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A particle-core Hamiltonian is used to describe the lowest parity partner bands, Kπ = 1/2±, in 219Ra, 237U,
and 239Pu and three pairs of parity partner bands, Kπ = 1/2±, 3/2±, and 5/2±, in 227Ra. The core is described
by a quadrupole and octupole boson Hamiltonian. The particle-core Hamiltonian consists of four terms: a
quadrupole-quadrupole, an octupole-octupole, a spin-spin, and a rotational Î 2 interaction, with Î denoting the
total angular momentum. The model Hamiltonian is treated within a projected spherical particle-core basis.
The calculated excitation energies are compared with the corresponding experimental data as well as with those
obtained using other approaches. For 219Ra, we also calculated the E1 and E2 branching ratios. Also, we searched
for some signatures for static octupole deformation in the considered odd isotopes.
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I. INTRODUCTION

Formalisms devoted to the description of the experimental
spectra [1–4] of even-odd nuclei are based on particle-core
interaction [5–13]. Thus, properties of the even-even core and
the odd particle contribute coherently to the energy levels of
the odd system. Depending on the nature of the particle-core
interaction, whether it is a weak or strong coupling regime,
the odd system is treated in either the laboratory or an
intrinsic reference frame. Working in the intrinsic reference
frame is advantageous because the function dependent on the
Euler angles is fully separated, and consequently the angular
momentum projection on the z axis of the intrinsic frame,
K , becomes a good quantum number. Thus in Refs. [10–13],
spectra of some odd isotopes were studied by using a
quadrupole-octupole Hamiltonian in the intrinsic deformation
variables β2 and β3 separated in a kinetic energy term, a
potential energy term, and a Coriolis interaction. Because of
the specific structure of the model Hamiltonian, an analytical
solution for the excitation energies in the two bands of
opposite parities was possible. It was shown that the split
of the parity partner bands was determined by a combined
effect coming from the Coriolis interaction, which affects the
K = 1/2 bands, and a quantum number k associated with the
motion of a phase angle φ, characterizing both the quadrupole
and the octupole deformation variables. Based on analytical
calculations, some conclusions concerning the B(E2) values
associated with the intraband transitions between states of
similar parities were drawn. Thus, if the odd particle state
is of positive parity, the transitions between positive parity
states are enhanced, in contrast to those connecting negative
parity states. If the parity of the odd particle state is negative,
the ordering of those transitions is reversed. In Ref. [9], the
equilibrium deformations were calculated independently for
each quasiparticle, and moreover the states were not of definite
parity. However, they were characterized by the same K if they
belong to the same band.

The core system is usually described by the Bohr-Mottelson
liquid-drop model or by a rotor model. Of course, such models
are unable to account for the complex structure of the core.
However, for the sake of simplicity, the terms associated
with the core are adopted for describing the odd-system
properties. Thus, one implicitly assumes that only part of the
core properties is influencing the odd-particle motion. In this
context, it would be desirable to have a consistent descrip-
tion of the even-even and even-odd nuclei. In the present
article, we attempt to present a possible approach with this
feature.

The coherent state model (CSM) [14] describes in a realistic
fashion three interacting bands (ground, β, and γ ) in terms
of quadrupole bosons. The formalism was later extended
[15–20] by considering the octupole degrees of freedom. The
most recent extension described eight rotational bands, four
of positive parity and four of negative parity. Observables
such as excitation energies, intraband E2 reduced transition
probabilities, and interband E1, E2, and E3 reduced transition
probabilities were calculated, and the results were compared
with the corresponding experimental data. The formalism
works well for both near-spherical and deformed nuclei
excited in low and high angular momentum states. Indeed,
we considered all states with J � 30 in both the positive
and the negative parity bands. Signatures for a static octupole
deformation in ground as well as in excited bands have been
pointed out in several even-even nuclei.

The aim of this article is to extend the CSM for the
even-odd nuclei that exhibit both quadrupole and octupole
deformation.

The formalism concerning the excitation energies in the
positive and negative parity bands is presented in Secs. II
and III. The E1 and E2 transitions are considered in
Sec. IV, and the numerical application to four even-odd
nuclei is described in Sec. V. Final conclusions are drawn in
Sec. VI.
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II. THE MODEL HAMILTONIAN

We suppose that the rotational bands in even-odd nuclei
may be described by a particle-core Hamiltonian,

H = Hsp + Hcore + Hpc, (2.1)

where Hsp is a spherical shell model Hamiltonian associated
with the odd nucleon and Hcore is a phenomenological
Hamiltonian that describes the collective motion of the core in
terms of quadrupole and octupole bosons. This term is identical
to that used in Ref. [20] to describe eight rotational bands in
even-even nuclei. The two subsystems interact with each other
by Hpc, which has the following expression:

Hpc = −X2

∑
µ

r2Y2,−µ(−)µ(b†2µ + (−)µb2,−µ)

−X3

∑
µ

r3Y3,−µ(−)µ(b†3µ + (−)µb3,−µ)

+XjJ
�j · �J + XI 2 �I 2. (2.2)

The term b
†
λµ denotes the components of the λ-pole (with λ =

2, 3) boson operator. The term �j · �J is similar to the spin-orbit
interaction from the shell model and expresses the interaction
between the angular momenta of the odd particle and the core.
Treated in the intrinsic reference frame, this term expresses
the Coriolis interaction up to a particle-particle recoil energy
term j · j . The last term is due to the rotational motion of the
whole system, and �I denotes the total angular momentum of
the particle-core system.

The core states are described by eight sets of mutually
orthogonal functions obtained by projecting the angular
momentum and the parity from four quadrupole and octupole
deformed functions. One is a product of two coherent states,

�g = ef (b+
30−b30)ed(b+

20−b20)|0〉2|0〉3 ≡ �o�q |0〉2|0〉3, (2.3)

and the remaining three are polynomial boson excitations of
�g . The parameters d and f are real numbers and simulate
the quadrupole and octupole deformations, respectively. The
vacuum state for the λ-pole boson, λ = 2, 3, is denoted by
|0〉λ.

The particle-core interaction generates a deformation
for the single-particle trajectories. By averaging the model
Hamiltonian with �g , one obtains a deformed single-particle
Hamiltonian, Hmf, which plays the role of the mean field for
the particle motion:

Hmf = C + Hsp − 2dX2r
2Y20 − 2f X3r

3Y30, (2.4)

where C is a constant determined by the average of Hcore.
The Hamiltonian Hmf represents an extension of the Nilsson
Hamiltonian by adding the octupole deformation term. In
Ref. [21], we have shown that to get the right deformation de-
pendence of the single-particle energies Hmf must be amended
with a monopole-monopole interaction, Mω2r2α00Y00, where
the monopole coordinate α00 is determined from the volume
conservation restriction. This term has a constant contribution
within a band. However, the constant value is band dependent.

To find the eigenvalues of the model Hamiltonian, we follow
several steps:

(i) In principle, the single-particle basis could be deter-
mined by diagonalizing Hmf amended with the
monopole interaction. The product basis for particle
and core may be used further to find the eigenvalues of
H . Because of some technical difficulties in restoring
the rotation and space-reversal symmetries for the com-
posite system wave function, this procedure is tedious,
and therefore we prefer a simpler method. Thus, the
single-particle space consists of three spherical shell
model states with angular momenta j1, j2, and j3. We
suppose that j1 and j2 have the parity π = + and that
j3 has the parity π = −.

(ii) �g is a sum of two states of different parities. This
happens because of the specific structure of the octupole
coherent state:

�o = �(+)
o + �(−)

o . (2.5)

The states of a given angular momentum and positive
parity can be obtained through projection from the
intrinsic states

|n1l1j1K〉�(+)
o �q, |n2l2j2K〉�(+)

o �q,
(2.6)|n3l3j3K〉�(−)

o �q.

The projected states of negative parity are obtained from
the states

|n1l1j1K〉�(−)
o �q, |n2l2j2K〉�(−)

o �q,
(2.7)|n3l3j3K〉�(+)

o �q.

The angular momentum and parity projected states are
denoted by

ϕ
(+)
IM (jiK; d, f ) = N

(+)
i;IKP I

MK |nilijiK〉�(+)
o �q

≡ N
(+)
i;IKψ

(+)
IM (jiK; d, f ), i = 1, 2,

ϕ
(+)
IM (j3K; d, f ) = N

(+)
3;IKP I

MK |n3l3j3K〉�(−)
o �q

≡ N
(+)
3;IKψ

(+)
IM (j3K; d, f ),

(2.8)
ϕ

(−)
IM (jiK; d, f ) = N

(−)
i;IKP I

MK |nilijiK〉�(−)
o �q

≡ N
(−)
i;IKψ

(−)
IM (jiK; d, f ), i = 1, 2,

ϕ
(−)
IM (j3K; d, f ) = N

(−)
3;IKP I

MK |n3l3j3K〉�(+)
o �q

≡ N
(−)
3;IKψ

(−)
IM (j3K; d, f ).

The factors N
(±)
i,IK ensure that the projected states ϕ(±)

are normalized to unity. Obviously, the unnormalized
projected states are denoted by ψ (±). For the quantum
number K , we consider the lowest three values (i.e.,
K = 1/2, 3/2, and 5/2). Note that the earlier particle-
core approaches [5,6] restrict the single-particle space
to a single j , which eliminates the contribution of the
octupole-octupole interaction.

(iii) Note that for a given ji , the projected states with
different K are not orthogonal. Indeed, the overlap
matrices

A
(+)
K,K ′ (Ijl ; d, f) = 〈ψ (+)

IM (jlK; d, f )|ψ (+)
IM (jlK

′; d, f )〉,
l = 1, 2, 3, K,K ′ = 1/2, 3/2, 5/2;
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A
(−)
K,K ′ (Ijl ; d, f ) = 〈ψ (−)

IM (jlK; d, f )|ψ (−)
IM (jlK

′; d, f )〉,
l = 1, 2, 3, K,K ′ = 1/2, 3/2, 5/2,

(2.9)

are not diagonal. By diagonalization, one obtains the
eigenvalues a

(±)
Ip (jl) and the corresponding eigenvectors

V
(±)
IK (jl, p), with K = 1/2, 3/2, and 5/2 and p = 1, 2,

and 3. Then, the functions

�
(+)
IM (jl, p; d, f ) = N

(+)
l;Ip

∑
K

V
(+)
IK (jl, p)

×ψ
(+)
IM (jlK; d, f ),

(2.10)
�

(−)
IM (jl, p; d, f ) = N

(−)
l;Ip

∑
K

V
(−)
IK (jl, p)

×ψ
(−)
IM (jlK; d, f )

are mutually orthogonal. The norms are given by

(N (±)
l;Ip)−1 =

√
a

(±)
Ip (jl). (2.11)

For each of the new states, there is a term in the defining
sum, Eq. (2.10), which has a maximal weight. The
corresponding quantum number K is conventionally
assigned to the mixed state.

(iv) To simulate the core deformation effect on the single-
particle motion, in some cases the projected states
corresponding to different j must be mixed up:

�
(+)
IM (p; d, f ) =

∑
l=1,2,3

A(+)
pl �

(+)
IM (jlp; d, f ),

(2.12)
�

(−)
IM (p; d, f ) =

∑
l=1,2,3

A(−)
pl �

(−)
IM (jlp; d, f ).

The amplitudes A(±)
pl can be obtained either by di-

agonalizing Hmf or, as we mentioned before, by a
least-squares fitting procedure applied to the excitation
energies. Here, the coefficients A are determined by
a fitting procedure. The energies of the odd system
are approximated by the average values of the model
Hamiltonian corresponding to the projected states:

E
(+)
I (p; d, f ) = 〈�(+)

IM (p; d, f )|H |�(+)
IM (p; d, f )〉,

E
(−)
I (p; d, f ) = 〈�(−)

IM (p; d, f )|H |�(−)
IM (p; d, f )〉.

(2.13)

The matrix elements involved in these equations can be
analytically calculated. Note that because of the struc-
ture of the particle-core projected states, the energies
for the odd system are determined by the coupling of
the odd particle to the excited states of the core ground
band.

The approach presented in this section was applied to the
description of the Kπ = 1/2± bands. However, this procedure
can be extended by including the K �= 0 states in the space
describing the deformed core.

III. DESCRIPTION OF THE Kπ = 3/2± AND 5/2± BANDS

In principle, the method presented in the previous section
may work for the description of bands with quantum number
K greater than 1/2. However, the intrinsic reference frame
for the odd system is determined by the deformed core, and
therefore one expects that this brings an important contribution
to the quantum number K . To be more specific, we cannot
expect to obtain a realistic description of the K = 5/2 bands by
projecting the good angular momentum from |j, 5/2〉 ⊗ �g .
Therefore, we assume that the Kπ = 3/2± and 5/2± bands are
described by projecting the angular momentum from a product
state of a low-K single-particle state and the intrinsic γ band
state.

We recall that within CSM, the states of the γ band are
obtained by projection from the intrinsic state

�
(γ ;±)
2 = �

†
γ,2�

(±)
o �q, (3.1)

where the excitation operator for the γ intrinsic state is defined
as

�
†
γ,2 = (b†2b

†
2)22 + d

√
2

7
b
†
22. (3.2)

Here, b
†
2µ denotes the m component of the quadrupole

boson operator. The low index of � in Eq. (3.1) is the K

quantum number for the γ intrinsic state. Thus, a simultaneous
description of the bands with K = 1/2, 3/2 , and 5/2 can be
achieved with the projected states:

ϕ
(±)
IM;1/2 = N

(±)
I,1/2

∑
J

(
N

(g,±)
J

)−1

×C
j1JI

1/2 0 1/2

(|n1l1j1〉 ⊗ ϕ
(g;±)
J

)
IM

,

ϕ
(±)
IM;3/2 = N

(±)
I,3/2

∑
J

(
N

(γ,±)
J

)−1

(3.3)
×C

j2 J I

−1/2 2 3/2

(|n2l2j2〉 ⊗ ϕ
(γ ;±)
J

)
IM

,

ϕ
(±)
IM;5/2 = N

(±)
I,5/2

∑
J

(
N

(γ,±)
J

)−1

×C
j3JI

1/2 2 5/2

(|n3l3j3〉 ⊗ ϕ
(γ ;∓)
J

)
IM

.

In these expressions, the notation N
(i,±)
J with i = g, γ is used

for the normalization factors of the projected states describing
the ground and the γ bands, respectively, of the even-even
core:

ϕ
(g,±)
JM = N

(g,±)
J P J

M0�g,
(3.4)

ϕ
(γ,±)
JM = N

(γ,±)
J P J

M2�
(γ,±)
2 .

Note that for each angular momentum I , the set of three
projected states is orthogonal.

The energies for the six bands with Kπ = 1/2±, 3/2±, and
5/2± are obtained by averaging the model Hamiltonian (2.1)
with the projected states defined previously:

EI,K = 〈ϕ(±)
IM;K |H |ϕ(±)

IM;K〉, K = 1/2, 3/2, 5/2. (3.5)

The matrix elements of the particle-core interaction are given
in Appendix A.
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IV. TRANSITION PROBABILITIES

For some K = 1/2 bands, results for the reduced E1 and
E2 transition probabilities are available. They are given in
terms of the branching ratios:

RIπ = B(E1; Iπ → (I − 1)π
′
)

B(E2; Iπ → (I − 2)π )
, π ′ �= π. (4.1)

To describe these data, we use the wave functions defined in
Sec. II. We recall that the positive parity states are obtained by
coupling the spherical shell model state j1 or j2 to a positive
parity core with a small admixture of a state coupling j3 and
a negative parity core. However, the negative parity states are
given by coupling one of the states j1 or j2 to a negative parity
core and a small component consisting of a product state of
j3 and a positive parity core state. Thus, the single-particle
E1 transition operator may connect the leading term of the
initial state with the small component of the final state. One
expects that the contribution of this term to the E1 transition is
negligible compared with the contribution of collective dipole
operator. Therefore, the dipole transition operator considered
in the present article is the boson operator:

Q1µ = eq1[(b†2b
†
3)1µ + (b3b2)1̃µ]. (4.2)

The quadrupole transition operator has the structure

Q2µ = eq2(b†2µ + (−)µb2,−µ + ar2Y2µ). (4.3)

The branching ratio, Eq. (4.1), for the initial state Iπ is

RIπ =
[

〈Iπ ||Q1||(I − 1)π
′ 〉

〈Iπ ||Q2||(I − 2)π 〉

]2

. (4.4)

Here, the initial and final states are a mixture of different K

states as well as a mixture of the j states defined by Eq. (2.12).
The matrix elements of the transition operators between the
basis states are given in Appendix B.1

V. NUMERICAL RESULTS

The results obtained in Sec. II have been used to calculate
the excitation energies for one positive and one negative parity
band in three even-odd isotopes: 219Ra, 237U, and 239Pu.
The parameters defining Hcore, as well as the deformation
parameters d and f , are those used to describe the properties of
eight rotational bands in the even-even neighboring isotopes.
The single-particle states are spherical shell model states with
the appropriate parameters for the (N,Z) region of the con-
sidered isotopes [23]. Our calculations for the mentioned odd
isotopes correspond to the single-particle states: (j1, j2, j3) =
(2g7/2, 2g9/2, 1h9/2). To obtain the best agreement between the
calculated excitation energies and the corresponding experi-
mental data, in the expansion (2.12), a small admixture of the
states (j1; j3) and (j2; j3) was considered: |A(+)

i,3 |2 and |A(−)
i,3 |2

are both equal to 0.001 for 219Ra, whereas the amplitudes

1Throughout this article, the reduced matrix elements are defined
according to Rose’s convention [22].

TABLE I. Parameters involved in the particle-core Hamiltonian
obtained by fitting four excitation energies. Here b denotes the
oscillator length: b = ( h̄

Mω
)1/2; h̄ω = 41A−1/3. The usual notations

for nucleon mass (M) and atomic number (A) were used.

Parameters 219Ra 227Ra 237U 239Pu

X2b
2 (keV) 22.829 −1.992 1.080 −2.515

X3b
3 (keV) −8.680 169.511 2.227 4.937

XjJ (keV) −0.292 8.553 −5.817 −3.985
XI2 (keV) 4.105 4.390 4.634 5.050

take the common value |A(+)
i,3 |2 = |A(−)

1,3 |2 = 0.04 for 237U and
239Pu. The mixing amplitude of the states (j1, j2) is negligible.
Energies given in Eq. (2.13) depend on the interaction strengths
X2, X3, XjJ , and XI 2 . These were determined by fitting four
particular energies in the two bands of different parities (i.e.,
Kπ = 1/2±). The results of the fitting procedure are given in
Table I. When these are inserted in Eqs. (2.13), the energies in
the two bands with K = 1/2 are readily obtained:

E(I±) = E
(±)
I (1; d, f ) − E

(+)
1
2

(1; d, f ). (5.1)

The theoretical results for excitation energies, listed in Table II,
agree quite well with the corresponding experimental data.
The levels for the three isotopes have been populated by
different experiments. Indeed, the Kπ = 1/2± bands have
been identified in 219Ra with the reaction 208Pb(14C,3n)219Ra
[2], in 237U via a pickup reaction on a 238U target, and in
239Pu with the so-called unsafe Coulomb excitation technique
[1]. Our results suggest that the dominant j component is
g9/2. Also, the dominant K component is K = 1/2, which
in fact confirms the previous assignments. To measure for
the agreement quality, we calculated the rms values for the
deviations of the calculated values from the experimental
ones. The results for 219Ra, 237U, and 239Pu are 67.1, 48.97,
and 31.8 keV, respectively. The agreement obtained in our
approach for 239Pu is better than that shown in Ref. [13].
However, the results from Ref. [13] for 237U agree better
with the corresponding data than do our results. Indeed,
the rms values for the deviations of theoretical results from
experimental data, reported in Ref. [13], are 30 and 60 keV
for 237U and 239Pu, which should be compared with 48.97 and
31.8 keV obtained using our approach.

In calculating the rms value for 219Ra, we ignored the data
for the states 53/2± because the spin assignment is uncertain.
It is interesting to mention that the spectrum of 219Ra has
been measured by two groups [2,3] using the same reaction:
208Pb(14C,3n)219Ra. However, for the ground state (g.s.) they
assigned different angular momenta, 9/2+ [2] and 7/2+ [3].
In our approach, both assignments yield a good description of
the data. However, we used 9/2+ because the corresponding
results agree better with the experimental data than those
obtained with the other option. In the quoted references, the
states [(9/2) + 2k]+ with k = 0, 1, 2, . . . and [(15/2) + 2m]−
with m = 0, 1, 2, . . . are considered to be K = 1/2 states.
However, some additional states are available, organized into
two aside states (I and II) [3]. As shown in Table II, these
states stay close in energy to the calculated K = 1/2 states
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TABLE II. Excitation energies (keV) in 219Ra, 237U, and 239Pu for the bands characterized by Kπ = 1/2+ and Kπ = 1/2−, respectively.
The results of our calculations (Th.) for 237U and 239Pu are compared with the corresponding experimental data (Exp.) taken from Ref. [1].
Experimental data (Exp.) for 219Ra were taken from Ref. [2] for I+ = (9/2 + 2k)+, k = 0, 1, 2, . . . and I− = (13/2 + 2m)−, m = 0, 1, 2, . . ..
Experimental data for the remaining states were taken from Ref. [3].

J 219Ra 237U 239Pu

π = + π = − π = + π = − π = + π = −
Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th.

1/2 0.0 0.0 398.5 0.0 0.0 469.8 469.8
3/2 11.4 11.4 454.4 7.9 7.9 492.1 477.7
5/2 56.3 74.6 475.5 57.3 62.8 505.6 498.3
7/2 82.9 106.9 550.3 75.7 108.4 556.0 549.8
9/2 0.0 0.0 162.3 191.2 581.3 163.8 183.5 583.0 572.0

11/2 539.0 545.0 204.1 231.8 680.9 193.5 222.0 661.2 655.2
13/2 234.3 235.0 588.0 586.0 317.3 347.7 721.9 318.5 338.1 698.7 685.7 682.5
15/2 837.0 847.6 495.4 496.0 375.1 393.1 846.4 846.4 359.2 386.5 806.4 799.9
17/2 529.1 525.4 921.0 917.4 518.2 544.2 930.0 899.1 519.5 534.9 857.5 839.5
19/2 1229.0 1210.6 733.7 734.3 592.0 592.0 1027.5 1046.6 570.9 592.2 992.5 984.2
21/2 876.6 861.2 1309.0 1318.9 762.8 780.3 1131.0 1113.3 764.7 773.7 1058.1 1033.3
23/2 1622.0 1626.6 1035.6 1038.3 853.0 829.0 1250.7 1281.3 828.0 839.2 1219.4 1208.3
25/2 1271.6 1235.5 1722.0 1790.5 1048.7 1065.8 1376.1 1364.8 1053.1 1054.4 1300.9 1267.2
27/2 2022.0 2090.7 1393.6 1400.6 1155.1 1108.8 1515.7 1550.2 1127.8 1127.8 1487.4 1472.2
29/2 1684.7 1644.4 2137.0 2230.5 1372.2 1378.3 1662.3 1654.0 1381.5 1377.0 1584.9 1541.2
31/2 2444.0 2600.9 1815.6 1814.2 1494.1 1421.6 1821.8 1852.8 1467.8 1458.0 1795.4 1776.0
33/2 2113.4 2086.8 2552.0 2580.8 1729.2 1728.7 1987.7 1981.0 1748.5 1744.2 1908.9 1855.4
35/2 2272.1 2272.7 1868.2 1772.5 2166.5 2188.9 1847.0 1831.3 2143.4 2119.8
37/2 2563.6 2563.6 2987.0 3115.9 2117.2 2117.2 2349.7 2346.1 2152.2 2150.2 2272.0 2209.8
39/2 2750.8 2770.6 2272.2 2161.7 2547.5 2558.3 2263.0 2245.0 2529.4 2503.6
41/2 3029.0 3076.7 2530.1 2544.1 2746.7 2749.4 2590.1 2597.9 2672.0 2604.4
43/2 3255.8 3303.4 2702.5 2589.4 2960.5 2960.5 2714.0 2700.5 2951.4 2927.5
45/2 3505.0 3627.9 2963.8 3009.5 3174.7 3191.3 3060.1 3087.5 3108.0 3039.3
47/2 3776.5 3867.8 3154.5 3055.6 3401.5 3395.3 3198.0 3198.0 3407.0 3395.3
49/2 4009.6 4218.7 3415.8 3513.7 3630.0 3671.7 3559.1 3619.1 3578.0 3514.4
51/2 4328.9 4462.5 3625.5 3560.5 3865.0 3862.4 3713.0 3737.0 3895.0 3895.8
53/2 4540.4 4759.2 3886.8 4057.8 4105.0 4190.9 4087.1 4194.0 4080.0 4029.9
55/2 4913.6 5044.1 4115.0 4104.8 4344.0 4350.0 4256.0 4319.8 4413.0 4436.7

generated by the intrinsic state 2g7/2,1/2�g . Exceptions are the
states 33/2− and 37/2−, which originate from 1h9/2,1/2�g .
The results for excitation energies as well as the corresponding
experimental data for 219Ra are plotted in Fig. 1.

The case of 227Ra was treated with the formalism pre-
sented in Sec. III. The single-particle basis is 2g7/2, 2g9/2,
and 2f5/2. The first state coupled to the coherent state
describing the unprojected ground state (i.e., 2g7/1,1/2�g)
generates the parity partner bands Kπ = 1/2±. The bands
Kπ = 3/2± are obtained through projection from the product
state 2g9/2,−1/2�

(γ ;±)
2 , and the bands Kπ = 5/2± originate

from the intrinsic state 2f5/2,1/2�
(γ ;∓)
2 . For the bands charac-

terized by Kπ = 1/2±, one could consider also the mixing
of components with different K in the manner discussed in
Sec. II. However, our numerical application suggests that such
a mixing is not really necessary to obtain a realistic description
of the available data. The calculated energies in the three bands
are compared with the corresponding experimental data in
Fig. 2. The plotted values are collected in Table III. The states
for 227Ra were obtained in Ref. [4] by using the (n, γ ), (d,p),
and (�t,d) reactions and the β− decay of 227Fr. The spectrum

yielded by these experiments was interpreted in Ref. [8] in
terms of a particle-core interaction.

From Fig. 2, we note that our approach reproduces the
experimental energies ordering in the band Kπ = 1/2−. The
energy split of the states 3/2− and 1/2− is nicely described,
although the doublet is shifted down by about 50 keV. In the
band 5/2+, an energy level exists that is tentatively assigned
as 11/2+. Our calculations suggest that this level could be
assigned as 13/2+. However, this assignment is to be used
cautiously because our calculations are not extremely accurate.
Moreover, because of the lack of data, there is no one-to-one
correspondence between experimental and theoretical levels.
No experimental data are available for the band 5/2−. In Fig. 2,
however, we gave the results of our calculations for this band.
Note that the ordering for the lowest levels is not the natural
one. However, starting with 13/2−, the normal ordering is
restored. It is interesting to note that the heading states for
the bands 3/2+ and 5/2+ are almost degenerate. The same is
true for the lowest angular momenta states in their negative
parity partner bands. The rms deviation for this nucleus is
23 keV.
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TABLE III. Excitation energies (keV) in 227Ra for the bands characterized by Kπ = 1/2±, 3/2±, and 5/2±, respectively. The results
of our calculations (Th.) are compared with the corresponding experimental data (Exp.) taken from Ref. [4].

J K = 1/2 K = 3/2 K = 5/2

π = + π = − π = + π = − π = + π = −
Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th.

1/2 121 96.6 297 251.8
3/2 161 145.5 284 232.4 0.0 0.0 90 90
5/2 177 177.0 359.1 26 26.0 102 102 2 2. 107.6
7/2 268 283.6 310.6 64 40.33 104.6 26. 26.5 86.6
9/2 300 304.6 66.2 115.1 84 61.0 82.8

11/2 574.5 97.9 139 139.1 187 107.5 99.9
13/2 140.5 176.9 160.1 131.1
15/2 228 226.6 221.0 177.5
17/2 288.4 291.4 239.6
19/2 372.3 317.6

Now, we comment on the parameters yielded by the
fitting procedure for the considered isotopes. Except for 237U,
where both quadrupole-quadrupole and octupole-octupole
interactions are attractive, the two interactions have different
characters for the rest of the nuclei. In the first situation,
the λ (=2, 3)-pole moments of the odd nucleon and those
of the collective core have different signs. In the remaining
cases, the two moments are of the same sign. We also note
the large strength for the q3Q3 interaction in 227Ra, which is
consistent with the fact that the neighboring even-even isotope
exhibits a relatively large octupole deformation. Indeed,
according to Ref. [20], for this nucleus we have f = 0.8.
The large value of the strength X3 determines the large mixing
amplitudes of the states (g9/2�

(+)
g ; f5/2�

(−)
g ) as well as of the

states (g9/2�
(−)
g ; f5/2�

(+)
g ). Indeed, the value obtained for this

FIG. 1. Calculated (Th.) and experimental (Exp.) excitation
energies for the Kπ = 1/2± bands in 219Ra. The data were taken from
Ref. [2]. The energies of the states (11/2 + 2k)+, k = 0, 1, 2, . . .

and (13/2 + 2m)−,m = 0, 1, 2, . . . were taken from Ref. [3]. The
mentioned states are organized into two bands, I and II, which do not
have a definite K . The states shown here belong to band I.

amplitude is |A(+)
i,3 |2 = |A(−)

1,3 |2 = 0.07425. Another distinctive
feature for 227Ra is that the jJ interaction strength has a sign
different from that associated with other nuclei. In fact, the
repulsive character of this interaction in 227Ra is necessary to
compensate for the large attractive contribution of the q3Q3

interaction.
Further, we address the question of whether one could

identify signatures for static octupole deformation in the two
bands. In Fig. 3, we plot the energy displacement functions
[7,16,17]

δE(I ) = E(I−) − (I + 1)E[(I − 1)+] + IE[(I + 1)+]

2I + 1
,

(5.2)

FIG. 2. Calculated (right column) and experimental (left column)
excitation energies for the bands with Kπ = 1/2±, 3/2±, and 5/2± in
227Ra. The experimental data were taken from Ref. [4]. Data for the
Kπ = 5/2− band are not available, and therefore only the theoretical
results are presented. The plot corresponds to the energies listed in
Table III.
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FIG. 3. (Color online) The theoretical and experimental energy
displacement functions δE(I ) and �E1,γ (I ) given by Eqs. (5.2)
and (5.3), respectively, and characterizing the isotope 239Pu plotted as
a function of the angular momentum I . Experimental data are taken
from Ref. [1]. In the lower panel, the theoretical and experimental
�E1,γ (I ) corresponding to the states Iπ = [(1/2) + 2k]+ with k =
1, 2, 3, . . . are represented by the symbols labeled as Th. I and Exp. I,
respectively, whereas those associated with the negative parity states
Iπ = [(1/2) + 2k]− with k = 1, 2, 3, . . . bear the labels Th. II and
Exp. II, respectively.

�E1,γ (I ) = 1

16
[6E1,γ (I ) − 4E1,γ (I − 1) − 4E1,γ (I + 1)

+E1,γ (I − 2) + E1,γ (I + 2)], (5.3)

E1,γ (I ) = E(I + 1) − E(I ).

The first function, δE, vanishes when the excitation energies
of the parity partner bands depend linearly on I (I + 1)
and the moments of inertia of the two bands are equal.
Thus, the vanishing value of δE is considered to be a
signature for octupole deformation. If the excitation energies
depend quadratically on I (I + 1) and the coefficients of the
[I (I + 1)]2 terms for the positive and negative parity bands
are equal, the second energy displacement function �E1,γ

vanishes, which again suggests a static octupole deformation.
The parities associated with the angular momenta, involved in
�E1,γ are as follows: Levels I and I ± 2 have the same parity,
whereas levels I and I ± 1 are of opposite parity. The results
plotted in Fig. 3 correspond to 239Pu. We chose this nucleus
because more data are available. The plot suggests that a static
octupole deformation is possible for the states with angular
momenta I � 51/2 belonging to the two parity partner bands.

Finally, we calculated the branching ratio RJ defined by
Eq. (4.1) for 219Ra. There are two parameters involved that

TABLE IV. Experimental (Exp.) and calculated (Present1 and
Present2) ratios B(E1)/B(E2) for initial state J π running from 19/2−

up to 51/2−. As mentioned in the text, Jg.s. = 9/2. Experimental
data are from Ref. [2]. The results are given in units of 10−6 fm−2.
For comparison, the results of Ref. [11] are also given in column
4. The theoretical results from columns 2 and 3 correspond to
different parameters q1/q2 and a characterizing the involved transition
operators. These parameters are given in the text.

J π − Jg.s. Exp. Present1 Present2 Ref. [11]

5− 2.52(18) 2.52 2.52 1.195
6+ 1.12(08) 1.09 0.677 0.314
7− 1.49(10) 3.97 3.284 1.318
8+ 1.23(16) 1.23 0.704 0.313
9− 1.16(08) 4.56 3.194 1.442

10+ 2.77(64) 1.44 0.775 0.312
11− 1.41(9) 4.59 2.829 1.567
12+ 3.68(26) 1.69 0.868 0.313
13− 2.14(30) 4.39 2.448 1.691
14+ 1.96(14) 1.96 0.967 0.314
15− 1.76(18) 4.11 2.131 1.814
16+ 1.06(17) 2.22 1.060 0.315
17− 2.08(28) 3.84 1.887 1.936
18+ 3.34(48) 2.45 1.137 0.317
19− 1.34(42) 3.62 1.704 2.057
20+ 2.38(44) 2.63 1.195 0.318
21− 4.01(94) 3.44 1.568 2.177
Average 2.09(9) 2.97 1.7 1.072

were fixed so that two particular experimental data were
reproduced. Thus we fixed alternatively the ratios for the
states as 19/2−, 37/2+ and 19/2−, 41/2+, respectively. The
results corresponding to the two sets of parameters are given in
columns 2 and 3 (labeled Present1 and Present2) of Table IV.
The values obtained for these parameters are

present1:
q1

q2
= 18.377 × 10−3 fm−1,

ab2 = −0.63616 fm2,
(5.4)

present2:
q1

q2
= 11.310 × 10−3 fm−1,

ab2 = −0.34422 fm2,

where b denotes the oscillator length characterizing the
spherical shell model states for the odd nucleon. As shown
in Table IV, the theoretical results agree reasonably well with
the corresponding experimental data. Our results show an
oscillating behavior with maxima for the negative parity states.
Note that some of the data are well described but others deviate
from the data by a factor ranging from 2 to 3. In the fourth
column of Table IV, we list the results obtained by the authors
of Ref. [11] using a different model. In Ref. [11], the ratios
corresponding to positive parity states are almost constant and
small. The column Present1 shows a good agreement for the
branching of positive parity states, whereas in Ref. [11] better
agreement is achieved for negative parity states. This might be
because we use different wave functions as well as different
transition operators. Another reason might be that we fix the
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strengths of the transition operators not by a least squares
procedure, which would improve the agreement for negative
parity states, but instead by fixing two particular branchings.
The branchings are quite sensitive to the choice of the pair
of states whose branchings are fitted to the experimental data.
We come to this conclusion by comparing the results shown in
the columns Present1 and Present2 from Table IV. Indeed, the
results in Present2 show better overall agreement than those in
Present1. Actually, results close to those of Ref. [11] can be
obtained by a suitable set of parameters (q1/q2, a).

VI. CONCLUSIONS

In the previous sections, we proposed a new formalism
for the description of parity partner bands in even-odd
nuclei. Our approach uses a particle-core Hamiltonian, with
a phenomenological core described in terms of quadrupole
and octupole bosons. The single-particle space consists of
three spherical shell model states, two of them with positive
parity and the third with negative parity. The particle-core
coupling terms cause the excitation of the odd particle from
one state to either of the remaining two. Thus, the particle-core
interaction might break two symmetries for the single-particle
motion, the rotation, and space reflection, which is consistent
with the structure of the mean field obtained by averaging
the model Hamiltonian with quadrupole and octupole boson
coherent states. For K = 1/2 bands, the single-particle states
are coupled to the ground state of a deformed core, whereas
for K = 3/2 and 5/2, the single-particle states are coupled to
the γ intrinsic state. The bands are generated through angular
momentum projection from the particle-core intrinsic states
mentioned previously. In this way, the influence of the excited
states from the ground band on the structure of Kπ = 1/2± and
that of the excited states from the γ band on the Kπ = 3/2±
and 5/2± bands are taken into account. The contribution of
various terms of the model Hamiltonian are analyzed in terms
of the magnitude and the sign of the interaction strengths
yielded by the fitting procedure. Approaches that treat the
particle-core interaction in the intrinsic frame of reference
stress the role played by the Coriolis interaction, through the
decoupling parameter, in determining the energy splitting of
the parity partner states with K = 1/2. For example, in 227Ra,
the decoupling factor is quite high (0.7) [4]. In the laboratory
frame, we identified the interaction that determines the energy
parity split.

Applications to 219Ra, 237U, and 239Pu show good agree-
ment between the calculated excitation energies in the bands
with Kπ = 1/2± and the corresponding experimental data.
The branching ratios of 219Ra have been also calculated. The
agreement with the available data is quite good.

For some isotopes, in Ref. [13], only the bands with
K = 5/2 are considered. In contrast, for 227Ra, we simulta-
neously treated the bands with K± = 1/2±, 3/2±, and 5/2±,
respectively. Moreover, here the bands with K = 3/2 and 5/2
are generated by coupling a single-particle state to the states
belonging to the γ band of the core system.

The plot for the energy displacement functions, or energy
staggering factors, made for 239Pu indicates that a static

octupole deformation might be set for states with angular
momentum greater than 51/2h̄.

Before closing, we add few remarks about the possible
development of the present formalism. By choosing the gen-
erating states for the parity partner bands with Kπ = 0±

β , 1±
states for the core unprojected states, and otherwise keeping
the same single-particle basis for the odd nucleon, the present
formalism can be extended to another four bands, two of
positive parity and two of negative parity. Another noteworthy
remark refers to the chiral symmetry [24] for the composite
particle and core system. Indeed, in Ref. [20] we showed
that, starting from a certain total angular momentum of the
core, the angular momenta carried by the quadrupole ( �J2) and
octupole ( �J3) bosons are perpendicular to each other. Naturally,
we may ask ourselves whether there exists a strength for the
particle-core interaction such that the angular momentum of
the odd particle becomes perpendicular to the plane ( �J2, �J3).
This would be a sign that the three-component system exhibits
chiral symmetry.

One may say that the present CSM extension to odd nuclei
can describe quite well the excitation energies in the parity
partner bands with Kπ = 1/2±, 3/2±, and 5/2±.
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APPENDIX A

The diagonal matrix elements of the quadrupole-
quadrupole (q2Q2) and octupole-octupole (q3Q3) particle-core
interactions in the basis defined in Sec. III are

〈ϕ(±)
IM;jiK

|q2Q2|ϕ(±)
IM;jiK

〉
= −X2C

ji J I

k−2 2 KC
ji J

′
I

k−2 2 KÎ 2ĵi ĴW (jiI2J ; J
′
ji)

× (N (±)
I,K )2

(
N

(γ,±)
J N

(γ,±)
J

′
)−1

×〈ji ||r2Y2||ji〉
〈
ϕ

(γ ;±)
J

∣∣|b†2 + b2|
∣∣ϕ(γ ;±)

J
′

〉
,

i = 2, 3, K = i − 1/2; (A1)

〈ϕ(±)
IM;j35/2|q3Q3|ϕ(±)

IM;j23/2〉
= X3C

j3 J I

1/2 2 5/2C
j2 J

′
I

−1/2 2 3/2Î
2ĵ3ĴW (j2I3J ; J

′
j3)

×N
(±)
I,5/2N

(±)
I,3/2

(
N

(γ,±)
J N

(γ,±)
J

′
)−1〈j3||r3Y3||ji〉

× 〈
ϕ

(γ ;±)
J

∣∣|b†3 + b3|
∣∣ϕ(γ ;∓)

J
′

〉
.

The expected value for the q2Q2 term in the state ϕ±
IM;j11/2 can

be obtained from this expression by replacing ji with j1 and
ϕ

(γ ;±)
J with ϕ

(g;±)
J . Also, the projections associated with J and

J
′

in the two Clebsch-Gordan coefficients should be equal to
0, not 2. It is easy to check that this state is not connected by
the q3Q3 interaction to the state ϕ±

IM;j35/2. The reduced matrix
elements of the boson operators involved in these equations
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have the expressions〈
ϕ

(γ ;±)
J

∣∣|b†2 + b2||ϕ(γ ;±)〉

= dCJ
′

2 J
2 0 2

{
N

(γ ;±)
J

N
(γ ;±)
J

′
+ 2J

′ + 1

2J + 1

N
(γ ;±)
J

′

N
(γ ;±)
J

+ 6

7

∑
J

′

N
(γ ;±)
J N

(γ ;±)
J

′

N
(g;±)
J1

×
[(

C
J1 2 J

′

0 2 2

)2 + 2J
′ + 1

2J + 1

(
C

J1 2 J
0 2 2

)2

]}
,

〈
ϕ

(g;±)
J

∣∣|b†2 + b2||ϕ(g;±)
J
′ 〉

= dCJ
′

2 J
0 0 0

[
N

(g;±)
J

N
(g;±)
J

′
+ 2J

′ + 1

2J + 1

N
(g;±)
J

′

N
(g;±)
J

]
,

〈
ϕ

(γ ;+)
J

∣∣|b†3 + b3|
∣∣ϕ(γ ;−)

J
′

〉
(A2)

= f CJ
′

2 J
2 0 2

[
N

(γ ;+)
J

N
(γ ;−)
J

′
+ 2J

′ + 1

2J + 1

N
(γ ;−)
J

′

N
(γ ;+)
J

]
,

〈
ϕ

(γ ;−)
J

∣∣|b†3 + b3|
∣∣ϕ(γ ;+)

J
′

〉
= (−)J

′ −J Ĵ
′

Ĵ

〈
ϕ

(γ ;+)
J

∣∣|b†3 + b3||ϕ(γ ;−)〉,〈
ϕ

(g;+)
J

∣∣|b†3 + b3|
∣∣ϕ(g;−)

J
′

〉
= f CJ

′
2 J

0 0 0

[
N

(g;+)
J

N
(g;−)
J

′
+ 2J

′ + 1

2J + 1

N
(g;−)
J

′

N
(g;+)
J

]
,

〈
ϕ

(g;−)
J

∣∣|b†3 + b3|
∣∣ϕ(g;+)

J
′

〉
= (−)J

′ −J Ĵ
′

Ĵ

〈
ϕ

(g;+)
J

′
∣∣|b†3 + b3||ϕ(g;−)

J 〉.

The matrix elements of Hcore have the expressions

〈ϕ(±)
IM,j23/2|Hcore|ϕ(±)

IM,j23/2〉 = N
(±)
I ;j23/2

∑
J

(
C

j2 J I

−1/2 2 3/2

)2

× [
N

(γ ;±)
J

]−2
E

(γ,±)
J ,

〈ϕ(±)
IM,j35/2|Hcore|ϕ(±)

IM,j35/2〉 = N
(±)
I ;j35/2

∑
J

(
C

j2 J I

1/2 2 5/2

)2

× [
N

(γ ;±)
J

]−2
E

(γ,±)
J ,

〈ϕ(±)
IM,j11/2|Hcore|ϕ(±)

IM,j11/2〉 = N
(±)
I ;j11/2

∑
J

(
C

j2 J I

1/2 0 1/2

)2

× [
N

(g;±)
J

]−2
E

(g,±)
J , (A3)

where E
(g,±)
J and E

(γ,±)
J denote the energies of the state J±

belonging to the bands g± and γ ±, respectively. Obviously,
the term Hsp is diagonal in the chosen basis:

〈ϕ(±)
IM,j11/2|Hsp|ϕ(±)

IM,j11/2〉 = εj1 ,

〈ϕ(±)
IM,j23/2|Hsp|ϕ(±)

IM,j23/2〉 = εj2 , (A4)

〈ϕ(±)
IM,j35/2|Hsp|ϕ(±)

IM,j35/2〉 = εj3 .

Here εjk
denotes the energies of the spherical shell model states

|nk, lk, jk,mk〉 with k = 1, 2, and 3. The matrix elements of
the term �j · �J are

〈ϕ(±)
IM,j11/2| �j · �J |ϕ(±)

IM,j11/2〉 = 1

2

⎧⎨⎩I (I + 1) − j1(j1 + 1)

− N
(±)
I ;j11/2

∑
J

(
C

j2 J I

1/2 0 1/2

)2

× [
N

(g;±)
J

]−2
J (J + 1)

⎫⎬⎭ ,

〈ϕ(±)
IM,j23/2| �j · �J |ϕ(±)

IM,j23/2〉 = 1

2

⎧⎨⎩I (I + 1) − j2(j2 + 1)

− N
(±)
I ;j23/2

∑
J

(
C

j2 J I

−1/2 2 3/2

)2

× [
(N (γ ;±)

J

]−2
J (J + 1)

⎫⎬⎭ ,

〈ϕ(±)
IM,j35/2| �j · �J |ϕ(±)

IM,j35/2〉 = 1

2

⎧⎨⎩I (I + 1) − j3(j3 + 1)

− N
(±)
I ;j35/2

∑
J

(
C

j2 J I

1/2 2 5/2

)2

× [
N

(γ ;±)
J

]−2
J (J + 1)q

⎫⎬⎭ .

(A5)

APPENDIX B

The matrix elements involved in the expression of the
branching ratios are〈

ϕ
(π)
I (jiK; d, f )

∣∣|r2Y2|
∣∣ϕ(π)

I
′ (jiK

′
; d, f )

〉
= −

√
5

4π
〈r2〉Î ′

ĵiN
(π)
i,IKN

(π)
i,I

′
K

′

×
∑

J

C
ji J I

K 0 KC
ji J I

′

K
′ 0 K

′
[
N

(g,σ )
J

]−2
,

〈
ϕ

(π)
I (jiK; d, f )

∣∣|b†2 + b2|
∣∣ϕ(π)

I
′ (jiK

′
; d, f )

〉
(B1)

= dCI
′

2 I
K 0 K

[
N

(π)
i;IK

N
(π)
i;I ′

K
′
+ 2I

′ + 1

2I + 1

N
(π)
i;I ′

K
′

N
(π)
i;IK

]
,

〈
ϕ

(π)
I (jiK; d, f )

∣∣|(b†2b†3)1 + (b3b2)1|
∣∣ϕ(π

′
)

I
′ (jiK

′
; d, f )

〉
= df CI

′
1 I

K 0 KC2 3 1
0 0 0

⎡⎣ N
(π)
i;IK

N
(π ′ )
i;I ′

K
′

+ 2I
′ + 1

2I + 1

N
(π

′
)

i;I ′
K

′

N
(π)
i;IK

⎤⎦ .
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