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A many-body Hamiltonian involving the mean field for a projected spherical single-particle basis, the pairing
interactions for like nucleons, a repulsive dipole-dipole proton-neutron interaction in the particle-hole channel,
and an attractive dipole-pairing interaction is treated by a gauge-restored and fully renormalized proton-neutron
quasiparticle random-phase approximation formalism. The resulting wave functions and energies for the parent
and the daughter nuclei are used to calculate the 2νββ decay rate and the process half-life for the emitters: 48Ca,
76Ge, 82Se, 96Zr, 104Ru, 110Pd, 128,130Te, 148,150Nd, 154Sm, and 160Gd. The results of our calculations are compared
with the corresponding experimental data as well as with those obtained through other methods. The Ikeda sum
rule is obeyed.
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I. INTRODUCTION

The 2νββ process is interesting in itself but is also very
attractive because it constitutes a test for the nuclear matrix
elements (MEs) which are used for the process of 0νββ decay.
The discovery of this process may provide an answer to the
fundamental question of whether the neutrino is a Majorana
or a Dirac particle. The development of the subject has been
described in several review papers [1–7]. The present paper
refers to the 2νββ process, which is conceived as consisting
of two consecutive and virtual single β− decays. The for-
malism yielding closest results to the experimental data is
the proton-neutron quasiparticle random-phase approximation
(pnQRPA) which includes the particle-hole (p-h) and particle-
particle (p-p) interactions as independent two-body interac-
tions. The second leg of the 2νββ process is very sensitive to
changes in the relative strength of the latter interaction, denoted
hereafter by gpp. It is worth mentioning that the p-h interaction
is repulsive while the p-p one is attractive. Consequently, there
is a critical value of gpp for which the first root of the pnQRPA
equation vanishes. Actually, this is the signal that the pnQRPA
approach is no longer valid. Moreover, the gpp value which
corresponds to a transition amplitude that agrees with the cor-
responding experimental data is close to the mentioned critical
value. That means that the result is not stable to the addition
of corrections to the RPA picture. An improvement for the
pnQRPA was achieved by one of us (A.A.R.), in collaboration,
in Refs. [8,9], by using a boson expansion procedure. Another
procedure, proposed in Ref. [10], renormalizes the dipole two-
quasiparticle operators by replacing the scalar components of
their commutators with their average values. Such a renormal-
ization is, however, inconsistently achieved since the scattering
operators do not participate in the renormalization process.
This lack of consistency was removed in Refs. [11,12] where
a fully renormalized pnQRPA (FRpnQRPA) is proposed.

Unfortunately, all higher pnQRPA procedures mentioned
above have the common drawback of violating the Ikeda

sum rule (ISR) by an amount of about 20–30% [13]. It is
believed that this violation is caused by the gauge symmetry
breaking. Consequently, a method of restoring this symmetry
was formulated by two of us (A.A.R. and C.M.R.) in
Ref. [14].

Recently [15,16], the results of Ref. [14] were improved in
two respects: (a) aiming at providing a unitary description
of the process for situations when the involved nuclei are
spherical or deformed, here we use the projected spherical
single-particle basis defined in Ref. [17] and used for double-
β decay in Refs. [18,19]; (b) the space of proton-neutron
dipole configurations is split into three subspaces, one being
associated with the single-β− decay, one with the single-β+
process, and one spanned by the unphysical states. A set of
GRFRpnQRPA equations is written in the first two subspaces
mentioned above, by linearizing the equations of motion of the
basic transition operators corresponding to the two coupled
processes.

In the present paper we apply the equations derived
by the GRFRpnQRPA for the 2νββ processes 48Ca→48Ti,
76Ge→76Se, 82Se →82Kr, 96Zr →96Mo, 104Ru →104Pd,
110Pd →110Cd, 128Te →128Xe, 130Te →130Xe, 148Nd →148Sm,
150Nd →150Sm, 154Sm →154Gd, and 160Gd →160Dy. New ar-
guments supporting the formalism are given. Moreover, owing
to the specific experimental data available, a new procedure
for fixing the strengths of the two-body p-n interactions is
presented. A detailed comparison to other models aiming at
being realistic and at the same time at fulfilling the Ikeda sum
rule is mentioned.

The results are described according to the following plan.
The model Hamiltonian is given in Sec. II where, also,
the FRpnQRPA approach is briefly discussed. The projected
gauge of FRpnQRPA (GRFRpnQRPA) is the objective of
Sec. III. The Gamow-Teller (GT) amplitude for the 2νββ

process is given in Sec. IV. Numerical applications are
shown in Sec. V, while the final conclusions are drawn in
Sec. VI.
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II. THE MODEL HAMILTONIAN

A. Projected spherical single-particle basis

In Ref. [17], one of us, (A.A.R., in collaboration), intro-
duced an angular-momentum-projected single-particle basis
which seems to be appropriate for the description of the
single-particle motion in a deformed mean field generated
by the particle-core interaction. Aiming at a self-contained
presentation, we give here the main ingredients of the method
used in that reference. The single-particle mean field is
determined by a particle-core Hamiltonian:

H̃ = Hsm + Hcore − Mω2
0r

2
∑
λ=0,2

∑
−λ�μ�λ

α∗
λμYλμ. (2.1)

Here Hsm denotes the spherical shell model Hamiltonian
while Hcore is a harmonic quadrupole boson (b+

μ ) Hamiltonian
associated with a phenomenological core. The interaction
of the two subsystems is accounted for by the third term
of Eq. (2.1), written in terms of the shape coordinates α00

and α2μ.The monopole shape coordinate can be expressed
in terms of the quadrupole coordinates owing to the volume
conservation condition. The quadrupole shape coordinates are
related to the quadrupole boson operators by the canonical
transformation

α2μ = 1

k
√

2
[b†2μ + (−)μb2,−μ], (2.2)

where k is an arbitrary C number. Averaging H̃ on the
eigenstates of Hsm, hereafter denoted by |nljm〉, one obtains a
deformed boson Hamiltonian whose ground state is described
by the coherent state

�g = exp[d(b†20 − b20)]|0〉b, (2.3)

with |0〉b standing for the vacuum state of the boson operators
and d a real parameter which simulates the nuclear deforma-
tion. Indeed, averaging the quadrupole moment operator

Q20 = q0(b†20 + b20), (2.4)

with the above mentioned coherent state, one obtains

〈�g|Q20|�20〉 = 2q0d. (2.5)

The average of H̃ on �g is similar to the Nilsson Hamiltonian
[20]. Because of these properties, it is expected that the best
trial functions to be used to generate, through projection, a
spherical basis are

�
pc
nlj = |nljm〉�g. (2.6)

The superscript “pc” appearing in the left-hand side of the
above equation suggests that the product function is associated
with the particle-core system. The projected states are obtained
in the usual manner by acting on these deformed states with
the projection operator

P I
MK = 2I + 1

8π2

∫
DI

MK
∗
(	)R̂(	)d	. (2.7)

A certain subset of projected states is orthogonal:


IM
nlj (d) = N I

nljP
I
MI[|nljI 〉�g]. (2.8)

The main properties of these projected spherical states are as
follows: (i) They are orthogonal with respect to the quantum
numbers I and M. (ii) Although the projected states are
associated with the particle-core system, they can be used
as a single-particle basis. Indeed, when a matrix element of
a particlelike operator is calculated, the integration on the
core collective coordinates is performed first, which results in
obtaining a final factorized expression: one factor carries the
dependence on deformation and one is a spherical shell model
matrix element. (iii) The connection between the nuclear
deformation and the parameter d entering the definition of the
coherent state (2.4) is readily obtained by requiring that the
strength of the particle-core quadrupole-quadrupole interac-
tion be identical to the Nilsson deformed term of the mean field:

d

k
=

√
2π

45

(
	2

⊥ − 	2
z

)
. (2.9)

Here 	⊥ and 	z denote the frequencies of Nilsson’s mean
field, related to the deformation δ = √

45/16πβ by

	⊥ =
(

2 + δ

2 − δ

)1/3

, 	z =
(

2 + δ

2 − δ

)−2/3

. (2.10)

The average of the particle-core Hamiltonian H ′ = H̃ − Hcore

on the projected spherical states defined by (2.8) approximates
quite well the single-particle energies associated with the
eigenstates of the deformed single-particle mean field:

εI
nlj = 〈


IM
nlj (d)

∣∣H ′∣∣
IM
nlj (d)

〉
. (2.11)

These matrix elements were analytically expressed in Ref. [17]
Since the core contribution does not depend on the quantum
numbers of the single-particle energy level, it produces a
shift for all energies and therefore is omitted in Eq. (2.11).
However, when the ground-state energy variation against
deformation is studied, this term should be considered as well.

Note that the average values εI
nlj may be viewed as

approximate expressions for the single-particle energies in
deformed Nilsson orbits. We may account for the deviations
from the exact eigenvalues by considering, later on, the
off-diagonal matrix elements of the particle-core interaction
when a specific treatment of the many-body system is applied.

The parameters involved in Hsm were taken from Ref. [21].
The deformation parameter was fixed by fitting the strength
of the E2 transition to the first collective 2+. The canonicity
parameter can be determined by requiring that the energy
spacings between two particular adjacent single-particle en-
ergy levels in the Nilsson and present formalism are the
same. Because of these features the dependence of the new
single-particle energies on the deformation parameter d is
similar to that shown by the Nilsson model for the single-
particle energies [20] as a function of the quadrupole nuclear
deformation, β. For illustration the dependence on d of the
proton single-particle energies is shown in Fig. 1 for 154Sm.

Although the energy levels are similar to those of the Nils-
son model, the quantum numbers in the two schemes are differ-
ent. Indeed here we generate from each j a multiplet of (2j + 1)
states as I, which plays the role of the Nilsson quantum number
	, runs from 1/2 to j, and moreover the energies corresponding
to the quantum numbers K and −K are equal to each other.
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FIG. 1. (Color online) Proton single-particle energies for 154Sm. Vertical full line corresponds to the deformation parameter d used in the
present calculations, while the dashed vertical line corresponds to that deformation which minimizes the proton system energy. The difference
between the two values may be washed out if the contribution of Hcore to the total energy to be minimized is taken into account. The Fermi
level is indicated by an arrow.

On the other hand, for a given I there are 2I + 1 degenerate
substates while the Nilsson states are only doubly degenerate.
As explained in Ref. [17], the redundancy problem can be
solved by changing the normalization of the model functions:〈


IM
α

∣∣
IM
α

〉 = 1 =⇒
∑
M

〈

IM

α

∣∣
IM
α

〉 = 2. (2.12)

Because of this weighting factor the particle density function
provides the consistent result that the number of particles
which can be distributed on the (2I + 1) substates is at most

2, which agrees with the Nilsson model. Here α stands for
the set of shell model quantum numbers nlj . Owing to this
normalization, the states 
αIM used to calculate the matrix
elements of a given operator should be multiplied by the
weighting factor

√
2/(2I + 1). The role of the core component

is to induce a quadrupole deformation for the matrix elements
of the operators acting on the particle degrees of freedom. For
any such an operator the following factorization holds:〈


I
nlj

∣∣|Tk|
∣∣
I ′

n′l′j ′
〉 = f

n′l′j ′I ′
nljI 〈nlj ||Tk||n′l′j ′〉. (2.13)
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The factor f carries the dependence on the deformation
parameter d, while the other factor is just the reduced matrix
element corresponding to the spherical shell model states.

In conclusion, the projected single-particle basis is defined
by Eq. (2.8). Although these states are associated with a
particle-core system, they can be used as a single-particle basis
because of the properties mentioned above. Therefore the pro-
jected states might be thought of as eigenstates of an effective
rotationally invariant fermionic one-body Hamiltonian Heff,
with the corresponding energies given by Eq. (2.11):

Heff

IM
α = εI

α(d)
IM
α . (2.14)

This definition should be supplemented by the request that
the matrix elements of any operator between states 
IM

α and

I ′M ′

α′ are given by Eq. (2.13). Because of these features, these
states can be used as a single-particle basis to treat many-body
Hamiltonians that involve one-body operators. This is the case
of Hamiltonians with two-body separable forces. As a matter
of fact, this type of Hamiltonian is used in the present paper.

In the vibrational limit d → 0, the projected spherical
basis goes to the spherical shell model basis and εI

nlj to the
eigenvalues of Hsm.

For the sake of completeness, we paid attention also to
the general two-body interaction. In this way one hopefully
avoids a possible erroneous interpretation of the product of
two projected single-particle states. Thus in Ref. [13] we
proved that the matrix elements of a two-body interaction
corresponding to the present scheme are very close to the
matrix elements corresponding to spherical states projected
from a deformed product state with one factor as a product
of two spherical single-particle states, and a second factor
consisting of a common collective core wave function. The
small discrepancies of the two types of matrix elements could
be washed out by using slightly different strengths for the
two-body interaction in the two methods. Because of this
property the basis (2.8) might be used for studying any
two-body interaction.

B. Fully renormalized pnQRPA treatment

In the present work we wish to describe unitarily the
Gamow-Teller two-neutrino double-β decay of even-even nu-
clei with and without spherical symmetry. In our treatment the
Fermi transitions, contributing about 20%, and the “forbidden”
transitions are ignored, which is a reasonable approximation
for the two-neutrino double-β decay in medium and heavy
nuclei.

We suppose that the states describing the nuclei involved
in a 2νββ process are described by a many-body Hamiltonian
that may be written in the projected spherical basis as

H =
∑

τ,α,I,M

2

2I + 1
(εταI − λτα)c†ταIMcταIM

−
∑

τ,α,I,I
′

Gτ

4
P

†
ταIPταI ′ +2χ

∑
pn;p′

n
′ ;μ

β−
μ (pn)β+

−μ(p′n′)(−)μ

−2χ1

∑
pn;p′

n
′ ;μ

P −
μ (pn)P +

−μ(p′n′)(−)μ, (2.15)

where c
†
ταIM (cταIM) denotes the creation (annihilation) opera-

tor of one nucleon of the type τ (=p, n) in the state 
IM
α , with

α being an abbreviation for the set of quantum numbers nlj .
The Hamiltonian H contains the mean-field term, the pairing
interactions for alike nucleons whose strengths are denoted
by Gτ , and the Gamow-Teller dipole-dipole interaction in the
p-h and p-p channels, characterized by the strengths χ and χ1,
respectively.

In order to simplify the notation, hereafter the set of
quantum numbers α (=nlj ) will be omitted. Note that the
two-body interactions are separable, with the factors defined
by the following expressions:

P
†
τI =

∑
M

2

2I + 1
c
†
τ IMc

†
τ̃ IM

,

β−
μ (pn) =

∑
M,M ′

√
2

Î
〈pIM|σμ|nI ′M ′〉

√
2

Î ′ c
†
pIMcnI ′M ′ , (2.16)

P −
1μ(pn) =

∑
M,M ′

√
2

Î
〈pIM|σμ|nI ′M ′〉

√
2

Î ′ c
†
pIMc

†˜nI ′M ′ .

The other operators from Eq. (2.15) can be obtained from the
above expressions, by Hermitian conjugation.

In the quasiparticle representation, defined by the
Bogoliubov-Valatin transformation

a
†
τ IM = UτI c

†
τ IM − sIMVτI cτI−M, sIM = (−)I−M,

(2.17)
τ = p, n, U 2

τI + V 2
τI = 1,

the first two terms of H are replaced by the independent
quasiparticle (qp) term

∑
EτIa

†
τ IMaτ IM, while the p-h and p-p

interactions are expressed in terms of the two-qp and the qp
dipole density operators:

A
†
1μ(pn) =

∑
C

Ip In 1
mp mn μa

†
pIpmp

a
†
nInmn

,

A1μ(pn) = (A†
1μ(pn))†, (2.18)

B
†
1μ(pn) =

∑
C

Ip In 1
mp −mn μa

†
pjpmp

anInmn
(−)In−mn,

B1μ(pn) = (B†
1μ(pn))†.

As shown in Ref. [11], all these operators can be renormal-
ized by making use of the commutation equations

[A1μ(k), A†
1μ′ (k′)] ≈ δk,k′δμ,μ′

[
1 − N̂n

Î 2
n

− N̂p

Î 2
p

]
,

[B†
1μ(k), A†

1μ′ (k′)] ≈ [B†
1μ(k), A1μ′ (k′)] ≈ 0, (2.19)

[B1μ(k), B†
1μ′(k′)] ≈ δk,k′δμ,μ′

[
N̂n

Î 2
n

− N̂p

Î 2
p

]
, k = (Ip, In),

with N̂τ denoting the quasiparticle number operator of type τ

(= p, n). Indeed, denoting by C
(1)
Ip,In

and C
(2)
Ip,In

the averages of
the right-hand sides of (2.19) with the renormalized pnQRPA
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vacuum state, the renormalized operators defined as

Ā1μ(k) = 1√
C

(1)
k

A1μ, B̄1μ(k) = 1√∣∣C(2)
k

∣∣B1μ (2.20)

obey the bosonlike commutation relations

[Ā1μ(k), Ā†
1μ′(k′)] = δk,k′δμ,μ′ ,

(2.21)
[B̄1μ(k), B̄†

1μ′(k′)] = δk,k′δμ,μ′fk, fk = sgn
(
C

(2)
k

)
.

Further, these operators are used to define the phonon operator:

C
†
1μ =

∑
k

[X(k)Ā†
1μ(k) + Z(k)D̄†

1μ(k) − Y (k)Ā1−μ(k)(−)1−μ

−W (k)D̄1−μ(k)(−)1−μ], (2.22)

where D̄
†
1μ(k) is equal to B̄

†
1μ′(k′) or B̄1μ(k) depending on

whether fk is + or −. The phonon amplitudes are determined
by the equations

[H,C
†
1μ] = ωC

†
1μ, [C1μ, C

†
1μ′ ] = δμμ′ . (2.23)

Interesting properties for these equations and their solutions
were discussed in our previous publications [11,12]. The

formalism defined above was named the fully renormalized
proton-neutron quasiparticle random-phase approximation
(FrpnQRPA).

III. GAUGE PROJECTION OF THE FULLY
RENORMALIZED pnQRPA

The ground state of an (N,Z) nucleus can be excited
by the phonon operator, defined above, to a state which
is a superposition of components describing the neigh-
boring nuclei (N − 1, Z + 1), (N + 1, Z − 1), (N + 1, Z +
1), (N − 1, Z − 1). The first two components conserve the
total number of nucleons (N + Z) but violate the third
component of isospin, T3. By contrast, the last two components
violate the total number of nucleons but preserve T3. Actually,
the last two components are those that contribute to the ISR
violation. However, one can construct linear combinations of
the basic operators A†, A,B†, B which excite the nucleus
(N,Z) to the nuclei (N − 1, Z + 1), (N + 1, Z − 1), (N +
1, Z + 1), (N − 1, Z − 1), respectively. These operators are

A†
1μ(pn) = UpVnA

†
1μ(pn) + UnVpA1,−μ(pn)(−)1−μ + UpUnB

†
1μ(pn) − VpVnB1,−μ(pn)(−)1−μ,

A1μ(pn) = UpVnA1μ(pn) + UnVpA
†
1,−μ(pn)(−)1−μ + UpUnB1μ(pn) − VpVnB

†
1,−μ(pn)(−)1−μ,

A†
1μ(pn) = UpUnA

†
1μ(pn) − VpVnA1,−μ(pn)(−)1−μ − UpVnB

†
1μ(pn) − VpUnB1,−μ(pn)(−)1−μ,

A1μ(pn) = UpUnA1μ(pn) − VpVnA
†
1,−μ(pn)(−)1−μ − UpVnB1μ(pn) − VpUnB

†
1,−μ(pn)(−)1−μ.

In the particle representation these operators have the expres-
sions

A†
1μ(pn) = −[c†pcñ]1μ, A1μ(pn) = −[c†pcñ]†1μ,

(3.1)
A†

1μ(pn) = [c†pc†n]1μ, A1μ(pn) = [c†pc†n]†1μ.

Thus, the operators from the first row excite the nucleus (N,Z)
to the nuclei (N − 1, Z + 1) and (N + 1, Z − 1), respectively,
while the operators A†

1μ(pn) and A1μ(pn) bring (N,Z) to
(N + 1, Z + 1) and (N − 1, Z − 1), respectively. In terms of
the new operators, the many-body Hamiltonian is

H =
∑
τjm

Eτja
†
τjmaτjm+2χ

∑
pn,p′n′;μ

σpn;p′n′A†
1μ(pn)A1μ(p′n′)

−2χ1

∑
pn,p′n′;μ

σpn;p′n′A†
1μ(pn)A1μ(p′n′), σpn;p′n′

= 2

3ÎnÎn′
〈Ip||σ ||In〉〈Ip′ ||σ ||In′ 〉, (3.2)

where EτI denotes the quasiparticle energy.
At this stage we have to explain why the p-p interac-

tion is not effective, i.e., does not contribute at all within

our approach. Indeed, within the gauge-preserved picture
the operators A1μ and A†

1μ commute with each other.
Consequently, the gauge-projected phonon operator cannot
comprise terms like A†

1μ since they violate the total number
of nucleons. If the mentioned commutator were different
from zero, but equal to the average with the new vacuum
state of its scalar part, then the equations of motion for
the operators A1μ and A†

1μ would be linear not only in
the nucleon-number-conserving operators, but also in those
which do not conserve the total number operator. In order
that the equations of motion constitute a closed algebra,
we have to add the equations corresponding to the number-
nonconserving operators. Consequently, the phonon operator
is a linear combination of both nucleon-number-conserving
and -nonconserving terms. It is clear now that in order to
conserve the nucleon total number it is necessary to accept that
the operators A1μ and A†

1μ commute with each other. In this
context the p-p interaction becomes inefficient for properties
described by gauge-preserving wave functions and therefore
we have to ignore it. In this respect our formalism contrasts
with the picture of Ref. [22] where the phonon operator
commutes with the nucleon total number operator and at the
same time the p-p interaction contributes to the renormalized
pnQRPA equations.
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However, in aiming at a quantitative description of the
double-β process, the presence of an attractive proton-neutron
interaction is necessary. For this reason we replace the p-p
interaction, which is ineffective anyway, with a dipole-pairing
interaction:

�H = −Xdp

∑
pn;p

′
n

′ ;μ

(β−
μ (pn)β−

−μ(p′n′) + β+
−μ(p′n′)β+

μ (pn))

× (−1)1−μ. (3.3)

We remark that the two terms of �H change the charge by
+2 and −2 units, respectively, and therefore one may think that
it is not justified within the meson-dynamic theory of nuclear
forces. That is not true, if we keep in mind the isospin charge
independence property of the nuclear forces. Also, we note that
�H is Hermitian and invariant to rotation. This Hamiltonian
should be looked at as an effective Hamiltonian in the same
manner as is the standard pairing Hamiltonian. Indeed, within
the BCS approximation the initial pairing Hamiltonian is
replaced by an effective one �(c†c†)0 + �∗(cc)0, with c† (c)
denoting the single-particle creation (annihilation) operator.
This Hamiltonian also does not preserve the charge, but this
is consistent with the trial variational state |BCS〉, which
is a mixture of components with different even numbers of
particles. In the present case the pnQRPA state is built on top
of the BCS ground state, which is a product of the BCS states
for protons and neutrons, respectively, so that a linear superpo-
sition of components with different isospin third components
T3 is obtained. Of course, at the BCS level T3 is preserved on
average. Therefore, in the quasiparticle picture the condition
that the Hamiltonian commutes separately with the proton and
neutron number operators is anyway not satisfied by any of
the terms composing the model Hamiltonian. Note that �H

commutes with the total number of nucleons and preserves
this feature after the linearization procedure is performed,
contributing to the equations of motion of the basic operators
with the gauge restored. Concerning the T3 symmetry, let
us denote by Nτ the τ (=p, n) particle number operators,
respectively, and calculate the commutator

[�H,Np − Nn] = 4Xdp

∑
pn;p

′
n

′ ;μ

(β−
μ (pn)β−

−μ(p′n′)

−β+
−μ(p′n′)β+

μ (pn))(−1)1−μ. (3.4)

Note that the right-hand side of the above equation is an
anti-Hermitian operator. Consequently, its average value with
any state is vanishing. In particular it vanishes if the chosen
state is the BCS ground state or the vacuum state of the
GPFRpnQRPA phonon operator. In conclusion, in the present
formalism the third isospin component is conserved on
average. Clearly this happens since while one term of �H

increases the charge by two units the other term decreases
it by the same amount. Note that this isospin-nonconserving
term shows up even at the level of the standard pnQRPA.
Indeed within this formalism the two-body interaction is

approximated by a linear combination of the operators

A
†
1μ(pn)A1μ(pn), (−1)1−μ(A†

1μ(pn)A†
1−μ(pn)

+A1,−μ(pn)A1μ(pn)). (3.5)

Writing these terms in the particle representation, one finds
that the effective two-body interaction comprises, among
other terms, a term that is proportional to �H . Therefore,
in a formalism using an approximation that violates the
T3 symmetry, the use of a Hamiltonian �H which does
not preserve the T3 component does not produce a special
inconsistency.

Writing the model Hamiltonian in the quasiparticle repre-
sentation, one obtains

H =
∑
τjm

Eτja
†
τjmaτjm+2χ

∑
pn,p′n′;μ

σpn;p′n′A†
1μ(pn)A1μ(p′n′)

−Xdp

∑
pn;p

′
n

′ ;μ

σpn;p′n′(A†
1μ(pn)A†

1,−μ(p′n′)

+A1,−μ(p′n′)A1μ(pn))(−)1−μ. (3.6)

The equations of motion of the operators defining the
phonon operator are determined by the commutation relations

[A1μ(pn),A†
1μ′(p′n′)] ≈ δμ,μ′δjp,jp′ δjn,jn′

×
[
U 2

p − U 2
n + U 2

n − V 2
n

Î 2
n

N̂n − U 2
p − V 2

p

Î 2
p

N̂p

]
. (3.7)

The quasiboson approximation replaces the right-hand side of
Eq. (3.7) by its average with the GRFRpnQRPA vacuum state,
denoted by

D1(pn) = U 2
p − U 2

n + 1

2In + 1

(
U 2

n − V 2
n

)〈N̂n〉

− 1

2Ip + 1

(
U 2

p − V 2
p

)〈N̂p〉. (3.8)

The equations of motion show that the two qp energies are also
renormalized:

Eren(pn) = Ep

(
U 2

p − V 2
p

) + En

(
V 2

n − U 2
n

)
. (3.9)

Here an important difference with respect to the FRpnQRPA
equations should be pointed out. There, the quasiparticle
energies defining the poles in the dispersion equation for the
FRpnQRPA roots are of the types Ep + En and Ep − En.
They show up due to the commutation relations of the basic
operators involved in the phonon operator with the independent
quasiparticle term of the model Hamiltonian. The difference
is caused by the gauge projection operation. The space of
pn dipole states, S, is written as a sum of three subspaces
defined as

S+ = {
(p, n)|D1(pn) > 0, Eren(pn) > 0,

}
,

S− = {
(p, n)|D1(pn) < 0, Eren(pn) < 0,

}
,

Ssp = S − (S+ + S−) , (3.10)

N± = dim(S±), Nsp = dim(Ssp),

N = N+ + N− + Nsp.
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The fourth line here specifies the dimensions of these sub-
spaces. In S+ one defines the renormalized operators

Ā†
1μ(pn) = 1√

D1(pn)
A†

1μ(pn),
(3.11)

Ā1μ(pn) = 1√
D1(pn)

A1μ(pn),

while in S− the renormalized operators are

F̄†
1μ(pn) = 1√|D1(pn)|A1μ(pn),

(3.12)
F̄1μ(pn) = 1√|D1(pn)|A

†
1μ(pn).

Indeed, the operator pairs A1μ,A†
1μ and F1μ,F†

1μ satisfy
commutation relations of boson type. A pnQRPA treatment
within Ssp would yield either vanishing or negative ener-
gies. The corresponding states are therefore spurious. The
FRpnQRPA with the gauge symmetry projected defines the
phonon operator as

�
†
1μ =

∑
k

[
X(k)Ā†

1μ(k)+Z(k)F̄†
1μ(k) − Y (k)Ā1−μ(k)(−)1−μ

−W (k)F̄1−μ(k)(−)1−μ
]
. (3.13)

The summation in the defining equation (3.13) is restricted
to the the existence domain of the operators to which it is
applied. Thus, when the term contains one of the operators
Ā†

1μ(k), Ā1−μ(k)(−)1−μ, then k ∈ S+. Also, for the terms

involving the operators F̄1μ, F̄†
1μ the summation is restricted

to k ∈ S−.
The phonon amplitudes are determined by the equations

[H,�
†
1μ] = ω�

†
1μ, [�1μ, �

†
1μ

′ ] = δμ,μ
′ . (3.14)

Thus, the phonon amplitudes are obtained by solving the
GRFRpnQRPA equations⎛⎜⎝ A11 A12 B11 B12

A21 A22 B21 B22

−B11 −B12 −A11 −A12

−B21 −B22 −A21 −A22

⎞⎟⎠
⎛⎜⎝ X(pn)

Z(pn)
Y (pn)
W (pn)

⎞⎟⎠=ω

⎛⎜⎝ X(p1n1)
Z(p1n1)
Y (p1n1)
W (p1n1)

⎞⎟⎠,

(3.15)

where the involved matrices are analytically given in the
Appendix. In Ref. [16], the above equations were written
in a compact form, under the form of a dispersion equation
for the excitation energies. The phonon amplitudes were also
analytically expressed.

The matrix dimension for A11 and B11 is N+ × N+, while
for A22 and B22 it is N− × N−. The off diagonal submatrices
A12 and B12 have the dimension N+ × N−, while A12 and B12

are of the N− × N+ type.
In order to solve Eqs. (3.15) we need to know D1(pn) and,

therefore, the averages of the qp number operators N̂p and N̂n.
These are written first in particle representation and then the
particle-number-conserving term is expressed as a linear com-
bination of A†A and F†F chosen such that their commutators
with A†,A and F†,F are preserved. The final result is

〈N̂p〉 = V 2
p (2Ip + 1) + 3

(
U 2

p − V 2
p

) ⎛⎜⎜⎝ ∑
n′,k

(p,n′)∈S+

D1(p, n′)[Yk(p, n′)]2 −
∑

n′,k
(p,n′)∈S−

D1(p, n′)[Wk(p, n′)]2

⎞⎟⎟⎠ ,

〈N̂n〉 = V 2
n (2In + 1) + 3

(
U 2

n − V 2
n

)⎛⎜⎜⎝ ∑
p′,k

(p′,n)∈S+

D1(p′, n)[Yk(p′, n)]2 −
∑

p′ ,k
(p′,n)∈S−

D1(p′, n)[Wk(p′, n)]2

⎞⎟⎟⎠ . (3.16)

Equations (3.15), (3.16), and (3.8) are to be simultaneously
considered and solved iteratively. It is worth mentioning that,
by using the quasiparticle representation for the basic oper-
ators A†

1μ,F†
1μ,A1,−μ(−1)1−μ,F1,−μ(−)1−μ [see Eqs. (3.1),

(3.11), and (3.12)], one obtains for �
†
1μ an expression that in-

volves the scattering pn operators. Thus, the present approach
is, indeed, the GRFRpnQRPA.

IV. THE 2νββ PROCESS

The formalism presented above was used to describe
the 2νββ process. If the energy carried by leptons in the
intermediate state is approximated by the sum of the rest energy

of the emitted electron and half the Q value of the double-β
decay process

�E = 1
2Qββ + mec

2, (4.1)

the reciprocal value of the 2νββ half-life can be factorized as(
T

2νββ

1/2

)−1 = F |MGT(0+
i → 0+

f )|2, (4.2)

where F is an integral on the phase space, independent of
the nuclear structure, while MGT stands for the Gamow-Teller
transition amplitude and has the expression

MGT =
√

3
∑
k,k′

i〈0||β+
i ||1k〉i i〈1k|1k′ 〉f f 〈1k′ ||β+

f ||0〉f
Ek + �E + E1+

. (4.3)
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FIG. 2. (Color online) The relation between the deformation
parameter d and the nuclear deformation β.

In this equation, the denominator consists of three terms:
(i) �E, which was already defined, (ii) the average value of
the kth GRFRpnQRPA energies in parent and daughter nuclei,
respectively, normalized to the particular value corresponding
to k = 1, and (iii) the experimental energy for the lowest 1+
state. The indices carried by the β+ operators indicate that
they act in the space spanned by the GRFRpnQRPA states
associated with the initial (i) or final (f ) nucleus. The overlap
MEs of the single-phonon states in the initial and final nuclei
are calculated within the GRFRpnQRPA. In Eq. (4.3), the
Rose convention for the reduced MEs is used [23].

Note that if we restrict the pn space toS+ and, moreover, the
dipole-pairing interaction is ignored, MGT vanishes due to the
second leg of the transition. Indeed, the ME associated with
the daughter nucleus is of the type f 〈0|(c†ncp)1μ(c†ncp)1μ|0〉f ,
which is equal to zero due to the Pauli principle restriction.
In this case the equations of motion are of Tamm-Dankoff
type and, therefore, the ground-state correlations are missing.
In order to induce the necessary correlations we have either
to extend the formalism in the space S−, or to allow the p-h
excitations to interact via a pairinglike force. Also, we remark
that the operator Ā†

1μ plays the role of a β− transition operator,

while when F̄†
1μ or A1μ is applied on the ground state of the

daughter nucleus, it induces a β+ transition. Therefore, the 2β

decay cannot be described by considering the β− transition
alone.

V. NUMERICAL APPLICATION AND DISCUSSION

The approach presented in the previous sections was applied
for the transitions of twelve double-β emitters: 48Ca, 76Ge,

82Se, 96Zr, 104Ru, 110Pd, 128,130Te, 148,150Nd, 154Sm, and 160Gd.
We present first the parameters involved in our calculations.

A. Parameters

The parameters defining the single-particle energies are
those of the spherical shell model, the deformation parameter
d and the parameter k relating the quadrupole coordinate
with the quadrupole bosons, as shown in Eq. (2.2). These
are fixed as described in Ref. [19]. As proved in Refs. [24,25],
the parameter d and the nuclear deformation β are linearly
related. This linear dependence is presented separately for
parent and daughter nuclei in Fig. 2. Note that, except for
48Ca and 128,130Te, all double-β emitters considered here
are deformed. The daughter nuclei, except for 48Ti, are
also deformed. Moreover, the deformations characterizing the
parent and daughter nuclei are different from each other.
Actually these data justify the use of deformed single-particle
states. While the core system energies depend quadratically
on the deformation parameter d, the single-particle energies
comprise a term linear in d due to the particle-core interaction.
In this way energies corresponding to a negative d are
associated with an oblate shape (see Fig. 1). For example,
the deformation parameters of 104Ru, 104,110Pd, and 110Cd
resulting from energy minimization are negative. On the other
hand, according to Ref. [26] the isotopic chains 108–120Ru,
112–118Pd, and 112–118Cd exhibit an oblate shape. It is worth
mentioning that in Ref. [27] the predicted mass intervals for
oblate shape are different from the ones mentioned above:
110–123Ru, 111–123Pd, and 115–119Cd. The reason is that they
correspond to different mean fields. Since the mean fields used
here differ from those of Refs. [26,27] the phase transition to
the oblate shape takes place for a smaller atomic mass.

The proton and neutron pairing strengths are slightly
different from those given in Ref. [19] since the dimension of
the single-particle basis used in the present paper is different
from that in Ref. [19].

The strength of the dipole pn two-body interaction was
taken to be

χ = 5.2

A0.7
MeV. (5.1)

This expression was obtained by fitting the positions of the
GT resonances in 40Ca, 90Zr, and 208Pb [28]. The strength for
the attractive pn two-body interaction was chosen so that the
result for the log f t value associated with one of the single-
β decays of the intermediate odd-odd nucleus was close to
the corresponding experimental data. If the experimental data
are missing, the restriction refers to the existing data in the
neighboring region. The results for the fitted parameters are
given in Table I. There we give also the result for the Ikeda
sum rule.

The BCS calculations are performed by using a certain
number of states outside an inert core. The core system for
the 12 decays is defined by the (Z,N), listed in Table II.
Therein, one may find also the number of single-particle
doubly degenerate states used in our calculations. In order to
perform the GRFRpnQRPA calculation we have to divide the
space of proton-neutron dipole states, S, into three subspaces
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TABLE I. The deformation parameter d, the pairing interaction strengths for protons (Gp) and neutrons (Gn), and the GT dipole (χ ) and
dipole-pairing (Xdp) interaction strengths used in our calculations. We also give the parameter k relating the quadrupole coordinates and bosons
(this is involved in the expression of the single-particle energies). Results for ISR/3 are to be compared with the corresponding N − Z values.

d k Gp (MeV) Gn (MeV) ISR/3 χ (MeV) Xdp (MeV)

48Ca 0.3 8 0.42 0.43 8.04 0.346 0.253
48Ti 0.05 8 0.46 0.36 4.04 0.346 0.253
76Ge 1.6 10 0.22 0.382 11.99 0.250 0.609
76Se 1.9 10 0.24 0.325 7.99 0.250 0.609
82Se 0.2 9 0.261 0.344 14.00 0.238 0.143
82Kr 0.2 9 0.24 0.268 10.01 0.238 0.143
96Zr 1.5 12 0.18 0.343 16.08 0.213 0.106
96Mo 1.2 10 0.22 0.338 11.99 0.213 0.106
104Ru −1.55 12 0.18 0.35 16.00 0.201 0.502
104Pd −1.35 9 0.18 0.275 12.00 0.201 0.502
110Pd −1.6 10 0.16 0.306 18.05 0.194 0.775
110Cd −0.8 10 0.16 0.3105 13.97 0.194 0.775
128Te 0.5 8 0.12 0.266 24.05 0.450 0.436
128Xe 1.7 8 0.12 0.2518 20.02 0.450 0.436
130Te 0.493 12 0.10 0.292 26.00 0.7 0.840
130Xe 1.4 12 0.11 0.286 21.94 0.7 0.840
148Nd 1.555 14 0.11 0.2516 28.02 0.157 0.142
148Sm 1.555 14 0.11 0.225 24.04 0.157 0.142
150Nd 1.952 16 0.10 0.254 30.05 0.156 0.016
150Sm 1.952 16 0.11 0.235 26.08 0.156 0.016
154Sm 2.29 16 0.10 0.316 30.08 0.153 0.138
154Gd 2.29 14 0.11 0.27 26.01 0.153 0.138
160Gd 2.714 10 0.11 0.3 32.07 0.149 0.298
160Dy 2.714 8 0.11 0.2578 28.02 0.149 0.298

(S+,S−,Ssp), according to the definition given by Eq. (3.10).
The dimensions for the spaces (S+,S−,S) for the parent (D1)
and daughter (D2) nuclei are also listed. As explained in the
previous sections, the GRFRpnQRPA equations together with
the constraint equations are to be solved iteratively. In Table II,
we give the number of iterations that are necessary in order to
achieve the process convergence.

B. Single-β transition strengths B(GT±)

Since the double-β matrix elements are expressed as a
product of two reduced matrix elements, one associated with
the β− transition of the parent nucleus and the second one with
the β+ transition of the daughter nucleus, it is worthwhile
to study the strength distribution over the GRFRpnQRPA
energies, for the two transitions.

TABLE II. The number of single-particle proton states lying above the (Z, N) core is given. The single-particle space for neutrons is identical
to that for protons. D1 and D2 are the dimensions of the spaces S+,S−,S defined in the text, for the parent and daughter nuclei, respectively.
The dimension of the GRFRpnQRPA matrix is equal to the sum of the S+ and S− dimensions. Also, the number of steps necessary for the
iterative procedure convergence is listed.

Nucleus Core’s (Z,N) Number D1 D2 Number of
of states iterations

48Ca (0,0) 31 (96,0,103) (79,7,103) 7
76Ge (20,20) 31 (96,0,119) (83,0,119) 5
82Se (20,20) 37 (107,0,135) (95,0,135) 4
96Zr (20,20) 39 (116,0,141) (105,8,141) 15
104Ru (26,26) 39 (118,1,140) (111,2,140) 7
110Pd (26,26) 43 (146,0,162) (125,7,162) 6
128Te (28,28) 60 (191,0,228) (185,1,232) 5
130Te (42,42) 67 (204,0,242) (182,0,244) 6
148Nd (40,40) 51 (158,3,203) (168,1,203) 5
150Nd (40,40) 57 (203,2,246) (197,1,246) 4
154Sm (40,40) 57 (203,0,249) (204,3,249) 9
160Gd (40,40) 59 (216,1,253) (215,0,253) 14
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FIG. 3. One-third of the single-β− (left column) and one-third of
the β+ (right column) strengths, denoted by B ′(GT−) and B ′(GT+),
for the parent, 48Ca, 76Ge, 82Se, and 96Zr, and daughter, 48Ti, 76De,
82Kr, and 96Mo, nuclei, respectively, folded with a Gaussian function
with a width of 1 MeV, are plotted as functions of the corresponding
energies yielded by the present formalism. Note that the difference
of the two strengths for the parent nucleus should amount to N − Z

if the sum rule is obeyed. For 76Ge and 82Se, the experimental data
for the β− strength are also presented.

Using the data shown in Tables I and II as input, we
calculated the distribution of the β± strengths with the
results shown in Figs. 3–5. The energy intervals where both
strengths are large contribute significantly to the double-β
transition amplitude. The β− strength is fragmented among
the GRFRpnQRPA states, reflecting the fact that the single-
particle states are deformed. The β− strengths for the emitters
considered in Fig. 3 exhibit three major peaks. 48Ca and 76Ge
each have one additional small bump close to the last and
intermediate major peaks, respectively. The β− strength of
48Ca has been studied in Ref. [29] where the GT resonance was
populated in the reaction 48Ca(p, n)48Sc. It was shown that the
GT resonance is spread over an energy interval between 4.5 and
14.5 MeV. As seen from Fig. 3, the results of our calculations
concerning the width of the GT resonance agree with the
mentioned experimental data. In 76Ge and 82Se the strength

FIG. 4. As Fig. 3 but for the parent nuclei 104Ru, 110Pd, and
128,130Te and the daughter nuclei 104Pd, 110Cd, and 128,130Xe, respec-
tively. For 128,130Te, the experimental data are also presented.

distribution has been studied in the reactions 76
32Ge(p, n)76

33As
and 82

34Se(p, n)82
35Br [30], respectively. The B(GT) values have

been extracted from the excitation energy spectrum. These
values have been folded with a Gaussian with a width of
1 MeV and plotted in Fig. 3 to be compared with the results
of our calculation. We notice that the centroids of the large
peaks from 76Ge lie close to those shown by the experimental
data. Concerning 82Se, the large peak is nicely described. The
centroids of the two smaller peaks lie close to the peaks
predicted by our calculations. It is worth mentioning that it
is hard to make a fair comparison between the magnitudes of
the peaks in our calculations and those extracted from the
experimental data. Indeed, the total experimental B ′(GT−)
strengths for 76Ge and 82Se represent only 65% and 59%
respectively, of the (N − Z) value [30]. We notice that the β−
strength has a little bump below 2.5 MeV which is specific to
the fully renormalized formalism, this strength being carried
by the amplitude of the scattering terms. The new terms in
the phonon operator are shown even more clearly in the β+
strength where in three cases a peak close to zero shows up.
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FIG. 5. As Fig. 3 but for the parent nuclei 148,150Nd, 154Sm,
and 160Gd and the daughter nuclei 148,150Sm, 154Gd, and 160Dy,
respectively.

Note that, while in the β− case there is no strength beyond
the last major peak, for the β+ case small peaks show up
after the major peak. This feature is most evident in 76Se and
82Kr. Because of the overlap of their energy spread with that
of the major peak in the distribution of the β− strength, they
contribute significantly to the GT transition amplitude.

The β− strengths shown in Fig. 4 exhibit some specific
features. 104Ru and 110Pd have a low-energy peak centered at
about 1 MeV, while the GT resonance (GTR) is spread over a
wide interval ranging from 2.5 to 12.8 MeV with the strength
shared mainly by three peaks. The β− strength distributions for
128Te and 130Te start with a wide peak spread over the interval
0 to 5 MeV and continue with the GTR located between
5 and 14 MeV. The experimental β− strengths for these
nuclei were extracted from the excitation energy spectrum at
0.3◦ and 134.4 MeV, measured in the reactions 128Te(p,n)128I
and 130Te(p,n)130I, respectively [30]. Our calculations confirm
the three-peak and four-peak structures in the two nuclei.
However, the highest peak in our calculations is the first one,
while the experimental dominant peak is the last one, located
at 13.14 MeV in 128Te and 13.59 MeV in 130Te [30]. Also,

we note that the theoretical peaks are not sharply separated
as suggested by the experimental data after elimination of the
background contribution to the GTR.

Again, the relevance of comparing the results with the
corresponding experimental data is dictated by the fact that
the total experimental B ′(GT−) strengths for 128Te and 130Te,
accounting also for the contribution of the background,
represent only 72% and 71% respectively, of the (N − Z)
value [30]. If the background contribution to the total strength
is eliminated, as happens in Fig. 4, the total measured strength
amounts to about 56% and 59%, respectively. The β− strength
seen below 2.5MeV, which is specific to the fully renormalized
formalism, seems to be carried by the amplitude of the
scattering terms. The new terms in the phonon operator are
manifest also in the β+ strength distribution, where in three
cases a peak close to zero shows up. While for the first
two nuclei the dominant peaks in the β+ strength are in
the low-energy region for the two isotopes of Te the peak
centroid energies are almost identical to the corresponding
GTR centroid energies.

What might be the origin of the discrepancy between
the theoretical and experimental β− strengths for 128,130Te?
In what follows we attempt to answer this question by
commenting on some relevant features. In Ref. [31], Zamick
and Auerbach explained the large decay rate of 76Ge by the
fact that the contributions from different shell transitions add
coherently because the matrix elements of the interaction
operator have the same sign. However, a destructive effect
may appear due the mixing of the intermediate states or due
to the four-quasiparticle admixture in the ground state [32]. In
our formalism both situations occur, which results in having a
maximal effect for 128,130Te where the GT resonance is very
much diminished. Perhaps this picture will change if a better
algorithm for fixing the strength of the attractive interaction
is found. A similar situation appeared when the dipole-dipole
interaction was simultaneously considered in the p-h and p-p
channels. Indeed, the GT transition amplitude is very sensitive
to changes in the p-p interaction strength. Therefore to increase
the predictive power of the formalism a method of fixing
this strength was necessary. In Refs. [33,34] it was fixed
by the constraint of minimizing the β+ transition strength.
For this value, within the pnQRPA formalism, the isospin
and Wigner SU(4) symmetries are maximally restored. When
these symmetries are valid the GT resonance consists of one
collective state, and the β+ strength is equal to zero, which
is a specific feature of the strong-coupling limit. However, for
deformed nuclei, as are most of decaying isotopes considered
here, the two symmetries are broken both by the adopted
approximations (like the BCS approximation) and the nuclear
deformation. Although the attractive pn interactions used here
and in Ref. [34] are different from each other, we notice that the
shape of the β− strength obtained here is similar to that from
Ref. [34] in the unperturbed limit of the transition operator.
However, since the dipole-pairing interaction is attractive there
is a critical value where one solution of the pnQRPA equation
is vanishing. The corresponding phonon operator becomes
Hermitian and cannot be normalized to unity. Moreover, it
plays the role of a symmetry generator. In the case of the Fermi
interaction this symmetry expresses the invariance against any
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rotation around the OX axis in the isospin space. This symmetry
shows up as a signature of the breaking down of the pnQRPA
approach and reflects a phase transition of the nucleon system.
For the critical value of the attractive interaction the strength
for the β+ transition of the daughter nucleus vanishes. The β−
strength of the parent nucleus is, however, different from zero
(the breakdown of the pnQRPA in the parent nucleus takes
place for a larger interaction strength than in the daughter
nucleus) and not concentrated in a single state. This critical
behavior can be avoided by choosing the mean field to be
consistent with the attractive proton-neutron interaction. In
Ref. [35] this feature was studied for the Fermi interaction
and, indeed, the first pnQRPA root plotted as a function of the
p-p interaction strength is not vanishing but has a minimum
value which corresponds to a minimum value of the β+ decay
strength of the daughter nucleus. Another issue related to our
treatment is the fact that the Fermi transitions are ignored.
This hypothesis is only approximately valid, and moreover the
position of the isobar analog state is about the same as that
of the GT resonance. This suggests that a way to improve
the description of the single-β− GT transition strength would
be to find a better way of fixing the strength of the attractive
interaction strength and to simultaneously treat the GT and
Fermi transitions.

The β− strength distributions for the double-β emitters
148,150Nd, 154Sm, and 160Gd are presented in Fig. 5. For the
first two transitions the β− strength has a dominant peak,
which is just the GT resonance. For 154Sm and 160Gd, one and
two additional peaks show up at lower energy and with heights
comparable to that of the GT resonance. The β+ strength is
also fragmented but exhibits a single dominant peak located
at an energy close to the GT resonance centroid. For the
transitions of 154Gd and 160Dy, an important amount of strength
is accumulated in the low part of the spectrum. Actually this
appears to be an effect caused by the scattering terms from the
phonon operator.

As seen from Table I the results of our calculations for
single-β transition strengths obey the ISR.

An interesting result that is worth mentioning concerns
the summed strength for the β− and β+ transitions, denoted
conventionally by

∑
B(GT−) and

∑
B(GT+), respectively.

These single-β decay strengths quenched with a factor of 0.6
[31], accounting for the polarization effects on the single-β
transition operator, ignored in the present paper, are listed in
Table III. Actually, the quenched values are to be compared
with the experimental data, since the measured B(GT) strength
represents about 60–70% of the strength corresponding to the
ISR.

The experimental value for the summed B(GT−) of 48Ca
is taken from Ref. [38], where from the total strength, which
amounts to about 15.3 ± 2.2, the contribution of isovector spin
monopole states was extracted. The result was obtained with
the reaction 48Ca(p,n)48Sc, and corresponds to a large energy
excitation interval, from 0 to 30 MeV.

In Ref. [30] the total GT strength, for 76Ge and 82Se consists
of the sum of the strength observed in the peaks plus the
estimated contribution from the background. The experimental
results correspond to 65% and 59% of the 3(N − Z) sum rule.
According to Ref. [29], by adding to the GT cross section in
discrete states the contribution from the background and that of
the continuum, the total strength magnitude is much improved
and better obeys the sum rule. We note a good agreement
between the results of our calculations for the summed β−
strength and the corresponding experimental data.

The experimental data for the summed B(GT+) transition
of 48Ti were taken from Ref. [38]. This result was obtained
after extracting the contribution of the isovector spin monopole
states from the total strength of 2.8 ± 0.3. The reaction
48Ti(n,p)48Sc was used to study the B(GT+) strength for exci-
tation energies up to 30 MeV. This value for the total strength
is larger than that reported by Alford et al., in Ref. [39],∑

B(GT+) = 1.42 ± 0.2, (5.2)

where only the contributions of states with excitation energies
up to 15 MeV are taken into account. This comparison shows
that, indeed, the B(GT) strength is sensitive to the magnitude
of the considered energy interval. In this context we mention
the results obtained through the charge exchange reactions
(3He,t) and (d,2He) on 48Ca and 48Ni, respectively [40],
for B(GT−) and B(GT+) with an excitation energy interval
Ex � 5 MeV: 1.43(38) and 0.45.

TABLE III. The calculated summed strengths for the β− strength associated with the parent nuclei and the summed β+ strengths for the
daughter nuclei, quenched by a factor of 0.6, are compared with the corresponding available data.

Nucleus 0.6
∑

B(GT)−
∑

[B(GT)−]expt Nucleus 0.6
∑

B(GT)+
∑

[B(GT)+]expt

48Ca 14.54 14.4 ± 2.5 [38] 48Ti 3.666 1.9 ± 0.5 [38]
76Ge 23.037 23.3 [30] 76Se 1.125 1.45 ± 0.07 [36]
82Se 25.372 24.6 [30] 82Kr 0.079
96Zr 29.163 96Mo 2.537 0.29 ± 0.08 [37]
104 Ru 32.921 104Pd 3.990
110Pd 32.932 110Cd 7.239
128Te 43.485 40.08 [30] 128Xe 2.917
130Te 47.432 45.90 [30] 130Xe 13.040
148Nd 51.74 148Sm 1.29
150Nd 54.11 150Sm 0.02
154Sm 54.68 154Gd 0.54
160Gd 57.93 160Dy 0.21
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The GT strength from the 76Se(n, p)76As reaction [36] is
1.45 ± 0.07 and corresponds to an excitation energy Ex �
10 MeV. The authors used the multipole decomposition
method. In Ref. [41] the B(GT+) strength was measured
in a different reaction, 76Se(d,2He)76As, and a different
excitation energy interval, Ex � 4 MeV. The result reported
is

∑
0–4 MeV B(GT+) = 0.54 ± 0.1, which is smaller than that

from Ref. [36]. The length of the energy intervals justifies
the mentioned differences. We remark that the results for the
summed β+ strength in 48Ti and 76Se are in reasonably good
agreement with the corresponding experimental data.

The last strength mentioned in Table III refers to the daugh-
ter nucleus 96Mo. Through the reaction 96Mo(d,2He)96Nb the
strength taken mainly by a single state, placed at 0.69 MeV, was
measured. However, from Fig. 3 we note that, indeed, there
is a state at 0.69 Mev which catches a certain β+ strength,
but that strength is smaller than that distributed among the
states lying in the energy interval of 1.8 to 7.5 MeV. More
complete measurement through a (p, n) reaction on 96Mo and
an energy range of 0–10 MeV is necessary in order to make a
fair comparison with the results presented here.

The quenched values of the total β− strength of 128,130Te
are compared with the experimental data since the measured
B(GT−) strength, as we mentioned before, represents about
56% and 59%, respectively, of the strength corresponding
to the ISR. There are some claims [29] that addition of the
strength carried by the states from the continuum corrects
the total B(GT) strength to 90% of the simple sum rule
result. We remark the good agreement between the calculated
and experimental total strengths. Note that if we replaced
the quenching factor by 0.56 for 128Te and by 0.59 for
130Te, the results for the total strength would be 40.586 and
46.56, respectively, which are closer to the experimental data.
Unfortunately for the last four parent and the last four daughter
nuclei, there are no data available for the single-β− and
single-β+ strengths, respectively.

C. Transition amplitude and half-life

The energy corrections involved in Eq. (4.3) for the
considered double-β emitters are

�E(48Ca) = 2.646 MeV, E1+ (48Sc) = 0.338 MeV,

�E(76Ge) = 1.530 MeV, E1+ (76As) = 0.044 MeV,

�E(82Se) = 2.016 MeV, E1+ (82Br) = 0.075 MeV,

�E(96Zr) = 2.186 MeV, E1+ (160Nb) = 1.116 MeV,

�E(104Ru) = 1.161 MeV, E1+ (104Rh) = 0.0 MeV,

�E(104Pd) = 1.516 MeV, E1+ (110Ag) = 0.0 MeV,

�E(128Te) = 0.946 MeV, E1+ (128I) = 0.58 MeV,

�E(130Te) = 1.776 MeV, E1+ (130I) = 0.85 MeV,

�E(148Nd) = 1.476 MeV, E1+ (148Pm) = 0.137 MeV,

�E(150Nd) = 2.196 MeV, E1+ (150Pm) = 0.137 MeV,

�E(154Sm) = 1.530 MeV, E1+ (154Eu) = 0.046 MeV,

�E(160Gd) = 0.046 MeV, E1+ (160Tb) = 0.139 MeV.

(5.3)

Calculating first the GT transition amplitude and then the
Fermi integral with GA = 1.254, as in Ref. [4], we obtained
the half-lives given in Table IV. There we also give the
experimental data taken from different sources as well as
the results obtained by other procedures. From there one can
see that the results of our calculations agree quite well with the
corresponding experimental data. The results of Ref. [10] were
obtained within a standard renormalized pnQRPA formalism
and therefore the ISR is violated.

D. Transitions of the intermediate odd-odd nucleus

The intermediate odd-odd nuclei involved in the double-β
process can, in principle, perform the transition β+ or electron
capture (EC), which results in feeding the parent nucleus of
each transition. On the other hand, they can perform a β−
transition to the corresponding daughter nuclei. For some
transitions of this type the log f t values have been measured.
The corresponding theoretical results are obtained by means
of the expression

f t∓ = 6160

[l〈11||β±||0〉lgA]2
, l = i, f. (5.4)

In order to take account of the effect of distant states respon-
sible for the “missing strength” in the giant GT resonance [4]
we chose gA = 1.0. In a previous publication [19], where a
standard pnQRPA approach was used, the strengths of the
p-h and p-p interactions were fixed in order to reproduce
the log f t values characterizing the two transitions of the
intermediate odd-odd nucleus. Similarly, here the strengths of
the two-body proton-neutron interactions, χ and Xdp, could
be fixed by fitting the log f t values associated with the
two single-β transitions. Unfortunately, there are not enough
available data to enable a fitting procedure. In Table V the
results of our calculations for the mentioned log f t values are
listed.

Due to the lack of experimental data for this single-β decay
strength, the strength of the p-h interaction was taken as given
by Eq. (5.1). However, as seen from Fig. 3 the predicted
centroid of the GT resonance has a small shift with respect
to the experimental one. This suggests that Eq. (5.1) should
be reconsidered and the fit of the GT resonance centroids be
performed within the GRFRpnQRPA. Actually, the strength of
the attractive pn dipole-pairing interaction was chosen such
that one of the decay branches of the odd-odd nuclei has a
log f t value close to those known for the chosen nucleus or
for a nucleus from the neighboring region.

E. Previous consideration of the subject

After our paper on fully renormalized pnQRPA was
published [11], another approach addressing the same issue
showed up [22,60], which suggests that the results obey the
ISR. However as pointed out in Ref. [61], that formalism
does not satisfy the consistency condition required by the
linearization procedure. Actually, this feature was outlined in
Sec. III of the present paper. Indeed, we showed that within
the linearization procedure framework, the p-p interaction
term does not contribute to the equations of motion if the
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TABLE IV. The Gamow-Teller amplitude for the 2νββ decay, in units of MeV−1, and the corresponding half-life (T1/2), in units of yr, are
listed for 12 ground-to-ground transitions. The experimental half-lives for the transitions were taken from the specified references. Comparison
is also made with the theoretical results from the last three columns, reported in Refs. [18,19], [42–44], and [10,45], respectively.

MGT (MeV−1) T1/2 (yr)

Present Expt. Raduta et al. Klapdor et al. Others
[18,19] [42–44] [10,45]

48Ca→48Ti 0.045 4.72 × 1019 (4.2 ± 1.2) × 1019 [46] 7.48 × 1019 3.2 × 1019

4.4+0.6
−0.5 × 1019 [47]

76Ge→76Se 0.177 0.938 × 1021 9.2+0.7
−0.4 × 1020 [48] 4.05 × 1020 2.61 × 1020 1.4 × 1021 [10]

(1.5 ± 0.1) × 1021 [47]
82Se→82Kr 0.083 1.293 × 1020 1.1+0.8

−0.3 × 1020 [49] 0.963 × 1020 0.848 × 1020 1.1 × 1020 [10]
(0.92 ± 0.07) × 1020 [47]

96Zr→96Mo 0.115 1.59 × 1019
(

1.4+3.5
−0.5

)
× 1019 [50] 0.44 × 1019 5.2 × 1017 4.4 × 1019 [10]

(2.3 ± 0.2) × 1019 [47]
104Ru→104Pd 0.453 2.26 × 1021 0.76 × 1021 1.8 × 1021

3.1 × 1022

110Pd→110Cd 0.188 3.11 × 1020 1.58 × 1020 5.0 × 1019

1.2 × 1021

128Te→128Xe 0.056 1.43 × 1024 (7.2 ± 0.3) × 1024 [50] 0.55 × 1024 1.2 × 1023 5.6 × 1023 [10]
(1.5 ± 0.2) × 1024 [51] 5.7 × 1023

(1.9 ± 0.4) × 1024 [47]
130Te→130Xe 0.023 1.56 × 1021 (1.5-2.8) × 1021 [50] 0.26 × 1021 1.9 × 1019 0.26 × 1021 [10]

(2.7 ± 0.1) × 1021 [51] 1.2 × 1020

(0.7 ± 0.3) × 1021 [53]
(6.8+1.2

−1.1) × 1020 [47]
148Nd→148Sm 0.422 2.00 × 1019 2.33 × 1019 1.19 × 1021

150Nd→150Sm 0.042 2.50 × 1019 �1.8 × 1019 [54] 2.63 × 1017 1.66 × 1019 6.7 × 1019 [45](
1.7+1.1

−0.6

)
× 1019 [55]

(8.2 ± 0.9) × 1018 [47]
154Sm→154Gd 0.303 2.02 × 1021 8.76 × 1020 1.49 × 1022

150Gd→150Dy 0.111 1.02 × 1021 2.013 × 1020 2.81 × 1021

condition of conserving the nucleon total number holds.
However, in Refs. [22,60] the p-p interaction influence on the
phonon amplitudes is taken into account by averaging some
specific double commutators on the vacuum state. If the same
path is followed for the number-nonconserving terms, their
amplitudes in the phonon operator cannot vanish. According to
Ref. [60], the experimental GT transition amplitude is reached
for a p-p interaction strength close to the breakdown value
of the pnQRPA . Moreover, the breakdown point of the fully
renormalized pnQRPA lies close to and below the breakdown
point of the standard pnQRPA. This result is on a par with our
result from Ref. [11]. Therefore even if the ISR is satisfied,
the principal problem of having a stable ground state for the
parent and daughter nuclei still persists.

An attractive interaction of p-h dipole-pairing type is
responsible for the ground-state correlations. To a lesser extent
these are also caused by the F components of the new phonon
operator. Projection of the gauge is essential for restoring
the ISR. Gauge projection of the pnQRPA was previously
achieved in Ref. [62] where the ISR was satisfied in any case
within the unprojected picture. By contrast, there the effect of
projection was small.

Generally speaking, whenever some conditions, like full
renormalization and gauge symmetry restoration, are met
a certain price is expected to be paid. Thus, there are
some specific weak points that require further improvements.
Indeed, the average of the quasiparticle number operators
has been approximately calculated. We feel that a better
expression can be found for this quantity, which is essential
for the adopted iterative procedure. We hope that a better
representation for the average number of quasiparticles will
speed up the convergence of the iterative process. Moreover,
this will allow us to extend our calculations to heavier nuclei.
The renormalized vacuum state is characterized by a nonvan-
ishing average number of quasiparticles. That means that the
pnQRPA features are determined by the pairing properties not
only through the occupation probabilities U 2 and V 2 but also
by the averages of the quasiparticle number operators. The
question that arises is whether the pnQRPA may influence
the pairing properties. A positive answer could supply us
with a unifying variational principle for both the vacua of
quasiparticles and pnQRPA bosons. This goal was in fact
touched on within a different context by Jolos and Rybarska-
Nawrocka [63]. These features concerning the description of
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TABLE V. The log f t values characterizing the β+or EC and β−

processes associated with the intermediate odd-odd nuclei are listed.

Parent Odd-odd Daughter
nucleus nucleus nucleus

48Ca
β+ or EC←− 48Sc

β−
−→ 48Ti

Theory 8.44 4.63
76Ge

β+ or EC←− 76As
β−

−→ 76Se
Theory 4.57 6.13
82Se

β+ or EC←− 82Br
β−

−→ 82Kr
Theory 8.11 7.18
96Zr

β+ or EC←− 96Nb
β−

−→ 96Mo
Theory 5.67 7.00
104Ru

β+ or EC←− 104Rh
β−

−→ 104Pd
Expt. 4.32 [56] 4.55 [56]
Theory 4.71 6.47
110Pd

β+ or EC←− 110Ag
β−

−→ 110Cd
Expt. 4.08 [57] 4.66 [57]
Theory 4.14 6.32
128Te

β+ or EC←− 128I
β−

−→ 128Xe
Expt. 5.049 [58] 6.061 [59]
Theory 5.87 6.06
130Te

β+ or EC←− 130I
β−

−→ 130Xe
Theory 6.08 5.80
148Nd

β+ or EC←− 148Pm
β−

−→ 148Sm
Theory 6.8 7.33
150Nd

β+ or EC←− 150Pm
β−

−→ 150Sm
Theory 5.55 8.46
154Sm

β+ or EC←− 154Eu
β−

−→ 154Gd
Theory 5.52 5.13
160Gd

β+ or EC←− 160Tb
β−

−→ 160Dy
Theory 5.25 4.20

the quasiparticle number operators in a better way as well
as of the BCS and the pnQRP approximations in a unified
fashion by a set of coupled equations derived from a unique
variational principle will be implemented in a subsequent
presentation.

The present formalism was recently applied for describing
the double-β decay for 100Mo and 116Cd [15,16]. The positive
results obtained there encouraged us to continue the investi-
gation of double-β processes for other nuclei. As mentioned
before, the strength of the attractive two-body pn interaction
is fixed in a different manner here than in Refs. [15,16].
Moreover the single-particle space dimensions are different,
which results in different pairing properties and quasiparticle
correlations.

VI. CONCLUSIONS

Summarizing the results of this paper, one may say that
restoration of the gauge symmetry from the fully renormalized
pnQRPA provides a consistent and realistic description of the

transition rate and, moreover, the ISR is obeyed. As shown in
this paper, it seems that there is no need to include the p-p
interaction in the many-body treatment of the process. Indeed,
in the framework of a pnQRPA approach, this interaction vio-
lates the total number of particles and consequently the gauge
projection process makes it ineffective. The proton-neutron
correlations in the ground state are, however, determined by
an attractive dipole-pairing interaction. The results of our
calculations are compared with those obtained by different
methods as well as with the available experimental data. Here
the strength of the p-h interaction was taken as given by
Eq. (5.1), while the one for the dipole-pairing interaction
was approximately fixed such that one decay branch of the
intermediate odd-odd nucleus has a log f t value close to
those known for the given nuclei or for nuclei belonging
to the neighboring region. Small deviations of the predicted
and experimental GT resonance centroids suggest that the
parameter χ should be fixed by fitting the centroids within
the GRFRpnQRPA. By contrast with the standard pnQRPA
models where the strength of the p-p interaction does not
affect the position of the GT resonance centroids, here the
attractive interaction contributes to the distribution of the β−
strength. Therefore, the two strengths should be fixed at the
same time either by fitting two pieces of data, the GT resonance
centroid and the log f t value of one decay of the intermediate
odd-odd nucleus, or by fixing the log f t values correspond-
ing to the single-β decays of the odd-odd intermediate
nucleus.

Before closing let us enumerate the results of our numerical
analysis.

(i) Based on the matrix elements of the transition operator
from the parent or daughter nucleus to the intermediate
odd-odd nucleus, the β− and β+ strength distributions
are plotted in Figs. 3–5. For 76Ge, 82Se, and 128,130Te
the results for the β− strength have been compared with
the corresponding experimental data. The centroids of
the experimental peaks are fairly well reproduced.

(ii) Note that, despite the fact that the results for the
β− transition strength distribution in 128,130Te do not
reproduce the corresponding experimental profile, the
total strength is quite well described.

(iii) Results for the summed strength B(GT−) agree quite
well with the existing experimental data. Also the
summed B(GT+) strengths for 76Ti and 76Se agree
reasonably well with the corresponding experimental
data.

(iv) The calculated half-lives are in good agreement with
the experimental data.

(v) Results for the log f t values associated with the β−
and β+ or EC transitions of the intermediate odd-odd
nuclei are given in Table V.

(vi) In general, the results for the double-β transition are
consistent with those for single-β− and -β+ transitions
of parent and daughter nuclei, respectively.

In conclusion, the present calculations prove that the
GRFRpnQRPA is able to describe in a realistic manner 2νββ

decay and moreover satisfies the ISR. The features that require
some further improvements are also mentioned.
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APPENDIX

The submatrices involved in the GRFRpnQRPA equations
are given by the following expressions:

(A11)p1n1;pn = Eren(pn)δpn;p1n1 + 2χσ (1)T
p1n1;pn,

(A12)p1n1;pn = 0, (B11)p1n1;pn = 0,

(B12)p1n1;pn = 2χσ (1)T
p1n1;pn, (A1)

(A21)p1n1;pn = 0, (B22)p1n1;pn = 0,

(A22)p1n1;pn = |Eren(pn)|δpn;p1n1 + 2χσ (1)T
p1n1;pn,

(B21)p1n1;pn = 2χσ (1)T
p1n1;pn.
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[27] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiateski, At. Data

Nucl. Data Tables 59, 185 (1995).
[28] H. Homma, E. Bender, M. Hirsch, K. Muto, H. V.

Klapdor-Kleingrothaus, and T. Oda, Phys. Rev. C 54, 2972
(1996).

[29] B. D. Anderson et al., Phys. Rev. C 31, 1161 (1985).

[30] R. Madey et al., Phys. Rev. C 40, 540 (1989).
[31] L. Zamick and N. Auerbach, Phys. Rev. C 26, 2185 (1982).
[32] K. Grotz, H. V. Klapdor, and J. Metzinger, J. Phys. G 9, 169

(1983).
[33] J. Hirsch and F. Krmpotic, Phys. Rev. C 41, 792 (1990).
[34] J. Hirsch, E. Bauer, and F. Krmpotic, Nucl. Phys. A 516, 304

(1990).
[35] A. A. Raduta, O. Haug, F. Simkovic, and Amand Faessler, Nucl.

Phys. A 671, 255 (2000).
[36] R. Helmer et al., Phys. Rev. C 55, 2802 (1997).
[37] H. Dohmann et al., Phys. Rev. C 78, 041602(R) (2008).
[38] K. Yako et al., Phys. Rev. Lett. 103, 012503 (2009).
[39] W. P. Alford et al., Nucl. Phys. A 514, 49 (1990).
[40] E.-W. Grewe et al., Phys. Rev. C 76, 054307 (2007).
[41] E.-W. Grewe et al., Phys. Rev. C 78, 044301 (2008).
[42] K. Grotz and H. V. Klapdor, Phys. Lett. B 157, 242 (1985).
[43] M. Hirsch et al., Phys. Rep. 242, 403 (1994).
[44] X. R. Wu et al., Commun. Theor. Phys. 20, 453 (1993).
[45] J. G. Hirsch, O. Castanos, P. O. Hess, and O. Civitarese, Nucl.

Phys. A 589, 445 (1995).
[46] A. Balysh et al., Phys. Rev. Lett. 77, 5186 (1996).
[47] A. S. Barabash, Phys. Rev. C 81, 035501 (2010).
[48] F. T. Avignone III et al., Phys. Lett. B 256, 559 (1991).
[49] S. R. Elliott, A. A. Hahn, and M. K. Moe, Phys. Rev. Lett. 59,

2020 (1987).
[50] S. R. Elliott and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52, 115

(2002); A. S. Barabasch, Czech. J. Phys. 52, 567 (2002).
[51] E. W. Hennecke, O. K. Manuel, and D. D. Sabu, Phys. Rev. C

11, 1378 (1975).
[52] A. A. Raduta, N. Lo Iudice, and I. I. Ursu, Nucl. Phys. A 584,

84 (1995).
[53] J. Lin et al., Nucl. Phys. A 481, 477 (1988).
[54] A. L. Klimenko et al., Nucl. Instrum. Methods Phys. Res. B 16,

446 (1986).
[55] C. Arpesella et al., Europhys. Lett. 27, 29 (1994).
[56] Jean Blachot, Nucl. Data Sheets 92, 455 (2001).
[57] D. De Frenne and E. Jacobs, Nucl. Data Sheets 89, 481

(2000).
[58] C. M. Lederer and V. S. Shirley, Table of Isotopes, 7th ed. (Wiley,

New York, 1978), p. 631.
[59] M. Kanbe and K. Kitao, Nucl. Data Sheets 94, 227 (2001).
[60] L. Pacearescu, V. Rodin, F. Simkovic and Amand Faessler, Phys.

Rev. C 68, 064310 (2003).
[61] O. Civitarese, M. Reboiro, and J. G. Hirsch, Phys. Rev. C 71,

014318 (2005).
[62] O. Civitarese et al., Nucl. Phys. A 524, 404 (1991).
[63] R. V. Jolos and W. Rybarska-Nawrocka, Z. Phys. A 296, 73

(1980).

064322-16

http://dx.doi.org/10.1088/0034-4885/22/1/305
http://dx.doi.org/10.1016/0146-6410(84)90006-1
http://dx.doi.org/10.1016/0146-6410(84)90006-1
http://dx.doi.org/10.1016/S0370-1573(01)00068-0
http://dx.doi.org/10.1016/S0370-1573(97)00087-2
http://dx.doi.org/10.1088/0034-4885/54/1/002
http://dx.doi.org/10.1016/0146-6410(88)90033-6
http://dx.doi.org/10.1016/S0146-6410(02)00130-8
http://dx.doi.org/10.1016/0375-9474(91)90561-J
http://dx.doi.org/10.1016/0375-9474(91)90561-J
http://dx.doi.org/10.1016/0370-2693(91)90385-4
http://dx.doi.org/10.1016/0370-2693(91)90385-4
http://dx.doi.org/10.1103/PhysRevLett.75.410
http://dx.doi.org/10.1016/S0375-9474(98)00179-1
http://dx.doi.org/10.1016/S0375-9474(00)00324-9
http://dx.doi.org/10.1016/S0375-9474(00)00324-9
http://dx.doi.org/10.1088/0954-3899/26/6/304
http://dx.doi.org/10.1088/0954-3899/26/6/304
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.013
http://dx.doi.org/10.1103/PhysRevC.82.068501
http://dx.doi.org/10.1088/0954-3899/38/5/055102
http://dx.doi.org/10.1016/0375-9474(93)90516-Z
http://dx.doi.org/10.1016/0375-9474(93)90516-Z
http://dx.doi.org/10.1103/PhysRevC.69.064321
http://dx.doi.org/10.1103/PhysRevC.71.024307
http://dx.doi.org/10.1103/PhysRevC.71.024307
http://dx.doi.org/10.1103/PhysRevC.66.051303
http://dx.doi.org/10.1103/PhysRevC.66.051303
http://dx.doi.org/10.1103/PhysRevC.50.127
http://dx.doi.org/10.1103/PhysRevC.50.127
http://dx.doi.org/10.1016/j.aop.2011.10.004
http://dx.doi.org/10.1006/adnd.1998.0795
http://dx.doi.org/10.1006/adnd.1998.0795
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1103/PhysRevC.54.2972
http://dx.doi.org/10.1103/PhysRevC.54.2972
http://dx.doi.org/10.1103/PhysRevC.31.1161
http://dx.doi.org/10.1103/PhysRevC.40.540
http://dx.doi.org/10.1103/PhysRevC.26.2185
http://dx.doi.org/10.1088/0305-4616/9/8/005
http://dx.doi.org/10.1088/0305-4616/9/8/005
http://dx.doi.org/10.1103/PhysRevC.41.792
http://dx.doi.org/10.1016/0375-9474(90)90311-9
http://dx.doi.org/10.1016/0375-9474(90)90311-9
http://dx.doi.org/10.1016/S0375-9474(99)00836-2
http://dx.doi.org/10.1016/S0375-9474(99)00836-2
http://dx.doi.org/10.1103/PhysRevC.55.2802
http://dx.doi.org/10.1103/PhysRevC.78.041602
http://dx.doi.org/10.1103/PhysRevLett.103.012503
http://dx.doi.org/10.1016/0375-9474(90)90331-F
http://dx.doi.org/10.1103/PhysRevC.76.054307
http://dx.doi.org/10.1103/PhysRevC.78.044301
http://dx.doi.org/10.1016/0370-2693(85)90658-6
http://dx.doi.org/10.1016/0370-1573(94)90174-0
http://dx.doi.org/10.1016/0375-9474(95)00090-N
http://dx.doi.org/10.1016/0375-9474(95)00090-N
http://dx.doi.org/10.1103/PhysRevLett.77.5186
http://dx.doi.org/10.1103/PhysRevC.81.035501
http://dx.doi.org/10.1016/0370-2693(91)91810-I
http://dx.doi.org/10.1103/PhysRevLett.59.2020
http://dx.doi.org/10.1103/PhysRevLett.59.2020
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090641
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090641
http://dx.doi.org/10.1023/A:1015369612904
http://dx.doi.org/10.1103/PhysRevC.11.1378
http://dx.doi.org/10.1103/PhysRevC.11.1378
http://dx.doi.org/10.1016/0375-9474(94)00510-T
http://dx.doi.org/10.1016/0375-9474(94)00510-T
http://dx.doi.org/10.1016/0375-9474(88)90340-5
http://dx.doi.org/10.1209/0295-5075/27/1/006
http://dx.doi.org/10.1006/ndsh.2001.0007
http://dx.doi.org/10.1006/ndsh.2000.0004
http://dx.doi.org/10.1006/ndsh.2000.0004
http://dx.doi.org/10.1006/ndsh.2001.0019
http://dx.doi.org/10.1103/PhysRevC.68.064310
http://dx.doi.org/10.1103/PhysRevC.68.064310
http://dx.doi.org/10.1103/PhysRevC.71.014318
http://dx.doi.org/10.1103/PhysRevC.71.014318
http://dx.doi.org/10.1016/0375-9474(91)90277-D
http://dx.doi.org/10.1007/BF01415617
http://dx.doi.org/10.1007/BF01415617

