĵ 2|�〉 = h̄2J (J + 1). (2.40)

Using polar coordinates the above equation becomes

3h̄2

A′2 ṙ2 +
12L2

r2
+ 3r2 = J (J + 1). (2.41)

This equation is treated similarly to the energy equation. Thus, by the quantization

A′2

h̄2 ṙ → −ih̄
∂

∂r
, (2.42)

equation (2.41) becomes a differential equation for the wavefunction describing the angular
momentum:

−∂2�

∂r2
+

(
4L2

A′2r2
+

r2

A′2

)
� = J (J + 1)

3A′2 �. (2.43)

5
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Making the change of variable and function

x = r2

A′ , � = e− x
2 xs�, (2.44)

we obtain the following equation for �:

x
∂2�

∂x2
+

(
2s − x +

1

2

)
∂�

∂x
+

(
2s2 − s − 2L2

A′2

2x
+

J (J + 1)

12A′ − s − 1

2

)
� = 0. (2.45)

This equation admits the Laguerre polynomials Lm′
n′ (x) with the quantum numbers determined

as follows:

m′ = 2s − 1

2
, s = 1

4
+

1

4

√
1 +

16L2

A′2 ,
J (J + 1)

12A′ = n′ +
1

2
+

1

4

√
1 +

16L2

A′2 .

(2.46)

The last relation (2.46) can be viewed as an equation determining L:

L =
[(

J (J + 1)

12
− A′

(
n′ +

1

2

))2

−
(

A′

4

)2
]1/2

. (2.47)

On the other hand taking the harmonic approximation for the potential term in equation (2.41)
one obtains the classical equation for a harmonic oscillator from which we get

J (J + 1) = 12A′(n′ + 1
2

)
+ 12L. (2.48)

Reversing this equation one can express the pseudo-angular momentum L in terms of the
angular momentum J:

L = J (J + 1)

12
− A′

(
n′ +

1

2

)
. (2.49)

Replacing, successively, the expressions for L (2.47), (2.49) into energy
equations (2.27), (2.30), we obtain four distinct expressions for the energies characterizing
the starting Hamiltonian H:

E
(1)
nn′J =

√
AA′

[
2n + 1 +

J (J + 1)

6
− A′(2n′ + 1)

]
, (2.50)

E
(2)
nn′J =

√
AA′

⎡
⎣2n + 1 + 2

√[
J (J + 1)

12
− A′

(
n′ +

1

2

)]2

−
(

A′

4

)2
⎤
⎦ , (2.51)

E
(3)
nn′J =

√
AA′

⎡
⎣2n + 1 +

1

2

√
1 + 4

[
J (J + 1)

6
− A′ (2n′ + 1)

]2
⎤
⎦ , (2.52)

E
(4)
nn′J =

√
AA′

⎡
⎣2n + 1 +

1

2

√
1 + 4

[
J (J + 1)

6
− A′ (2n′ + 1)

]2

− (A′)2

⎤
⎦ . (2.53)

Note the fact that for a fixed pair of (n, n′) each of the above equations defines a rotational
band: the lowest band corresponds to (n, n′) = (0, 0) and defines the ground band. Except
for the band energies E

(1)
00J , which exhibit a J (J + 1) pattern, the other three bands have the

same generic expressions. Thus, the excitation energies have the form

EJ = a[
√

1 + bJ (J + 1) + cJ 2(J + 1)2 − 1], (2.54)

6
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which is a generalization of the Holmberg–Lipas formula [4]. The results presented with this
formula in section 4 are obtained with theory (2). The parameters a, b and c will be fitted by
three different energy levels.

We recall that we required that the average value of Ĵ 2 equals h̄2J (J + 1). Subsequently,
we eliminated the energy dependence on the pseudo-angular momentum L. In this way we
projected approximately the angular momentum from the variational state. In the next section
we shall show that the exact treatment of the angular momentum projection also yields a closed
formula for energy as a function of J (J + 1).

3. The method of angular momentum projected state

For the sake of simplicity here we consider a simple form for the variational state

|�g〉 = ed(b
†
20−b20)|0〉, (3.1)

in connection with the following quadrupole boson Hamiltonian:

H = A1

∑
μ

b
†
2μb2μ + A2Ĵ

2. (3.2)

The vacuum state for the quadrupole boson operators is denoted by |0〉 while d is a real quantity
which plays the role of the deformation parameter. The reason is the fact that the average
value of the quadrupole moment, written in the lowest order in terms of the quadrupole boson
operator, with the function |�g〉, is proportional to d. The component of a given angular
momentum is obtained by a projection procedure

ϕ
(g)

JM = N
(g)

J P J
M0�g, (3.3)

where P J
MK denotes the angular momentum projection operator:

P J
MK = 2J + 1

8π2

∫
DJ∗

MK(
)R̂(
) d
, (3.4)

with DJ∗
MK denoting the Wigner functions and R̂(
) a rotation defined by the Euler angle 
.

The system energy is defined as the average value of H with the projected state

E
(g)

J ≡ 〈
ϕ

(g)

JM

∣∣H ∣∣ϕ(g)

JM

〉 = A1d
2 I

(1)
J (d2)

I
(0)
J (d2)

+ A2J (J + 1), (3.5)

where we denoted by I
(0)
J the overlap integral:

I
(0)
J (x) = 2

∫ 1

0
PJ (y) exP2(y) dy, x = d2. (3.6)

The kth derivative of this integral is denoted by

I
(k)
J (x) = dkI

(0)
J

dxk
. (3.7)

The normalization constant for the projected state has the expression(
N

(g)

J

)−2 = (2J + 1)I
(0)
J e−d2

. (3.8)

These integrals have been analytically calculated in [13]. Actually the energies presented
here refer to the ground band described by the coherent state model (CSM) which considers
simultaneously three interacting bands: ground, beta and gamma. In the asymptotic limit of
the deformation parameter d, the ground band energies have the expression [6]

E
(g,asym)

J = A1

2

[
x − 1

2
+ G

1/2
J

]
+ A2J (J + 1), (3.9)

7
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Table 1. The smallest value of d, for which GJ is positive.

J 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

dmin 1.55 0 0 0.65 1.21 1.43 1.59 1.71 1.82 1.91 1.99 2.07 2.14 2.21 2.27 2.33

with

GJ = 9

4
x(x − 2) +

(
J +

1

2

)2

− 4

9x

(
3 +

10

x
+

37

x2

)

+
2

3x

(
1 +

10

3x
+

13

x2

)
J (J + 1) − 2

9x3
J 2(J + 1)2, x = d2. (3.10)

The parameter x = d2 describes the deformation of the nuclei and is defined in the ansatz
for the variational state (3.1). It is worth mentioning that equation (3.9) is similar to the
generalized HL formula, with the difference that here the coefficients of the terms J (J + 1)

and J 2(J + 1)2 have explicit expressions in x. Moreover there appears an additional J (J + 1)

term outside the square root symbol. The expression (3.9) is obtained by replacing the series

expansion in 1/x, associated with the ratio x
I

(1)
J

I
(0)
J

:

x
I

(1)
J

I
(0)
J

= x − 1 − 1

3x
− 5

9x2
− 37

27x3
+

(
1

6x
+

5

18x2
+

13

18x3

)
J (J + 1)

− 1

54x3
J 2(J + 1)2 + O(x−4), (3.11)

by a faster convergent one.
According to [7], for the near-vibrational regime (d close to zero) the ground-state band

energies have the expressions

E
g,vib
J = A1

[
J

2
+

J

2(2J + 3)
x +

9

2

(J + 1)(J + 2)

(2J + 3)2(2J + 5)
x2

+
27

2

(J + 1)(J + 2)

(2J + 3)3(2J + 5)(2J + 7)
x3

]
+ A2J (J + 1). (3.12)

For the sake of completeness we present the derivation of the two expressions for the ground
band energies, in the rotational and near-vibrational limits, in appendix B.

4. Numerical results

Since expressions (3.9), (3.11) and (3.12) are based on the series expansion in 1/x and x,
respectively, it is worth showing how far the truncated expansions are from the exact energies.

Aiming at this goal in figures 1 and 2 we plotted the ratio d2 I
(1)
J

I
(0)
J

and the associated truncated

series for large and small values of d, respectively, as functions of d for the two angular
momenta: J = 12 and J = 16. In the case of the asymptotic regime we also considered
the square root expression. In this case one defines an existence interval of d for which
GJ � 0. The lower bounds of these intervals for J running from 0 to 30 are listed in table 1.
From figure 1 we see that for d � 3 the expressions used for energies achieve convergence
even for high angular momenta. Concerning the energies for the near-vibrational regime one
notes that we use a power series of x and therefore one may think that such an expansion is
valid for x � 1. However, we note that the coefficients of this expansion depend on J and

8
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Figure 1. d2I
(1)
J /I

(0)
J is plotted as a function of d for two values of angular momentum. Two

approximations of this function are also presented. One is a truncated expansion in 1/x, while the
other one is given by a square root expression which converges slightly faster than the previously
mentioned expansion.

moreover are less than unity. The larger the J the smaller are these coefficients. This fact infers
that the convergence radius is larger than unity and is an increasing function of the angular
momentum. As a matter of fact this is confirmed in the plot shown in figure 2. Comparing
the curves from figures 1 and 2 one may say that there is a small interval of d where the

9



J. Phys. G: Nucl. Part. Phys. 37 (2010) 085108 A A Raduta et al

Figure 2. d2I
(1)
J /I

(0)
J is plotted as a function of d for two values of angular momentum. This is

compared with the function given by the near-vibrational approximation from equation (3.12).

asymptotic and small x expansions are matched. This allows us to assert that the reunion of
the two formulas, (3.9) and (3.12), assures an overall description of nuclei ranging from small
to large deformation. In figure 3 we plot the term GJ involved in the energy expression (3.9)
as a function of the deformation parameter d. Except for J = 0 and J = 2 all the other
functions vanish for specific values of d which are, in fact, the lower bounds of the existence
interval.

10
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J 0

J 30

0 1 2 3 4

0

200

400

600

800

d

G
J

Figure 3. GJ is plotted as a function of d for some angular momenta. Note that except for the
cases of J = 2, 4, all other functions GJ become negative for d smaller than a critical value. These
limiting values are listed in table 1.

(This figure is in colour only in the electronic version)

The basic expressions for energies (2.54), (3.9) and (3.12) have been used for a large
number of nuclei grouped according to the nuclear phase to which they belong. Thus, for
well-deformed nuclei behaving like axially deformed rotor the ratio E4+/E2+ should be close
to the value of 3.3 while for the near-vibrational region one expects a ratio close to the value
2. Between these two extreme values gamma unstable nuclei are placed, where the ratio
may run in the interval 2.5–3.0. The deviation from axial symmetry can affect the ratio
mentioned above. Thus, 228Th exhibits some specific feature of a triaxial nucleus with an
equilibrium value γ 0 = 300. The corresponding ratio E4+/E2+ is equal to 3.24. According
to the IBA (interacting boson approximation) model [8, 9] the nuclei belonging to the three
groups mentioned above are described by the irreducible representations of some dynamic
groups such as SU(3), SU(5) and O(6). Since the nuclei described by a certain symmetry
group exhibit some specific distinct properties one says that these form a certain nuclear phase.
According to Casten [10] all nuclei of the periodic table may be placed on the sides of a triangle
having the three symmetries mentioned above at the vertices. On each side which links two
adjacent symmetries one expects a critical transition point between the two adjacent phases. A
few years ago, Iachello [11, 12] advanced the idea that each of the critical nuclei lying on the
three triangle sides correspond to specific symmetries. Thus, the transition O(6) → SU(5)

is characterized by a critical symmetry which is E(5). Representatives of the E(5) symmetry
are 104Ru and 102Pd characterized by the specific ratios E4+/E2+ = 2.48, 2.29, respectively. In
the transition SU(5) → SU(3), the critical point is close to 3. Such nuclei are 150Nd, 152Sm,
154Gd and 156Dy. Indeed, these prove to be critical points for the mentioned phase transition
when the entire isotopic chains are considered.

The question to be answered is whether the compact energy formulas obtained in this
paper are able to describe the ground band energies for all nuclei mentioned above. The
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theoretical values for energies labeled by Th(1) are obtained with equation (3.9) if d is large
or with equation (3.12) when d is smaller than 2. The calculated energies labeled by Th(2)
are obtained with equation (2.54). The parameters A1, A2, d were obtained by a least mean
square fitting procedure while a, b, c by fixing the energies of three particular levels. The
fitted energies were chosen such that an overall good agreement with experimental data is
obtained. The best set of a, b, c would be obtained by minimizing the rms (root mean square)
value of deviations which, for this case, is a more tedious procedure.

The agreement of calculated and experimental excitation energies is judged by the rms
values of the deviation, denoted by

χ =
√√√√ N∑

i

(ETh
i − E

Exp
i )2

N
. (4.1)

The fitting procedure yields for the coefficients b and c double precision numbers, which are
presented, in tables, in a truncated form. Since the square root formula provides energies
which are quite sensitive to small variations for the parameters b and c, we give their values
with a suitable large number of digits. Indeed, with the listed parameters we get the energies
corresponding to the exact parameters yielded by the fitting procedure. Comparing the values
of c for different nuclei, one remarks that the parameter acquires larger values for a smaller
deformation parameter. For the two nuclei, 248Cm and 180Os, the parameter c gets negative
values which annihilates a part of the contribution coming from the J (J + 1) term.

In tables 2 and 3 the results are given for some isotopes of Th, U, Pu and Cm. Except for
228Th, these isotopes are characterized by large values for the deformation parameter d. As
we already mentioned, 228Th has features which are specific to the triaxial nuclei. We note the
small rms values obtained in these cases.

In tables 4–6 the deformed nuclei belonging to the isotopic chains of Nd, Sm, Gd, Dy, Er,
Yb, Hf, W, Os are studied. The first six situations can be viewed as deformed branches of the
nuclear phase transition SU(5) → SU(3) while the last three as the deformed branches of the
nuclear phase transition O(6) → SU(3). The nuclei presented in table 7–9 are characterized
by small d and moreover they satisfy the O(6) (table 7), SU(5) (table 8) and X(5) (table 9)
symmetries, respectively. For all these nuclei, the defining equation (3.12) has been used.
One notes that this formula for the near-vibrational picture describes the excitation energies
better than the generalized HL formula. This is reflected by the relative rms values.

In table 10 we present the results for 150Nd, 152Sm and 154Gd. These nuclei play the role
of critical points for the phase transitions SU(5) → SU(3) in the respective isotopic chain
[14–17]. The first two are also presented in table 9, where they have been described by a
formula obtained for a near-vibrational regime. However, one expects that for nuclei close
to the critical point the other formula using an asymptotic expansion in terms of 1/x works
as well. This is actually confirmed by the data presented in table 10 for the first two nuclei.
The isotope 154Gd is supposed to satisfy the so-called X(5) symmetry [14]. Our results show
that the ground band energies of this critical nucleus is described quite well by the compact
formulas (3.9), (3.12).

In the last table (table 11) we present two nuclei which satisfy the symmetry E(5). These
are described with the closed formulas (3.12) and (2.54). We also remark that in this case the
rms values are small. For these nuclei, only energies smaller than the value where the first
backbending shows up were considered.

Before closing this section we summarize our results presented in tables 2–11. For nuclei
characterized by the ratios E4†

g

/
E2†

g larger than 2.93 we have used the asymptotic expansion
for energies (equation (3.9)) while for values of this ratio smaller than 3.02 the expansion for
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Table 2. Experimental (Exp.) and theoretical (Th(1) and Th(2)) excitation energies for several nuclei, 228Th [18], 232Th [19], 232U [19], 234U [20], 236U [21], 238U [22], are given in
units of keV. The predictions labeled by Th(1) are obtained by the square root formula given by the asymptotic expansion of the CSM-ground band energies (equation (3.9)), while Th(2)
are obtained by the generalized HL expression (equation (2.54)). The parameters for Th(1) calculations, i.e. A1, A2, d, were obtained by a least mean square procedure while those of
set Th(2), a, b, c, by fixing three particular energy levels, which are underlined. The obtained parameters are also listed. To have a hint about the agreement between the theoretical and
experimental excitation energies, for each case the rms value of discrepancies, denoted by χ , is also given. The values of A1, A2, a, χ are given in keV while d, b, c are dimensionless.
Having in view a possible classification of the considered nuclei, the ratio E4

g

+
/E2

g

+
is also given.

228Th 232Th 232U 234U 236U 238U
Jπ Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 57.76 57.61 57.485 49.37 49.66 49.31 47.57 47.46 47.54 43.50 43.72 43.49 45.24 45.516 45.22 44.92 44.73 44.88

4+ 186.82 186.90 186.82 162.12 162.966 162.12 156.57 156.34 156.57 143.35 143.93 143.35 149.48 150.33 149.48 148.38 147.93 148.38

6+ 378.18 378.51 378.78 333.2 334.64 333.63 322.60 322.59 322.96 296.07 296.84 296.07 309.78 311.34 309.97 307.18 306.90 307.71

8+ 622.50 622.73 623.29 556.90 558.25 557.65 541.00 540.94 541.33 497.04 497.63 497.02 522.24 524.29 522.724 518.10 517.8 518.96

10+ 911.80 911.49 911.80 827.0 827.44 827.69 805.80 805.75 805.97 741.2 741.3 741.15 782.3 784.32 783.07 775.9 776.26 777.492

12+ 1239.4 1238.58 1237.99 1137.1 1136.62 1137.77 1111.5 1111.64 1111.5 1023.8 1023.38 1023.69 1085.3 1086.49 1086.07 1076.7 1077.35 1078.41

14+ 1599.5 1599.27 1597.63 1482.8 1481.12 1482.77 1453.7 1453.81 1453.3 1340.8 1339.79 1340.41 1426.3 1426.07 1426.86 1415.5 1416.33 1416.88

16+ 1988.1 1989.81 1988.1 1858.6 1857.14 1858.6 1828.1 1828.13 1827.61 1687.8 1687.24 1687.8 1800.9 1798.79 1800.9 1788.4 1788.68 1788.4

18+ 2407.9 2407.05 2407.9 2262.9 2261.56 2262.1 (2231.5) 2231.13 2231.5 2063.0 2062.99 2063.08 2203.9 2200.85 2204.11 2191.1 2190.24 2188.89

20+ 2848.18 2856.32 2691.5 2691.82 2690.9 (2659.7) 2659.9 2662.76 2464.2 2464.74 2464.12 2631.7 2628.97 2632.91 2619.1 2617.29 2614.76

22+ 3310.53 3333.13 3144.2 3145.71 3143.29 3111.96 3119.8 2889.7 2890.57 2889.32 3081.2 3080.31 3084.22 3068.1 3066.53 3062.93

24+ 3791.4 3838.43 3619.6 3621.32 3618.06 3585.21 3601.5 3339 3338.8 3337.54 (3550) 3552.43 3555.4 3535.3 3535.05 3530.78

26+ 4287.89 4372.51 4116.2 4116.88 4114.4 4077.8 4107.12 3808 3807.96 3808.0 (4039) 4043.2 4044.28 4018.1 4020.31 4016.08

28+ 4796.81 4935.76 (4631.8) 4630.77 4631.8 4588.11 4636.2 (4297) 4296.74 4300.17 (4549) 4550.77 4549.0 4517 4520.08 4517.0

30+ 5314.41 5528.64 (5162) 5161.41 5169.96 5114.65 5188.48 4803.88 4813.74 (5077) 5073.52 5068.04 5035 5032.4 5031.98

E4+
g

E2+
g

3.23 3.28 3.29 3.30 3.30 3.30

χ 0.56 0.66 1.13 2.2 0.17 1.00 0.53 0.95 2.21 3.16 1.40 2.48

A1 a 182.8720 1909.4426 233.4401 3339.3037 298.6610 3472.2796 221.7839 3443.7877 386.4548 5932.3853 502.4456 5945.5847

A2 b 4.0861 0.010 1534 3.2430 0.004 952 22 2.6094 0.004 588 75 2.9879 0.004 230 38 1.9129 0.002 549 85 1.0667 0.002 525 36

d c 2.7062 5.470 7523 × 10−6 3.0822 1.026 518 × 10−6 3.3385 1.102 772 × 10−6 3.2192 9.425 528 × 10−7 3.6189 7.754 542 ×10−8 3.8524 6.979 548 × 10−8
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Table 3. The same as table 2 but for a different set of nuclei: 236Pu [21], 238Pu [22], 240Pu [23], 242Pu [24], 248Cm [25].

236Pu 238Pu 240Pu 242Pu 248Cm

Jπ Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 44.63 44.514 44.602 44.076 43.818 44.06 42.824 42.88 42.82 44.54 44.14 44.49 43.40 43.41 43.33

4+ 147.45 147.23 147.45 145.95 145.25 145.95 141.69 141.84 141.69 147.3 146.29 147.3 143.6 143.80 145.6

6+ 305.80 305.55 305.82 303.38 302.44 303.61 294.32 294.52 249.34 306.4 304.52 306.20 298.1 299.18 298.88

8+ 515.7 515.80 515.939 513.58 512.76 514.16 497.52 497.73 497.61 518.1 516.00 517.98 505.0 506.59 506.30

10+ 773.5 773.6 773.5 773.48 773.027 774.231 (747.8) 747.93 747.93 778.6 777.19 778.86 760.7 762.36 762.29

12+ 1074.3 1074.31 1074.1 1080.1 1079.84 1080.33 (1041.8) 1041.61 1041.71 1084.4 1084.14 1084.78 1061.3 1062.39 1062.77

14+ 1413.6 1413.31 1413.6 1429.1 1429.73 1429.1 (1375.6) 1375.54 1375.6 1431.7 1432.67 1431.7 1402.5 1402.35 1403.35

16+ 1786.0 1786.21 1788.29 1818.5 1819.41 1817.49 (1746.9) 1746.84 1746.67 1816.7 1818.59 1815.83 1779.6 1777.89 1779.6

18+ 2188.99 2195.01 2244.9 2245.79 2242.86 (2153.1) 2153.04 2152.48 2236.0 2237.82 2233.73 2187.7 2184.82 2187.09

20+ 2618.05 2631.13 2705.7 2706.08 2703.0 (2591.9) 2592.01 2591.07 2686 2686.51 2682.38 2621.5 2619.16 2621.59

22+ 3070.18 3094.55 3198.8 3197.78 3196.12 (3062.2) 3061.95 3060.93 3163 3161.07 3159.2 3077.2 3077.22 3079.06

24+ 3552.59 3583.61 3720.8 3718.68 3720.8 (3560.9) 3561.32 3560.9 3662 3658.24 3662.0 3552.4 3555.65 3555.75

26+ 4032.81 4097.01 4265.2 4266.82 4275.97 (4089) 4088.78 4090.18 4172 4175.02 4188.99 4048.2 4051.4 4048.2

28+ 4538.68 4633.81 4840.48 4860.82 4643.16 4648.2 4708.76 4738.69 4564.5 4561.71 4553.19

30+ 5058.3 5193.28 5438.15 5474.79 5223.42 5234.61 5257.04 5309.9 5084.14 5067.79

E4+
g

E2+
g

3.30 3.31 3.31 3.31 3.31

χ 0.18 1.72 0.99 3.24 0.19 0.57 1.89 4.98 1.95 3.28

A1 a 486.0023 4857.3300 397.4155 5443.1075 232.3635 4487.9012 692.5499 6375.5552 705.2236 10 281.7179

A2 b 1.2356 0.003 071 87 2.4878 0.002 705 63 3.425 35 0.003 1902 0.3216 0.002 332 68 0.0133 0.001 408 28

d c 3.8514 4.909 159 × 10−7 3.9353 5.862 828 × 10−7 3.4867 8.397 898 × 10−7 4.2578 2.196 286 × 10−7 4.2426 −9.361 609×10−8
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Table 4. The same as table 2 but for a different set of nuclei: 154Nd [26], 156Nd [27], 156Sm [27], 158Sm [28], 160Gd [29], 162Gd [30]. The last energy level of 154Nd is uncertain and
thereby it was not involved in the fitting procedure.

154Nd 156Nd 156Sm 158Sm 160Gd 162Gd
J π Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 70.8 70.55 70.70 66.9 67.13 67.06 75.89 75.60 75.633 (72.8) 72.75 72.581 75.26 75.153 75.22 72.1 71.73 71.89

4+ 233.2 233.80 233.2 221.8 221.93 221.8 249.71 249.64 249.71 (240.3) 240.538 240.3 248.52 248.34 248.52 237.3 236.94 237.3

6+ 481.9 481.65 282.13 460.4 460.48 460.42 517.07 517.13 517.21 (498.4) 499.16 499.41 514.75 514.77 514.02 490.8 490.93 491.25

8+ 810.1 810.26 810.48 777.9 777.76 777.9 871.9 871.90 871.9 (844.5) 843.26 844.5 867.9 868.0 868.15 827.3 827.32 827.3

10+ 1210.8 1211.23 1210.8 1168.9 1168.57 1168.87 1307.4 1307.72 1307.67 (1266.7) 1267.24 1269.02 1300.7 1300.84 1300.7 1238.9 1239.09 1238.75

12+ 1677.3 1677.3 1676.12 1628.4 1628.05 1628.23 1819.3 1818.97 1819.3 (1765.8) 1765.92 1765.8 1806.3 1806.12 1805.6 1719.5 1719.26 1719.5

14+ 2202.4 2201.89 2200.46 2151.6 2151.99 2151.6 2400.8 2400.87 2402.81 (2334.9) 2334.77 2327.52 2377.3 2377.21 2376.51 2261.3 2261.39 2264.46

16+ 2779.0 2779.24 2779.0 2737.0 2736.83 2735.47 3049.5 3055.43 2969.98 2947.08 3008.1 3008.19 3008.1 2859.77 2869.72

18+ (3399.3)? 3404.46 3408.08 3379.62 3377.18 3761.62 3775.4 3668.38 3617.8 3693.96 3696.07 3509.48 3532.43

20+ 4073.36 4085.0 4077.89 4074.82 4534.54 4561.74 4427.32 4333.63 4430.11 4437.09 4206.31 4250.64

E4+
g

E2+
g

3.29 3.32 3.29 3.30 3.30 3.29

χ 0.32 0.82 0.23 0.57 0.21 0.78 0.60 2.95 0.12 0.40 0.23 1.21

A1 a 441.8371 5240.0423 241.6860 5338.3543 251.2029 4267.15 259.4635 12 111.9787 485.7106 6680.1981 460.9196 4947.3299

A2 b 4.3446 0.004 518 88 6.5982 0.004 202 09 7.4572 0.005 933 71 7.2031 0.002 003 42 4.8487 0.003 768 25 4.5633 0.004 864 69

d c 3.4184 1.524 693 × 10−6 3.245 87 1.952 257 × 10−6 3.1471 4.471 374 × 10−6 3.2474 1.233 053 × 10−8 3.5061 1.059 795 × 10−6 3.4845 2.343 414 × 10−6
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Table 5. The same as table 2 but for a different set of nuclei: 162Dy [30], 164Dy [31], 166Er [32], 172Yb [33], 174Yb [34], 176Hf [35].

162Dy 164Dy 166Er 172Yb 174Yb 176Hf
J π Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 80.66 80.43 80.59 73.39 73.36 73.37 80.58 81.00 80.54 78.74 78.68 78.71 76.47 76.48 76.48 88.35 88.08 88.23

4+ 265.66 265.25 265.66 242.23 242.21 242.23 264.99 266.16 264.99 260.27 260.18 260.27 253.12 253.13 253.12 290.18 289.78 290.18

6+ 548.52 548.23 548.79 501.32 501.34 501.41 545.45 547.04 545.56 539.98 540.01 540.14 526.03 525.93 525.83 596.82 596.78 597.32

8+ 920.50 921.14 921.53 843.68 843.68 843.79 911.21 912.25 911.35 912.12 912.15 912.27 889.93 889.26 888.97 997.74 997.97 998.37

10+ 1374.80 1374.98 1374.8 1261.3 1261.19 1261.3 1349.64 1349.13 1349.64 1370.07 1370.11 1370.07 1336.00 1336.63 1336.0 (1481.07) 1481.13 1481.07

12+ 1901.3 1901.0 1900.04 1745.9 1745.74 1745.76 1846.6 1845.07 1847.06 (1907.48) 1907.52 1907.22 (1861) 1861.27 1860.23 (2034.67) 2034.29 2033.65

14+ 2492 2491.26 2489.81 2289.6 2289.65 2289.52 2389.4 2388.37 2390.46 (2518.7) 2518.62 2518.17 (2457) 2456.66 2455.3 (2646.6) 2646.49 2645.6

16+ 3138 3138.83 3138.0 (2886.0) 2885.99 2885.77 (2967.4) 2968.66 2967.4 (3198.4) 3198.41 3198.4 (3117) 3116.76 3115.52 (3308.0) 3308.11 3308.0

18+ 3838 3837.79 3839.85 (3528.7) 3528.66 3528.7 3576.94 3566.42 3942.58 3944.38 (3836) 3836.14 3836.0 (4010.8) 4010.9 4013.56

20+ 4583.15 4591.79 (4212.3) 4212.4 4213.49 4205.52 4177.02 4747.52 4753.51 (4610) 4610.05 4612.7 4747.85 4756.41

22+ 5370.65 5391.23 4932.68 4936.22 4847.84 4789.64 5610.15 5623.98 5434.34 5442.38 5513.01 5531.95

24+ 6196.67 6236.35 5685.62 5693.78 5498.26 5355.47 6527.85 6554.61 6305.41 6322.51 6301.26 6336.55

E4+
g

E2+
g

3.29 3.30 3.29 3.31 3.31 3.28

χ 0.48 1.10 0.07 0.39 1.14 0.41 0.05 0.22 0.33 1.18 0.23 1.07

A1 a 530.0578 6153.5266 607.1406 7551.6774 850.8099 9490.2037 383.6380 6605.210 25 587.6927 8756.3360 753.6198 6943.5586

A2 b 4.4759 0.004 3870 3.1089 0.003 252 137 0.0142 0.002 844 946 6.6422 0.003 985 87 4.5844 0.002 920 61 2.2576 0.004 260 81

d c 3.4126 1.171 720 × 10−6 3.5835 3.476 3788 × 10−7 3.501 835 −6.852 260 × 10−7 3.4108 1.605 260 × 10−6 3.7067 5.919 085 × 10−7 3.4441 2.818 646 × 10−7
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Table 6. The same as table 2 but for a different set of nuclei: 182W [36], 186W [37], 178Os [38], 180Os [39], 186Os [37]. The last energy level of 182W is uncertain and therefore it was
not considered in the fitting procedure.

182W 186W 178Os 180Os 186Os

Jπ Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 100.11 99.55 99.82 122.63 119.61 121.30 131.6 125.48 129.07 132.11 130.643 129.82 137.16 133.67 134.65

4+ 329.43 328.81 329.43 396.55 393.36 396.55 397.7 388.23 397.7 408.62 409.45 408.62 434.09 432.25 434.09

6+ 680.50 680.92 681.50 809.25 809.50 811.02 761.00 751.75 762.39 795.08 795.92 796.33 868.94 870.76 871.64

8+ 1144.4 1146.29 1146.07 1349.20 1352.17 1349.20 1193.80 1188.34 1194.95 1257.44 1256.25 1257.44 1420.94 1422.74 1420.94

10+ 1711.90 1713.7 1711.9 2002.4 2003.71 1998.63 1681.6 1685.41 1681.6 1767.57 1766.71 1766.95 2067.95 2065.64 2061.88

12+ 2372.3 2371.37 2367.76 (2750.9) 2746.52 2750.9 2219.4 2230.28 2216.81 2308.71 2310.46 2308.71 2781.26 2781.84 2781.26

14+ (3112.3) 3107.73 3103.24 (3562.4) 3564.28 3601.12 2804.3 2812.15 2799.12 2875.0 2874.35 2872.48 3557.7 3557.76 3571.28

16+ (3909.2) 3912.02 3909.2 4442.48 4546.91 (3429) 3419.0 3429.0 3446.79 3451.67 4382.72 4427.8

18+ (4747.1)? 4774.46 4777.95 5368.52 5587.55 4035.32 4107.78 4016.34 4041.91 5247.84 5349.05

20+ 5686.41 5703.17 6331.66 6723.24 4637.75 4837.1 4570.48 4640.25 6145.34 6334.65

22+ 6640.27 6679.82 7322.68 7954.72 5183.34 5618.61 5094.27 5244.62 7067.97 7385.08

24+ 7629.42 7703.93 8333.72 9282.96 5554.72 6453.89 5568.28 5853.54 8008.58 8501.28

E4+
g

E2+
g

3.29 3.23 3.02 3.09 3.16

χ 2.16 10.84 2.74 14.73 8.34 2.33 1.15 1.39 1.99 5.79

A1 a 1106.3961 9719.4346 1193.1479 3759.9451 217.4255 1297.2467 398.5784 2299.2478 539.1025 3350.11

A2 b 1.7794 0.003 438 44 1.0740 0.010 8515 8.5931 0.034 5814 5.1661 0.019 353 26 6.7316 0.013 6108

d c 3.7663 4.179 487 × 10−7 3.5059 1.256 224 × 10−5 2.1840 3.875 729 × 10−5 2.4119 −1.080 998 × 10−7 2.7518 9.3005 × 10−6
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Table 7. The same as table 2 but for a different set of nuclei: 170W [40], 174Os [34], 178Os [38], 176Pt [35], 178Pt [38], 180Pt [39]. Also the predictions Th(1) are obtained with expression
(3.12) corresponding to the expansion characterized by small d.

170W 174Os 178Os 176Pt 178Pt 180Pt
J π Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 156.72 147.91 151.42 158.60 152.02 149.25 131.6 119.27 129.07 264.0 233.81 220.91 (170.1) 149.29 149.75 153.21 143.63 138.40

4+ 462.33 472.55 462.33 435.00 432.32 435.0 397.7 404.65 397.7 564.1 549.32 564.1 (427.1) 426.55 427.1 410.74 414.33 410.74

6+ 875.53 881.93 877.80 777.63 778.99 796.32 761.00 769.78 762.39 905.6 918.39 952.62 (764.6) 779.04 778.67 757.07 765.22 768.11

8+ 1363.40 1356.16 1363.4 1171.93 1177.95 1206.54 1193.8 1196.31 1194.95 1305.7 1332.77 1372.98 (1177.6) 1194.67 1189.99 1181.50 1185.52 1190.82

10+ 1901.5 1888.66 1902.46 1617.5 1624.47 1656.71 1681.6 1678.19 1681.6 1764.8 1789.52 1824.74 (1660.4) 1669.39 1660.4 1674.28 1671.64 1674.28

12+ 2464.3 2476.63 2488.05 2113.8 2116.53 2144.95 2219.4 2212.86 2216.81 2277.0 2287.36 2310.5 (2207.6) 2201.46 2192.86 2229.2 2222.0 2219.37

14+ (3118.0) 3118.64 3118.0 2656.3 2653.1 2672.04 2804.3 2799.02 2799.12 2833.5 2825.61 2833.5 (2811.9) 2789.99 2790.85 2841.5 2835.83 2828.63

16+ (3815.9) 3813.9 3792.44 3239.8 3233.59 3239.8 (3429) 3435.95 3429.0 3423.8 3403.88 3396.93 (3457.5) 3434.47 3457.5 3504.8 3512.67 3504.8

18+ 4561.93 4512.55 3861.8 3857.66 3850.29 4123.2 4107.78 4041.80 4021.95 4003.64 (4107.9) 4134.61 4195.33 4252.8 4252.27 4250.34

20+ 5362.43 5279.94 4524.9 4525.07 4505.56 4860.49 4837.1 4690.40 4679.66 4656.13 4890.21 5006.32 5054.43 5067.32

22+ 6215.19 6096.38 5233.0 5235.69 5207.47 5647.65 5618.61 5377.0 5376.91 5356.52 5701.14 5892.01 5919.06 5957.41

24+ 7120.05 6963.58 5987.10 5989.4 5957.69 6484.53 6453.89 6106.60 6113.64 6106.6 6567.32 6853.56 6846.07 6921.93

26+ 8076.93 7883.16 6786.1 6786.12 6757.65 7371.04 7344.39 6878.6 6889.78 6907.87 7488.66 7891.85 7835.39 7961.93

28+ 7628.4 7625.81 7608.61

30+ 8511.6 8508.41 8511.60

32+ 9429.7 9433.9 9467.53

E4+
g

E2+
g

2.95 2.74 3.02 2.14 2.51 2.68

χ 8.64 11.98 4.01 23.78 7.20 2.33 17.29 37.15 17.56 31.75 6.15 8.80

A1 a 301.1197 1404.2605 253.6741 801.1928 260.4042 1297.25 277.2380 407.296 222.5347 551.9787 198.9086 761.038

A2 b 6.4525 0.037 682 05 5.3413 0.067 3811 6.1596 0.0346 4.9031 0.227 8488 6.8660 0.100 724 68 7.7625 0.065 0988

d c 1.6390 3.305 334 × 10−5 1.5935 8.260 490 × 10−5 1.6566 3.88 × 10−5 1.4494 3.279 647 × 10−4 1.5878 3.293 427 × 10−4 1.5869 1.718 25 × 10−4
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Table 8. The same as table 7 but for a different set of nuclei: 108Te [41], 150Sm [42], 152Gd [43], 154Dy [26].

108Te 150Sm 152Gd 154Dy

J π Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 625.20 605.01 559.90 333.86 305.14 300.10 344.28 336.40 312.00 334.58 337.10 299.71
4+ 1289.00 1296.67 1289.0 773.24 774.07 773.238 755.40 759.65 755.40 747.04 756.47 747.04
6+ 2047.9 2075.43 2083.78 1278.75 1300.12 1301.78 1227.38 1233.74 1239.98 1224.08 1227.93 1241.06
8+ 2945.0 2936.12 2945.0 1836.87 1857.81 1857.43 1746.78 1747.55 1754.67 1747.82 1741.62 1764.45
10+ 3886.2 3876.53 3883.14 2433.00 2438.50 2433.0 2300.4 2297.09 2300.4 2304.3 2293.98 2315.38
12+ 4909.10 4895.60 4909.10 3048.20 3038.44 3027.07 2883.80 2880.59 2880.62 2892.60 2883.42 2895.80
14+ 5980.3 5992.78 6032.53 (3675.70) 3655.73 3640.20 3499.20 3497.12 3499.20 3508.60 3509.09 3508.60
16+ 7167.72 7261.50 4305.90 4289.29 4273.71 4142.70 4146.16 4159.89 4172.70 4170.53 4156.89
18+ 8420.22 8602.58 4929.20 4938.46 4929.20 4827.39 4866.08 4868.60 4867.44 4843.65
20+ 9750.14 10 061.10 (5592.8) 5602.83 5608.38 5540.59 5620.76 5589.90 5599.64 5571.61
22+ 11 157.40 11 641.10 6282.11 6312.92 6285.64 6426.51 6349.9 6367.01 6343.24
24+ 12 641.90 13 346.10 6976.11 7044.47 7062.43 7285.57 7160.70 7169.45 7160.70
26+ 14 203.70 15 178.60 7684.69 7804.56 7870.89 8199.80 8027.50 8006.90 8025.91

E4+
g

E2+
g

2.06 2.32 2.19 2.23

χ 15.74 34.41 16.45 22.54 4.45 14.00 9.74 15.61

A1 a 580.6812 460.8427 532.8764 635.7440 409.7560 398.91 395.7184 481.5077
A2 b 9.6296 0.642 4835 1.7549 0.194 008 3.9253 0.360 103 4.3456 0.270 578
d c 1.2510 1.419 787 × 10−3 1.5563 7.927 202 × 10−5 1.4306 4.278 524 × 10−4 1.4135 2.459 865 × 10−4
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Table 9. The same as table 7 but for a different set of nuclei: 150Nd [42], 152Sm [43], 156Dy [27].

150Nd 152Sm 156Dy

Jπ Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 130.21 122.59 126.16 121.78 107.02 118.00 137.77 83.82 128.88

4+ 381.45 386.14 381.45 366.48 372.03 366.48 404.19 398.35 404.19

6+ 720.4 726.86 722.89 706.88 719.04 709.74 770.44 797.667 786.22

8+ 1129.7 1130.85 1129.70 1125.35 1131.97 1125.35 1215.61 1252.12 1242.82

10+ 1599.00 1593.52 1595.26 1609.23 1605.59 1603.21 1725.02 1752.12 1753.75

12+ (2119.00) 2112.90 2119.0 2148.51 2137.63 2140.1 2285.88 2293.59 2307.61

14+ (2682.50) 2687.99 2702.57 (2736.01) 2726.97 2736.01 2887.82 2874.50 2898.42

16+ 3318.23 3348.22 (3362.0) 3372.98 3392.27 3523.3 3493.72 3523.30

18+ 4003.30 4058.16 4075.29 4110.63 4178.10 4150.56 4181.18

20+ 4742.97 4834.33 4833.64 4892.87 4859.00 4844.58 4871.98

22+ 5537.10 5678.39 5647.87 5740.62 5573.00 5575.48 5596.23

24+ 6385.58 6591.67 6517.87 6655.29 6328.70 6343.07 6354.73

26+ 7288.35 7575.26 7443.56 7638.09 7130.30 7147.20 7148.47

28+ 8245.35 8630.02 8424.87 8690.01 7978.50 7987.76 7978.50

30+ 9256.53 9756.66 9461.76 9811.89 8875.90 8864.66 8845.86

E4+
g

E2+
g

2.93 3.01 2.93

χ 5.61 7.92 9.84 11.43 23.86 18.45

A1 a 215.8125 2867.41 221.5088 1187.15 348.6711 1913.4867

A2 b 6.7513 0.0513 6.9223 0.0344 4.4983 0.023 1439

d c 1.6321 1.17 × 10−4 1.6640 6.11 × 10−5 1.7089 1.051 357 × 10−5

Table 10. The same as table 2 but for a different set of nuclei: 150Nd [42], 152Sm [43], 154Gd [26].

150Nd 152Sm 154Gd

Jπ Exp. Th(1) Th(2) Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 130.21 123.45 126.16 121.78 119.14 118.00 123.07 108.23 117.32

4+ 381.45 374.67 381.45 366.48 364.57 366.48 370.99 346.04 370.99

6+ 720.40 717.10 722.89 706.88 704.82 709.74 717.65 689.42 728.47

8+ 1129.70 1130.89 1129.70 1125.35 1123.09 1125.35 1144.43 1117.23 1162.21

10+ 1599.00 1603.40 1595.26 1609.23 1608.64 1603.21 1637.04 1614.03 1654.28

12+ (2119.00) 2123.44 2119.00 2148.51 2151.71 2140.10 2184.67 2168.74 2194.41

14+ (2682.5) 2677.98 2702.57 (2736.01) 2740.64 2736.01 2777.30 2772.90 2777.30

16+ 3248.12 3348.22 (3362.0) 3357.92 3392.27 3404.44 3419.34 3400.53

18+ 3798.63 4058.16 3968.95 4110.63 4087.10 4101.33 4063.38

20+ 4221.54 4834.33 4444.16 4892.87 4782.30 4811.93 4766.07

22+ 5678.39 5740.62 5519.50 5543.34 5509.31

24+ 6591.67 6655.29 6294.10 6286.21 6294.10

26+ 7575.26 7638.09 7055.50 7028.36 7121.53

E4+
g

E2+
g

2.93 3.01 3.01

χ 4.83 7.92 2.93 11.43 21.22 21.77

A1 a 151.3419 867.4073 126.4776 1187.1506 274.9237 1950.92

A2 b 9.5423 0.051 3027 10.3917 0.034 413 709 7.4351 0.020 573 56

d c 2.0284 1.171 278 × 10−4 2.0136 6.109 010 × 10−5 2.4767 1.254 659 × 10−5

small d, i.e. given by equation (3.12), was used. Within the overlapping interval of d, both
formulas are valid.
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Table 11. The same as in table 7 but for a different set of nuclei:104Ru [44], 102Pd [45]. These
nuclei obey the E(5) symmetry.

104Ru 102Pd

J π Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 358.03 348.13 358.03 556.43 563.02 520.03
4+ 888.49 901.59 910.87 1275.87 1280.12 1275.87
6+ 1556.30 1561.29 1556.30 2111.35 2100.12 2114.71
8+ 2320.30 2303.22 2287.30 3013.06 3006.50 3019.06
10+ 3111.80 3119.23 3111.80 3992.71 3993.31 3992.71
12+ 4005.75 4039.35 5055.10 5057.87 5043.55
14+ 4960.97 5078.09 6179.80 6198.80 6179.80
16+ 5983.88 6234.53 7428.80 7415.32 7408.97
18+ 7073.86 7513.64 8706.93 8737.58
20+ 8230.5 8919.18 10073.30 10171.10

E4+
g

E2+
g

2.48 2.29

χ 11.33 17.84 9.88 15.41

A1 a 522.4864 562.6938 649.8648 710.6779
A2 b 8.1960 0.273 8559 9.2391 0.329 923
d c 1.5466 9.519 95 × 10−4 1.4174 5.317 905 × 10−4

5. Conclusions

In this section we summarize the main results obtained in this paper. By a dequantization
procedure we associated with a quantum mechanical Hamiltonian that is quadratic in the
quadrupole bosons, a time-dependent classical equation. The classical Hamiltonian has a
separated form, i.e. a sum of a kinetic and a potential energy term. The latter is not dependent
on momenta and is of Davidson type. We may say that our procedure proves the classical
origin of the Davidson potential. The centrifugal term is determined by a pseudo-angular
momentum associated with the intrinsic coordinates. It is worth mentioning that the constraint
for the angular momentum in the laboratory frame yields a differential equation which is
connected to that one corresponding to the energy conservation which results in obtaining
a specific angular momentum dependence for the quantal energy. Actually the expression
obtained generalizes the Holmberg–Lipas formula, involving a J 2(J + 1)2 term within the
square root.

A similar expression was obtained by one author (AAR) within the CSM for a large
deformation regime. Another compact expression was proposed by the CSM for the near-
vibrational regime, i.e. small nuclear deformation. One of the targets of this paper was to
prove that the two compact expressions provided by the CSM are able to describe the ground-
state energies for deformed, near-vibrational and transitional nuclei. By matching the two
expressions one obtains a unitary description for nuclei satisfying different symmetries or,
in other words, belonging to various nuclear phases. A similar goal is achieved by using a
square root formula, a generalization of the Holmberg–Lipas formula, obtained on the base of
a semiclassical description.

These descriptions are used for a large number of nuclei (44). The agreement between
results and experimental excitation energies is very impressive. The agreement quality is
judged by the small rms values of discrepancies.
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The nuclei chosen in our analysis cover nuclei ranging from near-vibrational to well-
deformed nuclei and belonging to various symmetries. Thus, the nuclei in tables 2 and 3 are
axially symmetric deformed nuclei except for 228Th, which exhibits the features of a triaxial
nucleus. The nuclei considered in tables 4 and 5 and the first two in table 6 represent the
deformed branches of the nuclear phase transition SU(5) → SU(3), while the last three nuclei
in table 6 belong to the side of the O(6) → SU(3) phase transition. Nuclei characterized by
relatively small values of d are considered in tables 7–9. These satisfy different symmetries
like O(6) (table 7), SU(5) (table 8) and X(5) (table 9). The nuclei in table 10 seem to play
the role of a critical point for the phase transition SU(5) → SU(3) in the respective isotopic
chain. The two nuclei satisfying the symmetry E(5) associated with the critical point of the
phase transition O(6) → SU(5) are presented in table 11.

As a final conclusion we may say that the CSM procedure is able to describe in a realistic
fashion the ground-state energies for nuclei of different nuclear phases. An alternative
description is given by a square root formula derived as an approximate eigenvalue of
a quadratic Hamiltonian in quadrupole bosons subject to a constraint due to the angular
momentum conservation.
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Appendix A

Using the equations of motion for the conjugate variables, one can prove that

L̇3 = 0, Ḣ1 = 0, (A.1)

where L3 is defined by the following expression:

L3 ≡ h̄

2
(q1p2 − q2p1) = h̄2

A′ r
2θ̇ , (A.2)

and has the significance of the third component of the angular momentum defined in the phase
space, spanned by the coordinates (q1, p1, q2, p2). The other two components are

L1 = h̄

4

((
q2

1 + p2
1 − q2

2 − p2
2

)
, L2 = h̄

2
(q1q2 + p1p2). (A.3)

Indeed, one can easily check that

{Li ,Lk} = h̄εikjLl , (A.4)

where {, } denotes the Poisson bracket and εikj the antisymmetric unit tensor. By virtue of
equation (A.4) the set of functions Lk with the Poisson brackets as multiplication operation
forms a classical SUc(2) algebra. Moreover, they could be obtained by averaging with |�〉,
the generators L̂k:

Lk = 〈�|L̂k|�〉; k = 1, 2, 3, (A.5)

of a boson SUb(2) algebra defined with the boson operators b
†
0, b

†
±2, as

L̂1 = h̄

4

[
2b

†
0b0 − (

b
†
2 + b

†
−2

)
(b2 + b−2)

]
,

L̂2 = h̄

2
√

2

[
b
†
0(b2 + b−2) +

(
b
†
2 + b

†
−2

)
b0

]
,

L̂3 = h̄

2
√

2i

[
b
†
0(b2 + b−2) − (

b
†
2 + b

†
−2

)
b0

]
.

(A.6)
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Equation (2.15) and the correspondence between commutators and Poisson brackets, [, ] →
1
i {, }, define a homeomorphism of the boson and classical algebras generated by {L̂k}k=1,2,3 and
{Lk}k=1,2,3, respectively. Note that the boson SUb(2) algebra does not describe the rotations in
the real configuration space but in a fictitious space. The conservation law expressed by (A.1)
is determined by the invariance against rotation around the third axis in the fictitious space
mentioned above: [H, L̂3] = 0 . Since the classical system is characterized by two degrees of
freedom and, on the other hand, there are two constants of motion

H = E, L3 = L, (A.7)

the equations of motion are exactly solvable.

Appendix B

By direct calculations we can check that the overlap integral I
(0)
J and its first and second

derivatives satisfy the following differential equation:

d2I
(0)
J

dx2
− x − 3

2x

dI
(0)
J

dx
− 2x2 + J (J + 1)

4x2
I

(0)
J = 0 (x = d2). (B.1)

By a suitable change of function this equation can be brought to the differential equation
characterizing the hypergeometric function of the first rank. Thus, the final result for I

(0)
J is

I
(0)
J = (J !)2(

J
2

)
!(2J + 1)!

(6d2)
J
2 e− d2

2 1F1

(
1

2
(J + 1), J +

3

2
; 3

2
d2

)
. (B.2)

This expression is further used for describing both the asymptotic and vibrational behavior
for the excitation energies in the ground band. Indeed, in the asymptotic region of d, the
hypergeometric function behaves like

1F1(a, c; z) = (c)

(a)
ezza−c[1 + O(|z|−1)]. (B.3)

Due to this expression the dominant term of I
(0)
J is

I
(0)
J ∼ ex

3x
. (B.4)

This expression suggests, for I
(0)
J , in the asymptotic region, the following form:

I
(0)
J = ex

∑
n=1

Anx
−n. (B.5)

Inserting this expression into the above differential equation one obtains the recursion relation
for the expansion coefficients Ak:

An+1 = An

6n
(2n + J )(2n − J − 1). (B.6)

The leading term (B.4) gives A1 = 1
3 and then (B.6) determines the whole set of expansion

coefficients. In this way we obtain for the ratio d2I
(1)
J

/
I

(0)
J the expression

x
I

(1)
J

I
(0)
J

= x − 1 − 1

3x
− 5

9x2
− 37

27x3
+

(
1

6x
+

5

18x2
+

13

18x3

)
J (J + 1)

− 1

54x3
j 2(J + 1)2 + O(x−4). (B.7)
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The convergence in terms of x for the excitation energy may be improved in two steps. First
we write the differential equation for I

(0)
J in a different form:

x

(
x

I
(1)
J

I
(0)
J

)′
+

(
x

I
(1)
J

I
(0)
J

)2

− x − 1

2

(
x

I
(1)
J

I
(0)
J

)
− 2x2 + J (J + 1)

4
= 0. (B.8)

The derivative
(
x

I
(1)
J

I
(0)
J

)′
is further calculated by using (B.7) and thus the above equation becomes

a second-degree algebraic equation for x
I

(1)
J

I
(0)
J

. Solving this equation one obtains

x
I

(1)
J

I
(0)
J

= 1

2

[
x − 2

2
+

√
GJ

]
, (B.9)

where we used the notation

GJ = 9

4
x(x − 2) +

(
J +

1

2

)2

− 4

9x

(
3 +

10

x
+

37

x2

)

+
2

3x

(
1 +

10

3x
+

13

x2

)
J (J + 1) − 2J 2

9x3
(J + 1)2. (B.10)

Concerning the near-vibrational regime the final expression for energies is obtained in two
steps. First one derives the vibrational limit of the kth derivative:

lim
d→0

(
d2 I

(1)
J

I
(0)
J

)(k)

= 1

(2J + 3)k

[
J

2
(δk,0 + δk,1)

+ 9
(J + 1)(J + 2)

2J + 5

(
(δk,2 + 9

δk,3

2J + 7

)]
, k = 0, 1, 2, 3. (B.11)

Then, truncating the Taylor expansion of x
I

(1)
J

I
(0)
J

, around the point x = 0, at the third order one

obtains

x
I

(1)
J

I
(0)
J

= J

2
+

J

2(2J + 3)
x +

9

2

(J + 1)(J + 2)

2J + 3)2(2J + 5)
x2

+
27

2

(J + 1)(J + 2)

(2J + 3)3(2J + 5)(2J + 7)
x3 + O(x4). (B.12)
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