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A particle-core Hamiltonian is used to describe the lowest parity partner bands Kπ = 1/2±

in 239U and 239Pu. The quadrupole and octupole boson Hamiltonian associated to the core is
identical to the one previously used for the description of four positive and four negative parity
bands in the neighboring even-even isotopes. The single particle space for the odd nucleon consists
of three spherical shell model states, two of positive and one of negative parity. The particle-core
Hamiltonian consists of four terms: a quadrupole-quadrupole, an octupole-octupole, a spin-spin and
a rotational Î2 interaction, with Î denoting the total angular momentum. The parameters involved
in the particle-core coupling Hamiltonian were fixed by fitting four particular energies in the two
bands. The calculated excitation energies are compared with the corresponding experimental data
as well as with those obtained with other approaches. Also, we searched for some signatures for a
static octupole deformation in the considered odd isotopes.

PACS numbers: 21.10.Re,21.60.Ev,27.80.+w,27.90.+b

The coherent state model (CSM)[1] describes in a re-
alistic fashion three interacting bands, ground, beta and
gamma, in terms of quadrupole bosons. The formalism
was later extended [2, 3, 4, 5, 6, 7] by considering the
octupole degrees of freedom. The most recent exten-
sion describes eight rotational bands, four of positive and
four of negative parity. Observables like excitation ener-
gies, intraband E2 and interband E1, E2 and E3 reduced
transition probabilities have been calculated and the re-
sults were compared with the corresponding experimen-
tal data. The formalism works well for both near spheri-
cal and deformed nuclei excited in low and high angular
momentum states. Indeed, we considered all states with
J ≤ 30 in both, the positive and the negative parity
bands. Signatures for a static octupole deformation in
ground as well as in excited bands have been pointed out
in several even-even nuclei.

The aim of this paper is to extend CSM for the even-
odd nuclei which exhibit both quadrupole and octupole
deformation. Thus, we consider a particle-core Hamilto-
nian:

H = Hsp + Hcore + Hpc, (1)

where Hsp is a spherical shell model Hamiltonian asso-
ciated to the odd nucleon, while Hcore is a phenomeno-
logical Hamiltonian which describes the collective motion
of the core in terms of quadrupole and octupole bosons.
This term is identical to that used in Ref.[7] to describe
eight rotational bands in even-even nuclei. The two com-
ponents of the odd nuclear system interact with each

other by Hpc which has the following expression:

Hpc = − X2

∑

µ

r2Y2,−µ(−)µ
(

b†2µ + (−)µb2,−µ

)

− X3

∑

µ

r3Y3,−µ(−)µ
(

b†3µ + (−)µb3,−µ

)

+ XjJ
~j ~J + XI2

~I2. (2)

b†λµ denotes the components of the λ-pole (with λ=2,3)

boson operator. The term ~j ~J is similar to the spin-orbit
interaction from the shell model and expresses the inter-
action between the angular momenta of the odd-particle
and the core. The last term is due to the rotational mo-
tion of the whole system, ~I denoting the total angular
momentum of the particle-core system.

The core states are described by eight sets of mutu-
ally orthogonal functions, obtained by projecting out the
angular momentum and the parity from four quadrupole
and octupole deformed functions: one is a product of two
coherent states:

Ψg = ef(b+
30

−b30)ed(b+
20

−b20)|0〉2|0〉3 ≡ ΨoΨq|0〉2|0〉3, (3)

while the remaining three are polynomial boson excita-
tions of Ψg. The parameters d and f are real numbers
and simulate the quadrupole and octupole deformations,
respectively. The vacuum state for the k-pole boson,
k = 2, 3, is denoted by |0〉k.

The particle-core interaction generates a deformation
for the single particle trajectories. Indeed, averaging the
model Hamiltonian with Ψg, one obtains a deformed sin-
gle particle Hamiltonian, Hmf which plays the role of the
mean field for the particle motion:

Hmf = C + Hsp − 2dX2r
2Y20 − 2fX3r

3Y30, (4)

where C is a constant determined by the average of Hcore.
The Hamiltonian Hmf represents an extension of the
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Nilsson Hamiltonian by adding the octupole deformation
term. In Ref.[8] we have shown that in order to get the
right deformation dependence of the single particle ener-
gies Hmf must be amended with a monopole-monopole
interaction, Mω2r2α00Y00, where the monopole coordi-
nate α00 is determined from the volume conservation re-
striction. This term has a constant contribution within a
band. The constant value is, however, band dependent.

In order to find the eigenvalues of the model Hamilto-
nian we follow several steps:

1) In principle the single particle basis could be deter-
mined by diagonalizing Hmf amended with the monopole
interaction. The product basis for particle and core may
be further used to find the eigenvalues of H . This pro-
cedure is however tedious and therefore we prefer a sim-
pler method. Thus, the single particle space consists of
three spherical shell model states with angular momenta
j1, j2, j3. We suppose that j1 and j2 have the parity
π = +, while j3 has a negative parity π = −. Due to the
quadrupole-quadrupole interaction the odd particle from
the state j1 can be promoted to j2 and vice-versa. The
octupole interaction connects the states j1 and j2 with
j3.

2) We remark that Ψg is a sum of two states of different
parities. This happens due to the specific structure of the
octupole coherent state:

Ψo = Ψ(+)
o + Ψ(−)

o . (5)

The states of a given angular momentum and positive
parity can be obtained through projection from the in-
trinsic states:

|n1l1j1K〉Ψ(+)
o Ψq, |n2l2j2K〉Ψ(+)

o Ψq, |n3l3j3K〉Ψ(−)
o Ψq.

(6)
The projected states of negative parity are obtained from
the states:

|n1l1j1K〉Ψ(−)
o Ψq, |n2l2j2K〉Ψ(−)

o Ψq, |n3l3j3K〉Ψ(+)
o Ψq.

(7)
The angular momentum and parity projected states are
denoted by:

ϕ
(+)
JM (jiK; d, f) = N

(+)
i;JKP J

MK |nilijiK〉Ψ(+)
o Ψq, i = 1, 2

ϕ
(+)
JM (j3K; d, f) = N

(+)
3;JKP J

MK |n3l3j3K〉Ψ(−)
o Ψq,

ϕ
(−)
JM (jiK; d, f) = N

(+)
i;JKP J

MK |nilijiK〉Ψ(−)
o Ψq, i = 1, 2

ϕ
(−)
JM (j3K; d, f) = N

(+)
3;JKP J

MK |n3l3j3K〉Ψ(+)
o Ψq. (8)

For the quantum number K we consider the lowest three
values, i.e. K = 1/2, 3/2, 5/2. Note that the earlier
particle-core approaches [9, 10] restrict the single parti-
cle space to a single j, which results in eliminating the
contribution of the octupole-octupole interaction.

3) Note that for a given ji, the projected states with
different K are not orthogonal. Indeed, the overlap ma-
trices :

A
(+)
K,K′(jl; d, f) = 〈ϕ

(+)
JM (jlK; d, f)|ϕ

(+)
JM (jlK

′; d, f)〉,

l = 1, 2, 3; K, K ′ = 1/2, 3/2, 5/2,

A
(−)
K,K′(jl; d, f) = 〈ϕ

(−)
JM (jlK; d, f)|ϕ

(−)
JM (jlK

′; d, f)〉,

l = 1, 2, 3; K, K ′ = 1/2, 3/2, 5/2, (9)

are not diagonal. By diagonalization, one obtains the

eigenvalues a
(±)
p (jl) and the corresponding eigenvectors

V
(±)
s (jl, p), with s = 1, 2, 3 and p = 1, 2, 3. Then, the

functions:

Ψ
(+)
JM (jl, p; d, f) = N

(+)
l;Jp

∑

K

V
(+)
K (jl, p)ϕ

(+)
JM (jlK; d, f),

Ψ
(−)
JM (jl, p; d, f) = N

(−)
l;Jp

∑

K

V
(−)
K (jl, p)ϕ

(−)
JM (jlK; d, f).(10)

are mutually orthogonal. The norms are given by:

(

N
(±)
l;Jp

)−1

=

√

a
(±)
p (jl). (11)

For each of the new states, there is a term in the defining
sum (10), which has a maximal weight. The correspond-
ing quantum number K is conventionally assigned to the
mixed state.

4) In order to simulate the core deformation effect on
the single particle motion, in some cases the projected
states corresponding to different j must be mixed up.

Φ
(+)
JM (p; d, f) =

∑

l=1,2,3

AlΨ
(+)
JM (jlp; d, f),

Φ
(−)
JM (p; d, f) =

∑

l=1,2,3

AlΨ
(−)
JM (jlp; d, f). (12)

The amplitudes Al can be obtained by diagonalizing
Hmf .

The energies of the odd system are approximated by
the average values of the model Hamiltonian correspond-
ing to the projected states:

E
(+)
J (p; df) = 〈Φ

(+)
JM (p; df)|H |Φ

(+)
JM (p; df)〉,

E
(−)
J (p; df) = 〈Φ

(−)
JM (p; df)|H |Φ

(−)
JM (p; df)〉. (13)

The matrix elements involved in the above equations
can be analytically calculated. They have been used
to calculate the excitation energies for one positive and
one negative parity bands in two odd isotopes: 239U si
239Pu. The parameters defining Hcore, as well as the
deformation parameters d and f are those used to de-
scribe the properties of eight rotational bands in the
even-even neighboring isotopes. The single particle states
are spherical shell model states with the appropriate pa-
rameters for the (N, Z) region of the considered isotopes
[11]. Energies (13) depend on the interaction strengths
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Parameters 239U 239Pu

X2[keV] 0.079 -2.515

X3[keV] 66.166 -3.985

XJJ [keV] -5.269 5.050

XI2 [keV] 4.683 4.937

TABLE I: Parameters involved in the particle-core Hamilto-
nian obtained by fitting four excitation energies

.

X2, X3, XjJ and XJ2 . These were determined by fitting
four particular energies in the two bands of different par-
ities. The results of the fitting procedure are given in
Table I. Inserting these in Eqs.13 the energies in the two
bands are readily obtained. The theoretical results for ex-
citation energies, listed in Table II, agree quite well with
the corresponding experimental data. To have a measure
for the agreement quality, we calculated the r.m.s. val-
ues for the deviations of the calculated values from the
experimental ones. The results for 239U and 239Pu are
44.3 keV and 31.8 keV, respectively.
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FIG. 1: The energy displacement functions are plotted as a
function of angular momentum. Experimental data are taken
from Ref.[13]. In the lower panel, the symbols labeled by I
correspond to the the of states which includes 1/2+ as the
lowest (I − 2) state in Eq.(14). When the lowest state (I − 2)
in (14) is the state 1/2−, the associated symbols to the results
and data bear the label II .

Further we addressed the question whether one could
identify signatures for static octupole deformation in the

239U 239Pu

π = + π = − π = + π = −

J Exp. Th Exp. Th.

1/2 0.0 0.0 420.2 0.0 0.0 469.8 469.8

3/2 11.4 11.4 466.3 7.9 7.9 492.1 477.7

5/2 56.3 48.0 492.1 57.3 62.8 505.6 498.3

7/2 82.9 109.5 557.9 75.7 108.4 556.0 549.8

9/2 162.3 153.3 596.1 163.8 183.5 583.0 572.0

11/2 204.1 232.4 684.4 193.5 222.0 661.2 655.2

13/2 317.3 303.4 735.6 318.5 338.1 698.7 685.7

15/2 375.1 392.7 846.4 846.4 359.2 386.5 806.4 799.9

17/2 518.2 497.3 930.0 911.7 519.5 534.9 857.5 839.5

19/2 592.0 592.0 1027.5 1043.8 570.9 592.2 992.5 984.2

21/2 762.8 733.6 1131.0 1124.9 764.7 773.7 1058.1 1033.3

23/2 853.0 830.8 1250.7 1276.5 828.0 839.2 1219.4 1208.3

25/2 1048.7 1037.9 1376.1 1375.2 1053.1 1054.4 1300.9 1267.2

27/2 1155.1 1123.8 1515.7 1544.1 1127.8 1127.8 1487.4 1472.2

29/2 1372.2 1351.5 1662.3 1662.9 1381.5 1377.0 1584.9 1541.2

31/2 1494.1 1439.1 1821.8 1846.6 1467.8 1458.0 1795.4 1776.0

33/2 1729.2 1701.8 1987.7 1988.0 1748.5 1744.2 1908.9 1855.4

35/2 1868.2 1792.0 2166.5 2183.6 1847.0 1831.3 2143.4 2119.8

37/2 2117.2 2089.0 2349.7 2350.8 2152.2 2150.2 2272.0 2209.8

39/2 2272.2 2182.8 2547.5 2555.0 2263.0 2245.0 2529.4 2503.6

41/2 2530.1 2513.1 2746.7 2751.3 2590.1 2597.9 2672.0 2604.4

43/2 2702.5 2611.4 2960.5 2960.5 2714.0 2700.5 2951.4 2927.5

45/2 2963.8 2974.6 3174.7 3189.7 3060.1 3087.5 3108.0 3039.3

47/2 3154.5 3078.1 3401.5 3399.9 3198.0 3198.0 3407.0 3391.6

49/2 3415.8 3415.8 3630.0 3666.1 3559.1 3619.1 3578.0 3514.4

51/2 3625.5 3584.9 3865.0 3872.6 3713.0 3737.0 3895.0 3895.8

53/2 3886.8 3936.9 4105.0 4234.8 4087.1 4194.0 4080.0 4029.9

55/2 4115.0 4244.2 4344.0 4468.0 4256.0 4319.8 4413.0 4436.7

TABLE II: Excitation energies in 239U and 239Pu, for the

bands characterized by Kπ = 1
2

+
and Kπ = 1

2

−
respectively,

are given in keV. The results of our calculations (Th.) are
compared with the corresponding experimental data (Exp.)
Data are from Ref.[13].

two bands. To this goal we plotted the energy displace-
ment functions [3, 4, 12]:

δE(J−) = E(J−) −
(J + 1)E((J − 1)+) + JE((J + 1)+)

2J + 1
,

∆1,γ(I) =
1

16
[6E1,γ − 4E1,iγ(I1) − 4E1,γ(I + 1) (14)

+E1,γ(I − 2) + E1,γ(I + 2)],

E1,γ = E(I + 1) − E(I). (15)

The first function, δE vanishes when the excitation en-
ergies of the parity partner bands depend linearly on
I(I + 1) and, moreover, the moments of inertia of the
two bands are equal. Thus, the vanishing value of δE is
considered to be a signature for octupole deformation. If
the excitation energies depend quadratically on I(I + 1)
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and the coefficients of the [I(I+1)]2 terms for the positive
and negative parity bands are equal, the second energy
displacement function ∆E1,γ vanishes, which again sug-
gests that a static octupole deformation shows up. The
parities associated to the angular momenta, involved in
∆E1,γ are as follows: the levels I and I ± 2 have the
same parity, while levels I and I ± 1 are of opposite par-
ities. The results plotted in Fig. 1, suggest that a static
octupole deformation is possible for the states with angu-
lar momenta I ≤ 25

2 belonging to the two parity partner
bands.

The spectra of the odd isotopes, considered here, have
been previously studied in Refs.[14, 15, 16] using a
quadrupole-octupole Hamiltonian in the intrinsic defor-
mation variables β2 and β3 separated in a kinetic energy,
a potential energy term and a Coriolis interaction. Due
the specific structure of the model Hamiltonian, an an-
alytical solution for the excitation energies in the two
bands of opposite parities was possible. The agreement
obtained in our approach for 239Pu is better than that
shown in Ref.[16]. However, the results from Ref.[16]
for 239U agree better, with the corresponding data, than
ours. Indeed, the r.m.s. values for the deviations of the-
oretical results, reported in Ref.[16] from experimental
data are 30 keV and 60 keV for 239U and 239Pu, which
are to be compared with 44.3 and 31.8 keV respectively,
obtained with our approach.

Before closing, we would like to add few remarks

about the possible development of the present formalism.
Choosing for the core unprojected states, the generating
states for the parity partner bands with Kπ = 0±β , 2±γ , 1±

states, otherwise keeping the same single particle basis
for the odd nucleon, the present formalism can be ex-
tended to another six bands, three of positive and three
of negative parity. Another noteworthy remark refers to
the chiral symmetry [17] for the composite particle and
core system. Indeed, in Ref.[7] we showed that start-
ing from a certain total angular momentum of the core,

the angular momenta carried by the quadrupole, ~J2, and

octupole ( ~J3) bosons respectively, are perpendicular on
each other. Naturally, we may ask ourselves whether
there exists a distribution of the particle-core strengths
such that the angular momentum of the odd particle be-

comes perpendicular to the plane ( ~J2, ~J3). This would
be a signature that the three component system exhibits
a chiral symmetry. These issues are under work in our
group and the results will be reported elsewhere.

As a final conclusion, one may say that the present
CSM extension to odd nuclei can describe quite well
the excitation energies in the parity partner bands with

Kπ = 1
2

±
.
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