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1 The scientific context

The basic idea of the project was to analize the ground state energy of ideal α-matter at T = 0 in

the framework of variational theory of Bose quantum liquids. Calculations were executed for

local α-α potentials with positive volume integrals and two-body correlation functions obtained

from the Pandharipande-Bethe equation. The energy per particle of α matter could be evaluated

in the cluster expansion formalism up to four-body diagrams, and using the HNC/0 and HNC/4

approximation for a Bose liquid. At low densities the two methods predict similar EOS whereas

at higher densities they are sensitively different, the HNC approximation providing saturation

at lower density, bellow the saturation value of nuclear matter. Inclusion of higher order terms

in the cluster expansion of the condensate fraction is leading to a stronger depletion of the alpha

condensate with the density compared to the two-body approximation prediction. In this sense

five order diagrams in the Percus-Yevick approximation are evaluated in order to explore the

convergence properties of the cluster expansion serie and to evaluate the contribution of small

terms around the satiration point in EOS.

Renewed interest in the properties of α matter is manifest in the literature especially in

connection with α-particle Bose- Einstein condensation (BEC) in α-like nuclei (see [1] and

references therein). Calculations reported in this reference are pointing to the existence of a

Bose-Einstein condensate of α-particles at low densities. It was also noted that with increasing

density the condensate fraction is reduced such that at density corresponding to the saturation of

nuclear matter (ρ ∼ 0.04α particles per fm3), the condensate fraction is reduced to roughly one

half. The estimation of the condensate fraction was done in the lowest approximation, i.e. the

radial distribution function (RDF) is approximated by the square of the two-body correlation

function (CFN), and therefore it is less justified for higher densities. There is however an old

estimation by Clark and Johnson [2] for three values around the saturation density of nuclear

matter using the hypernetted chain approximation in the lowest order (HNC/0), i.e. taking into

account only nodal diagrams in the infinite density expan- sion of the RDF. It provides a severe

reduction of the condensate fraction (≈ 15%) compared to the lowest-order cluster expansion

at the same density. On the other hand calculations of the cold α matter equation of state (EOS)

reported by the same authors within the HNC/0 approximation and using the soft core α-α
potential of Ali and Bodmer [3] are predicting the saturation point at a high density (ρα ∼0.085

α particles per fm3). These benchmark calculations of the α matter EOS were very recently

compared to results obtained in the frame of the scalar φ5 effective field theory with negative



quartic and positive sextic interactions, to simulate the attractive character at long distances

and repulsive at short distances, and found to be in a very good agreement [4]. Though no

estimations of the condensate fraction are provided for this high density saturation point, from

the estimation made at lower densities, as quoted above, we expect a stronger depletion of the

BEC. One is then confronted with the problem that at low densities the α matter condensate

is far from equilibrium, whereas at the saturation point the condensate fraction is small. It

was advocated that beyond a critical density (ρα ∼ 0.03 nucleons per fm3), due to the strong

overlap of the wave-functions and the unavoidable action of the Pauli principle, a total extinction

of the α structure should occur [1,5]. The phenomenological α-α potentials used in the past

are systematically predicting saturation of α matter at densities considerably larger than this

critical Alpha-matter calculations reported in the past [1, 2] made use of α − α potentials with

a inner repulsive part of approximately 2 fm and an outer attraction of 5 fm. These potentials,

characterized by a strong or even infinite repulsive component were constructed to fit the elastic-

scattering phase shifts deduced from experiment. EOS resulting from employing such potentials

in the calculation of the Jackson-Feenberg (JF) expression of the energy within the paired-

phonon analysis (PPA) or the HNC/0 method can be grouped in two classes. In the first class,

the EOS calculated with hard-core potentials, are saturating at densities and energies close to the

nuclear matter saturation point (ρα ≈ 0.04, and E/N ≈ -11-16 MeV). For soft-core potentials

(DIPH [3] and [2]) the alpha matter almost fails to saturate. In fact a deep minimum in a very

soft EOS at a high density is predicted with AB potential. However at such high densities

the alpha-condensate is almost completely depleted of particles according to the variational

approach. Somehow this disappointing result is conflicting with what would one expect based

on the manifestation of alpha clustering in real nuclei. The clusterization of alpha particles

on the surface of nuclei at densities around half the central nuclear density, as revealed by α-

decay or α-transfer reactions or the putative dilute three-alphas condensate in the Hoyle state

of 12C are pointing to a higher stability of alpha matter at lower densities. densities. It would

then be important to establish if the saturation of the α matter takes place below this critical

density if one employs other types of potentials that incorporate more microscopic input. The

aim of this Letter is to analyze the α matter EOS over a wide range of densities and try to find

the optimal CFN which reflects the interplay between the strong short-range and the longrange

correlations that ultimately would lead to saturation. Gaining insight in the saturation properties

of α matter could also shed light on the condensate fraction reduction issue. In what follows

the g.s. energy of an infinite system of neutral α-particles interacting via two-body forces is

calculated within the variational theory of Bose liquids. As input to the energy calculation we

use a prescriptions for the CFN obtained by extremizing the energy functional in the two-body

cluster approximation. The g.s. energy is then calculated via the cluster expansion adding the

three-body and four-body correlations and with the HNC method that is more reliable in the

high density sector.

Imperatives of the modern nuclear astrophysics required dedicated studies of nuclear reac-

tions that take place in supernovae envelopes and that are the main sources of nucleosynthesis.

That implied the study of some peripheral nuclear reactions that validate the ANC method
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(Asymptotic Normalization Constant) which is the basic method to study in laboratory transfer

and breakup reactions ivolving exotic (unstable) nuclei.

2 Scientific activity 2011

2.1 α − α potentials used in scattering, α-cluster structure of light nuclei

and alpha-matter calculations

The popular Ali-Bodmer α−α potential consists of a short-ranged (1.43 fm) repulsive part and

and a long-ranged attractive part (2.50 fm) [2]

vαα(r) = 475 exp
[

−(0.7r)2
]

− 130 exp
[

−(0.475r)2
]

(1)

This potential nicely reproduce the α − α elastic scattering phase-shifts for low energies. In

ref.[5] an effective (not bare like AB) α − α potential with a soft core was proposed. This

potential approximately reproduce the experimental resonant state Eres=92 keV (see discussion

below) but more important is that the relative wave function of this resonant state (and we

checked this numerically)has a maximum value at 4.6 fm which is not far from value of 4 fm

advocated by nuclear structure calculation of the 8Be ground state. This potential (denoted by

us YS) reads

vαα(r) = 50 exp
[

−(0.4r)2
]

− 34.101 exp
[

(−(0.4r)2)
]

(2)

In a study on the differential cross sections for α + α elastic scattering [6] an l = 0 two-

body potential was constructed. It consists of an attractive part obtained by folding Gaussians

α-particle densities

ρ(r) = 32
( α

3π

)3/2

e−4αr2/3 (3)

to a Yukawa-like N −N potential of range µa

vnn = −85
e−µar

µar
(4)

and additionally of a phenomenological short-range repulsive component. Thus

vαα(r) = 287.5e−(µrr)2 − 2570.197
e−µar

µar

{

(1 + erf(y+)− e2µar(1 + erf(y−)))
}

(5)

where

y± =

(

2α

3

)1/2
(

r ± 0.75
µa

α

)

(6)

Michel and Reidemeister [7] reconsidered the old controversy between deep and shallow po-

tentials in Heavy Ion scattering by observing e.g. that the shallow potential of Ali-Bodmer can
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be approximately recovered from the deep potential of Buck et al. (BFW) [8] by a SUSY trans-

formation. The two potentials are phase-shift equivalent, but Michel’s potential is free from

redundant bound states in the α − α system and therefore more appropriate for the α-matter

question. The Buck’s potential reads,

vα−α(r) = V0 exp
[

−(µr)2
]

(7)

where V0 =122.6225 MeV, µ = 0.22 fm2. Michel potential is identical to Buck potential for

partial waves l > 4. for l = 0, 2 it contains a singularity of the type r2 at short distances and

matches Buck’s potential asymptotically.

2.2 Double-folding with Gogny forces

Since the potentials providing saturation at lower densities are highly schematic (infinite re-

pulsive short-range interactions) we turn to a calculation of the bare α − α interaction based

on the double-folding method for two ions at energies around the barrier, as input considering

realistic densities of the α-particle and modern effective nucleon-nucleon interactions that were

not available at the moment were the above mentioned α− α potentials were designed.

Within the double-folding method [15] the interaction between two alpha ions is calculated

as a sum of local two-body potentials vnn between the nucleons from one alpha with the nucle-

ons from the other alpha.

vαα(r) =

∫

dr1

∫

dr2ρα1
(r1)ρα1

(r2)vnn(ρ, r − r1 + r2) (8)

The effective n − n interaction vnn is taken to be dependent on density ρ of the nuclear

matter where the two nucleons are embedded. It should also consist of a density independent

finite-range part with preferably two ranges such that a potential similar to the Ali-Bodmer is

obtained. A choice satisfying these requirement is provided by the Gogny [16]. In this paper

we report results using two out of the three main parametrizations of this force, i.e. D1 [17] and

the most recent one D1N [18].

In what follows we take only the direct part in the double-folding potential (8). The in-

troduction of the exchange part of the heavy-ion interaction would lead to an unphysical deep

potential for large overlaps of the two alphas. This issue was recently discussed in connection

with the necessity of accounting for the incompressibility of nuclear matter in cold clustering

processes [19] and extreme sub-barrier fusion [20]. In this framework a double-folding repul-

sive potential with a zero-range interaction is added to the direct and exchange potential such

that the energy costs for overlapping two chunks of nuclear matter are payed-off. The strength

of this repulsive δ-like potential is in a simplified picture proportional to the nuclear incom-

pressibility at the corresponding density of total overlap. We assume for the time being that

the attractive exchange part of the heavy-ion potential is counteracted by the repulsive δ-like
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potential. Taking a Gaussian nuclear matter distribution inside the alpha-particle

ρα(r) = 4

(

1

πb2

)3/2

e−r2/b2 (9)

and the oscillator parameter b corresponds to a root mean square (rms) 1.58±0.002 fm extracted

from a Glauber analysis of experimental interaction cross sections [21].

Since the direct effective n− n force in the Gogny parametrization [22] reads:

vd00(r1 − r2) =
1

2

2
∑

i=1

(4Wi + 2Bi − 2Hi −Mi)e
−|r1−r2|2/µ2

i +
3

2
t3ρ

γδ(r1 − r2) (10)

Inserting the gaussian density distribution (9) in the double folding integral (9)

vαα(r) = 4
2

∑

i=1

(4Wi + 2Bi − 2Hi −Mi)

(

µ2
i

µ2
i + 2b2

)3/2

e
− 1

µ2
i
+2b2

r2

+
3

2
t3

4γ+2

(γ + 2)3/2(
√
πb)3(γ+1)

e−
γ+2

4b2
r2 (11)

In the left panel of Fig.1 we represent the three potentials on a magnified scale around the
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Figure 1: Different α− α potentials used in this paper.

minimum. The two Gogny forces display pockets that are shallower are displaced to larger radii

compared to the Ali-Bodmer potential.
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Figure 2: Direct+Exchange α− α potentials for BB-I, D1 and D1N.

We sketch below the derivation of the exchange part of the potential. The exchange part of

the Gogny potential reads

vex00(r1 − r2) =
1

4

2
∑

i=1

(Wi + 2Bi − 2Hi − 4Mi)e
−|r1−r2|2/µ2

i − 3

4
t3ρ

γδ(r1 − r2) (12)

The matrix-density corresponding to the density (9) is

ρα(r, r
′) = 4

(

1

πb2

)3/2

e−(r2
+
+ 1

4
r2
−

)/b2 (13)

where

r+ =
1

2
(r + r

′), r− = r − r
′ (14)

Then, in applying formula (25) from Appendix III we have

ρα(X +
3

2
R−,X − 3

2
R−) = 4

(

1

πb2

)3/2

e−(X+ 9

4
R

2

−
)/b2 (15)

ρα(X −R+ − 3

2
R−,X −R+ +

3

2
R−) = 4

(

1

πb2

)3/2

e
−
[

(X−R
2

+)+ 9

4
R

2

−

]

/b2
(16)

Applying the convolution techniques we arrive at the following closed form for the non-local

potential

vexαα(R,R
′) = −4

(

2

πb2

)3/2 2
∑

i

(Wi + 2Bi − 2Hi − 4Mi)e
− 1

2

(

8

µ2
i

+ 9

b2

)

R2
−

e−
1

2b2
R2

+ (17)
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Adopting the short-hand notation

1

β2
i

=
8

µ2
i

+
9 + 1

4

b2
(18)

using the integral identity

∫

dse−α2s2eiβs·K =
( π

α2

)3/2

e−(βK/2α)2 (19)

and applying the localization procedure described in Appendix III we arrive at

vexαα(r) = −32
∑

i

(Wi+2Bi−2Hi−4Mi)

(

βi
b

)3

e
− 1

2b2

[

1− 1

4(
βi
b )

2
]

r2

e−
1

2
K2β2

i e
1

2
i(βi

b )
2

K ·r (20)

Thus we have a sub-barrier branch (K2 < 0) and an over-barrier one (K2 > 0) for the real part

of the local exchange potential

vexαα(r) = −32
∑

i

(Wi + 2Bi − 2Hi − 4Mi)

(

βi
b

)3

e
− 1

2b2

[

1− 1

4(
βi
b )

2
]

r2

e±
1

2
|K|2β2

i

×







e−
1

2(
βi
b )

2

|K|r for K2 < 0

cos
[

1
2

(

βi

b

)2 |K|r
]

for K2 ≥ 0
(21)

The α−α potential when the exchange is taken into account according to the above prescription

is given in Fig.2

2.3 Constraints on the potential due to the low-energy phase-shift data

α-α scattering at low energies (bellow the first inelastic threshold) has been measured by several

authors. There are no new data since 1968. S-state phase shift have been determinated starting

with an energy Ec.m.=0.3 MeV, much larger than the S-state resonance energy in 8Be. Therefore

these data cannot be used to extract a potential which fits simultaneously the phase shift and the

resonance energy, and therefore a compromise between the two constraints should be obtained.

2.4 Constraints on the potential due to the resonant state

The experimental values are Eres =92.12 ± 0.05 keV, Γ0=6.8± 1.7 eV [1]. We performed

a systematic investigation of the renormalization required to fit the resonant state for various

potentials. In table 1 we present the deep potentials, whereas in Table 2 the shallow potentials.

Along with the renormalization we list the width of the resonant state. From the inspection

of the last table we conclude that only the AB, BFW-supersymmetrized, and the three Gogny
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vαα BFW WS-1 WS-2 D1 D1N D1S

NR 1.007067 1.003577 0.998398 1.038707 0.898856 0.779042

0.464413

Γ (eV) 6.08 6.86 6.84 6.57 6.19 6.04

5.02

rP (fm) 0. 0. 0. 0. 0. 0.

0.

VP (MeV) -123.49 -117.08 -122.36 -78.08 -83.17 -102.22

-32.22

rB (fm) 5.86 6.57 6.58 6.0 5.7 5.7

5.6

VB (MeV) 0.91825 0.78836 0.78590 0.904 0.952 0.946

0.958

Table 1: Renormalization and width of α− α potential to fit the resonant state. Deep potentials

vαα CB AB AB5 YS D1S (D) D1N (D) D1 (D) BB1 BB2

NR 1.014808 0.946 1.307 1.005 0.616 1.591 2.444 3.998 2.099

Γ (eV) 6.81 6.16 3.83 10.92 5.50 7.11 8.34 11.80 9.63

rP (fm) 2.9 2.82 2.07 3.82 2.7 3.1 3.40 4.10 3.7

VP (MeV) -7.050 -9.279 -15.521 -2.843 -7.546 -9.617 -9.592 -8.413 -8.175

rB (fm) 6.50 5.77 4.39 8.47 5.6 5.90 6.3 7.2 6.7

VB (MeV) 0.7943 0.931 1.224 0.627 0.963 0.928 0.859 0.758 0.807

Table 2: Renormalization and width of α− α potential to fit the resonant state. Shallow poten-

tials

vαα BFW1 BFW2 D1S D1N D1

NR 0.994 0.948482 1.032495 0.71856 1.456354

Γ (eV) 6.06 5.92 6.53 6.38 7.27

rP (fm) 2.80 2.80 3.0 2.8 3.10

VP (MeV) -7.598 -7.632 -7.590 -7.13 -7.610

rB (fm) 5.8 5.8 6.0 6.2 6.2

VB (MeV) 0.924 0.925 0.897 0.8655 0.87064

Table 3: Renormalization and width of α − α potential to fit the resonant state. Suppersym-

metrized potentials
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potentials are predicting widths within the experimental uncertainties. The interaction based on

Brink-Boeker 2 is slightly above the experimental upper limit.

We calculated the nodeless resonant state for the shallow potentials with good values of

the width. Remembering the observation we made below regarding the necessity that the wave

function corresponds to a loosely bound structure of two-alpha particles that must have small

values in the inner region and a maximum value around 4 fm we have additional evidence that

the YS potential is not suitable to fulfill the constraints set on width and maximum. Also Ali-

Bodmer, BFW-SUSY and D1S resonant wf have a minimum closer to 3 fm and therefore are

conflicting with the predictions of the 8Be structure calculations. Actually only the resonant

wf of D1N and D1 are displaying a maximum in the vicinity of 4 fm and simultaneously have

widths in a very good agreement to the experiment. On the other hand the renormalizations of

these two potentials will bring them to almost the same depths (≤ 10 MeV) but with with a

small shift in positions. We therefore expect that potentials satisfying simultaneously the two

constraints (same complex resonance energy and maximum of the radial wave function) are

most likely saturating at high densities and have large binding energies.

2.5 The non-local exchange potential

In the double folding model, the exchange component of the optical potential can be conve-

niently treated starting from the DWBA matrix element of the exchange operator :

Ûexχ =
∑

αβ

< φα(r1)φβ(r2)|vex(s)P x
12|φα(r1)φβ(r2)χ(R) > (22)

where the sums runs over the single-particle wave functions of occupied states in the projectile

(target) and χ(R) is the wave function for relative motion. After some elementary calculation

(see details in [24]), we arrive at,

Ûexχ =

∫

Uex(R,R
′)χ(R′)dR′

where the kernel Uex(R,R
′) is given by,

Uex(R,R
′) = Uex(R

+,R−) (23)

= µ3vex(µR
−)

∫

ρ1(X + (1− 1

A1

)µR−,X − (1− 1

A1

)µR− (24)

· ρ2(X −R
+ − (1− 1

A2

)µR−,X −R
+ + (1− 1

A2

)µR−)dX

where R+ = (R+R
′)/2, R

− = R−R
′ and ρ(r, r′) is the mixed density. The equation (23)

already tells us that the range of nonlocality R
− is ∼ µ−1 . In the case of the α− α interaction

we have

U ex
αα(R,R

′) = 8vex00(2R
−)

∫

ρα(X+
3

2
R

−,X−3

2
R

−)ρα(X−R
+−3

2
R

−,X−R
++

3

2
R

−)dX

(25)
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The local equivalent potential is well approximated [25] by the lowest order term of the Perey-

Saxon approximation,

UL(R) =

∫

eiKR
−

U ex
αα(R+

1

2
R

−,R−)dR−

= 4π

∫

ρα(X)ρα(|R−X|)dX

×
∫

vex00(s)ĵ1(k̂1(X)
3

4
s) · ĵ1(k̂2(|R−X|)3

4
s)j0(K(R)s/2)s2ds (26)

where K(R) is the usual WKB local momentum for the relative motion,

K2(R) =
2µ

~2
(Ec.m. − UD(R)− UL(R)) (27)

where where UD is the direct term including the nuclear and Coulomb potentials. Truly speak-

ing, the classical momentum is defined only for energies where K2(R) ≥ 0. At underbar-

rier energies, K(R) is imaginary in the region R1 < R < R2, where R1,2 are the classical

touring points of the total potential, and the Bessel function j0 above should be replaced by

j0(ix) = sinh(|x|)/|x|.
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3 Scientific activity 2012

3.1 A new method to remove redundant states

We describe bellow a new method to remove Pauli forbidden states using supersymmetric trans-

formations.
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3.2 Notations

We consider the Schrödinger equation for the ℓ-wave

(

d2

dr2
+

2µ

~2
(E − V (r))− ℓ(ℓ+ 1)

r2

)

ψℓ(E, r) = 0 (28)

where ψℓ(E, r) is called the regular solution which is uniquely defined, as usual [28, 29], by

the Cauchy condition lim
r→0

ψℓ(E, r)r
−ℓ−1 = 1. It behaves for positive values of E as ψℓ ∝

sin
(

kr − ℓπ/2 + δ(ℓ, k)
)

when r → ∞
(

k =
√

2µE/~2
)

, provided that V (r) satisfies the

integrability condition [29]
∫ +∞

b

|V (r)|dr <∞, b > 0,

∫ ∞

0

r|V (r)|dr <∞ (29)

Here, the δ(ℓ, k)’s are the phase shifts. In all equations µ denotes the reduced mass of the system

and E the c.m. energy.

When the potential possesses bound states labeled E0 < E1 < . . . < EN ≤ 0 (the number

of which is finite when the potential satisfies the integrability condition Eq.(29) these latter can

be removed thanks to the procedure introduced by Baye.

3.3 Phase-equivalent potentials

Here we give the equations allowing to obtain directly, from the bound state wave functions for

the 0s and 1s states, the wanted potential for α-matter.

Let us recall the remove of the ground state. Let be ψℓ(E0, r) the ground state wave func-

tion normalized according to the above Cauchy condition. We introduce the reduced potential

v(r) = 2µV (r)/~2. The phase-equivalent potential v(1)(r), obtained by Baye with the ground

state removed, reads:

v(1)(r) = v(r)− 2
d2

dr2
ln

∫ r

0

dt ψℓ(E0, t)
2 (30)

The corresponding regular solution for v(1) is

ψ
(1)
ℓ (E, r) = ψℓ(E, r)− ψℓ(E0, r)

∫ r

0
dt ψℓ(E, t) ψℓ(E0, t)
∫ r

0
dt ψℓ(E0, t)2

(31)

The potential v(1)(r) behaves at the vicinity of r = 0 like 2(2ℓ + 3)/r2. This is due to its

definition Eq.(30) taking into account that ψℓ(E0, r) ≃ rℓ+1 at the vicinity of zero.

Now we want to remove the next bound state E1. The new potential and regular solutions

are defined respectively by:

v(2)(r) = v(1)(r)− 2
d2

dr2
ln

∫ r

0

dt ψ
(1)
ℓ (E1, t)

2 (32)
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and

ψ
(2)
ℓ (E, r) = ψ

(1)
ℓ (E, r)− ψ

(1)
ℓ (E1, r)

∫ r

0
dt ψ

(1)
ℓ (E, t) ψ

(1)
ℓ (E1, t)

∫ r

0
dt ψ

(1)
ℓ (E1, t)2

. (33)

We evaluate ψ
(1)
ℓ (E1, r)

2 from the original wave function ψℓ. Thanks to Eq.(31) we have

ψ
(1)
ℓ (E1, r)

2 = ψℓ(E1, r)
2 − d

dr

[

(
∫ r

0
dt ψℓ(E1, t) ψℓ(E0, t))

2

∫ r

0
dt ψℓ(E0, t)2

]

(34)

so that
∫ r

0

dt ψ
(1)
ℓ (E1, t)

2 =

∫ r

0

dt ψℓ(E1, t)
2 − (

∫ r

0
dt ψℓ(E1, t) ψℓ(E0, t))

2

∫ r

0
dt ψℓ(E0, t)2

(35)

Now, taking into account the equations (30,32) we have

v(2)(r) = v(r)− 2
d2

dr2
ln det(M(r)) (36)

where M is the 2× 2 matrix

M =

[

LE0,E0
(ℓ, r) LE0,E1

(ℓ, r)
LE1,E0

(ℓ, r) LE1,E1
(ℓ, r)

]

(37)

with

LEi,Ej
(ℓ, r) = LEj ,Ei

(ℓ, r) =

∫ r

0

dt ψℓ(Ei, t) ψℓ(Ej, t) . (38)

Clearly the determinant of the matrix M behaves like r4ℓ+10 at the vicinity of zero and the

resulting potential has a singularity (8ℓ+ 20)/r2 at the vicinity of zero.

On the other hand, the regular solution can be also put on a compact form according to what

made in [30] Appendix B. Indeed, we first note that the product ψ
(1)
ℓ (E, r) ψ

(1)
ℓ (E1, r) can be

written as

ψ
(1)
ℓ (E, r) ψ

(1)
ℓ (E1, r) = ψℓ(E, r)ψℓ(E1, r)−

d

dr

[

∫ r

0
dtψℓ(E, t) ψℓ(E0, t)

∫ r

0
dtψℓ(E1, t) ψℓ(E0, t)

∫ r

0
dtψℓ(E0, t)2

]

(39)

The latter equality is used to calculate
∫ r

0
dt ψ

(1)
ℓ (E, t) ψ

(1)
ℓ (E1, t) required in Eq.(33). Taking

into account the equation (35) we obtain, after some algebra

ψ
(2)
ℓ (E, r) =

det(M̃(r))

det(M(r)
(40)

where we have defined

M̃ =





ψℓ(E, r) LE,E0
(ℓ, r) LE,E1

(ℓ, r)
ψℓ(E0, r) LE0,E0

(ℓ, r) LE0,E1
(ℓ, r)

ψℓ(E1, r) LE1,E0
(ℓ, r) LE1,E1

(ℓ, r)



 (41)
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3.4 Test of effective interactions on α-nucleus scattering

We first tested the ability of well known effective interactions to describe correctly the α-nucleus

scattering at various energies. We concentrate mainly on 4N targets with known α cluster

structure in the ground state or low excited states. The next figure contains examples of α-12C

scattering at high energies where rainbow phenomenon is evident. We were mainly interested

to test the Gogny interaction in scattering.
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3.5 Constraints on the potential due to the low-energy phase-shift data

α-α scattering at low energies (bellow the first inelastic threshold) has been measured by several

authors. There are no new data since 1968. S-state phase shift have been determinated starting

with an energy Ec.m.=0.3 MeV, much larger than the S-state resonance energy in 8Be. Therefore

these data cannot be used to determine uniquely a potential which fits simultaneously the phase

shift and the resonance energy, and therefore a compromise between the two constraints should

be obtained. We adopted a slight renormalization of the strengths and ranges of potentials. See

Fig.4.
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Figure 4: Low energy S-state phase shifts calculated with renormalized α − α potentials. The

calculations are based on the Calogero equation. Experimental data are plotted with dots.

Renormalization constants are denoted by λ.

16



3.6 Constraints on the potential due to the resonant state

The experimental values are Eres =92.12 ± 0.05 keV, Γ0=6.8± 1.7 eV [1]. We performed

a systematic investigation of the renormalization required to fit the resonant state for various

potentials. While the resonant energy is close to the experimental value for all interactions, only

the BFW and Gogny D1 reproduce correctly the experimental width, see Fig.5 . However the

D1S and D1N parametrizations of the Gogny interaction predict widths within the experimental

error barr.
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Figure 5: The 0+ resonance in 8Be calculated with renormalizated effective interactions (λ).

Only the BFW and Gogny D1 interactions reproduce correctly the experimental width of 6 eV.
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3.7 Supersymmetric partners of the bare interactions

Once with have obtained the bare interactions by folding including the local equivalent of the

knock on exchange kernel we calculate the wave functions for the redundant 0s and 1S states

and then we calculate the potential free of redundant states by applying the supersymmetry

transformation as outlined in the preceding section. The result is depicted in Fig.6.
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Figure 6: The supersymmetric partners of the renormalized bare BFW and Gogny interactions

are compared with Ali-Bodmer phenomenological interaction. We have checked that original

phase shifts and the 0+ resonance properties are conserved

3.8 Gaussian expansion of the SUSY potentials

In order to facilitate the calculation for α-matter we expand the SUSY potentials in gaussian

formfactors, similar to the Ali-Bodmer interaction,
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Vfit(r) = Vre
−(µrr)2 − Vae

−(µar)2 (42)

with Vr, µr, Va, µa fitting parameters. Since it is impossible to obtain meaningful parameters in

the whole radial range, we concentrate the fit in the relevant r = (1.5, 10) fm. The result is

given in the following table,

Int Vr(MeV) µr(fm
−1) Va(MeV) µa(fm−1)

BFW 254.8000031 0.6470000 101.9716263 0.4600000

D1 255.8999939 0.6049346 103.6447830 0.4370000

D1N 265.0000000 0.6266215 102.5655823 0.4459522

D1S 262.0000000 0.6194427 103.4447250 0.4437624

Table 4: Parameters for the fitted SUSY potentials
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Figure 7: Comparison of the original Susy po-

tentials and the Gaussian expansion
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Figure 8: Check of the phase-shift calculated

with the fitted Susy-potential

3.9 Five-body diagrams in the Percus Yevick approximation

For the five-body contribution to the g.s. energy the application of the δ-folding technique leads

to the following expressions for the diagrams needed in the PY approximation
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Above we have used standard notations: the continuous bond denote h = f 2−1, the dashed

bond is F = v∗f 2, where f is the two body correlation function and v∗ = v− ~2

2mα
∇2 ln f is the

effective potential.
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3.10 Concluding remarks

We devoted the research activity in 2012 to prepare software instruments in order to attack next

year the main subject of this project:the ground state of neutral α-matter using modern α − α
potentials. In mean time we have published in 2 years a number of papers in international jour-

nals, most of them related with exotic matter in nuclear astrophysics (fusion at stellar energies,

resonant diffraction, proton radiative capture, X-ray bursts).
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4 Scientific activity 2013

4.1 Low energy α-α potentials

The phenomenological α−α potential of Ali and Bodmer [2] reproduces the low energy S-state

phase shift but fails to reproduce the resonance properties in 8Be. The experimental properties

of this resonance are Eres =92.12 ± 0.05 keV, Γ0=6.8± 1.7 eV [1]. This resonance could be

correctly reproduced only by a renormalization of the repulsive component of the potential We

have obtained four different parametrization which satisfy this constraint. These are dubbed

AB0,AB1,AB2 and AB3 and have increasingly strong repulsive component.
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Figure 9: Renormalized Ali-Bodmer potentials which reproduce the phase shift and the proper-

ties of the S-state resonance in 8Be

The low energy phase shift are compared in Fig.10 with the experimental data
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Figure 10: elastic scattering phase shift with renormalized AB potentials. The renormalization

constant is λ
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The S-state resonance in 8Be is plotted in Fig.11

0

0.2

0.4

0.6

0.8

1

1.2

91.22 91.24 91.26 91.28 91.3

si
n

2
(δ

0
)

8
Be(0

+
)

AB0

E
R
=91.27

Γ=5.7 eV

0

0.2

0.4

0.6

0.8

1

1.2

91.84 91.86 91.88 91.9

AB1

E
R
=91.87

Γ=6.1 eV

0

0.2

0.4

0.6

0.8

1

1.2

91.86 91.88 91.9

E
c.m.

 (KeV )

si
n

2
(δ

0
)

AB2

E
R
=91.89

Γ=6.1 eV

0

0.2

0.4

0.6

0.8

1

1.2

91.94 91.96 91.98 92

E
c.m.

 (KeV )

AB3

E
R
=91.97

Γ=6.4 eV

Figure 11: S-state resonance calculated with renormalized Ali-Bodmer potentials.

4.2 Ground state equation of α-matter at zero temperature.

The cluster expansion method was illustrated in the scientific report 2012 including all terms

up to 4th order. a better assessment of convergence property of the cluster expansion could

be established only if we go to next order. In the Percus-Yevick approximation the cluster

expansion of the radial distribution function is illustrated in the next figure.

g(r12) = + + + 2 +
1

2
+
1

2

+ + 2 + + 2

+ 2 + 2 +

In fact in the exact expansion there exist 24 5th order diagrams but only 7 main diagrams

are considered in the PY approximation. The energy calculation corresponding to each diagram
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implies a 15 order integral. Using folding numerical techniques, developed by the present

author, we were able to obtain calculable expressions in a reasonable computing time,

E50 =
1

2
ρ4

∫

d~RF (R){η ∗ [η ∗ (η ∗ η)]}(R) (50)

E51 = ρ4
∫

d~R1F (R1){[η(η ∗ η)] ∗ (η ∗ η)}(R1) (51)

E52 =
1

2
ρ4

∫

d~R1F (R1){[η · (η ∗ η)] ∗ [η ∗ η]}(R1) (52)

E53 = ρ4
∫

d~RF (R) {[η · (η ∗ η)] ∗ (η ∗ η)} (R) (53)

E54 = ρ4
∫

d~R3η(R3) {η · [F ∗ η]} ∗ {η · [η ∗ η]} (54)

E56 =
1

2
ρ4

∫

d~R1F (R1)((η · (η ∗ η)) ∗ (η · (η ∗ η)))(R1)

in these equations f(r) is the two-particle correlation function, η = f 2 − 1, F (r) = V ⋆f 2,

V ⋆ is the Feinberg effective potential. For the first time we have obtained compact formulae for

high order diagrams.

The cold α-matter energy is illustrated in Fig.12.
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Figure 12: The total energy of α matter is decomposed order by order

This figure illustrates our main result. Using density dependent correlation functions, the

saturation effect appears even in the second order of the cluster expansion. The 3rd order dia-

gram contributes repulsively to the total energy. The 4th and 5th order contribution are small

and due to an evident cancelation effect ensure the convergence property of the cluster expan-

sion series. Our essential result is that de equilibrium density depends mainly on the repulsive

component of the interaction potential which prohibits strong overlaps of α-particles. Thus,

for the AB2 and AB3 parametrizations, the equilibrium density is o about 0.2 particle/fm3 ,

significantly less than the critical Mott value. The value of the equilibrium density corresponds

to ρ = 0.08 fm−3 in normal nuclear matter which corresponds to the nuclear surface in heavy

nuclei. For the first time the α clusterization in the nuclear surface is justified theoretically. Also

the energy corresponding to the equilibrium density is close to the known energy of E = −16
MeV/A if we take into account the internal energy of α particle.

4.3 High order diagrams in the HNC approximation

To establish convincingly the convergence properties of the cluster expansion it is necessary

to examine 5th order elementary diagrams contributing the the α-matter energy in the HNC/5

approximation. The corresponding diagrams are depicted in the next figure

ρ3 +ρ3 +
ρ3

2
+ρ3 +

ρ3

6

The numerical calculation of the corresponding energy is exceedingly time consuming, us-

26



ing the lowest order of the radial distribution function, i.e. g(r) = f 2(r), with F(r) the density

dependent correlation function previously defined, we succeeded to calculate the energy, see

Fig.13. This result provides also a classification of the importance of the elementary diagrams.

We concluded that in the HNC/5 approximation a single diagram saturates to total contribution

of all 5th oder diagram.

4.4 Supersymmetric partners of the bare interactions

We have calculated the α − α potential in the double folding model including the knockon

exchange term for the effective interaction Gogny D1. The nonlocal kernels were localized in

the lowest order of the Perey-Saxon approximation. The wave functions for the redundant states

0s and 1s were calculated and eliminated by a supersymmetric transformation described above.

The result is illustrated in Fig.14.
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5 Scientific activity 2014

5.1 Introduction

During the year 2014 we concentrated our scientific activity on the study of convergence prop-

erties of cluster expansion method for calculating the ground state of the neutral alpha matter at

zero temperature. The Cluster expansion method has a long history but the convergence proper-

ties of the series expansion have never been firmly established in the case of strongly interacting

bosons. For example, in the case of alpha matter there are four diagrams of 4th order and 36

diagrams of 5th order to be calculated. Evidently this task is impossible within a reasonable

computer time. We have to resort to a reasonable and well justified approximation. In the

Percus-Yevick approximation the number of the 5th order diagrams are reduced to 7. We cal-

culated these diagrams using folding techniques which allowed a rapid and precise evaluation

of the contributions to the ground state energy. We found these contributions to be smaller by

an order of magnitude compared to 4th order contributions in the entire range of alpha matter

densities. The basic ingredient in these calculation is the alpha-alpha interaction potential at

low energies. We started with the well known Ali-Bodmer potential and obtained several ver-

sions by constraining the potential to reproduce with high precision the scattering phase-shifts

and the main properties of the first 8Be Jπ=0+ located at 0.92 KeV above the threshold. These

two constrains are not sufficient to lead to an unique potential, but define quite well the class of

potentials which lead to saturation. We further established the relation of these potentials with

supersymmetric partners of the folding potentials generated by the Gogny D1 NN interaction.

The single particle alpha density were taken from Bohigas and Stringari [1]slightly modified

to reproduce the experimentally known charge formfactors at large momentum transfer. We

found that saturation properties of the ground state energy depends essentially on the slope of

the repulsive component in the alpha-alpha interaction. The lack of uniqueness of the potential

is embarrassing, but fortunately this allows to give a palette of state equations as a function of

alpha matter density. In all cases we fond the saturation point near or bellow the critical point

(Mott density). Our predicted EOS are quite shallow with a compressibility coefficient in the

range of 130-160 MeV.
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5.2 Astrophysical reaction rate for 17F(p,γ)18Ne from the transfer reac-

tion 13C(17O,18O)12C

Nucleosynthesis of elements in ONe white dwarf (WD) novae produces several sources of γ-ray

lines. Among them is the positron-electron annihilation in the nova envelope, which leads to

emission of a line at 511 keV and a continuum below it. It is believed that 13N (t1/2 = 9.965 min)

and 18F (t1/2 = 109.77 min) are the main contributors to the production of observable positron

annihilation radiation. Because of the short lifetime of 13N, the decay of 18F is more important

since its γ-ray photons are emitted when the envelope starts to be transparent. According to

the ONe models, when the temperature in the burning shell reaches T9 ∼ 0.2-0.4, the main

nuclear activity to produce 18F is driven by a β-decay following the proton capture reaction
17F(p,γ)18Ne. . This is an important reaction that is interesting to be studied to understand

the unobserved 511 keV lines after the explosion. The rate of this reaction may influence the

abundances of 18F, 18Ne, 17F, and 15O, and explain the transition sequence from the HCNO

cycle to the rp-process. The nuclear structure of 18Ne depends on the configurations and the

binding energy of the levels in the mirror nucleus 18O taking into account the Coulomb energies.

Shell model calculations assume a 2s or 1d nucleon coupled to the single particle 5/2+, 1/2+,

and 3/2+ levels of 17O and 17F. Comparison of the nuclear structure of the mirror nuclei for

the low- lying states shows that their excitation energies are very similar as reported in [2].

The rate of 17F(p,γ)18Ne reaction has been determined by applying several theoretical methods

and experimental measurements. Wiescher, Gorres, and Thielmann noticed that the Jπ = 3+

level in 18Ne greatly influences the thermonuclear reaction rate [3]. Recent experiments have

obtained precise information about the energy of the 3+ level, Ex = 4.525(0.002) MeV, and its

total width, Γp=18(2) keV [4, 5]. Estimates of the reaction rate show that the resonant capture

to the 3+ state dominates the rate only at T9 ∼ 0.5 [4], which is an appropriate temperature

for explosive events such as x-rays bursts and supernovas. The direct reaction measurement

for 17F(p,γ)18Ne at ORNL shows that astrophysical importance of the resonant contribution is

increased by a factor of 10 in those events [6]. A slight complication occurs from the fact that
18Ne is an even-Z nucleus, and its states can have more than one proton orbital involved. There

are four proton bound states in 18Ne and direct radiative proton capture can proceed via any and

all of them. The nuclear cross section predicts that the 17F(p; γ)18Ne reaction will be dominated

by direct capture to the lowest energy Jπ = 2+ states, mainly at Ex=1.887 MeV and Ex=3.616

MeV.

The experiment was carried out with two separate 12 MeV/u 17O and 18O beams from K500

superconducting cyclotron at Texas A&M University. Each beam was transported through the

beam analysis system to the scattering chamber of the multipole-dipole- multipole (MDM)

magnetic spectrometer [9], where it interacted with 100 µgm/cm2 target. We have measured the

neutron pick-up from the loosely bound nucleus 13C and two elastic scattering cross sections

for the incoming and outgoing channels. First, the 17O beam was impinged on 13C target.

The elastic scattering angular distribution was measured for the spectrometer angles 4◦-25◦

in the laboratory system. The 4◦ X 1◦ wide-opening mask and an angle mask consisting of
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five narrow ∆θ= 0.1◦ slits were used for each spectrometer angle to double-check the absolute

values of the cross section and the quality of the angle calibration. Fine tuned RAYTRACE

[10] calculations were used to reconstruct the position of particles in the focal plane and the

scattering angle at the target. The instrumental setup, including the focal plane detector, and

processes for energy and angle calibrations, are identical to that described in Ref. [11]. Second,

the 12C target was bombarded by 18O beam with 216 MeV total laboratory energy. The elastic

scattering cross section was measured at 4◦-22◦ spectrometer angles. The quality of the angular

resolution, ∆θres, of the detector in both cases was on average 0.31◦ in c.m. frame and the

position resolution was better than 1 mm.

Figure 15: The angular distribution for

populating (a) the ground state and (b)

the 4+ state in 18O. The points are the

experimental data and the solid curve

the DWBA cross section.

Figure 16: The angular distribution for populating (a)

the 2+1 state and (b) the 2+2 state in 18O. The points are

the experimental data and the solid curve the DWBA

cross section obtained as incoherent sum of the dd and

ds configurations.
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Figure 17: Angular distribution calculated

with selected effective NN interactions.
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Figure 18: The same as in Fig. 25 but for the

other reaction.
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Figure 21: Inelastic cross sections calculated

with phase equivalent WS potentials.
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Figure 22: Inelastic cross sections calculated

with phase equivalent WS potentials.
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6 Scientific activity 2015

6.1 Introduction

We have a long-term program to understand and describe nucleus-nucleus collisions in terms

of one body interaction potential, the optical model potential (OMP). A good understanding of

all phenomena occurring in the elastic nucleus-nucleus scattering, which are used typically to

extract OMP, and the interpretation of the origin of different aspects, including the well known

potential ambiguities, are of crucial importance for finding and justifying the procedures used

for predicting nucleus-nucleus OMP in the era of radioactive nuclear beams (RNB), including

ours based on double folding [1]. The reliability of these potentials is crucial for the correct

description of a number of reactions involving RNBs, from elastic to transfer and breakup, at

energies ranging from a few to a few hundred MeV/nucleon. Of particular interest for us is

to support the absolute values of the calculated cross sections for reactions used in indirect

methods for nuclear astrophysics, see [2] and [3] for the most recent results. In this framework,

we treat here the case of heavy ion orbiting, one of the phenomena found over the years to occur

in special cases of elastic scattering, well understood semi-classically, but not well documented

by specific examples.
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6.2 Nuclear reactions in the explosive stage of supernovas

6.2.1 Astrophysical reaction rate for 17F(p,γ)18Ne from the transfer reaction 13C(17O,18O)12C.

Peripheral reactions of 17,18O on light targets.

Paper:

Peripheral elastic and inelastic scattering of 17,18O on light targets at 12 MeV/nucleon

F. Carstoiu, T. Al-Abdullah, C. A. Gagliardi and L. Trache

AIP Conference proceedings,vol 1645, p39 (2015)

Carpathian Summer Scool of Physics, Sinaia, 13-26 July, 2014

Nucleosynthesis of elements in ONe white dwarf (WD) novae produces several sources of γ-

ray lines. Among them is the positron-electron annihilation in the nova envelope, which leads to

emission of a line at 511 keV and a continuum below it. It is believed that 13N (t1/2 = 9.965 min)

and 18F (t1/2 = 109.77 min) are the main contributors to the production of observable positron

annihilation radiation. Because of the short lifetime of 13N, the decay of 18F is more important

since its γ-ray photons are emitted when the envelope starts to be transparent. According to

the ONe models, when the temperature in the burning shell reaches T9 ∼ 0.2-0.4, the main

nuclear activity to produce 18F is driven by a β-decay following the proton capture reaction
17F(p,γ)18Ne. . This is an important reaction that is interesting to be studied to understand

the unobserved 511 keV lines after the explosion. The rate of this reaction may influence the

abundances of 18F, 18Ne, 17F, and 15O, and explain the transition sequence from the HCNO

cycle to the rp-process. The nuclear structure of 18Ne depends on the configurations and the

binding energy of the levels in the mirror nucleus 18O taking into account the Coulomb energies.

Shell model calculations assume a 2s or 1d nucleon coupled to the single particle 5/2+, 1/2+,

and 3/2+ levels of 17O and 17F. Comparison of the nuclear structure of the mirror nuclei for

the low- lying states shows that their excitation energies are very similar as reported in [2].

The rate of 17F(p,γ)18Ne reaction has been determined by applying several theoretical methods
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and experimental measurements. Wiescher, Gorres, and Thielmann noticed that the Jπ = 3+

level in 18Ne greatly influences the thermonuclear reaction rate [3]. Recent experiments have

obtained precise information about the energy of the 3+ level, Ex = 4.525(0.002) MeV, and its

total width, Γp=18(2) keV [4, 5]. Estimates of the reaction rate show that the resonant capture

to the 3+ state dominates the rate only at T9 ∼ 0.5 [4], which is an appropriate temperature

for explosive events such as x-rays bursts and supernovas. The direct reaction measurement

for 17F(p,γ)18Ne at ORNL shows that astrophysical importance of the resonant contribution

is increased by a factor of 10 in those events [6]. A slight complication occurs from the fact

that 18Ne is an even-Z nucleus, and its states can have more than one proton orbital involved.

There are four proton bound states in 18Ne and direct radiative proton capture can proceed

via any and all of them. The nuclear cross section predicts that the 17F(p; γ)18Ne reaction

will be dominated by direct capture to the lowest energy Jπ = 2+ states, mainly at Ex=1.887

MeV and Ex=3.616 MeV. The experiment was carried out with two separate 12 MeV/u 17O

Figure 23: The angular distribution for

populating (a) the ground state and (b)

the 4+ state in 18O. The points are the

experimental data and the solid curve

the DWBA cross section.

Figure 24: The angular distribution for populating (a)

the 2+1 state and (b) the 2+2 state in 18O. The points are

the experimental data and the solid curve the DWBA

cross section obtained as incoherent sum of the dd and

ds configurations.

and 18O beams from K500 superconducting cyclotron at Texas A&M University. Each beam

was transported through the beam analysis system to the scattering chamber of the multipole-

dipole- multipole (MDM) magnetic spectrometer [9], where it interacted with 100 µgm/cm2

target. We have measured the neutron pick-up from the loosely bound nucleus 13C and two
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elastic scattering cross sections for the incoming and outgoing channels. First, the 17O beam

was impinged on 13C target. The elastic scattering angular distribution was measured for the

spectrometer angles 4◦-25◦ in the laboratory system. The 4◦ X 1◦ wide-opening mask and an

angle mask consisting of five narrow ∆θ= 0.1◦ slits were used for each spectrometer angle to

double-check the absolute values of the cross section and the quality of the angle calibration.

Fine tuned RAYTRACE [10] calculations were used to reconstruct the position of particles in

the focal plane and the scattering angle at the target. The instrumental setup, including the focal

plane detector, and processes for energy and angle calibrations, are identical to that described in

Ref. [11]. Second, the 12C target was bombarded by 18O beam with 216 MeV total laboratory

energy. The elastic scattering cross section was measured at 4◦-22◦ spectrometer angles. The

quality of the angular resolution, ∆θres, of the detector in both cases was on average 0.31◦ in

c.m. frame and the position resolution was better than 1 mm.
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Figure 25: Angular distribution calculated

with selected effective NN interactions.
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other reaction.
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Figure 29: Inelastic cross sections calculated

with phase equivalent WS potentials.
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6.3 Mathematical physics

Wei-Norman and Berezin’s equations of motion on the Siegel-Jacobi disk

S. Berceanu

Rom. J. Phys., Vol.60, fasc.1-2, p.126-146, 2015.

It is shown that the Wei-Norman method applied to describe the evolution on the Siegel-

Jacobi disk DJ
1 = D1 × C

1, where D1 denotes the Siegel disk, determined by a hermitian

Hamiltonian linear in the generators of the Jacobi group GJ
1 and Berezin’s scheme using co-

herent states give the same equations of quantum and classical motion when are expressed in

the coordinates in which the Kähler two-form ωDJ
1

can be written as ωDJ
1
= ωD1

+ ωC1 . The

Wei-Norman equations on DJ
1 are a particular case of equations of motion on the Siegel-Jacobi

ball DJ
n generated by a hermitian Hamiltonian linear in the generators of the Jacobi group GJ

n
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obtained in Berezin’s approach based on coherent states on DJ
n .

Bergman representative coordinates on the Siegel-Jacobi disk

Rom. J. Phys., Vol.60, fasc.7-8, p. 867-896, 2015

S. Berceanu

We underline some differences between the geometric aspect of Berezin’s approach to quan-

tization on homogeneous Kähler manifolds and Bergman’s construction for bounded domains

in C
n. We construct explicitly the Bergman representative coordinates for the Siegel-Jacobi

disk DJ
1 , which is a partially bounded manifold whose points belong to C × D1, where D1

denotes the Siegel disk. The Bergman representative coordinates on DJ
1 are globally defined,

the Siegel-Jacobi disk is a normal Kähler homogeneous Lu Qi-Keng manifold, whose represen-

tative manifold is the Siegel-Jacobi disk itself.

6.4 New experiment proposal

In 2014 we reported a proposal for an experiment in collaboration with LOUISIANA (dr. J.

Blackmon), RIKEN ( prof. Motobayashi, dr. Yoneda), TEXAS A&M (prof. Tribble). IFIN-HH

(dr. Carstoiu, dr. Trache), to be performed at SAMURAI, RIKEN, JAPAN. The proposal was

initially scheduled for 2015, but the circumstances were changed.

Proposal title:

Study of the 27P(p,γ)28S and 31Cl(p,γ )32Ar Reactions that are Important for X-ray Burst Light

Curves

We report here a second proposal for which theoretical simulation were performed in Bucharest.

Title of Project

Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the de-

velopment of a position sensitive microstrip detector system and its readout electronics using

ASICs technologies.

Applicant/Institution:

Cyclotron Institute, Texas A&M University MS 3366 College Station, TX 77843-3366

Principal Investigator: Prof. Robert E. Tribble

Texas A&M University

Participating institutions:

Cyclotron Institute, Texas A&M University, College Station, TX R.E. Tribble, L. Trache, A.

Banu, B. Roeder

Departments of Chemistry and Physics, Washington University, St. Louis, MO L.G. Sobotka,

R.J. Charity, J.M. Elson, G.L. Engel (South Illinois Univ. Edwardsville)

Department of Physics, Louisiana State University, Baton Rouge, LA

J. C. Blackmon
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Department of Physics, Texas A&M University, Commerce, TX C.A. Bertulani,

Cyclotron Institute, MS 3366

College Station, TX 77843-3366

International collaborators: F. Carstoiu ( IFIN-HH Bucharest, Romania),

N. Orr (LPC Caen, Univ de Caen, France)

A. Bonaccorso (INFN, Sezione di Pisa, Italy),

D. Brink (Oxford Univ., UK)

Scientific goals

We plan to carry out a physics program by performing a series of experiments with rare isotopes

beams (RIBs) at RIBF. Initially, we will focus on proton-breakup (or one-proton removal) re-

actions at intermediate energies. We will use these data to better understand the single particle

properties of proton-rich nuclei close to the drip line, to determine Asymptotic Normalization

Constants (ANC) and, from them, reaction rates of importance in H-burning in explosive nu-

cleosynthesis. We plan to extend this in the future to develop techniques that can be used to

better understand neutron capture reaction rates as well, as RIBF will be a facility with beams

and instrumentation aimed toward studying neutron-rich nuclei.

Breakup reactions for nuclear astrophysics studies

Among the arguments to study rare isotopes, as expressed in the recent U.S. Long Range

Plan, a very important one is to provide information that is needed to better understand ex-

plosive nuclear synthesis. To make reliable predictions for the synthesis of chemical elements

and the evolution of stars and galaxies, we need several types of data, including the rates of

nuclear reactions that provide the energy in nuclear synthesis, especially explosive processes.

Stellar nucleosynthesis processes typically involve unstable nuclei. For most of those, we have

currently only limited knowledge about their corresponding reaction rates. Direct measure-

ments for nuclear astrophysics involving unstable nuclei are difficult for two reasons: a) targets

(or projectiles at appropriate energies for inverse kinematics) of unstable nuclei are not easily

available, if at all, and b) charged-particle reactions at the very low energies relevant for stellar

processes are very difficult to measure due to the Coulomb repulsion, which leads to very low

reaction cross sections. Hence, very few direct measurements have been done on unstable nu-

clei to date. This problem has led to the development and use of indirect methods in nuclear

astrophysics. The list of indirect techniques that are used includes Coulomb dissociation, trans-

fer reactions (the ANC method), breakup at intermediate energies, the Trojan horse method,

and spectroscopic studies, in particular the location of resonance states and the determination

of resonance parameters. It has been has demonstrated that nuclear breakup experiments at

intermediate energies can be used to obtain information of importance to nuclear astrophysics.

From the nuclear breakup of radioactive nuclei with the emission of a proton, one can extract

asymptotic normalization coefficients (ANCs) for the X → Y + p system. This information is
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sufficient to determine the non-resonant contribution to the reaction rate for radiative proton

capture, Y(p,γ)X, at stellar temperatures, which is the major contribution at stellar energies in

a large number of reactions important in nuclear astrophysics, in particular for explosive H-

burning. The experimental method employed in these studies, which is shown schematically in

Fig. 31, involves breakup in the nuclear field of the target (as opposed to the Coulomb field).

It is a highly peripheral process for a large range of projectile energies. The energies depend

on the particular nuclei, mostly on the binding energy and the orbital momentum of the single

particle orbitals involved in the breakup, but are generally in the intermediate energy range (100

A-MeV) accessible to RIBF at RIKEN. Gamma-ray detectors are used in these experiments to

understand the configuration mixing in the structure of projectiles.

Figure 31: Schematic representation of breakup reaction
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Figure 32: Theoretical estimation of the one proton breakup of 9C at 100 MeV/A. The parallel

and perpendicular momentum distributions is calculated for single particle potential with diffu-

sivity parameter a=0.6 fm. The valence nucleon wave function is assumed to be a pure 1p3/2

state. The total cross section includes stripping, diffraction and Coulomb breakup.

7 Scientific activity 2016

7.1 Heavy ion orbiting and Regge poles

Heavy ion orbiting is one of the phenomena found over the years to occur in special case of

elastic scattering, well understood semi-classically, but not well documented by specific exam-

ples.

The anomalous large-angle scattering of α-particles at moderate energies from elements

throughout the periodic table has been a subject of considerable experimental study and has

evoked a wide range of novel theoretical explanations [4, 5]. The conventional nuclear optical

potential can explain much, if not all, of the anomalous scattering. The dominant physical

parameter determining back-angle scattering is the strength, W, of the imaginary part of the

optical potential. Lowering of W by a modest factor of two or three lead to changes in back-

angle scattering by several orders of magnitude. This effect was dubbed in literature improperly

as incomplete absorption. This severe sensitivity of back-angle scattering to the imaginary

strength of the optical potential was explained as a sudden emergence of the giant resonances

of the high-partial-wave strength functions, as W decreases[6]. A more popular explanation is

the interference between the wave reflected at the internal angular momentum barrier with the

wave reflected at the nuclear radius.
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Analysis of several heavy ion elastic scattering angular distribution in the energy range of

4-10 MeV/A conclude that backward-angle structures are caused by very few partial waves

close to grazing collision value ℓ = kR. Consequently, all theoretical approaches have to

strengthen the contribution from these partial waves relative to the normal optical or diffraction

model. Cowley and Heymann [7] and McVoy [8] parametrize the scattering amplitude by a

Regge pole expansion in angular momentum. The explanation in terms of a sequence of Regge

poles suggests that the physical mechanism behind the large angle structures could be heavy ion

orbiting.

Orbiting could be understood simply in terms of the classical equation of motion. Let a

particle m in a strong attractive potential V (r). Then the motion is given by

1

2
mṙ2 +

1

2

L2

mr2
+ V (r) = E (55)

Let the effective interaction U(r, L) = 1
2

L2

mr2
+ V (r) and assume that for a certain angular

momentum L = Lo the effective interaction has a maximum Umax and Umax = E. If this

condition is satisfied then the radial velocity ṙ = 0 and the particle is orbiting indefinitely with

a radius corresponding to the maximum. For E close to the critical energy the particle remains

a finite time in this state.

In this paper we reviewed the semiclassical theory of Brink and Takigawa [9] in relation with

heavy ion orbiting, barrier-top resonances and Regge poles. In a second part of the paper we

examine the ability of the double folding model of the optical potential to describe orbiting. In

a third paper we analyze orbiting in reactions initiated by loosely bound 6Li at energies around

10 MeV/A, and energy range where it is believed that reactions in psd shell are peripheral

and therefore it provides a favorable window for ANC applications to nuclear astrophysics.

It is shown that strong refractive effects survive in such reactions and the dominant reaction

mechanism is orbiting. As usual a dual interpretation is possible in terms of resonant/Regge

pole description in the spirit of McVoy. See figure 43 for the most spectacular absorption profile

with two active Regge poles.
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7.2 Imaginary part of the 9C-9Be single-folded optical potential

Single folded potentials for heavy ion reactions were proposed half a century ago and soon

rejected as a useful method on the basis that the phenomenological nucleon-target potential

used as a starting ingredient contains many-body correlations in an average way that lead to a

nonphysical normalization NV ≈ 2. We show that it is possible to build a single-folded light

nucleus-9Be imaginary optical potential which is more accurate than a double-folded optical

potential. By comparing to experimental reaction cross sections, we showed for 8B, 8Li, and 8C

projectiles, that a very good agreement between theory and data could be obtained with such

a bare potential, at all but the lowest energies where a small semimicroscopic surface term is

added to the single-folded potential to take into account projectile breakup. In this paper we

extend this study to the case of 9C projectiles and assess the sensitivity to the projectile density

used. We then obtained the modulus of the nucleus-nucleus S matrix and parametrize it in terms

of a strong-absorption radius Rs and finally extracted the phenomenological energy dependence

of this radius. This approach could be the basis for a systematic study of optical potentials for

light exotic nuclei scattering on light targets and/or parametrizations of the S matrix. Further-

more our study will serve to make a quantitative assessment of the description of the core-target

part of knockout reactions, in particular their localization in terms of impact parameters. 9Be

is chosen as a target in breakup reactions at intermediate energies since it behaves as a perfect

black disk (it has no bound excited states) and thus the stripping component of the breakup

cross section is maximized. We remind that the elastic breakup or diffraction dissociation com-

ponent is more difficult to describe theoretically. Also the Coulomb dissociation is small for

this target. Light exotic nuclei have been studied extensively in the last 30 years and their struc-

ture was first enlightened from measurements of the total reaction cross sections analyzed in

terms of the Glauber model. This lead automatically to calculations of imaginary parts of the

nucleus-nucleus optical potential in the folding model. Such a procedure, although very sim-

ple, is questionable because the folding model is first order in the nucleon-nucleon interaction,

while the Feshbach imaginary potential is second order for a real nucleon-nucleon interaction.
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Furthermore for light projectiles on light targets, the optical model itself has to be handled with

great care. Recently we have argued that using two very successful n-9Be optical potentials

and microscopic projectile densities, such as the ab initio VMC (Variational MonteCarlo), it

is possible to build a single-folded light nucleus-9Be optical potential which is more accurate

than a double-folded optical potential thus overcoming the difficulties discussed above. This is

because the n-9Be optical potentials have strong surface terms in common for both the real and

the imaginary parts which represent deformation effects, giant resonance excitations, and the

breakup channels of the target. On the other hand, ab initio VMC [4,5] or other microscopic

densities for the projectile would not contain enough information to reproduce the breakup

channels of the projectile. By comparing to experimental reaction cross sections, we showed in

Ref. [2], that for the cases of 8B, 8Li, and 8C projectiles, a very good agreement between theory

and data could be obtained by adding, at the lower energies, a small surface term to the single-

folded potential. In this paper we extend the study to the case of 9C projectiles, compare to

results obtained with the JLM potential, and assess the sensitivity of the result to the projectile

density used. We obtain then the nucleus-nucleus S matrix, SNN , and parametrize |SNN |2 in

terms of a strong-absorption radius and finally extract the phenomenological energy dependence

of the parameter Rs. Our results could have interesting implications in knockout formalisms as

well. 9Be is one of the ideal black-disk targets because it does not have bound excited states and

for this reason it has been chosen in the majority of cases in which breakup of the projectile or

total reaction cross sections have been studied. It has strong breakup channels itself but indeed

these are taken into account by the n-9Be optical potentials [3] we have developed which are

able to reproduce at the same time the total, elastic, reaction cross sections and all available

elastic scattering angular distributions. On the other hand, one of the motivations for paying

particular attention to 9C as a projectile, is in nuclear astrophysics [10]: the current knowledge

of the rate of the 8B (p,γ )9C reaction in stellar conditions is contradictory at best and there is

little hope to resolve this, now or in in the future, by means other than by indirect methods such

as for example the ANC from the breakup 9C→ 8B+p. This reaction gives a possible path to the

hot pp chain pp-IV at high temperatures and away from it toward a rapid α process at high tem-

peratures and densities and therefore it is important in understanding nucleosynthesis in super

massive hot stars in the early universe, including the possible of bypassing the 3α process. The

correct description of the breakup reaction implies a precise knowledge of the various optical

potentials and the corresponding S matrices at intermediate energies in the 9C-target, 8B-target,

and p-target channels. Another motivation is two-proton radioactivity which has been studied

recently by the HiRA collaboration [11-14]. They have applied nucleon removal to situations

in which the remaining core is beyond the drip line, such as 8C, unbound by one or more pro-

tons, and whose excitation-energy spectrum can be obtained by the invariant-mass method. By

gating on the ground-state peak, core parallel-momentum distributions and total knockout cross

sections have been obtained similar to previous studies with well-bound cores. In addition for

each projectile, knock out to final bound states has also been obtained in several cases.
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for the folding potentials.
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Figure 37: (Color online) F/N decomposition

for the other folding potentials.
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Grühn-Wall deep is carried entirely by the pole

component.

3 A. Bonaccorso and R. J. Charity, Phys. Rev. C 89, 024619 (2014).

4 R.B.Wiringa, http://www.phy.anl.gov/theory/research/density/.

5 S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001).

6 J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80 (1977).

7 F. Duggan,M. Lassaut, F.Michel, andN. VinhMau, Nucl. Phys. A 355, 141 (1981).

8 L. Trache, A. Azhari, H. L. Clark, C. A. Gagliardi, Y.-W. Lui, A. M. Mukhamedzhanov,

R. E. Tribble, and F. Carstoiu, Phys. Rev. C 61, 024612 (2000).

9 A. Bonaccorso and F. Carstoiu, Phis. Rev. C 61, 034605 (2000).

10 T. Motobayashi, Nucl. Phys. A 718, 101c (2003); private communication.

11 R. J. Charity et al., Phys. Rev. C 84, 014320 (2011).

48



10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

0 20 40 60 80 100 120 140 160 180

Regge

R1

R2

7
Li(

6
Li,

6
Li) 20 MeV

θ
c.m.

(deg)

σ/
σ R

F

N

X 50

X 0.05

pole

Figure 42: F/N decomposition using Regge

pole amplitudes. The cross section is domi-

nated by the pole component (yellow) in the

entire angular range.

10
-2

10
-1

1

10

0 1 2 3 4 5 6 7 8 9 10

6
Li+

7
Li 20.0 MeV

Regge R1

 l

| 
S

(l
)|

bkgpole

tot

l

Figure 43: Absorption profile using Regge pole

amplitude R1. The background component is

plotted in red. There are two main poles located

near the real axis ℓ = 5 and ℓ = 7.

12 M. F. Jager et al., Phys. Rev. C 86, 011304(R) (2012).

13 I. A. Egorova et al., Phys. Rev. Lett. 109, 202502 (2012).

14 K. W. Brown et al., Phys. Rev. Lett. 113, 232501 (2014).

49



-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4 -0.2 0 0.2 0.4

GOGNY1 J
v
=324

6
Li+

7
Li 20 MeV

 ℜ S(l)

ℑ
 S

(l
)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4 -0.2 0 0.2 0.4

GOGNY3 J
v
=326

 ℜ S(l)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4 -0.2 0 0.2 0.4

WS
1

J
v
=340

 ℜ S(l)

ℑ
 S

(l
)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4 -0.2 0 0.2 0.4

WS
2

J
v
=328

 ℜ S(l)
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