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The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs
from the Thomas-Reiche-Kuhn sum rule by several corrective terms which depend on the number
of system components, N . For illustration the formalism was applied to the case of Na clusters.
One concludes that the RPA results for Na clusters obey the modified TRK sum rule.

The Thomas-Reiche-Kuhn (TRK) sum rule [1–3] has
been widely used in various contexts of electron excita-
tions in atoms, molecules, and solids. Indeed, the relation
to the photoabsorbtion oscillator strength [4–7] makes it
quite useful in interpreting various collective features of
the dipole states [8–10].

In a previous publication [10], some of the many body
features of the small and medium sodium clusters were
studied within the RPA approach using the projected
spherical single-particle basis defined in Ref.[11]. The
RPA wave functions were used to treat the dipole tran-
sitions which led to the photoabsorbtion cross section
spectra. Also, the system static electric polarizability
was analytically determined. The nice virtue of the RPA
approach with spherical single particle basis consists of
that it satisfies TRK sum rule. This is however true for
the electric dipole moment, which is not the case in the
above quoted paper where, indeed, a modified dipole op-
erator, similar with Schiff-like dipole moment [12? –14]
is used. The corrections to the dipole operator accounts
for the screening effect, caused by the electronic shells, on
the motion of the valence electrons in the mean field de-
termined by the nuclear charge. Moreover the approach
of Ref.[10] uses a projected spherical single particle basis
which allows for an unified description of spherical and
deformed clusters. Here we address the question whether
these specific features require a modification of the TRK
sum rule.

Thus, in the present paper we derive a new sum rule
which corresponds to the Schiff-like dipole moment.

Within the RPA formalism, for any Hermitian operator
M̂ , the following sum rule holds
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=
1

2
〈0|[[M̂, H ], M̂ ]|0〉, (1)

where En are the RPA energies associated to the many
body Hamiltonian H . Here the state |0〉 is the RPA
phonon vacuum, while |1n〉 denotes the single phonon
state |1n〉 = C†

n|0〉. We are interested in those features
of atomic clusters which are determined by the valence
electrons. These move in a mean field, determined by
the ionic core, and interact among themselves through
a Coulomb force. The residual two-body interaction
[15, 16] can be expanded in multipole series from which
only the dipole term is relevant and therefore considered.

The phonon operator is defined as:

C†
n(1, µ) =

∑

ph

[

Xn
ph(c†pch)1µ − Y n

ph(c†hcp)1µ

]

, (2)

where Xn
ph and Y n

ph are the n-th order solution of the
RPA equations. The reduced probability for the dipole
transition |0〉 → |1+

n 〉 can be written in terms of the RPA
phonon amplitudes and the ph matrix elements of the
transition operator:

B(E1, 0+ → 1+
n ) =

∣

∣〈0||M(E1)||1+
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∣

∣

2
, (3)

Instead of the usual transition dipole operator, a Schiff-
like moment operator [12–14] was used.

M(E1) = e

(

1 −
3

5

r2

r2
s

)

~r. (4)

Here rs is the Wigner-Seitz radius and have the value
of 3.93 a.u. for Na clusters. The corrective component,
involved in the dipole operator, relates particle and hole
states characterized by ∆N = 3, which results in mod-
ifying the strength distribution among the RPA states.
Such an effect would be however obtained even for the
dipole transition operator alone, if the mean field poten-
tial for the single particle motion involves higher powers
of the radial coordinate.

Reckoning the double commutator from Eq. (1), cor-
responding to the transition operator (4) one obtains:
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The terms correcting the standard TRK sum rule are
the expected values of the radius powers r2 and r4 ,
in the RPA ground state. Obviously, these corrective
terms induce an additional N dependence for the energy-
weighted sum rule (EWS). As for the left hand side of
Eq.(5), which will be hereafter denoted as S(N ), this
can be directly calculated using the RPA output data,
like energies and transition probabilities [10]. The terms
of S(N ) are alternatively evaluated through two distinct



methods: A) The boson expansion method. The terms
involved in S(N ) can be expressed in terms of particle-
particle (pp) and hole-hole (hh) transition matrix ele-
ments. Indeed, the ph transition components give vanish-
ing contributions when they are averaged with the RPA
ground state. Therefore, in the second quantization the
needed one-body operator r̂m can be written as:

N
∑

α=1

rm
α ≡

∑

p

〈p|rm|p〉c†pcp +
∑

h

〈h|rm|h〉c†hch. (6)

Following the boson expansion procedure, the fermion

density operators c†pcp and c
†
hch can be expressed in terms

of the RPA phonon operators C†
n(Cn):

c†pcp =
∑

n

ap
nCnC†

n, c
†
hch =

∑

n

bh
nCnC†

n, (7)

where the coefficients ap
n and bh

n have the expressions:

ap
n = 〈0|[[C†

n, c†pcp], Cn]|0〉, bh
n = 〈0|[[C†

n, c
†
hch], Cn]|0〉.

(8)
In this way the modified dipole sum rule becomes:
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where the following notation has been used:

rk(ph) = 〈p|rk|p〉 − 〈h|rk|h〉, k = 2, 4. (10)

B) Electron density approach. Static electric polarizabil-
ities results based on the calculations for the number of
spilled out electrons [10], agree quite well with the corre-
sponding experimental data. These spilled out electrons
produce a screening effect against external fields which
results in changing the classical result for the polarizabil-
ity. The basic assumption in accounting the spilled out
electrons is the fact that the electron density is not going
sharply to zero at the cluster surface, but is gradually de-
creasing and moreover extends significantly beyond the
jellium edge. The same argument can be brought for the
correction terms of the S(N ) containing averages of the
radius powers with the RPA vacuum states. The elec-
tronic density has a constant central part, enfolded by a
diffuse region, of a width equal to a, where the electron
density tends smoothly to zero. Guided on some par-
allelism between the behaviours of atomic clusters and
nuclear systems [17, 18], the average of rm with the RPA
vacuum state is approximated by folding rm with a lo-
calization probability density with spherical symmetry,
of Fermi distribution type. In this way the average may
be written in the form of a power series in the variable
a
R [19]:

〈rm〉 = Rm 3

m + 3

[

1 +
π2

6

( a

R

)2

m(m + 5) + . . .

]

,

m = 2, 4. (11)

Here R = rsN 1/3 is the radius of the cluster with N
atoms, with rs being the Wigner-Seitz radius, which for
the Na clusters has the value of 3.93 a.u.. a is a param-
eter defining the thickness of the diffusion region.

In this way the sum S(N ) can be written in the fol-
lowing way

S(N ) =
9~
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2m
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2e2

2m
F(N ). (12)

One notices that besides the number of atoms depen-
dency, this expression involves only universal constants,
which makes Eq. (12) to be, indeed, a real sum rule.

Contrary to the case of nuclear systems, where the
thickness of the diffusion region is approximately the
same for all nuclei, for atomic clusters the parameter a is
expected to have a N dependency due to the long range
character of the two body interaction. This dependence
was determined by interpolating the values of a satisfying
Eq. (12) for 8 ≤ N ≤ 40. The result is:

a(N ) = −0.975157− 0.0112138N 1/3 + 0.360518N 2/3.
(13)

Inserting the expression (13) of a(N ) in Eq.(12), one ob-
tains the final expression for the sum rule.

The sum rule is always a serious test for any model
calculation and in particular for the RPA formalism of
Ref.[10] which uses a projected spherical single particle
basis, appropriate for an unified description of spherical
and deformed clusters. The EWS was calculated with
the RPA energies and matrix elements for the transition
operator. The right hand side of the sum rule equation,
called S(N ), was alternatively calculated with the ex-
pressions (12) and (15), respectively. The two sets of re-
sults corresponding to the mentioned options for S(N ),
are plotted in Figs. 1 and 2, respectively.

The RPA calculation of S(N ) does not yield an explicit
N dependence. However, this dependence is involved in
the many body formalism by means of the Fermi energy,
the oscillator length, the matrix elements in the projected
single particle basis, the space of the single particle states
used in the RPA calculation. Note that Fig. 1 shows a
good agreement for medium clusters. The deviation is
significant for large as well as for small clusters although
both curves exhibit similar pattern concerning the os-
cillating behavior. The discrepancies may indicate that
higher order boson expansion terms are necessary in or-
der to improve the agreement. However, these terms
would bring a certain inconsistency to the formalism
since EWS is evaluated within the RPA approach and
therefore is a quadratic expression of the dipole phonon
amplitudes, while higher order terms of S(N ) would be
higher order polynomials of the mentioned amplitudes.
Moreover, in order that Eq.(12) plays the role of a sum
rule it is necessary that S(N ) exhibits a model indepen-
dent expression. In contradistinction to these aspects,



the second procedure described above, yields indeed, a
model independent expression for S(N ). The results for
this situation are shown in Fig. 2.

Fig. 2 indicates a very good agreement between S(N )
and the EWS. Actually this is the main result of our
investigation. The sum rule for the modified dipole oper-
ator is equal to S(N ) given by Eq.(15) with the diffusion
parameter a from (16). One notices that S(N ) is a six
order polynomial in N 1/3. The second remark refers to
the fact that the new sum rule is different from the TRK
sum rule, which is linear in N . Now we address the
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FIG. 1: The calculated energy-weighted sums of the reduced
dipole transition probabilities (open circles) for Na clusters
with 8-40 atoms are compared with the numerical results of
S(N ) given by the RPA approach (black triangles).
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FIG. 2: The calculated energy-weighted sums of the reduced
dipole transition probabilities (black circles) for Na clusters
with 8-40 atoms are compared with the numerical results of
S(N ) given by Eq. (15) and represented by a solid line.

question whether the experimental data for the EWS
agree with the calculated values. Of course the theoreti-
cal dipole EWS depends on the dimension of the single
particle space involved in the calculation. If the single
particle states have a complex structure, as for example
happens in Ref.[8], then the states with ∆N = 3 are con-
nected by the standard dipole operator and consequently
a large number of major shells are necessary in order to
saturate the sum rule. If a projected spherical single
particle basis is used, as we did in Ref.[10], the dipole
matrix elements with ∆N = 3 are vanishing. In order
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FIG. 3: The calculated (Th.) energy-weighted sum (EWS) of
the Schiff-like dipole transition probabilities (open circle) for
Na clusters are compared with the corresponding experimen-
tal data (cross) extracted from the available data concerning
the photoabsorbtion cross section.

to account for the dipole strength brought by the non-
vanishing ∆N = 3 matrix elements we use an effective
dipole operator which is the Schiff-like dipole operator.
Therefore, the Schiff dipole moment is what we propose
to describe the experimental dipole EWS. In order to
complete the picture we have to know the experimental
value for the EWS and check whether this confirms or
not that the proposed sum rule is valid. Actually, this
can be extracted form the experimental photoabsorbtion
cross section. Indeed, interpolating the discrete values of
the experimental photoabsorbtion cross sections, given as
function of the excitation energy, by a smooth curve and
integrating the result with respect to the energy in the
interval [0,∞), one obtains the area A(N ). The experi-
mental EWS is proportional to A(N ). We assume that
the N depending proportionality factor is the same as
for the theoretical EWS, i.e. F(N ). This assumption is
grounded by the fact that F(N ) is a model independent
quantity and moreover assures similar normalization for
the total cross section as in the schematic calculation.
Thus the experimental EWS is defined by:

[EWS]Exp. = GF(N )A(N ). (14)

The quantity A(N ), extracted from the data of Refs.[25],
varies between 0.582 (eV)Å2 for N = 9 and 0.387
(eV)Å2, for N = 19. Here the constant factor is G =
70.1591912[e2]. This value was obtained by equating the
two expressions of ESW , for one chosen cluster. Thus,
the constant G yields a normalization of EWS which
accounts for the ”missing sum rule”, noticed experimen-
tally [26]. In Fig.3, this quantity is compared with the
theoretical weighted sum calculated within the RPA ap-
proach, which uses a projected spherical single particle
basis [10],

[EWS]Th. =

[

∑

n

EnB(0+ → 1+
n )

]

RPA

(15)



The agreement between the two EWS’s, shown in Fig.
3, is a guarantee that [EWS]Exp. is, indeed, close to the

S(N ):
Finally, we want to mention that the octupole cor-

rection to the dipole transition operator was also used
in connection with the description of the electric dipole
transitions in nuclear systems. Thus, in Ref.[20] it is
pointed out that adding the octupole correction, the
agreement with experimental data concerning the E1
transitions is substantially improved. In Ref.[21] a simi-
lar effect is obtained by modifying the many body wave
function due to the octupole interaction which is consid-
ered in addition to an isovector-dipole interaction. The
new components are connected by the standard dipole
operator and consequently modifies the E1 transition
rates. Of course, an energy-weighted sum rule associated
to the dipole transition operator holds also for nuclear
systems. Obviously, changing the transition operator, as
it happened in Ref.[20], the corresponding sum rule which
should be valid is the one obtained in the present letter.

Another interesting example is the N − Z sum rule,
which holds for the single beta transition. This rule
says that for a single beta decaying nucleus, the differ-
ence between the β− and β+ strengths should be equal
to 3(N − Z). This sum rule is true, for example, for
Gamow-Teller (GT) dipole transitions and is exactly sat-
isfied within the proton-neutron quasiparticle RPA ap-
proach. Extensions of the microscopic formalisms to the
double beta decay 2νββ, showed that in order to describe
the transition rates, it is necessary to improve the wave

functions of the mother and daughter nuclei as well as the
GT dipole states, by adding anharmonic effects. How-
ever, these corrections violate drastically the N −Z sum
rule. In the spirit of the present paper, we open the ques-
tion whether the GT proton-neutron interaction could be
extended by adding an octupole component such that to
the new proton-neutron interaction a modified N − Z
sum rule corresponds. This would make the inclusion of
anharmonic effects which, as a matter of fact, violates
the Pauli principle, unnecessary.

The final conclusion is that the Schiff-like dipole mo-
ment used for the RPA description of the photoabsorb-
tion cross section spectrum, satisfies an extended TRK
dipole sum rule. The saturation of the extended sum rule
is a positive test for the single particle basis as well as for
the dimension of the dipole ph space involved in the RPA
description. Also we showed that the experimental value
of EWS is reproduced to a high accuracy by the sum rule
S(N ). We pointed out that the extended TRK sum rule
is of a general interest, being applicable also for other
many body systems correlated by a Schiff-like two body
interaction. The fact that sum rules are of paramount
importance in exploring the many body properties mir-
rored by the multipole electric, or magnetic, transitions
have been stressed by many authors [22–24]. Here we
showed that a sum rule may hold also for a multipole
mixed transition operator.
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