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Abstract

The eigenvalue equation associated to the Bohr-Mottelson Hamiltonian is considered in the
intrinsic reference frame and amended by replacing the harmonic oscillator potential in the g
variable with a sextic oscillator potential with centrifugal barrier plus a periodic potential for the v
variable. After the separation of variables, the 8 equation is quasi-exactly solved, while the solutions
for the v equation are just the angular spheroidal functions. An anharmonic transition operator
is used to determine the reduced E2 transition probabilities. The formalism is conventionally
called the Sextic and Spheroidal Approach (SSA) and applied for several X(5) candidate nuclei:
176,178,180,188,190 g 150N, 170V, 156Dy, 166,168 Hf The SSA predictions are in good agreement with
the experimental data of the mentioned nuclei. The comparison of the SSA results with those
yielded by other models, such as X(5) [22], Infinite Square Well (ISW) [42], and Davidson (D) like
potential [42] for the 3, otherwise keeping the spheroidal functions for the v , and the Coherent
State Model (CSM) [5-10] respectively, suggests that SSA represents a good approach to describe

nuclei achieving the critical point of the U(5)—SU(3) shape phase transition.
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I. INTRODUCTION

Since the liquid drop model was developed [1], the quadrupole shape coordinates were
widely used by both phenomenological and microscopic formalisms to describe the basic
properties of nuclear systems. Based on these coordinates, one defines quadrupole boson
operators in terms of which model Hamiltonians and transition operators are defined. Since
the original spherical harmonic liquid drop model was able to describe only a small amount of
data for spherical nuclei, several improvements have been added. Thus, the Bohr-Mottelson
model was generalized by Faessler and Greiner 2] in order to describe the small oscillations
around a deformed shape which results in obtaining a flexible model, called vibration rota-
tion model, suitable for the description of deformed nuclei. Later on [? | this picture was
extended by including anharmonicities as low order invariant polynomials in the quadrupole
coordinates. With a suitable choice of the parameters involved in the model Hamiltonian the
equipotential energy surface may exhibit several types of minima [4] like spherical, deformed
prolate, deformed oblate, deformed triaxial, etc. To each equilibrium shape, specific proper-
ties for excitation energies and electromagnetic transition probabilities show up. Due to this
reason, one customarily says that static values of intrinsic coordinates determine a phase for
the nuclear system. The boson description with a complex anharmonic Hamiltonian makes
use of a large number of structure parameters which are to be fitted. A smaller number of
parameters is used by the coherent state model (CSM) ]3] which uses a restricted collec-
tive space generated through angular momentum projection by three deformed orthogonal
functions of coherent type. The model is able to describe in a realistic fashion transitional
and well deformed nuclei of various shapes including states of high and very high angular
momentum. Various extensions to include other degrees of freedom like isospin [6], single
particle [7] or octupole [8, 9] degrees of freedom have been formulated [10].

It has been noticed that a given nuclear shape may be associated with a certain symmetry.
Hence, its properties may be described with the help of the irreducible representation of the
respective symmetry group. Thus, the gamma unstable nuclei can be described by the O(6)
symmetry [13], the gamma-rigid triaxial rotor by the D2 symmetry [14], the symmetric
rotor by the SU(3) symmetry and the spherical vibrator by the U(5) symmetry. Thus, even
in the 50’s, the symmetry properties have been greatly appreciated. However, a big push

forward was brought by the interacting boson approximation (IBA) [15,[16], which succeeded



to describe the basic properties of a large number of nuclei in terms of the symmetries
associated to a system of quadrupole (d) and monopole (s) bosons which generate the U(6)
algebra of the IBA. The three limiting symmetries U(5), O(6) and SU(3) mentioned above
in the context of the collective model are also dynamic symmetries for U(6). Moreover, for
each of these symmetries a specific group reduction chain provides the quantum numbers
characterizing the states, which are suitable for a certain region of nuclei. Besides the virtue
of unifying the group theoretical descriptions of nuclei exhibiting different symmetries, the
procedure defines very simple reference pictures for the limiting cases. For nuclei lying close
to the region characterized by a certain symmetry, the perturbative corrections are to be
included.

In Refs. [17, 18], it has been proved that on the U(5) — O(6) transition leg there exists
a critical point for a second order phase transition while the U(5) — SU(3) leg has a first
order phase transition. Actually, the first order phase transition takes place not only on the
mentioned leg of the Casten’s triangle but covers all te interior of the triangle up to the
second order [19]. Examples of such nuclei, falling insider the triangle, are the Os isotopes
[20]. .

Recently, Tachello [21, 22] pointed out that these critical points correspond to distinct
symmetries, namely F(5) and X(5), respectively. For the critical value of an ordering
parameter, energies are given by the zeros of a Bessel function of half integer and irrational
indices, respectively.

The description of low lying states in terms of Bessel functions was used first by Jean
and Willet [13], but the interesting feature saying that this is a critical picture in a phase
transition and defines a new symmetry, was indeed advanced first in Ref.[21].

Representatives for the two symmetries have been experimentally identified. To give an
example, the relevant data for '¥Ba [23] and '52Sm [24] suggest that they are close to the
E(5) and X (5) symmetries, respectively. Another candidate for E(5) symmetry, is 1%2Pd
125, 27]. A systematic search for E(5) behavior in nuclei has been reported in Ref.[26].

In Ref.[30] we advanced the hypothesis that the critical point in a phase transition is
state dependent. We tested this with a hybrid model for **Ba and ®*Ru. Similar property
of the phase transition was investigated in the context of a schematic two level model in
Ref. [31,132]. A rigorous analysis of the the characteristics of excited state quantum phase

transitions is performed in Ref. [33].



The departure from the v unstable picture has been treated by several authors [2§]
whose contributions are reviewed by Fortunato in Ref.[34]. The difficulty in treating the ~y
degree of freedom consists in the fact that this variable is coupled to the rotation variables.
A full solution for the Bohr-Mottelson Hamiltonian including an explicit treatment of ~
deformation variable can be found in Refs.[35-39]. Therein, we treated separately also the
unstable and the rotor Hamiltonian. A more complete study of the rotor Hamiltonian and
the distinct phases associated to a tilted moving rotor is given in Ref. [40].

The treatment of the v variable becomes even more complicated when we add to the
liquid drop Hamiltonian a potential depending on g and ~ at a time. To simplify the
starting problem related to the inclusion of the v variable one uses model potentials which
are sums of a beta and a v depending potentials. In this way the nice feature for the beta
variable to be decoupled from the remaining 4 variables, specific to the harmonic liquid
drop, is preserved. Further the potential in 7 is expanded either around to v = 0 or around
v = - In the first case if only the singular term is retained one obtains the infinite square
well model described by Bessel functions in gamma. If the 2 term is added to this term, the
Laguerre functions are the eigenstates of the approximated gamma depending Hamiltonian,
which results in defining the functions characterizing the X(5) approach.

The drawback of these approximation consists in that the resulting v depending functions
are not periodic as the starting Hamiltonian is. Moreover, they are orthonormalized on
unbound intervals although the underlying equation was derived under the condition of |7|
small. The scalar product for the space of the resulting functions is not defined based on
the measure |sin 3y|dy as happens in the liquid drop model. Under these circumstances it
happens that the approximated Hamiltonian in v looses its hermiticity.

In some earlier publications |41, 42] we proposed a scheme where the gamma variable is
described by a solvable Hamiltonian whose eigenstates are spheroidal functions which are
periodic. Here we give details about the calculations and describe some new numerical appli-
cations. Moreover, the formalism was completed by treating the § variable by a Schrédinger
equation associated to the Davidson’s potential. Alternatively we considered the equation
for a five dimensional square well potential. We have shown that the new treatment of the
gamma variable removes the drawbacks mentioned above and moreover brings a substantial
improvement of the numerical analysis.

Here we keep the description of the gamma variable by spheroidal functions and use a



new potential for the beta variable which seems to be more suitable for a realistic description
of more complex spectra. We call this approach as Sextic and Spheroidal Approach (SSA).
The potential is that of a sextic oscillator plus a centrifugal term which leads to a quasi-
exactly solvable model. The resulting formalism will be applied to 10 nuclei which were not
included in our previous descriptions and moreover are suspected to be good candidate for
exhibiting X (5) features having the ratio of excitation energies of the ground band members
4™ and 27 close to the value of 2.9. The results of our calculations are compared with those
obtained through other methods such as ISW, D and CSM.

The goals presented in the previous paragraph will be developed according to the following
plan. In Section II the main ingredients of the theoretical models X (5), ISW, D and SSA
will be briefly presented. The C'SM is separately described in Section ITI. Numerical results

are given and commented in Section IV, while the final conclusions are drown in Section V.

II. THE SEPARATION OF VARIABLES AND SOLUTIONS

In order to describe the critical nuclei of the U(5)—SU(3) shape phase transition, we
resort the Bohr-Mottelson Hamiltonian with a potential depending on both the § and

variables:
Hy(B,7,Q) = E¥(B,7,), (2.1)
where

_Bf1oga 1 b0 1
2B |pi0B” 08 B%sin3y oy 707 462 = sin’( 27rk)

+V(8,7). (2.2)

Here, 8 and v are the intrinsic deformation variables, €2 denotes the Euler angles 6, 65 and
03, Qk are the angular momentum components in the intrinsic reference frame, while B is

the so called mass parameter.

A. The separation of variables

To achieve the separation of variables in Eq. (2.]), some approximations are necessary.

Choosing the potential energy in the form [13, 34]

Va(v)
CEa

VI(B,7) =Vi(B) + (2.3)



the £ variable is separated from the + and the Euler angles €2, which are still coupled due

to the rotational term:

13 Q@
W_4kz::1s1n (7——1{:)

Further, the v is separated from the Euler angles by using the second order power expansion

(2.4)

of the rotational term around the equilibrium value 75 = 0° (see Eq. (B.5) from Ref. [42]):

L L 0Ny 2 a2
S (4 s’y 5) QG+ 5 5@ - Q1 +3(@Q@ - +00Y),  (25)

and then averaging the result with the Wigner function D( )

(W) — %L(L 1)+ <4S;l27 _ %) K2+ %[L(L +1)— K22, (2.6)

The term L(L + 1)/3 multiplied by 1/3? is transferred to the equation for 3,

[10 L0 L(L+1)

—d e+ L 9) 109 = <us6), 27)

while the sum of remaining terms, denoted with ‘7(7, L, K), are kept in the equation for .

l sml?ry 887 sin 3733 +V(y, L, K) + va(v)] () = &my). (2.8)

In Egs. ([27) and (2.8)) the following notations were used:

2B 2B 2B

n(B)==zVi(B), () =73Ve0), e =zEs & =(0) 7B, (2.9)

Egs. (27) and (2.8)) are to be separately solved and finally the full solution of Eq. (21
is obtained by combining the contributions coming from each variable. In what follows we

shall give the necessary details for solving the above mentioned equations.

B. Solutions of the 5 equation

Solutions of the [ equation, corresponding to different potentials, were considered by
several authors |34, 43]. Here, we mention only three of them, namely the infinite square
well, the Davidson and the sextic potentials. Details about how to solve the  equation for

these potentials can be found in Refs. [42, 44].



1. The infinite square well potential

The solution of the S equation with an infinite square well potential, having the expression

0, 6 < B
00, B> B,

was first time given in Ref. |13] and then in Refs. |21, 22] for E(5) and X(5) models. The

vi1(B) = { (2.10)

wave functions are written in terms of the Bessel functions of half integer |21] and irrational

indices [22], respectively. The solution for X(5) is:

for(B) = ConB30, (28], v= QJF—, s=1,2,3,... (2.11)
’ ’ B 3 4
Here, C; 1, is the normalization factor, which is determined from the condition:
Buw 9 4
/0 (fsL(B))"B%dB = 1. (2.12)
The corresponding eigenvalues are given in terms of the Bessel zeros z; 1
77,2 Ts T, 2
Es(s, L) = — ’ . 2.13

2. The Davidson potential

Choosing in Eq. (2.7) a Davidson potential [29] of the form

g
B

solutions are the generalized Laguerre polynomials:

u(B) =5+ (2.14)

2ng! m ma_d B2 L(L+1) 9
f"mmﬁ(ﬁ) = \J T(ns _Hiﬁ n I)Lnf(ﬁ2)ﬁ T , mg = \/T + 1 + 8. (2.15)

The wave functions, f,;m,(3) are normalized to unity with the integration measure Bdp.

Energies have the following expression:

h? L(L+1) 9
Eﬁ(ng,L):@<2n5+1+\/%+1+ﬁé), n5:O,1,2,..., nﬁ:S—l. (216)



3. The sextic oscillator potential with a centrifugal barrier

The solution of the [ equation with a sextic potential, for critical nuclei of the
U(5)—SU(3) shape phase transition, was obtained by taking into consideration the solu-
tion of the Schrodinger equation with a sextic potential given in Ref. [45] and applied to
the E(5) like nuclei in Ref. [46] and to the triaxial nuclei in Ref.[44].

In order, to reduce the g equation to the Schrodinger equation with a sextic potential
[45], we rewrite the averaged rotational term, given by Eq. (2.4), in the following form:

(W) = [L(L+1)—2] + [2 - %L(L + 1)} + (AIS;QV _ %) K2+ %[L(L+1) _ K. (2.17)

As already mentioned, the first term of the above equation is added to the  equation, while

the other terms remain in the  equation. Making the substitution f(3) = 372¢() we have:
9  L(L+1)

[_ T

The sextic potential is chosen such that to obtain the description from Ref.[44]:

L 5
vi () = (V" — 4ac®) 3" + 2abB* + a*F° +ug, =+ + M. (2.19)

mw)] o(8) = cs0(8). (2.18)

Here, ¢ is a constant which has two different values, one for L even and other for L odd:
(M, L) : (k,0); (k—1,2);(k—2,4);(k—3,6)... > c=k+ Z = ¢ (L-even), (2.20)
7

(M, L) : (k,1);(k—1,3);(k—2,5);(k—=3,7)... = c=k+ 1= ¢~ (L-odd). (2.21)
The constants ug are fixed such that the potential for L odd has the same minimum energy
as the potential for L even. The solutions of Eq. (2.18), with the potential given by the Eq.

(Z19), are

P (B) = Nay n PY) (B2 85137757 g = 0,1,2, .01, (2.22)

where N,,, 1, are the normalization factor, while PT(L;V[%(ﬁQ) are polynomials in 2% of ng order.

The corresponding excitation energy is:
h2
By(ns, L) = o= [b2L +3) + AM(L) +u)|, ng=0,1,2,..., M, (2.23)

where )x,(f‘;[ ) = g5 — ui — 4bs is the eigenvalue of the equation:

2 _
[— (% L1 1%) 2065 + 208 (5% - 2Mﬂ PON(8%) = A P (87).
(2.24)




C. Solutions of the v equation
1. The X(5) model

Within the X(5) model [22], devoted to the description of the critical point in the phase
transition SU(5) — SU(3), the potential is a sum of an infinite square well in the 8 variable
and a harmonic oscillator in the v variable. For the rotational term and the other terms of
the 7 equation, the first order Taylor expansion around 7, = 0° is considered, which results
in obtaining for the ~ variable the radial equation of a two dimensional oscillator with the

solution

K
Ty k(1) = Cp iy KPem G 2K (3002) | = (mTH> > (2.25)

where LIX! are the generalized Laguerre polynomials. The eigenvalue of the v equation has
the following expression:

3a (K/2)*4
(n + 1) - By
B2 (%) 3

where a is a parameter characterizing the oscillator potential in the + variable. The total

(2.26)

57:

energy and wave function is obtain by combining the results of all variables:

E(s,L,n,, K)= Ey+ By(zs1)* + An, + CK?, (2.27)
W(B,7,2) = ——— o1 (8) [0, k() DL () + (<150, () Dy ()]
2(1+ 0k.0)
(2.28)

If the total energy (Z27)) is normalized to the energy of the ground state, we will have for
the ground band and for the first beta band the expression

E(s,L,0,0) — E(1,0,0,0) = By(a?, — a3,), s=1,2; L=0,2,4,6,... (2.29)
while for the first v band
E(s,L,1,2) — £(1,0,0,0) = By (a7 , —x1,) + A+4C, L=2,3,4,5, .. (2.30)

One notes that the parameters A and C' give contribution only to the « band energies, and
that these two parameters can be replaced with only one parameter, for example X = A+44C.
The total energy for the ground band and for the first § and v bands, normalized to the

energy of the ground state, can be written in the form:
E(s,L,n,, K) — E(1,0,0,0) = By (a2 — 27 ) + 0 2X. (2.31)

9



Further the parameters B; and X will be fitted by the least square procedure for each

considered nucleus.

2. The ISW model

Within the ISW model, employed in the present paper, the § equation is treated as in
the X(5) model, using an infinite square well (ISW), while the v equation is reduced to a
spheroidal equation. The ISW model was proposed, by one of the authors (A.A.R) and
his collaborators in Ref. [41] and subsequently with more details and applications in Ref.
[42]. Here, only the solutions will be presented. The potential vy(y) was chosen such that a

minimum in v = 0° is achieved:
va(7y) = uy cos 3y + uy cos® 3. (2.32)

This potential is renormalized by a contribution coming from the ~ rotational term and

consequently an effective reduced potential for the v variable results

9
’(72(7) = U7 COS 3’}/ “+ Ug COS2 3”}/ -+ m, (233)

whose minima are shifted with respect to the vy(y) minima. This can be viewed as the

reduced potential of: ,
~ he
Va = og v (2.34)

Performing a second order expansion in sin 37y of vy(y) and of the terms originating from

the rotational term i.e. and then making the change of variable = cos 3y in Eq.

9
? 4sin 3y
(Z8)) we obtain the equation for the spheroidal functions [42]:

o2 0 m?2
2 2 92 _
[(1 — T )@ — 225'8—:(: _'_)\m%nq, —c'xr — 1_’;2‘| Sm%nw(l') = 0, (235)
where
17, Uy 11 1
Ao, ==&~ 2p (L),
V7 9[5’* 2 927 +3(+>]
1 /u 2
2 1
= (2 4u—- =D
=g\t Ty >
K 9
My = o, D=L(L+1)—K*-2. (2.36)

10



From Eq. (2:36]) we can determine the eigenvalue of the v equation:

1 K2

E,(ny,my, L, K) = (5% 2B

w11 L(L+1)
<9Am%nw(c)+ 5 + 27D 3 : (2.37)

In Eq. (237), the term w;/2 is washed out when the total energy is normalized to the
ground state energy, which results in getting the v eigenvalue depending on the sum of the
~ potential parameters, due to the term c?. Hence, in some cases we can set one parameter
to be equal to zero, for example wuy, and consequently fit only w;. The ~ functions are
normalized to unity with the integration measure |sin3+|dy as the Bohr-Mottelson model

requires:
3(2n, + 1)(n, — m,)!
2(ny +m.,)!

The total energy is obtained by summing the contributions coming from the § ([2.I3]) and
the v (2.37) equations:

/ * 1Sy (cO8 37) 2| sin 3|dy = 1. (2.38)
0

11 L(L+1
E(s,ny,my,L,K) = Bia’ + F [9)\,,%”7(0) + % + 2—7D - % , (2.39)
where the following notations were introduced:
1 n? 1 »
B=——, F=—+—. 2.40
L@ ()28 (240

The total wave function is:

(8.1, Q) = Cu O Corc B4, (‘ng 6) Sy (€0537) [Dhy () + (—1)EDE, (@),

(2.41)
where with C,,_ ., was denoted the normalization factor of the « function, while C'y, f is the
normalization factor of the Wigner function:

oL + 1
— . 9.42
Cr.x \/ 16m2(1 + 6 (2.42)

3. The D model

The D model was proposed by the present authors and collaborators in Ref. [42] and
differs from the ISW model by that the infinite square well potential for the g variable
is replaced with the Davidson potential (2.14]). Hence, the total energy of the system is

11



obtained by adding the energy of the § equation with Davidson potential given by Eq.
(ZI6) and the energy of the v equation (2.37):

L(L+1 9
o 0) = 5 (10 D 4 )

5 Tg

(2.43)

w11 L(L+1)
> "7 3|

+ F l%mﬁ,m( )+ —=—+=D—
where El = h?/2B. The total wave function has the expression:

\Ij(ﬁa 7, Q) = Cn/g,LCn—y,m—yCL,Kan,L(ﬁ)SmW,n»Y (COS 37) [DJI\//I,K(Q) + (_1)LD]L\//[,—K(Q)} )
(2.44)
where with C,,, 1 is the normalization factor of f,, 1(8) given by the Eq. (2I3).

4. The present approach

In the present approach, called conventionally the Sextic and Spheroidal Approach (SSA),
a sextic potential (Z.19) for the § variable is considered, while for the v variable a periodic
potential (2.32) with a minimum at 7 = 0°. The 3 equation is quasi-exactly solved, having
the solutions given by the Eqs. ([2.22|2.23)), while the v equation is reduced to the spheroidal

equation (230 with:

17w 1 OL(L + 1)
_ - ————D L(L+1)] + 2222
Ay 9{5 2 T3+ + —5—
1
:—(@ u2——D)
9\ 2
K ,

In Eq. (243), the term 2L(L + 1)/3 multiplied with 1/9 comes from the rotational term
(2I7). The expression for the total energy of the system is obtained by using the Egs.

(2.232.45):
11

E(ng,n,,m,,L,K)=E [b(QL +3)+ A% + u(ﬂ +F [9Amﬁvn7( ) + 4 7D - L(L + 1)]
(2.46)

The corresponding wave function, is:

U(8,7,9) = Nuy 1.Cn,m, Cric B> Pny 1(B) Sy (c0537) | Diy () + (=1 Dfy ()],
(2.47)

where ¢, 1(3) is given by Eq. (2.22)).

12



D. E2 transition probabilities

The reduced E2 transition probabilities are determined by:
B(E2; L; — Ly) = |(Li||TS"?|| Ls) 2 2.48
(E2; Li = Ly) = KLi|[ 1577 || Ly)[, (2.48)

where the Rose’s convention [47] was used. For the ISW, D and SSA models, in Eq. (2:48),
an anharmonic transition operator is used:

sin
T4 = 15 |eosD3u(@) + (D@ + D2 (o) +
sin 2y

Q\/éﬁz [— cos 2y D2 () + W(D?Q(Q) + Di_z(Q))] . (2.49)

The parameters ¢; and t, will be determined by the least squares method. For the X(5)
model, in the limit of y—small, only the harmonic part of the transition operator (2.49) is
used:

Tyuiks) = 10D50(52) + 15 5(D}a(®) + D}o(5) (2:50)
The first term of the Eq. ([2350) gives contributions only to AK = 0 transitions, while the
second term to AK = 2 transitions. For AK = 0 transitions, the matrix element of the ~
variable is reduced to the orthogonality condition, while for AK = 2 the ~ matrix element
can be considered as an intrinsic transition matrix element. Finally, the reduced transition

probabilities will depend on two parameters [48]. Here, we will denote these two parameters

with ¢ for AK = 0 transitions and ¢’ for AK = 2 transitions, respectively.

III. THE COHERENT STATE MODEL

CSM defines [3] first a restricted collective space whose vectors are model states of ground,
[ and 7 bands. In choosing these states we were guided by some experimental information
which results in formulating a set of criteria to be fulfilled by the searched states.

All these restrictions required are fulfilled by the following set of three deformed

quadrupole boson states:

T
by = el™®=2)|0) = T)0), o, = Qf 1, V5 = Qb (3.1)
where the excitation operators for 5 and + bands are defined by:
2 3d d?
O, = (b'b1)gq + d\/ij . Qb = o'feh), + —=(bbh) — —. 3.2
~,2 ( )272 7 2,2 Jé] ( )0 \/ﬁ( )0 m ( )

13



Here, d is a real parameter simulating the nuclear deformation. From the three deformed

states one generates through projection, three sets of mutually orthogonal states

where Py, denotes the projection operator:

2J+1

P =

/ DI R(Q)d9, (3.4)

N? the normalization factors and Dy, the rotation matrix elements. The rotation operator
corresponding to the Euler angles €2 is denoted by }A%(Q) It was proved that the deformed
and projected states contain the salient features of the major collective bands. Since we
attempt to set up a very simple model we relay on the experimental feature saying that the
[ band is largely decoupled from the ground as well as from the v bands and choose a model
Hamiltonian whose matrix elements between beta states and states belonging either to the
ground or to the gamma band are all equal to zero. The simplest Hamiltonian obeying this

restriction is

H = Ay(22N + 5Q5,Qp) + ApJ? + 430505, (3.5)
where N is the boson number, J 2_angular momentum squared and QE, denotes:

d2
QL = (070 — 7 (3.6)

Higher order terms in boson operators can be added to the Hamiltonian H without

altering the decoupling condition for the beta band. An example of this kind is the correction:
AH = Ay(QL0% + hee.) + AsQ50Q%,. (3.7)

The energies for beta band as well as for the gamma band states of odd angular mo-
mentum are described as average values of H (35), or H + AH on ¢4, and ¢7,, (J-odd),
respectively. As for the energies for the ground band and those of gamma band states with
even angular momentum, they are obtained by diagonalizing a 2x2 matrix for each J.

The quadrupole transition operator is considered to be a sum of a linear term in bosons

and one which is quadratic in the quadrupole bosons:

Qo = qu(bhy, + (=)"ba—p.) + q2((B5bE)2y, + (b3bs)a,) + q3(bhbs)a. (3.8)

14



Note that if g3 = 2¢» the quadrupole transition operator can be obtained from the quadrupole

transition operator expressed in terms of the collective quadruple coordinates co,:

Qop = Qravg, + Q' (a202) oy (3.9)

The anharmonic term in the above expression can be obtained by expanding the deformed
mean field around the spherical equilibrium shape [50, [51] of the nuclear surface. For the
near vibrational regime the interband matrix elements of the g3 term is vanishing within the
CSM [5]. Moreover, a transition operator depending on two free parameters seems to be
suitable for describing the E2 transition probabilities in several regions of the nuclides chart
[52].

Using the Rose convention [47], the reduced probability for the E2 transition J;% — J}’
can be expressed as:

B(E2 Jf = Jf) = ((JH1Qull ) (3.10)

Three specific features of CSM are worth to be mentioned:

a) The model states are generated through projection from a coherent state and two
excitations of that through simple polynomial boson operators. Thus, it is expected that
the projected states may account for the semiclassical behavior of the nuclear system staying
in a state of high spin.

b) The states are infinite series of bosons and thus highly deformed states can be de-
scribed.

¢) The model Hamiltonian is not commuting with the boson number operator and because
of this property a basis generated from a coherent state is expected to be most suitable.

The CSM has been successfully applied to several nuclei exhibiting various equilibrium
shapes which according to the IBA (Interacting Boson Approximation) classification, exhibit
the SO(6), SU(5) and SU(3) symmetries, respectively. Several improvements of CSM has
been proposed by considering additional degrees of freedom like isospin [6], quasiparticle [7]
or collective octupole coordinates [, 19]. CSM has been also used to describe some nonaxial
nuclei [49] and the results were compared with those obtained with the Rotation-Vibration
Model [2]. A review of the CSM achievements is found in Ref. [10]. The terms involved in
the model Hamiltonians used in by CSM [5] and its generalized version [6] have microscopic

counterparts as shown in [11] and [12], respectively.
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IV. NUMERICAL RESULTS

A. Parameters

The parameters which define the energies and the E2 transitions probabilities of the
models X(5), ISW, D, SSA and CSM, where fitted by the least squares method for ten
nuclei: 176:178,180.188,190(g 150N 156Dy, 166168 f and "OW. In the least square procedure all
experimental energies were considered. The resulting values are those given in the Tables
I-V. For the first three and the last three nuclei from Table I, the parameter ¢ cannot be
determined since the corresponding term from the transition operator does not contribute
to the intraband decays.

Some parameters vary by a large amount from one isotope to another but the relative
variation is small. For example in the case of Os isotopes the parameters could be interpo-
lated by smooth curves. One parameter is falling aside namely those of %QOs, which seems
to achieve the critical point of the shape transition, i.e. exhibits a X (5) behavior.

We note that the parameter F' involves the average value (3?) which, in principle, is an
angular momentum dependent quantity. Therefore the differential equation in v should be
iteratively solved, at each step the inserted average value being calculated with the wave
function provided in the previous step. When the convergence of the process is met, one
keeps the average value for the chosen angular momentum. Here, (32) was taken constant.
Whether this hypothesis is valid or not can be posterity checked. To this goal we represented
in Fig. 1 the average (3?) for each of the models ISW, D and SSA. We notice that the
average value is only slightly depending on J and that is especially true for ISW and SSA.
If the limit of (4%) when the convergence of the iterations mentioned above is reached,
depends on J like the averages shown in Fig. 1, one could say that keeping (3?) constant
one ignores a slight decrease of energy with angular momentum.

With the parameters listed above the potentials in the variables § and v and the wave
functions describing the low lying states from the ground, beta and gamma bands respec-
tively, are represented for four nuclei in Figs. II-V. Analyzing these figures, several features
can be noticed. The 3 potential has a deformed minimum located at a deformation which
differs from one nucleus to another. The wave functions in g for O; and 23{ are almost

identical and have only one maximum and no node while the band for 0;5 has one node, one
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TABLE I. The fitted values of the parameters involved in the expressions of the energies and

transition probabilities of the X(5) model are given for each considered nucleus.

X(5) 176OS 1780S ISOOS 1880S 1900S 150Nd 156]:)y 166Hf 168Hf 170W

By [keV] | 18.08 | 18.13 | 18.79 | 25.56 | 26.92 | 17.77 | 17.02 | 23.46 | 20.14 | 20.68

X [keV] [822.28|818.68|880.10(452.71|438.53|966.50(950.46|698.15|770.26|799.14

t[Wu.]1/2 1.29 | 1.22 | 0.84 | 0.86 | 0.76 | 1.03 | 1.19 | 0.99 | 1.19 | 0.89

t (W2 - - - 1092|119 | 049 | 081 | - - -

TABLE II: The same as in Table I, but for the ISW model.

ISW 1760S 1780S ISOOS 1880S IQOOS 150Nd 156Dy 166Hf 168Hf 170W

By [keV] | 14.30 | 14.54 | 13.21 | 25.50 | 21.83 | 14.68 | 11.43 | 23.31 | 19.12 | 14.87

F [keV] 24.24 | 23.19 | 44.66 | 0.69 | 36.73 | 28.88 | 45.99 | 1.69 | 11.30 | 41.12

ug -159.24 |-168.08|-36.729 | -25000 |-4999.35|-152.35| -12.55 | -10000 |-385.35 | -44.36

) 0 0 0 0 2560.22 0 0 0 0 0

ty [Woa]?| -52.91 |473.53 | 3302.3 | 503.11 | 419.67 |538.99 | 591.54 |1881.39|1197.94|1827.11

to [Wu.]1/2 -4305.14]-1323.6|14304.2|-241.19| -48.09 |-387.08|-468.57|8242.45|2702.98|6436.57

TABLE III: The same as in Table I, but for the D model.

D 1760S 1780S 1800S 1880S IQOOS 150Nd 156Dy 166Hf 168Hf 170W

E [keV] |316.34|317.31|334.32(559.76| 462.44 |369.50 [324.08|532.22 | 463.88 [379.93

F [keV] |38.41|37.33|39.01|28.48 | 42.45 | 26.48 | 33.11 | 11.87 | 25.87 | 37.72

Bo 1.64 | 1.56 | 1.61 | 1.98 1.64 1.71 | 145 | 1.79 | 2.02 | 1.63
up -55.481-57.20 [-52.40| -7.70 |-4098.61 |-168.78|-58.16 |-320.01 |-130.49|-54.50
ug 0 0 0 0 ]2167.18 0 0 0 0 0

t1 [Wu.]1/2 197.921264.47|758.41|126.88| 126.70 |154.70 (191.28|448.76 | 329.01 |411.63

to [Wu.]1/2 -25.31| 78.30 1931.21|-17.09| -3.92 |-25.31 |-13.46|430.42 | 193.06 |363.66

maximum and one minimum. The maximum of the |¢|? distribution for the three states rep-
resented in the quoted figures is achieved in a point which is close to the potential minimum.

If |¢]? is multiplied with the integration measure over (3 the probability distribution has a
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TABLE IV: The same as in Table I, but for the SSA model.

SSA 1760S 17SOS 1800S 1880S IQOOS 150Nd 156]:)y 166Hf 168Hf 170W
E[keV] | 099 | 046 | 1.46 | 253 | 529 | 075 | 091 | 1.82 | 0.54 0.31
F [keV] 2.67 | 312 | 1.69 | 11.31 | 555 | 3.87 1.93 | 1597 | 1.99 2.84

a 951.49 |4466.56 | 600.70 | 644.98 |111.79 | 2636.48 | 1248.40 |1205.13| 7897.62 {13197.99

b 126 279 50 27 15.8 88 87 46 32 341

uy -5607.45|-4048.06 | -15000 | -215.19 |-452.74(-3877.84| -10000 |-224.90 |-9980.01 |-4585.44

Uy 0 0 0 0 0 0 0 0 0 0

t1 [Wa]' /2| 376.70 | 2260.6 |8541.32|1033.43 | 675.12 | 1754.26 | 1882.91 |4759.23| 3463.05 | 8901.59
to [Wou.]'/?]-32619.3|-22343.8| 117781 [-1022.41| 32.73 |-6698.41|-4846.17 |46113.3| 15247.9 | 200989
TABLE V: The same as in Table I, but for the CSM model.
CSM 1760S 1780S 1800S 188OS 1900S 150Nd 156Dy 166Hf 168Hf 170W

A; [keV] | 17.03 | 17.26 [16.51] 10.25 |9.063 | 19.219 | 15.45 |14.87|16.04| 16.19

Ay [keV] | 4.33 | 4.32 | 5.19| 14.40 |15.68| 3.467 | 52 | 7.13 | 6.40 | 6.018

Az [keV] |-395.96|-240.13|-7.39 [101.362| 6.84 |-658.299|-559.913| -5.04 |-61.47|-186.946

Ay [keV] |-275.24|-158.87|13.83| 0.0 | 0.0 |-491.884(-398.775| 0.0 |-36.48|-124.55

As [keV] | -4.93 | 30.76 |80.01| 0.0 | 0.0 |-438.394| -32.15 | 0.0 | 0.0 | 0.0

d 2.33 | 236 |2.26| 2.35 | 2.05 | 242 2.1 | 208|243 | 2.14

ar [Wau]'2| 0.411 | 0.246 | 0.86 | 0.409 [0.229| 0.527 | 1.112 |0.158|0.211| -0.217

Qo [Wo]'/?] -3.698 | -3.862 | 6.99 | 0.785 |1.213| -4.916 | -9.474 |-5.075|-3.936| -5.602

as [Wa]'2| 0.0 0.0 | 0.0 |-5.222 |-9.395| 6.344 | 19.576 | 0.0 | 0.0 0.0

maximum closer to the potential minimum. The state 0; is characterized by two maxima for

the probability distribution of the beta variable. This feature reflects the specific structure

of the excitation operator of this state, from the ground state i.e., ng = 1. The behavior of

the wave functions in the variable v is mainly determined by the discontinuity for v = 0 and

7 = 3. The potential has two minima, one well pronounced near the first wall and one very

flat close to the v = % discontinuity. Due to this structure the wave function describing a

state in the ground bad has two maxima located above the mentioned minima. The state
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23{ heading the gamma band has an additional maximum.

B. Energies

The spectra of the chosen nuclei, determined by the models X(5), ISW, D, SSA and CSM,
are compared with the corresponding experimental data in Tables VI-XV. The quality of
the agreement between the results of our calculations and the corresponding experimental
data is given by the r.m.s. values of the deviations. Thus, comparing the r.m.s. values
corresponding to different models we conclude that for %°Os, °Nd and "W the best
description of the spectra is that given by the CSM approach, energies of ¥ 0s calculated
with the SSA are closest to the experimental ones while for the remaining nuclei the D
formalism provides the most realist picture.

Using the experimental data listed in Tables VI-XV, one can calculate the ratio of the
excitation energies for the states 41 and 2, denoted by Ryt jps- The results are: 2.93 (176 QOs,
19005, 159Nd, %5Dy), 2.94 (1°W), 2.96 (19°Hf), 3.02 (1®0s), 3.08 (}¥80s), 3.10 (**°0Os) and
3.11 (***Hf). We notice that all nuclei are characterized by a ratio R+ ,+ which is close
to the value of 2.9 assigned to the critical point of the transition SU(5)—SU(3), which is
described by the solvable model called X (5). Despite this, the X (5) approach provides a

description which is worse than those obtained with the other models proposed here.
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TABLE VI: The energy spectrum of the ground and first 8 and v bands of the '"°Os nucleus yielded
by the X(5), ISW, D, SSA and CSM models are compared with the corresponding experimental
data taken from Ref. [53]. The energies are given in keV units. The approach which describe best

the experimental data is mentioned in a box.

17605 |Exp.|X(5)|ISW| [D] |SSA|CSM

2; 135|126 | 115 | 125 | 125 | 135
4; 396 | 367 | 340 | 386 | 377 | 394
69+ 743 | 686 | 647 | 746 | 723 | 742

8; 1158(1072(1026|1176{1143|1159
102‘ 1634(1520(1473|1661|1624| 1631
12; 2168]2028|1986|2192|2157| 2152
149+ 2755(2593|2564|2764|2736| 2718
163‘ 3382(3216|3205|3374 (3354 | 3326
183 4019(3894|3909|4017 (4008|3973
209+ 4683(4628|4673]4693 (4695|4660
229+ 5399541715499 (5399|5412| 5385
249+ 6147(6261|6385|6134 (6157|6147

0} 601 | 714 | 565 | 633 | 498 | 601
25 742 | 942 | 760 | 757 | 723 | 742
4% 1026{1351|1118|1019|1075| 1032
65 1432|1865 [1578|1378|1511 | 1432
85 24582121 (1808|2011 | 1914
105 312127382293 |2565 | 2411
2+ 864 | 949 | 951 | 926 | 943 | 989

v

3:/*‘ 1038 (1058 (1056|1045|1053| 1081

4;' 1224(1189|1184(1196(1195|1201

5;" 1410(1340(1333|1371|1345| 1342

6:; 1509|1503|1568 (1542|1511
7,}L 1694116911784 (1719|1689
8% 1895|1898(2016{1962| 1900
9? 2111|2124|2264|2161|2106
10,? 2343|2367|2525|2444| 2354
r.m.s. [keV] 156 | 119 | 25 | 41 | 39




TABLE VII: The same as in the Table VI, but for 1"®0s. The experimental data are taken from
Ref. [57].

1805 |Exp.|X(5)[ISW|[D] |SSA |CSM

2; 132 | 127 | 116 | 131 | 130 | 132
4;‘ 399 | 368 | 342 | 402 | 388 | 389
6 762 | 688 | 650 | 769 | 739 | 736
8" 1194(1075|1031{1203|1163| 1152
107 1682(1525|1479(1689|1647| 1625
124 2220(2033(1994(2220|2181| 2147
1475 2805|2600(2572|2789|2758| 2715
165 3429|3224|3214|3395|3374| 3325
187 4020|3905|3918|4033|4025| 3975
20+ 4663|4641|4684|4701|4706| 4664
227+ 5382|543215510(5399 5415|5391
247+ 6155|6278(6397|6125|6150| 6155

05 651 | 716 | 574 | 635 | 493 | 651
25 771|944 | 771 | 766 | 730 | 771
4t 1023[1355(1133|1037|1092| 1029
65 1396|1870|1598|1403 | 1535|1396

8; 2464|2144 |1838|2041| 1850
10; 3129|2766 (2324|2599 2374
27 864 | 945 | 947 | 916 | 936 | 999

37 1032(1055|1052|1041|1048| 1091
47 1213{1187|1181|1195|1195(1211
5+ 1416|1338|1331|1375|1346| 1350

6¢ 1507{1501|1575(1546|1519
7¢ 1692{1690|1793(1725| 1696
8F 1894|1898|2027|1971 | 1907
9¢ 2111(2123|2275|2170|2113
10?’ 2343|2367 |2537|2455| 2361
r.m.s. [keV] 170 | 141 | 22 | 61 | 54
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TABLE VIII: The same as in the Table VI, but for '8°0Os. The experimental data are taken from
Ref. [58].

18005 |Exp.|X(5)[ISW| D |SSA[CSM

2;’ 132 | 131 | 124 | 133 | 125 | 147
4;’ 409 | 381 | 374 | 412 | 384 | 423
6; 795 | T13 | 723 | 792 | 748 | 792
8; 1257|1115(1163|1244|1196| 1234
10; 1768|1580(1688|1752|1716| 1735
12; 2309|2108|2297|2308(2299| 2291
14; 2875|2695(2987|2906|2937| 2897

OE 736 | 742 | 522 | 669 | 555 | 736
2; 8311979 | 720 | 802 | 774 | 831
4; 1053|1404 |1093{1080{1137| 1051

6; 137911938 |1584{1460|1596| 1379
8; 2554|2175(1912|2133| 1799
105r 3243128582421 |2734| 2299

2+ 870 11011 975 | 935 | 985 | 969
37 1023]1125|1090{1062|1100| 1068
47 1197|1262(1233|1221|1245| 1198
57 1406|1418 |1402|1406|1402| 1348
6+ 1627]1593|1596{1614|1609| 1529
T 1881|1786|1813|1841|1797| 1718
87 1995|2054 2084 |2057| 1944
97 241112220|2318|2344|2270| 2164
10;r 246012604 (2617|2577 2429

r.m.s. [keV] 1941 96 | 38 | 92 | 35
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TABLE IX: The same as in the Table VI, but for '880s. The experimental data are taken from

Ref. [59].

18805 |Exp.|X(5)|ISW| D |[SSA]|CcSM

2;’ 155 | 179 | 179 | 151 | 152 | 150
4;’ 478 | 519 | 519 | 479 | 476 | 468
6; 940 | 970 | 970 | 945 | 935 | 934
8; 1515(1516|1516{1512| 1501 {1535
10; 2170(2149(2150(2156| 2154 |2264
12; 2856|2867|2868|2860| 2877 | 3116

0} 1086(1009|1007(1120| 1063 | 1164

3
25 1305|1331 (1328(1270| 1330 | 1305
4% 1910(1907|1599| 1808 | 1621
65 2636 (2632|2064 | 2421 | 2096
8% 3474(3470(2632| 3132 | 2717
104 4412(4407|3276| 3920 | 3475
2 633 | 631 | 631 | 627 | 641 | 665

3+ 790 | 786 | 785 | 773 | 791 | 790
4+ 966 | 972 | 971 | 959 | 969 | 956
5% 1181(1185|1185({1180| 1172 | 1157
67 1425(1423|1423(1432| 1434 | 1399
(o4 1686(1685|1684(1709| 1674 | 1669

&f 1969{1969|2009| 2008 | 1983
Qf; 2275|2275|2329| 2273 | 2318
10;r 2602|2603 (2666 | 2670 | 2701
r.m.s. [keV] 27 | 27 | 16 | 13 | 36
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TABLE X: The same as in the Table VI, but for 1%°Os. The experimental data are taken from Ref.

[60).

19905 |Exp.|X(5)[ISW|[D] |SSA |CSM

2; 187|188 | 182 | 178 | 172 | 180
4; 048 | 547 | 541 | 551 | 531 | 531
6; 1050(1022|1034|1062|1034| 1031
8; 1666|1597|1647(1672|1653| 1670
10;' 2357(2264|2373(2359|2367| 2441

Og’ 912 11063 | 862 | 925 | 860 | 912
2; 1115(1402|1166{1103|1168| 1072

4; 2012(1729(1476|1682| 1417
6; 2777|2457|1987|2331|1925
8; 3659|3319(2596 3083|2582
10; 4647|4305(3283(3921| 3380
2j 058 | 627 | 594 | 583 | 593 | 618

3j’ 756 | 789 | 756 | 750 | 754 | 756
4¢' 955 | 985 | 955 | 957 | 954 | 939
5j 1204|1210|1187|1199|1172|1156
Gj 147411461)1451|1469|1459|1419
7¢ 1736(1745|1764|1718|1708
8¢ 2090|2035|2067|2081|2080| 2045
9¢ 2358|24192417|2370| 2401
10?’ 2772|2702|2799|2770|2798 | 2810

r.m.s. [keV] 98 | 26 | 10 | 27 | 36
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TABLE XI: The same as in the Table VI, but for 1"°Nd. The experimental data are taken from
Ref. [61].

10Nd  |Exp.|X(5)|ISW| D [SSA||CSM

2F 130 | 124 | 121 | 124 | 111 | 130
4F 381 | 361 | 358 | 384 | 348 | 386
6 720 | 675 | 682 | 738 | 683 | 734
8" 1130|1054 |1084|1158|1098| 1149
10;r 1599|1494 |1560{1625|1580| 1618
12; 2119(1993|2106|2129|2118| 2133
14; 268312549|2722|2664|2707| 2688

0} 675 | 702 | 580 | 739 | 630 | 675

B

2; 851 | 926 | 783 | 863 | 822 | 852
4; 1138|1328 |1157|1123|1158| 1167
6; 15411833 |1639|1477{1590| 1541
8; 2415|2209(1897{2095| 1931
10;r 3067|2859(2364|2661| 2319

2% 1062|1091 |1087{1076{1091| 1101
3+ 1201|1198|1197|1195|1197| 1191
4+ 1353]1327|1333|1345|1328| 1310

5:; 1476|1491|1518|1474| 1448
Gj 1641|1671|1713|1663| 1615
7# 1823|1872|1924|1838| 1790
Sf/r 2020|2093|2151|2079| 1998
Q;F 2233|2334|2390|2276| 2201
10;r 2461259412641 |2561| 2445
r.m.s. [keV] 114 | 48 | 28 | 29 20
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TABLE XII: The same as in the Table VI, but for 1°Dy. The experimental data are taken from

Ref. [63].

156Dy |Exp.|X(5)|ISW| [D]|SSA|CSM

2; 138 | 119 | 114 | 140 | 131 | 168
4;' 404 | 345 | 344 | 422 | 391 | 457
6;‘ 770 | 646 | 668 | 796 | 745 | 829
8; 1216{1009|1079(1230|1175| 1267
10;' 1725(1431|1572|1712]1667| 1761
12;’ 2286(1908|2145(2232|2151| 2307
14;’ 2888(2440(2796|2787|2807 | 2899

OE 676 | 672 | 451 | 648 | 461 | 676
2; 829 | 886 | 629 | 788 | 703 | 829
4; 1088(1272] 966 {1070]1068|1102
6; 1437(1755|1413{1444|1515| 1452
8; 1859(2313|1955(1878]2026| 1859
10;’ 2316|2937|2584|2360|2593| 2312

2+ 891 [1069| 898 | 839 | 928 | 921
3+ 1022{1172|1004| 970 |1041|1024
47 1168(1296|1136|1129|1188|1159
5+ 1336(1438|1292{1312|1339| 1312
6+ 1525|1596|1472|1514|1542| 1497
T 1729(1771|1674|1732|1720| 1686
87 1959(1960|1899{1964 (1972|1913
97 2192(2163|2145(2210|2171| 2131
10¢' 2448(238112413|2467|2464| 2395
llj’ 2712|2613|2702|2735|2680| 2636
12;‘ 2997|2859(3013|3013|2949 (2934
13¢' 3274|3118|3345|3301 (3240|3153
14# 3391136983600 (3606 | 3526
15;’ 3861|3677|4071|3908|3847| 3805

r.m.s. [keV] 232|114 | 35 | 90 | 41

30



TABLE XIII: The same as in the Table VI, but for '6Hf. The experimental data are taken from
Ref. [64].

66Hf  |Exp.|X(5)|ISW| [D]|SSA|CSM

2; 159 | 164 | 164 | 152 | 149 | 177
4;' 470 | 476 | 476 | 471 | 458 | 488
6; 897 | 891 | 890 | 906 | 883 | 897
8; 1406(1391|1392{1415|1392| 1385
10;‘ 1972(1973|1975(1973|1966| 1943
12;’ 2566|2631(2635|2566|2588 | 2568

0} 1065| 926 | 921 {1064|1000| 1098

B

2; 1219|1222]1215|1216|1286|1219
4; 1753|1745|1536(1761 | 1490
6; 2419(2410(1970|2344| 1870
8; 3189|3178|2479(3002| 2342
10;’ 4049|4038|3038|3713| 2893
27 810 | 862 | 862 | 854 | 864 | 899

3+ 1007{1004|1003| 997 |1007| 1011
47 1174|{1174|1177(1178|1160
5% 1419(1370|1370{1385|1364| 1330

6¢ 1589(1588(1617|1611|1535
7# 1829(1829|1867|1822(1748
Sj 2090|2090 |2133|2132| 2002
9¢ 2370|2372|2411|2357| 2251
10?’ 2671|2673|2701|2720|2550
r.m.s. [keV] 51 | 53 | 18 | 38 | 39

C. Reduced transition probabilities

As mentioned before the parameters involved in the transition operators employed by
different models have been fixed by fitting through a least square procedure the existent

data. With the fitted parameter the results for the reduced E2 transition probabilities are
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TABLE XIV: The same as in the Table VI, but for '®Hf. The experimental data are taken from
Ref. [65].

68Hf  |Exp.|X(5)|ISW| [D]|SSA|CSM

2; 124 | 141 | 140 | 120 | 108 | 128
4;‘ 386 | 409 | 409 | 382 | 351 | 389
6;‘ 757 | 765 | 769 | 757 | 710 | 756
8; 1214|1195]|1207|1215|1172|1206
10;' 1736(1694|1720{1736|1723| 1730
12;’ 2306|2259(2303|2307|2354 | 2320

0} 942 | 795 | 755 | 928 | 878 | 942

B

QE 1059(1049|1002{1048|1039| 1049
4; 1285(1505|1449{1310{1368| 1285
6; 2077|2015|1684 (1823|1630
8; 2738|2672|2143|2380| 2068
10; 3477341212664 |3024 | 2587
2% 876 | 911 | 906 | 902 | 928 | 939

3+ 1031{1033|1028{1020{1042| 1035
47 1161{1179|1178|1172|1171|1161
5% 1386(1347|1350(1353|1334| 1311
67 1551(1535|1543{1558|1530| 1492

7¢ 1741|1755|1786{1733| 1687
Sj 1965|1988|2033(1992|1916
9¢ 2206(2239|2297|2226| 2148
10¢' 2464|2508 2576|2543 | 2421
r.m.s. [keV] 7| 70 | 15 | 43 | 31

presented in Tables XVI-XXV where one gives for comparison also the available experimental
data. For the lightest three isotopes of Os as well as for 6%1Hf and '™®W the available
experimental data refers to the states of ground band. The agreements with the experimental
data showed up by the five theoretical models are comparable in quality.

For 156 Dy, besides the intraband transitions in the ground band, few interband transitions
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from the gamma to the ground band are experimentally known. As seen from Table XXII
the agreement of calculations with the experimental data is quite good.

In Ref.[62] measured data in ®Nd for intraband transitions ground to ground and beta
to beta as well interband transitions to ground band have been reported. These data are
described reasonably well by the five approaches as shown in Table XXI. One remarks the
good agreement obtained with the CSM approach. The largest discrepancies with the exper-
imental data are obtained for the transitions 45 — 2 and 43 — 27 which are overestimated
by the theoretical results.

As for 188190g the available data are about the intraband transitions ground to ground
and gamma to gamma bands as well about the interband transition beta to ground and
gamma to ground. They are compared with the results of our calculations in Tables XIX and
XX. Again, the agreement qualities obtained with the five sets of calculations are comparable
with each other. The predictions for the decay probabilities of the transitions 4ﬁ; — 2; and
63{ — 4; are larger than the corresponding experimental data. Also the result for OE — 23{
, obtained within the CSM is about 6.5 larger than the corresponding experimental value.
For some cases the value of the t5 obtained through the least square procedure is very large.
The reason is as follows.

Within the SSA, the t5 term of the transition operator contribute mainly to the interband
transitions while its matrix elements between states of a given band are very small. However,
for the mentioned cases there are only few experimental data for interband transitions, most
of the data referring to the intraband transitions. Consequently, the least square procedure
is using small matrix elements of the intraband transitions which results in obtaining huge
numbers for 5. An equally good description of these cases would be obtained by ignoring
the t5 term. We kept however this term just for the sake of having an unitary approach.

The results for the E2 transitions raise the question why the models X (5), ISW, D, SSA
predict close results although the states involved are described by different wave functions
in the variables [/ and 7. It seems that these differences are washed out by the fitting
procedure adopted for the strengths of the transition operator . Moreover, the factor function
depending on the Euler angles are common in the mentioned 4 approaches, this giving the

dominant contribution to the reduced transition probability.
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One signature for the triaxiality of the nuclear shape is the equality:

The departure from this rule, AE = \E21+ + Egy — E31+|, is equal to 2 and 11 keV for ¥80s
and 1%°0s, respectively. The magnitude of these deviations was the argument for treating
the two isotopes as triaxial nuclei [44]. On the other hand the ratio F,/, amounts 2.93 and
3.08 for ¥0s and ' Os respectively, which are quite close to the specific value of X (5)
nuclei. Given these facts we asked ourselves whether these nuclei are axially symmetric or
behave like a triaxial rigid rotor. In order to answer this question we compared the r.m.s.
values of deviations for both energies and B(E2) values provided by the SMA and SSA
approaches, respectively. Concerning the excitation energies in the three major bands, the
r.m.s. of prediction deviations from the corresponding experimental data yielded by the
SMA for 880s and '"°Os are 24 and 32 keV respectively while the SSA results for these
values are 13 and 27 keV. Therefore regarding the excitation energies the two isotopes behave
more like axially deformed nuclei. However comparing the results for the reduced transition
probabilities it comes out the triaxial rigid rotor behavior is favored. Indeed, the r.ms.values
for the SMA approach applied to ¥0s and *°Os are 13 W.u. and 16 W.u. respectively,
while those corresponding to the SSA| are 16 W. u. and 17 W.u., respectively. Remarkable
the fact that the differences of r.m.s values characterizing the two approaches, SMA and
SSA are quite small. Therefore one could conclude that the two investigations, from Ref.
[44] and from here, indicate that the two nuclei might be equally well described by both

approaches.
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TABLE XV: The same as in the Table VI, but for '""W. The experimental data are taken from
Ref. [66].

10W  |Exp.|X(5)|ISW| D |SSA [CSM

2;’ 157 | 145 | 133 | 145 | 151 | 171
4;’ 462 | 420 | 398 | 447 | 446 | 475
6; 876 | 785 | 767 | 858 | 844 | 873
8; 1363|1226 |1228|1347|1323| 1346
10; 1902|1739 |1777|1894|1869| 1882
12; 246412319|2411|2489|2471| 2477
14;r 3118|2965|3128|3126|3124| 3128
165Ir 3816|3677(3927|3801(3821| 3831

OE 816 | 587 | 760 | 507 | 823
2; 953 [1077| 804 | 905 | 790 | 953
4; 1202{1545|1208|1207|1204| 1215

6; 157812132|1736{1618|1706| 1578

8; 2810|2367|2107|2277| 2020
10; 3568|309312654(2905| 2531

2+ 937 1 944 | 945 | 928 | 936 | 965
37 107411068 |1068|{1066|1064| 1074
47 122011219|1219|1238|1231| 1217

5# 1391{1397|1438|1400| 1381
6ffr 1584{1600|1662(1630| 1578
7f; 1796 (1828|1906 |1828| 1783
8# 2025|2080|2168|2109| 2027
91{ 227312355|2446|2329| 2264
10;r 2538|2653|2739|2655| 2550
r.m.s. [keV] 200 | 90 | 21 | 58 13
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TABLE XVI: The reduced E2 transition probabilities determined with the X(5), ISW, D, SSA and
CSM models for the '"Os nucleus are compared with the corresponding experimental data taken

from Ref. [54].

B(E2)(W.u.)| Exp. |X(5)|ISW| D |[SSA|CSM

25 — 0F | 14475 | 167 | 127 145|136 | 144
4F — 2% | 24375 | 264 | 224 228|227 | 253
65 — 45 |30571] | 330 | 305 |292| 297 | 328
85 — 67 |32111% | 379 | 377 (360|366 | 393
105 — 87 441755 | 419 | 438 433|435 | 452

12 — 10/ |5171350| 450 | 490 (510|504 | 517

TABLE XVII: The same as in Table XVI, but for "0s. The experimental data are taken from
Refs. [54-56]

B(E2)(W.u.)|Exp.|X(5)|ISW| D |SSA|CSM

2;—>0; 138 | 147 | 137 |146| 141 | 138

4;—>2;r 226 | 232 | 225 |226| 226 | 227

6;—>4; 290 | 291 | 287 |280| 283 | 282

8:{ —>6; 327 | 334 | 337 |332| 334 | 327

10;—>8; 384 | 369 | 378 |384| 382 | 368

TABLE XVIII: The same as in Table XVI, but for '%°0Os. The experimental data are taken from
Ref. [58].

B(E2)(W.u.)| Exp. |X(5)|ISW| D |[SSA|CSM

25 — 0 [120%35| 70 | 152 (148|151 150
4F¥ —2F |193732) 111 | 167 |177| 172 | 149
65 — 4S5 [160140| 139 | 132 139|135 | 120

85 — 65 |637{3|160| 95 | 83|90 | 96
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TABLE XIX: The same as in Table XVI, but for ¥0s. The experimental data are taken from
Ref. [59].

B(E2)(W.w)| Exp. |X(5)|ISW| D |SSA|CSM

25 —0F | 7973 | 74| 72| 79| 82| 42
4F — 2+ | 13375 | 118 | 115 (121|123 87
65 — 4 | 13875 |147|144 |147|145 | 125
85 — 6, | 16111} | 169 | 166 | 174|162 161
10 — 8+ | 188732 | 187 | 184 203|178 | 195

0F — 25 [0.95%005| 47 | 48 | 33 | 21 | 0.95

0f =25 | 4372 |52(5.2|19|15] 4

10
AY =28 | 47Tl | 47 | 50 | 52 | 56 | 14

4% — 3+ | 3201930 | 112|117 (120|132 43

v v
30
67 —4F | 70730 | 107 [111|114 118 31

25 — 0 | 5108 |84 (10.9]10.8/9.9| 5

+2
2?—)2;’ 1675 13 |17 |16 | 14 |104

25 —4f | 3472 10.65(0.85(0.80/0.73| 1.4

A —2F [1.297045| 5.7 | 7.1 6.7 6.1 | 1.7

Af —4Fr | 1973 | 18 | 23|20 | 19 |10.7

Y g
+ + +7
af -6 | 1670 |2 |2 22| 5

65 — 45 [0.2150:41| 5.3 | 6.4 | 5.8 5.3 | 0.9

65 =67 | >94 |21 |25|23]20 83
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TABLE XX: The same as in Table XVI, but for ?°Os. The experimental data are taken from Ref.
[60].

B(E2)(W.w)| Exp. |X(5)|ISW| D |SSA|CSM

25 —0F | 7253 | 58 | 57 | 56 | 61 | 45
4 —2F | 1057 | 91 | 91 | 88 | 94 | 83
65 — 4 | 113%}9 [ 115|113 [112| 112 | 112
85 — 6 | 137130 [ 131|130 |138|126 | 137
10 — 8+ | 120730 | 145 | 143 | 165 | 139 | 160

0F =25 | 2272 | 36 | 36 | 30 | 19 | 2.2

0f =25 | 2377 |89 9 |8 | 5 |148

af —2f | 5372 | 36 | 38 | 37| 41 |20.4

4% — 3+ | 65713 | 87 | 90 | 87 | 98 | 84

v v
65 —4F | 65715 | 83 | 85 | 84 | 89 | 49

16
85— 6 | 61715 | 112|113 |119|115| 72

0.6
2t »0f | 5.970% |14.2(15.6(15.9|16.2| 14

+ + +4
27 =25 337, 21 | 24 | 24 24| 33

4% — 25 10.68T0:00( 9.7 |10.3]10.4|10.3| 4.3

4% —4F | 3077 | 31| 33(33|32] 31

Y g
6 >4f | <08 [ 9 |10]10| 9 |17

+8
6ffr—>6; 317¢ 36 | 38 | 40 | 36 | 26
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TABLE XXI: The same as in Table XVI, but for 1°°Nd. The experimental data are taken from
Ref. [62].

B(E2)(W.w)| Exp. |X(5)|ISW| D |SSA|CSM

2, —0f | 11573 | 107 [104| 92 | 116 81
4F —2f | 18275 | 169|168 | 144|177 160
65 —4F | 21073 | 212210183211 222
85 — 6 | 278¥32 | 243 | 243 |224|240 | 278
105 — 8+ | 204713 | 269 | 269 | 268 | 266 | 330

25 —0F | 114%35 | 85 | 83 |130| 86 | 116
45 —2f | 17073] | 128 125|194 | 144 165

Of =25 | 39%5 | 67 | 73| 51|37 |41.2

25 —0F | 1.2505 | 2129|3116 52

2f —2f | 93 | 10[10] 9|6 |9

25 =4S | 1773 | 39 | 42 | 40 | 26 | 26

45 —2f 10.12%003|1.07|1.61|1.64{0.57| 5.6

ab —ar | 7TH 6| 8 8|5 |72

45 =65 | 70713 | 30 | 33 | 46 | 26 | 26

2t —0Ff | 3708 | 24| 8 |9.8]5.1]16.3

v g
1.7
ot —»2f | 54717 |36 (11.9[14.3 7.3 | 54

25 —4f | 26750 |02 (0.6]0.70.40.74

0.3
At —2F 109703 | 16| 5 |6.1] 3 |286

4 —4f | 3.9713 | 5.3 155189 9 | 9.6
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TABLE XXII: The same as in Table XVI, but for '*°Dy. The experimental data are taken from
Ref. [63].

B(E2)(W.w.)| Exp. |X(5)|ISW| D |SSA|CSM

25 —0f |149.3732| 142 | 138 | 111|137 | 66
af —2F | 26177 | 225 223 (179219 | 149
65 — 45 | 200772 | 282 | 279 | 235|271 | 221
85 — 6, | 2897}; | 323 | 323|295 |316 | 289
105 — 8+ | 366752 | 358 | 358 359 | 357 | 354
125 — 107 | 382755 | 385 | 386 425|395 | 418

25 — 0y | 72707 | 6.6 | 9.9 |23.3|11.6| 7.2
25 — 2 | 94717 | 9.8 |14.6(35.1|17.4] 9.4

25 —4f 126719 05|07 1.8[0.9|19.5

TABLE XXIII: The same as in Table XVI, but for '6Hf. The experimental data are taken from
Ref. [64].

B(E2)(W.w)| Exp. |X(5)|ISW| D |SSA|CSM

25 — 05 | 12877 | 98 | 153 154|155 | 128
af — 28 | 20277 | 155 | 212 216|215 | 203
65 — 4 |2217]3 | 194 | 225 (232|226 | 245
85 — 65 280130 | 223 | 225 |230{ 225 | 280
105 — 85 |250%310( 246 | 220 |219| 218 | 311

12 — 10/ |155720%| 265 | 213 |199|209 | 351
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TABLE XXIV: The same as in Table XVI, but for '®Hf. The experimental data are taken from
Ref. [65].

B(E2)(W.w)| Exp. |X(5)|ISW| D |SSA|CSM

25 — 0 | 15477 | 141 | 165 176|175 | 154
4F — 25 | 244713 | 223 | 250 |257| 255 | 249
65 — 45 | 285715 | 279 | 294 |292| 291 | 304
85 — 65 350120 | 320 | 322 |318| 316 | 350
105 — 85 | 370750 | 354 | 342 |338| 338 | 391

124 — 10 [320%]130| 381 | 356 |354| 357 | 438

TABLE XXV: The same as in Table XVI, but for '""W. The experimental data are taken from
Ref. [66].

B(E2)(W.u.)| Exp. |X(5)|ISW| D |[SSA|CSM

25 — 0F | 12473 79 | 133 (126|129 | 124
af —2f |179715) 125 [ 179|177 179 | 168
6 — 45 |189773 157 | 184 |189| 187 | 182
84 — 65 |190720| 180 | 180 [187|183 | 190
105 — 85 [170%30| 199 | 173 [175] 174 | 197
12f — 104 [160150| 214 | 167 |158| 162 | 214
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V. CONCLUSIONS

Here, we summarize the main results obtained by this work. We selected 10 nuclei
characterized by a ratio R, o+ close to 2.9 which is specific to the so called X(5) nuclei.
Spectra of these nuclei are described by a new approach which treats the beta variable by
the Schrodinger equation associated to a sextic oscillator plus a centrifugal potential. For
the variable v one finds a differential equation which is satisfied by the spheroidal function.
The excitation energies are obtained by summing the eigenvalues provided by the differential
equations for the § and v variable respectively, while the corresponding functions are used to
calculate the E2 transition probabilities. The results are compared with the corresponding
experimental data as well as with those obtained through other formalisms called X(5), ISW,
D and CSM which were earlier used by the present authors to describe the spectroscopic
properties of other X(5) like nuclei.

Note that while the formalisms X(5), ISW, D and SSA treat the energies and transition
probabilities using the intrinsic coordinates and the rotation matrix function, the CSM is
a quadrupole boson approach and therefore the mentioned observables are calculated with
the collective coordinates which are specific to the laboratory frame.

A comparison of the r.m.s. values yielded by the five approaches shows that the D, CSM
and SSA approaches produce the best agreement with the experimental energies. Concern-
ing the E2 transitions one may say that all five sets of results quantitatively describe the
experimental situation in a comparable manner with a slight advantage for SSA and CSM.
Since the formalisms ISW, D, SSA, differ from each other by the way the variable beta
is treated, otherwise the 7 equation being the same, the transition probabilities produced
by the three approaches exhibit similar agreement with the experimental data. The SSA
method produces very good agreement with the experimental energies for ¥0s, 1**Nd and
168Hf, Table V shows that these nuclei have the largest deformations and moreover for the
first two nuclei the ratio R4+ /o+ has the values 3.08 and 3.11 respectively, which deviate
most from the X(5) value. The quoted ratio for "Nd is 2.93 which is close to the X(5)
value but its deformation is the largest one.

The sextic potential for the S assures a more realistic description of the excited states
where the the excitation of the beta degree of freedom is important. This is best seen in

the excellent agreement of the calculated excitation energies in the beta and gamma bands
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with the corresponding experimental data.

The final conclusion is that the SSA, proposed in this paper, proves to be a suitable tool
for a realistic description of the X(5) like nuclei.
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