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Abstract

The Generalized Coherent State Model, proposed previously for a unified description of magnetic

and electric collective properties of nuclear systems, is used to study the ground state band charge

density as well as the E0 transitions from 0+
β to 0+

g . The influence of the nuclear deformation

and of angular momentum projection on the charge density is investigated. The monopole transi-

tion amplitude has been calculated for ten nuclei. The results are compared with some previous

theoretical studies and with the available experimental data. Our results concerning angular mo-

mentum projection are consistent with those of previous microscopic calculations for the ground

state density. The calculations for the E0 transitions agree quite well with the experimental data.

Issues like how the shape transitions or shape coexistence are reflected in the ρ(E0) behavior are

also addressed.

PACS numbers: 21.60.Er, 21.10.Ky, 21.10.Re
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I. INTRODUCTION

One body transition density operators play an important role in the microscopic descrip-

tion of various properties showing up in nuclear systems. For example, the charge density

operator matrix elements corresponding to the ground state of a spherical system can be de-

termined, with high precision, in elastic electron scattering, which results in having precious

information about the spatial charge distribution. Similarly, the matrix elements between

the ground state and excited states within the ground band might provide information about

the nuclear shape [1]. Indeed, in a electron scattering experiment at large momentum trans-

fer the radial dependence of the charge distribution can be directly measured. Combining

this result with other information on electromagnetic interaction in the considered nuclei, in

the reference quoted above more refined statements on the deformed shapes could be made.

The structure of the spectra in deformed nuclei requires the use of a deformed mean

field. The final state describing an interacting many body system is a deformed state and,

therefore, its use for the description of the transition probabilities requires the projection of

the components with good angular momentum. In particular, in order to account for the

contribution of the tensorial components of the charge density, the many body ground state

built up with deformed single particle states must be projected over the angular momentum

[2]. There is no doubt that projection is of paramount importance for transitional and

deformed nuclei. However, the correction brought by projection to the results obtained in the

intrinsic frame depends on the observable under consideration [3, 4]. For example, averaging

a model Hamiltonian on an intrinsic ground state yields the system energy, while averaging

it on angular momentum projected states, a whole band of energy levels is obtained. For

instance, for the collective magnetic dipole state with a deformed single particle basis one

obtains K = 1 states which are abusively called 1+ states. To our knowledge there is no

rigorous proof that the admixture with the components of angular momentum 2 is negligible.

Another example we want to comment upon, is that of the rotational bands which are

considered to be a set of states characterized by the same quantum number K. However,

in the laboratory frame of reference, K is not a good quantum number and the meaning

of a K-state is actually a state with a dominant K-component. The effect of projection is

felt by the operator matrix elements. There are cases of operators whose matrix elements

are affected very little by the the angular momentum projection of the intrinsic states.
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The simplest case is the one when the operator is just a C-number constant. Its matrix

elements in the unprojected and projected states are equal to each other. At first glance,

that would suggest that other operators insensitive to projecting the angular momentum

from the intrinsic wave function, would be scalar operators. Of course, that is not true and

an example is the boson number operator in a phenomenological picture.

One issue of the present paper is to study the scalar part of the charge density operator

within the generalized coherent state model (GCSM). Thus, we shall consider the matrix

element of the charge density operator, truncated at its scalar term, on the unprojected

ground state and, alternatively, on the projected Jπ = 0+ state. We address also the question

of how different are these matrix elements from those corresponding to a high angular

momentum projected state. All matrix elements quoted above are studied as function of

nuclear deformation.

Another scalar operator which is studied here is the E0 transition operator. The monopole

transition is often used to characterize various states of angular momentum equal to zero.

Thus, in Ref.[5] two of us (P.S. and E.M.) expressed the monopole for the transition 0+
β →

0+
g strength in terms of the mixing coefficient of the two states characterized by different

deformations but lying close to each other in energy. In this way the transition strength

may provide the mixing coefficient for the two states. In 158Gd several 0+ states have been

seen in a (p,t) experiment [6]. These states have been microscopically interpreted within

a projected shell model and, alternatively, within the quasiparticle-phonon model [7]. The

authors of Ref.[7] calculated the E2 strength for the transition from the ground state to the

first 2+ state, the E0 strength for the transition from the excited 0+ states to the ground

state, and the two-nucleon spectroscopic amplitudes. The experimental strengths for E0

and E2 transitions are concentrated in one and two states respectively, while the theoretical

results [7] show a large fragmentation of the two transition strengths. The experimental

spectroscopic amplitudes indicate that two states are mainly populated, which contrasts

the theoretical result where the amplitude is fragmented among several states. From the

analysis of Ref.[7] it seems that the E0 strength is a signature only for one excited 0+ state,

as in fact was considered in Ref.[5].

The project mentioned above will be described according to the following plan. In Section

II a brief description of the Generalized Coherent State Model will be given. That will help us

to introduce the useful notations and to approach a self-contained presentation. The charge
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density expansion in terms of the quadrupole collective coordinates is given in Section III.

The monopole transition amplitude is treated in Section IV. The numerical applications are

given in Section V, while the final conclusions are summarized in Section VI.

II. THE GENERALIZED COHERENT STATE MODEL

The description of magnetic properties in nuclei has always been a central issue. The

reason is that the two systems of protons and neutrons respond differently when they interact

with an external electromagnetic field. Differences are due to the fact that by contrast to

neutrons, protons are charged particles, the proton and neutron magnetic moments are

different from each other and, finally, the proton and neutron numbers in a given nucleus

are, in general, different.

Many papers have been devoted to explaining various features of the collective dipole

mode called, conventionally, scissors mode. The name of the mode was suggested by Lo

Iudice and Palumbo who interpreted the dipole mode, within the Two Rotor Model [8], as

a scissors like oscillation of proton and neutron systems described by two axially symmetric

ellipsoids, respectively.

The Coherent State Model (CSM), proposed by Raduta et al. to describe the lowest three

collective interacting bands [9], was extended by including the isospin degrees of freedom

in order to account for the collective properties of the scissors mode [10]. This extension is

conventionally called “The Generalized Coherent State Model”(GCSM).

CSM starts with the construction of a restricted collective space, by projecting out the

components of good angular momentum from three orthogonal quadrupole boson states.

These states are chosen such that they are orthogonal before and after projection. One of

the three deformed states, the intrinsic ground state, is a coherent state of Glauber type

with respect to the zero component of the quadrupole boson, b†20, while the other two are

obtained by acting with elementary boson polynomials on the ground state. In choosing the

intrinsic excited states we take care that the projected states considered in the vibrational

limit have to provide the multi-phonon vibrational spectrum, while for the large deformation

regime their behavior coincides with that predicted by the liquid drop model.

In contrast to the CSM, which uses only one boson for the composite system of protons

and neutrons, within the GCSM the protons are described by quadrupole proton-like bosons,
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b†pµ, while the neutrons by quadrupole neutron-like bosons, b†nµ . Since one deals with two

quadrupole bosons instead of one, one expects to have a more flexible model and to find a

simpler solution satisfying the restrictions required by CSM. The restricted collective space

is defined by the states describing the three major bands, ground, beta and gamma, as well

as the band based on the isovector state 1+. Orthogonality conditions are satisfied by the

following 6 functions which generate by angular momentum projection, 6 rotational bands:

φ
(g)
JM = N

(g)
J P J

M0ψg, ψg = exp[(dpb
†
p0 + dnb

†
n0) − (dpbp0 + dnbn0)]|0〉,

φ
(β)
JM = N

(β)
J P J

M0Ωβψg,

φ
(γ)
JM = N

(γ)
J P J

M2(b
†
n2 − b†p2)ψg,

φ̃
(γ)
JM = Ñ

(γ)
J P J

M2(Ω
†
γ,p,2 + Ω†

γ,n,2)ψg,

φ
(1)
JM = N

(1)
J P J

M1(b
†
nb

†
p)11ψg,

φ̃
(1)
JM = Ñ

(1)
J P J

M1(b
†
n1 − b†p1)Ω

†
βψg. (2.1)

Here, the following notations have been used:

Ω†
γ,k,2 = (b†kb

†
k)22 + dk

√

2

7
b†k2, k = p, n,

Ω†
β = Ω†

p + Ω†
n − 2Ω†

pn,

Ω†
k = (b†kb

†
k)0 −

√

1

5
d2

k, k = p, n,

Ω†
pn = (b†pb

†
n)0 −

√

1

5
d2

p,

N̂pn =
∑

m

b†pmbnm, N̂np = (N̂pn)†, N̂k =
∑

m

b†kmbkm, k = p, n. (2.2)

Note that apriory we cannot select one of the two sets of states φ
(γ)
JM and φ̃

(γ)
JM for gamma

band, although one is symmetric and the other asymmetric against proton neutron permu-

tation. The same is true for the two isovector candidates for the dipole states. In Ref.[11],

results obtained by using alternatively a symmetric and an asymmetric structure for the

gamma band states were presented. Therein it was shown that the asymmetric structure for

the gamma band does not conflict any of the available data. By contrary, considering for

the gamma states an asymmetric structure and fitting the model Hamiltonian coefficients

in the manner described in Ref.[11], a better description for the beta band energies is ob-

tained. Moreover, in that situation the description of the E2 transition becomes technically
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very simple. For these reasons, here we make the option for a proton neutron asymmetric

gamma band.

All calculations performed so far considered equal deformations for protons and neutrons.

The deformation parameter for the composite system is:

d =
√

2dp =
√

2dn. (2.3)

The factors N involved in the expressions of wave functions are normalization constants

calculated in terms of some overlap integrals.

We seek now an effective Hamiltonian for which the projected states (2.1) are, at least in a

good approximation, eigenstates in the restricted collective space. The simplest Hamiltonian

fulfilling this condition is:

H = A1(N̂p + N̂n) + A2(N̂pn + N̂np) +

√
5

2
(A1 + A2)(Ω

†
pn + Ωnp)

+A3(Ω
†
pΩn + Ω†

nΩp − 2Ω†
pnΩnp) + A4Ĵ

2. (2.4)

The Hamiltonian given by Eq.(2.4) has only one off-diagonal matrix element in the basis

(2.1). That is 〈φβ
JM |H|φ̃(γ)

JM〉. However, our calculations show that this affects the energies

of β and γ̃ bands by an amount of a few keV. Therefore, the excitation energies of the six

bands are in a very good approximation given by the diagonal element:

E
(k)
J = 〈φ(k)

JM |H|φ(k)
JM〉 − 〈φ(g)

00 |H|φ(g)
00 〉, k = g, β, γ, 1, γ̃, 1̃. (2.5)

It can be easily checked that the model Hamiltonian does not commute with the components

of the F̂ spin operator:

F̂0 =
1

2
(N̂p − N̂n), F̂+ = N̂pn, F̂− = N̂np. (2.6)

Hence, the eigenstates of H are F0 mixed states. However, the expectation values of the

F0 operator on the projected model states are equal to zero. This is caused by the fact that

the proton and neutron deformations are considered to be equal. In this case the states are

of definite parity, with respect to the proton-neutron permutation, which is consistent with

the structure of the model Hamiltonian which is invariant with respect to such a symmetry

transformation. To conclude, by contrast to the IBA2 Hamiltonian, the GCSM Hamiltonian

is not F̂ spin invariant. Another difference to the IBA2, the most essential one, is that the

GCSM Hamiltonian does not commute with the boson number operators. Due to this feature

6



the coherent state approach proves to be the most adequate one to treat the Hamiltonian

in Eq.(2.4). The asymptotic behavior of the magnetic state 1+, derived in Ref.[10], shows

clearly that the phenomenological description of two liquid drops and two rigid rotors are

just particular cases of GCSM, defined by specific restrictions.

The GCSM seems to be the only phenomenological model which treats simultaneously

the M1 and E2 properties. Indeed, in Refs.[11, 12] the ground, beta and gamma bands are

considered together with a Kπ = 1+ band built on the top of the scissor mode 1+. By

contrast to the other phenomenological and microscopic models, which treat the scissors

mode in the intrinsic reference frame, here one deals with states of good angular momentum

and, therefore, there is no need to restore the rotational symmetry. As shown in Ref.[13], the

GCSM provides for the total M1 strength an expression which is proportional to the nuclear

deformation squared. Consequently, the M1 strength of 1+ and the B(E2) value for 2+

are proportional to each other, although the first quantity is determined by the convection

current while the second one by the static charge distribution.

One weak point of most phenomenological models is that they use expressions for tran-

sition operators not consistent with the structure of the model Hamiltonian. Thus, the

transition probabilities are influenced by the chosen Hamiltonian only through the wave

functions. By contradistinction, in Refs. [11, 12] the E2 transition operator, as well as the

M1 form-factor are derived analytically by using the equation of motion of the collective

coordinates determined by the model Hamiltonian. In this way a consistent description of

electric and magnetic properties of many nuclei was attained.

Here we complete the GCSM achievements by considering scalar operators such as those

involved in the ground state charge density and the monopole transitions, ρ(E0). As we

have already mentioned we address issues like, how sensitive are these quantities to the

projection operation and also what is the influence of the nuclear deformation [1].

[1] Note that in our previous publications the total deformation was denoted by ρ. Here ρ stands for the

charge density while the nuclear deformation for the composite system is denoted by d.
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III. THE CHARGE DENSITY IN THE LIQUID DROP MODEL

Suppose that the nuclear charge is distributed uniformly inside the nuclear surface de-

scribed by: α2µ:

R(θ, ϕ) = R0

(

1 +
∑

λ=0,2;µ

α∗
λµYλµ

)

≡ R0 + ∆R, (3.1)

with αλµ collective coordinates to be quantized later on. The charge density has the expres-

sion:

ρ(r, θ, ϕ) = ρ0H [R(θ, ϕ) − r] , (3.2)

where H denotes the Heaviside function while ρ0 is the constant density corresponding to

a sphere of radius R0 = 1.2A1/3fm. Expanding the charge density around the surface

corresponding to vanishing quadrupole coordinates one obtains:

ρ(r, θ, ϕ) = ρ0

[

H(R0 − r) + ∆Rδ(R0 − r) − 1

2
(∆R)2 δ′(R0 − r) + ...

]

. (3.3)

In momentum space the charge density can be written as a sum of tensor operators of various

ranks. For example the term of rank λ and projection µ reads:

ρλµ(q) = C
∫

r2jλ(qr)

(
∫

ρ(r, θ, ϕ)YλµdΩ

)

dr. (3.4)

Here jλ is the spherical Bessel function of first kind. The transfer momentum, during the

scattering process with a charged particle, is denoted by q. C is a normalization factor which

might be chosen such that for q = 0 the density ρ0 is obtained. Here we choose C = 1, which

means that in momentum space we deal with the total charge instead of charge density.

Let us consider first the scalar term involved in the expression of the charge density. Tak-

ing into account the fact that the volume conservation restriction yields a relation between

the monopole and quadrupole coordinates,

α00 = − 1√
4π

∑

µ

|α2µ|2, (3.5)

one obtains:

ρ00(q) =
3Ze

qR0
j1(qR0) −

3

8π
ZeqR0j1(qR0)

∑

µ

|α2µ|2. (3.6)

Quantizing the quadrupole collective coordinate we can define the transition monopole op-

erator, ρ̂00. The elastic monopole form-factor is obtained as the expectation value of ρ̂00 on
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the ground state wave function in the collective space. Here we consider alternatively the

unprojected ground state and the projected states describing the J-members of the ground

band. In order to calculate the expectation values of the monopole charge density opera-

tor in the states mentioned above, we have to express the coordinates in terms of boson

operators through the canonical transformation:

α̂2µ =
1

kp

√
2

(

b†pµ + (−)µbp−µ

)

,

π2µ =
ikp√

2

(

(−)µb†p−µ − bpµ

)

. (3.7)

The transformation relating the coordinates and conjugate momenta with the boson oper-

ators b†pµ, bpµ, is determined up to a multiplicative constant, kp. This is at our disposal and

will be fixed in several alternative ways described along this chapter. The results for the

average values are:

〈ψg|
∑

µ

|α̂2µ|2|ψg〉 =
1

k2
p

(

d2 +
5

2

)

,

〈φg
JM |

∑

µ

|α̂2µ|2|φg
JM〉 =

1

k2
p

(

d2

2
+

5

2

)

+
d2

2k2
p

I
(1)
J (d2)

I
(0)
J (d2)

, (3.8)

with

I
(0)
J (y) =

∫ 1

0

PJ(x)eyP2(x)dx,

I
(1)
J (y) =

∂I
(0)
J (y)

∂y
,

y = d2, d =
√

2dp. (3.9)

In the above expressions PJ(x) denotes the Legendre polynomial of rank J . Denoting by:

A(q) =
3Ze

qR0
j1(qR0),

C(q) = − 3

8π
ZeqR0j1(qR0), (3.10)

the matrix elements of the charge operator read:

〈ψg|ρ̂00(q)|ψg〉 = A(q) +
1

k2
p

(

d2 +
5

2

)

C(q), (3.11)

〈φ(g)
JM |ρ̂00(q)|φ(g)

JM〉 = A(q) + C(q)

[

1

2k2
p

(

d2 + 5
)

+
d2

2k2
p

I
(1)
J (d2)

I
(0)
J (d2)

]

. (3.12)
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These expressions correspond to Ze times the elastic form factor in the intrinsic and labo-

ratory frame, respectively. we refer to them as total charge Q. The above defined integrals

(3.9) have been studied analytically in Refs.[13–16]. From the results obtained in the quoted

papers one easily obtains simple expressions for the extreme regimes of near spherical and

rotational behaviors. The results for the case of J = 0 state are:

〈φ(g)
00 |
∑

µ

|α̂2µ|2|φ(g)
00 〉 =

1

2k2
p

[

d4

5
+ d2 + 5

]

, d = small (d ≤ 1).

〈φ(g)
00 |
∑

µ

|α̂2µ|2|φ(g)
00 〉 =

1

k2
p

[

d2 + 2 − 2

9

1

d2

]

, d = large(d ≥ 3). (3.13)

We recall that for well deformed nuclei d is typically greater than 3. In the low momentum

regime (qR0 << 1), the expression (3.6) is much simplified:

ρ00(q) = Ze

[

1 − 1

10
(qR0)

2 − 1

8π
(qR0)

2
∑

µ

|α2µ|2
]

. (3.14)

Let us turn our attention to the quadrupole component of the charge density. Following the

same procedure as in the case of the monopole component, we obtain:

ρ2µ =

∫

r2j2(qr)

[
∫

ρ(r, θ, ϕ)Y2µdΩ

]

dr = ρ0R
3
0j2(qR0)α2µ. (3.15)

Under the restriction qR0 << 1, the result is:

ρ2µ =
3Ze

40π
(qR0)

2 α2µ. (3.16)

Concluding, in the second order expansion in the surface coordinates, the charge density is:

ρµ(q) =
3Ze

qR0
j1(qR0) −

3

8π
Ze(qR0)j1(qR0)

∑

µ

|α2µ|2

+
3Ze

4π
j2(qR0)α2µ. (3.17)

Thus, ρ is expressed as a second order polynomial in α:

ρµ(q) = A(q) +B(q)α2µ + C(q)
∑

µ

|α2µ|2, (3.18)

with the coefficients depending on the transferred momentum, defined by Eq. (3.10) and

B(q) =
3Ze

4π
j2(qR0). (3.19)
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In the intrinsic reference frame the expression becomes:

ρµ(q) = A(q) +B(q)

(

δµ,0β cos γ + (δµ,2 + δµ,−2)
β sin γ√

2

)

+ C(q)β2. (3.20)

We notice that the surface of constant charge density is of an ellipsoidal form which is

consistent with the liquid drop shape. Coupling a particle to such a core system, the single

particle motion would be determined by a quadrupole deformed mean field. In the boson

representation, defined above, one obtains:

ρ̂µ(q) = A(q)+
5C(q)

2k2
p

+
B(q)

kp

√
2

(

b†pµ + (−)µbp,−µ

)

+
C(q)

k2
p

N̂p+
C(q)

2k2
p

(

b†pµb
†
p,−µ + bp,−µbpµ

)

(−)µ,

(3.21)

where N̂p denotes the proton boson number operator. The boson term
(

b†pµb
†
p−µ + bp−µbpµ

)

(−)µ has diagonal matrix elements in ground and beta bands

much larger than the off-diagonal one. Moreover, the matrix elements do not depend on the

angular momenta of the states involved. For this reason we shall replace it by its average

value, which is equal to 2d2
p. Under these circumstances the zero component of the charge

density operator becomes:

ρ̂0(q) = T +
B

kp

√
2

(

b†p0 + bp0

)

+
C

k2
p

N̂p, (3.22)

where

T = A +
C

2k2
p

(d2 + 5). (3.23)

Acting with this boson operator on the unprojected ground state, one obtains:

ρ̂0(q)ψg =

[(

T +
B√
2kp

dp

)

+

(

B√
2kp

+
Cdp

k2
p

)

b†p0

]

ψg. (3.24)

We recall the fact that the canonical transformation relating the quadrupole coordinate and

conjugate momenta with the boson operators is determined up to a multiplicative constant

which was denoted by kp. Taking for this constant the value

kp = −C
B
d, (3.25)

the unprojected ground state becomes eigenfunction for the boson operator ρ̂:

ρ̂0(q)ψg =

(

A+
B2

2C

5

d2

)

ψg. (3.26)
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Considering the low momentum expansion for the coefficients A,B and C, this equation

becomes:

ρ̂0(q)ψg = Ze

[

1 − (qR0)
2

10

(

1 +
1

2πd2

)

]

ψg. (3.27)

Under these circumstances the parameter kp has a very simple expression:

kp =
5

2
d. (3.28)

Alternatively, the canonicity parameter could be determined in the following way. The

stability condition for the average value of ρ̂ on the unprojected ground state against the

variation of d provides the following equation for the deformation parameter d:

2Cd+ kpB = 0. (3.29)

However, in our previous investigations d has been fixed by fitting some energies in the

ground band. We could keep those values for d and use Eq. (3.29) to determine kp. We

remark that the value of kp obtained in this way is twice as much as the one given by

Eq.(3.25). In this case the low momentum regime provides kp = 5d.

At this stage it is worth recalling the way the canonicity parameter kp was fixed within

the GCSM model when the M1 and E2 properties were investigated. In the asymptotic

regime, i.e. d large, the ground band energies can be expressed as [11]:

Eg
J =

[

A1 + A2

6d2
+ A4

]

J(J + 1). (3.30)

Equating this expression with that given by the liquid drop model, one finds an equation

relating the nuclear deformation with the parameter ρ:

β2
0 =

π

3.24

~
2

MN

A−5/3

[

A1 + A2

6d2
+ A4

]−1

. (3.31)

Identifying this deformation with the average value of the second order invariant in α’s

coordinates and subtracting the zero point motion contribution, one finds:

kp =
d

β0
. (3.32)

In Table I, the values of β−1
0 are compared with those of kp/d given by Eq. (3.25). We notice

that the two sets of data are quite close to each other.
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152Gd 154Gd 156Gd 158Gd 160Gd 154Sm 164Dy 168Er 174Yb 232Th 238U

β−1
0 1.471 1.320 1.176 1.158 1.146 1.129 1.140 1.242 1.261 1.247 1.142

kp/d 1.406 1.393 1.381 1.368 1.355 1.394 1.329 1.303 1.264 0.864 0.820

TABLE I: The values for the kp/d ratio calculated in two alternative ways: a) according to Eq.

(3.30), as in Ref. [11]. In this case the ratio is equal to β−1
0 , given by Eq. (3.31), and the resulting

values are given in the first row; b) the ratio is given by Eq. (3.25) for a transfer momentum

q = 0.54fm−1. The corresponding values are listed in the second row.

IV. ELECTRIC MONOPOLE TRANSITION

The scattering process where the colliding particle may be inside the target nucleus

involves longitudinal momenta associated to the Coulomb field [17]:

M(Cλ, µ) =

∫

ρ(r)fλYλµ(θ, ϕ)dτ, (4.1)

where fλ is a function depending on the radial motion of the particle inside nucleus. If

the monopole Coulomb momentum is expanded in powers of r, then the lowest order term

giving rise to an intrinsic transition is proportional to r2. Therefore, the monopole operator

responsible for the transition with λπ = 0+ is:

m(E0) =

∫

ρ(r)r2dτ, (4.2)

where ρ denotes the electric charge density. Expanding ρ in terms of the liquid drop coor-

dinates α2µ, we obtain:

m(E0) = ρ0R
5
0

(

4π

5
+
√

4πα00 + 2
∑

µ

|α2µ|2
)

. (4.3)

Using the volume conservation condition for the monopole coordinate α00, the final result

for the monopole moment is:

m(E0) =
3

5
ZeR2

0

[

1 +
5

4π

∑

µ

|α2µ|2
]

. (4.4)

The matrix element of this operator gives the amplitude for the transition probability be-

tween the involved states. In particular, for the transition J+
β → J+

g we obtain:

ρ(E0) ≡ 〈φ(β)
JM |m(E0)|φ(g)

JM〉 =
3
√

5ZeR2
0

8
√

2πk2
p

. (4.5)
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Note that the amplitude for the monopole transition is not depending on the state angular

momentum. Moreover, the same expression is obtained if the projected states are replaced

by the unprojected ground and beta states, respectively.

In nuclei which exhibit shape coexistence, calculations of E0 transitions could provide

a test for the mixing amplitudes of states with different deformations, defining the ground

state [5]. For these cases, ρ(E0) can be expressed in terms of the mixing coefficient λ and

the difference between the r.m.s. associated to the states involved in the E0 transition, i.e.

the ground state 0+
g and the beta state 0+

β .

In what follows we shall show how the shape coexistence may be investigated within the

GCSM approach. First we show that the monopole transition can be expressed in terms of

r.m.s. radii of beta and ground bands. Indeed, using Eq.(4.4) for m(E0) the r.m.s radii of

the states from ground and beta bands are defined as:

〈r2〉gJ =
3

5
ZeR2

0

[

1 +
5

4π
〈φ(g)

JM |
∑

µ

|α2µ|2|φ(g)
JM〉

]

,

〈r2〉βJ =
3

5
ZeR2

0

[

1 +
5

4π
〈φ(β)

JM |
∑

µ

|α2µ|2|φ(β)
JM〉

]

, (4.6)

Note that dividing the above expressions by Z, one obtains the charge radii in the states of

angular momentum J . Both matrix elements involved in Eq.(4.6) can be expressed by the

expectation value of the boson number operator N̂ , in the state J+ from the ground band:

〈r2〉gJ =
3

5
ZeR2

0

[

1 +
5

8πk2
p

(

d2 + 5 + 2〈φ(g)
JM |N̂ |φ(g)

JM〉
)

]

,

〈r2〉βJ =
3

5
ZeR2

0

[

1 +
5

8πk2
p

(

d2 + 7 + 2〈φ(g)
JM |N̂ |φ(g)

JM〉
)

]

. (4.7)

From these relations we obtain that the difference of the beta and the ground band r.m.s.

does not depend on the angular momentum J . Moreover, the mentioned difference is related

to ρ(E0) by a very simple equation:

ρ(E0) =

√

5

8

(

〈r2〉β0 − 〈r2〉g0
)

. (4.8)

In Ref. [10] the projected states used by GCSM have been studied in the intrinsic reference

frame and the result was that each state is a superposition of components with different

quantum numbers K. However, the prevailing components have K = 0 for ground and beta
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bands and K = 2 for gamma band. Thus, the model is quite flexible for studying the band

mixing. The question is whether the present formalism can be extended for studying the

interaction between states of the same angular momenta and K. Indeed, GCSM can be used

to describe the collective properties of both gamma stable, where E0+

β
< E2+

γ
, and gamma

unstable nuclei when the ordering of the had states of beta and gamma bands is opposite

to the one mentioned above. For the gamma stable nuclei there are cases where the state

0+
β is low in energy. An attempting interpretation for such a situation assumes that this

state belongs to the second well of the potential energy in the β variable, while the ground

state is located in the well with a less deformed minimum. In what follows we shall show

that our model is able to account for this kind of shape coexistence. Indeed, if the potential

barrier is not high one can expect that the system is tunneling from one well to another and,

therefore, is reasonable to assume that the real ground state is in fact a linear combination of

the states 0+
g and 0+

β . To simplify the notations hereafter the projected states with angular

momentum zero from the ground and beta bands are denoted by |0+
g 〉 and |0+

β 〉, respectively.

Adding to the model Hamiltonian a term which couples the states from ground and beta

bands, then the new Hamiltonian yields new eigenstates with angular momentum equal to

zero:

|0〉I =
√
λ|0+

g 〉 +
√

1 − λ|0+
β 〉,

|0〉II =
√

1 − λ|0+
g 〉 −

√
λ|0+

β 〉. (4.9)

Using the above results one can calculate the amplitude of the E0 transition, relating the

new states, i.e. 0II → 0I . The final results is:

ρI,II(E0) =

[

−
√

λ(1 − λ) + (1 − 2λ)

√

5

8

]

(

〈r2〉β0 − 〈r2〉g0
)

. (4.10)

Replacing ρII,I(E0) by the corresponding experimental value, the relation (4.10) becomes

an equation for the mixing coefficient λ ,

−
√

8λ(1 − λ)

5
+ (1 − 2λ) = F. (4.11)

Here F stands for the ratio between the experimental value for ρII,I(E0) and the calculated

value of ρ(E0) given by Eq.(4.8):

F =
ρexp

II,I(E0)

ρ(E0)
. (4.12)
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Concluding, due to Eq.(4.10) the GCSM can provide information about the shape coexis-

tence. On the other hand mixing states corresponding to different shapes may be used to

improve the description of the E0 transitions.

0.0 0.4 0.8 1.2 1.6 2.0
1.5

2.0

2.5

3.0

3.5

k p
/d

qR0

FIG. 1: The ratio kp/d with kp, given by Eq.(3.25), is plotted as function of qR0. The curve

corresponds to a deformation parameter d = 3.2195 which, according to Ref.[11], characterizes the

isotope 156Gd.
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b)

Q
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]

d

 J=0
 J=20
 unprojected

a)

qR0=0.2

FIG. 2: Color online. The total charge of 156Gd is plotted as function of the nuclear deformation

for qR0 = 0.2 (panel a)) and qR0 = 1.2 (panel b)). The results for unprojected ground state cannot

be distinguished from those corresponding to the projected J = 0 state. Moreover, for d > 1 they

are close to the nuclear charge Ze=64e if qR0 = 0.2. For qR0 = 1.2, the charge for J = 20 deviates

from that corresponding to J = 0 and unprojected cases if d < 3. The three curves converge to a

common value which is close to 55e, at the end of interval. These calculations correspond to the

value of kp given by Eq.(3.25). The matrix elements for unprojected and projected states have

been calculated with Eqs.(3.11), (3.12), respectively. For the deformation parameter d = 3.2195

predicted in Ref.[11] for 156Gd, the projection has no effect on the charge density.
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FIG. 3: Color online. The total charges of 154Gd in the ground band states with J = 0, 2, 4, 20,

respectively, are plotted as function of the nuclear deformation for qR0 = 0.2 (panel a)) and

qR0 = 1.2 (panel b)). The results for unprojected ground state are almost the same as for the

projected J = 0 state and, therefore, are not plotted here. These calculations correspond to kp

given by Eq.(3.25). The charge for J = 20 deviates from that corresponding to J = 0, 2, 4 if d < 3.

For d = 3.0545 corresponding to the chosen nucleus, the charges for the considered states are the

same. However, a deviation of about ten units from the total charge is to be noticed for qR0 = 1.2.
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FIG. 4: Color online. The ratio between the total charge Q and the term A(q) in Eq.(3.11,12)

is plotted as a function of qR0 for d = 0.8. In the upper panel the cases of unprojected ground

state and of J = 0 projected states are considered. In the bottom panel the case of projected

J = 20 state is presented. In both panels the parameter kp is calculated by means of Eq.(3.25).

The nuclear radius R0 corresponds to 156Gd.
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FIG. 5: Color online. The same as in Fig. 4 but for d=3.2195.
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FIG. 6: Color online. The total charges of 156Gd in the unprojected ground state and the projected

ground band states with J=0,2,4,20 respectively, are plotted as function of the nuclear deformation

parameter d. Here the charge density expansion includes also the quadrupole term. The transfer

momentum was taken as given by the equation: qR0 = 1.2.
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V. NUMERICAL RESULTS

Our numerical studies refer to the scalar term of the charge density as well as to the

monopole transition from 0+
β → 0+

g . In both cases we intend to draw a definite conclusion

about the effect of projection on these quantities. Also, we want to see how the projection

effect depends on the nuclear deformation.

As we have already seen in the previous Sections, the matrix elements of the charge

density and monopole transition operator depend on the parameter kp. This parameter is

proportional to the deformation parameter d. In Fig.1 we represent kp/d as a function of the

product qR0, where R0 stands for the nuclear radius. In the interval (0, 2) for qR0, the ratio

is slowly decreasing from 2.5 to 2.2. Therefore, the value 2.5 obtained for kp/d in the low

momentum regime could be considered as a reasonable approximation for the whole interval

considered in Fig. 1.

The matrix elements of the scalar part of the charge operator in the intrinsic and labora-

tory frame are given by Eqs. (3.11) and (3.12), respectively. The latter gives the q dependent

charge of the system in the state J+ of the ground band given by angular momentum pro-

jected state φ
(g)
JM , while the former expresses the q dependent charge of the intrinsic ground

state. In Fig. 2 the charge is represented as function of the deformation parameter d for

qR0 = 0.2 and qR0 = 1.2 respectively. Calculations were made with R0 corresponding to

156Gd. For both qR0 values the charges of the system in the projected J = 0 state and in the

unprojected ground state are indistinguishable. As one increases the angular momentum,

the effect of projection is larger, particularly at smaller d values. The projection effect is

vanishing for d ≥ 2. In the limit of d → 0, the matrix elements (3.12) exhibit the behavior

given by:

〈φ(g)
JM |ρ̂|φ(g)

JM〉 = A(q) + C(q) +
J

4d2

B2(q)

C(q)
. (5.1)

Due to this feature, for small deformations a large fall down of the curves corresponding to

J = 20 in Figs. 2, is obtained. For d > 2 the charges corresponding to the unprojected,

the J = 0 and the J = 20 projected states, are about the same. The common value of Q

is very close to the value 64, which is the nuclear charge of 156Gd. Also, the deformation

parameter of 156Gd, determined in Ref.[11] to be 3.2195, lies on the saturation plateau.

Actually this feature confirms that for deformed systems the strong coupling limit holds.

The fact that for qR0 = 0.2 the charge is close to the value 64, corresponds to the well
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known fact that the form factor is close to 1 when q ≪ 1/R0, and it is consistent with

the assumption of fast convergence of the expansion of the charge density in terms of the

quadrupole collective coordinates. Similar features are seen in Fig.3 where the charge is

calculated for R0 corresponding to 154Gd. Here we added the results for J = 2 and J = 4

but we omitted those for the unprojected ground state since they are practically the same

as for the projected ground state

Concluding, the projection operation does not affect the scalar q dependent charge of

deformed systems in the ground state. A screening of charge for small deformation and

large angular momentum is noticed. According to Fig. 2 b), for large qR0 the screening

shows up also for unprojected as well as for projected ground state. Moreover, for small

deformation the deviation of the charge in the state with J = 20 is substantially different

from that corresponding to the ground state. Similar features are seen in Fig. 3 b) for 154Gd.

In contrast to Ref.[2], here we deal with that part of the charge density which affects

the elastic scattering cross section. In the mentioned reference, the multipole λ terms of

the charge density are essential in determining the ground to λ+
g excitation. However, these

terms bring contributions also to the J+ → J+ matrix elements. Indeed, considering the full

expansion ρ0 given by Eq.(3.18), the matrix elements for unprojected and projected states

respectively, become:

〈ψg|ρ0(q)|ψg〉 = A(q) +
d

kp

B(q) +
1

k2
p

(

d2 +
5

2

)

C(q), (5.2)

〈φ(g)
JJ |ρ̂00(q)|φ(g)

JJ〉 = A(q) +
d

kp
B(q)CJ 2 J

0 0 0 C
J 2 J
J 0 J + C(q)

[

1

2k2
p

(

d2 + 5
)

+
d2

2k2
p

I
(1)
J (d2)

I
(0)
J (d2)

]

.

These matrix elements are plotted in Fig. 6 as functions of d. From this figure we see that

the projection brings a correction of about 1% to the total charge in the states 0+, 2+ and

4+, which is consistent with the microscopic calculations of Ref.[2]. In the quoted reference

a correction of about 15% is noticed in the transition 0+ → 6+. Such a big correction is

expected to show up also in our formalism, if the multipole of rank 6 would be considered

in the charge density expansion.

We note from Eqs.(3.11,12) that the total charge is determined by summing two distinct

terms, one depending exclusively on the transfer momentum, that is denoted by A(q), and

a term which is a product of two factors depending on q and d, respectively. One may ask

23



ρ(E0)[e.fm2]

Th.,kp = 5
2d Exp. Th., kp = 5d Th., kp from ref. [11]

152Gd 9.105 10.29± 1.09 d) 2.276 26.284

154Gd 8.574 11.749± 0.101a) 2.143 30.765

12.34 ±1.13d)

156Gd 7.784 7.469± 0.071a) 1.946 35.170

8.55 ± 0.96 d)

158Gd 6.286 5.487± 0.465b) 1.571 29.282

7.87 ± 1.25 d)

160Gd 5.606 1.401 26.688

154Sm 7.116 12.818±2.551e) 1.779 34.912

164Dy 5.804 1.451 27.341

168Er 5.820 1.24± 0.51b,f) 1.455 23.567

174Yb 6.083 <1.85 d) 1.521 23.906

232Th 11.731 13.646± 4.88b) 2.933 47.142

238U 11.228 5.502± 0.05c) 2.807 53.847

23.2± 2.262c)

TABLE II: The monopole transition amplitudes predicted by Eq.(4.5) are compared with the

experimental data taken from Refs.[18]a), [7, 19] b), [20]f), [21]c), [22]d) and [23]e). Eq.(4.5) has

been used alternatively for kp for which the charge density operator admits the unprojected ground

state as an eigenfunction (first column) and for kp which were used in Ref.[11] to describe the M1

and E2 properties of the nuclei listed in this Table

.

oneself what is the relative contribution of these terms to the total charge for non-vanishing q

values. We addressed this question by studying the ratios Q/A(q) as function of qR0 for two

values of the deformation parameter d. Thus, from Fig. 4 we see that the term depending

on deformation may affect the charge of the ground state at most by 15% for qR0 = 2. In

the state with J=20 and the quoted value of qR0 the deformation relative contribution is of

40%. For large nuclear deformation, d=3.2195, the relative contribution of the deformation

is ranging from zero to 5% when qR0 is increased from 0 to 2.
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FIG. 7: Color online. The predicted values of ρ(E0) for some even isotopes of Gd, are represented

as function of A2/3. For comparison, the experimental results are also given.

Now let us focus our attention on the monopole transition 0+
β → 0+

g . The transition

amplitude was calculated with Eq.(4.5). We notice that the monopole transition operator

m(E0) has an expression identical with that supplied by the liquid drop model. How-

ever, the wave functions are specific to GCSM and they may describe the spherical and

deformed nuclei in a unified way. Another feature which is specific to our description is

the canonicity parameter kp defining the equations which relate the coordinates and conju-

gate momenta to the boson operators. Within the liquid drop model in its original form the

canonicity parameter is chosen such that the boson Hamiltonian does not contain a term like
∑

µ(−)µ
(

b†2µb
†
2−µ + b2−µb2µ

)

. This idea is not applicable to GCSM, since the starting Hamil-

tonian is anharmonic and, moreover, is considered in the boson picture. Here we present

the results obtained by fixing kp in three different ways: a) From the minimum condition

for the charge density and the low momentum transfer restriction. This provides a simple
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expression for kp(= 5d); b) Requiring that the unprojected ground state is an eigenstate of

the scalar part of the charge density operator. Note the fact that this condition is fulfilled

automatically in microscopic models where a many body Slater determinant is eigenstate

of the charge density operator. For a low momentum regime, the mentioned condition pro-

vides kp = 5
2
d ; c) As in Ref.[11] i.e., kp = d

β0
, with β0 fixed from the equation obtained

by equating the expressions of the asymptotic energies in the ground band and that of the

liquid drop model in the large deformation regime. The results of our calculations obtained

with the three versions of fixing kp are given in Table II. The predictions are compared with

the available experimental data for eleven nuclei. Notice that the data from the quoted

references have been transformed by multiplying them with the factor R2
0.

By inspection of Table II, we notice that except for the cases of 168Er and 174Yb all the

other data are reasonably well described by choosing kp = 5
2
d. For 168Er and 174Yb, it seems

that the version which provides kp = 5d yields a good agreement with the corresponding

experimental data. Using the parameter kp from Ref.[11], which corresponds to a consis-

tent description of the E2 and M1 properties, one obtains ρ(E0) values which exceed the

experimental data by a factor ranging from 2.6 to 5.

These discrepancies could be attributed to the fact that the collective coordinates respond

differently to the interaction with longitudinal and transverse components of the electromag-

netic external field, respectively. The former components may determine a E0 excitation

while the latter one can excite the nuclei through, for example, a E2 transition.

The observation that different kappa’s are needed to reproduce E2 and E0 properties

reflects the fact that these are independent quantities. The E0 properties are not determined

by the E2 ones and this perhaps suggests the necessity of introducing the monopole bosons.

According to Table I the values of kp provided by the procedure labeled by c) are obtain-

able for a large transfer momentum, while those defined by a) and b) are obtained under

the low momentum restriction. The procedure c) might be suitable to fix the strength for

the quadrupole component of the charge density operator but not for the scalar compo-

nent strength. An essential point in understanding these discrepancies is the fact that in

Ref.[11] the quadrupole transition operator involves also the polarization effects of the neu-

tron systems. Therefore the E2 transition is achieved by a combined contribution of proton

and neutron systems. Here only the contribution of protons is considered and therefore the

method c) of fixing kp is not adequate.
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We would like to mention that the model Hamiltonian used by GCSM (2.4) is a fourth

order boson Hamiltonian, while the charge density expansion in collective quadrupole coor-

dinates is truncated to second order. This lack of consistency might be another source for

the discrepancy between the values of kp obtained here and those given in Ref.[11].

Note that the set of nuclei considered in the present paper involves a chain of even

isotopes of Gd. Along this chain the shape undertakes a transition from a spherical to a

deformed one. The critical point of this transition is met in 154Gd [25]. In the group theory

language the transition takes place between nuclei with SU(5) symmetry and nuclei having

SU(3) symmetry. Recently it has been suggested that the critical point corresponds to a new

symmetry called X(5) symmetry [26]. This shape transition has been also studied within

the GCSM formalism in ref.[27]. Here we address the question whether this shape transition

is reflected in a specific manner by the behavior of the E0 transition amplitude. To explore

this feature we plotted the predicted as well as the experimental ρ(E0) values as function of

A2/3, in Fig.6. Note that the experimental results exhibit, indeed, a maximum for A=154.

The theoretical results have been interpolated by a fourth order polynomial which presents

an inflexion point for the critical value of A. Thus, we may say that the shape transition

is reflected by the fact that an inflexion point shows up in the behavior of the transition

amplitude. The bump seen at 154Gd cannot be obtained in the present model since kp is

depending linearly on the deformation parameter which is varying smoothly with the atomic

number. Actually it is hard to say whether the behavior of the energy ratio E+
4 /E

+
2 is the

most suited criterion for deciding whether a phase transition is taking place or not. In the Gd

case the critical nucleus 154Gd has a static quadrupole deformation of about 0.25 while for

the preceding isotope β2 ≈ 0.19. Therefore the fact that ρ(E0) for 154Gd is larger than the

values corresponding to the neighboring isotopes might be determined not by the transition

from a spherical to deformed shapes, which is not the case as we mentioned before, but by

another cause. As a matter of fact in Ref.[27], the analysis of the Hamiltonian structure

coefficients as function of the atomic mass suggests that a phase transition is possible to

take place in 152Gd and not 154Gd. The bump which is seen for 154Gd could be explained by

adding the neutron contribution to the E0 transitions. Indeed the data from the last column

of Table II, which correspond to the method c) of fixing kp, indicate a bump for 156Gd.

Concerning the model capacity of describing the nuclear shape coexistence, we have

derived a compact formula relating the E0 transition amplitude with the mixing coefficient
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of the states describing the nuclear system with different shapes. Indeed, calculating the

average value of the static quadrupole moment with the projected state 0+
β , one finds a value

which is different from that corresponding to 0+
g . Therefore the strength of the E0 transition

may give information about the structure of the states 0+
II , namely whether it involves

the component 0+
g . As mentioned before, mixing states corresponding to different shapes

may be used to improve the description of the E0 transitions. In this context we invoke

some microscopic calculations for nuclear charge radii and electric quadrupole moments [28]

which predict for the even isotopes of Gd oblate equilibrium shapes whose energies are by

about 1.5 to 5 MeV larger than the prolate shape energies. The question we would like to

address is how large should be the mixing amplitude of the states 0+
g and 0+

β , in order that

the calculated transition amplitude ρI,II be equal to the corresponding experimental data ?

Solving Eq. (4.11) for 152,156,158Gd, one finds, for λ, the values: (0.365; 0.03), (0.627;0.002),

(0.737;0.016), respectively. As for 154Gd, Eq.(4.11) has no real solution. Thus, there is no

mixing between 0+
g and 0+

β in the critical nucleus 154Gd.

Several authors consider 74Kr as an example of isotope exhibiting shape coexistence. A

microscopic calculations using Skyrme (Sk3) and a modified version of Skyrme interaction

(SG2), due to Van Giai and Sagawa [29], indicate two equilibrium shapes with close energies

[5]. Indeed, Sk3 calculation predicts a prolate ground state and an oblate state with an

excitation energy of about 0.5 MeV. On the other hand the use of SG2 interaction leads

to an oblate ground state and a prolate excited equilibrium minimum with the energy of

about 1MeV. Although the prolate deformation is quite large (≈ 0.389) the first excited

2+ is relatively high (= 423.96keV ). The deformation parameter which provides a good

description of the ground band energies is d = 1.9. This deformation value determines a

transition amplitude equal to 7.78 e2fm2. Taking for the experimental transition amplitude

the value 8.76e.fm2, as given in Ref.[30], we found for the mixing amplitude the values

λ1,2 = 0.360; 0.031.

VI. CONCLUSION

In the previous Sections we described the results obtained within the GCSM model con-

cerning the charge density as well as the monopole transition amplitude. The main results

can be summarized as follows.
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The expectation values of the scalar charge density on the unprojected and angular mo-

mentum projected states were evaluated at different q values. Angular momentum projection

effects are unnoticeable for J = 0, irrespective of deformation. For larger angular momen-

tum (J=20, as an example) projection gives sizable effects for small values of deformation.

This agrees with results of microscopic studies by Zaringhalam and Negele [2].

Concerning the E0 transition amplitude, a quite good agreement with data was obtained

for kp = 2.5d for most nuclei considered. For this value the unprojected ground state is an

eigenstate of the charge density operator in the low momentum regime. A discrepancy is

obtained for 168Er and 174Yb, where the value kp = 5d, which obeys the stability equation for

the charge of the system when the transfer momentum is small, seems to be more suitable.

Employing for kp the values corresponding to a realistic description of both, the M1 and

E2 properties [11, 12], one obtains for the monopole transition amplitudes values which are

larger than the experimental data by a factor 2.6 to 5.

These large deviations are interpreted as being caused by the different responses of the

nuclear quadrupole coordinates to the interaction with the transverse and longitudinal com-

ponents of an external electromagnetic field, respectively. The fact that kp obtained here

and in Ref.[11] are different is not an inedit puzzle. We recall that the nuclear deforma-

tion obtained by fitting the hydrodynamic moment of inertia is very different from the one

obtained by fitting the reduced probability for the transition 0+ → 2+.

We also addressed the questions whether the E0 transition amplitude might bring infor-

mation about shape transitions as well as about shapes coexistence. Indeed, we notice that

for 154Gd, where the critical point for the spherical to deformed shape transition is met, the

transition amplitude ρ(E0) exhibits an inflexion. We suspect that a better method of fixing

the parameter kp would yield for the mentioned function a maximum value for the critical

value A = 154, as actually happens for the experimental data.

We derived a compact formula relating the E0 transition amplitude with the mixing

coefficient of the states describing the nuclear system with different shapes. This formula

may be used to calculate the mixing amplitude once we know the transition amplitude.

Reversely, assuming the state mixing one can calculate the E0 transition amplitude relating

the two independent mixed states. Actually we made the option for the second manner of

using the mentioned formula and applied it for the isotopes of Gd and 74Kr. We pointed

out that the mixing amplitude could serve as signature for the shape transition in the

29



Gd isotopes. Indeed for 154Gd we found out that there is no real solution for the mixing

amplitude.

Very recently, a paper addressing similar issues, but within the IBA approach, showed

up [31]. The expression of ρ(E0) obtained therein depends on proton and neutron effective

charges and a parameter which is fixed by fitting the peaks of isotope shift. Due to the way

of fixing the two parameters the bump seen for 154Gd is reproduced by the calculation of

Ref.[31]. It is worth mentioning that, by contrast, we don’t use effective charges and we

do not have a parameter which is fixed by fitting the peaks in the isotope shift, which is a

phenomenon closely related to the E0 properties. Despite these differences, both descriptions

provide results for the E0 transitions in Gd isotopes, which agree with the corresponding

experimental data. The agreements obtained in the two descriptions are of similar quality.

Exception is for the bump which shows up at 154Gd. Indeed, our calculations predict an

inflexion point rather than a bump. For comparison the two sets of results, ours and those

of Ref.[31] for Gd isotopes were represented on the same graph, in Fig. 6.

Finally, one could assert that the GCSM model provides results for the diagonal matrix

elements of the charge density operator, which are consistent with the microscopic studies

[1, 2, 24]. Also, the model is able to realistically describe the E0 transitions for the eleven

nuclei considered in the present paper. Comments are made upon the signatures of nuclear

shape phase transition as well of shape coexistence which might be found in the monopole

charge transition.
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