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Abstract

Deformed single particle energies obtained by averaging a particle-core Hamiltonian with a pro-

jected spherical basis depend on a deformation parameter and an arbitrary constant defining the

canonical transformation relating the collective quadrupole coordinates and momenta with the bo-

son operators. When the mentioned basis describes the single particle motion of either protons

or neutrons the parameters involved are isospin dependent. An algorithm for fixing these param-

eters is formulated and then applied for 194 isotopes covering a good part of the nuclide chart.

Relation with the Nilsson deformed basis is pointed out in terms of deformation dependence of the

corresponding single particle energies as well as of the nucleon densities and their symmetries. The

proposed projected spherical basis provides an efficient tool for the description of spherical and

deformed nuclei in a unified fashion.

PACS numbers: 21.60.Ev, 21.60.Cs,21.10.-k,21.10.Gv
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I. INTRODUCTION

Nuclear structure formalisms describe the spectroscopic properties either in terms of

single particle degrees of freedom [1–8] or by using phenomenological collective coordinates

[9–22]. Many attempts have been made to define the collective variables in terms of particle

motion. The accuracy in treating a many body Hamiltonian depends on the single particle

basis which is used. For example the essential features of the deformed nuclei cannot be

described with a spherical single particle basis. The shape of the mean field which defines

the single particle motion should be consistent with the nuclear shape. In this context we

should stress on the usefulness of the bases provided by the Nilsson model or the deformed

Woods Saxon interaction. Using a deformed single particle basis in a many body treatment

like, Hartree-Bogoliubov procedure, quasiparticle random phase approximation (QRPA),

higher QRPA methods, finally one obtains deformed many body functions and energies.

Further the deformed wave functions are used to calculate matrix elements describing various

physical processes. Since the experimental data which are to be described are obtained in

the laboratory frame, the rotational symmetries have to be restored [23–37]. The angular

momentum projection from a many body state is not an easy task, only few complicated

codes being available. To simplify the projection operation the variational principle is used

to find the energies of the ground band states. This approximation has the drawback that for

high angular momentum where the angular momentum fluctuation is large, the description

is of course unrealistic. Moreover, it is difficult to extend the procedure to the excited bands.

About two decades ago, one of the authors (A. A. R.) proposed, in collaboration, an

alternative way to describe the deformed nuclear systems [39]. Indeed, a projected spherical

single particle basis has been constructed which allows for a unified description of spher-

ical and deformed nuclei. It is amazing that although the projected single particle states

have good rotational symmetry, the matrix elements of particle operators incorporate the

deformation via a deformed core which is described by an axially symmetric coherent state

defined with one component of the quadrupole boson. Many interesting properties have

been described in several papers and moreover the basis has been successfully used to treat

various processes.

However nowhere the involved parameters were discussed in a systematic manner and

moreover a confident algorithm to fix them is not yet available. Also, it is interesting to see
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whether this basis can be related in some way to the one yielded by the Nilsson model. Of

course one expects to depict certain fingerprints of deformation also in the nucleon density.

The above mentioned issues will be considered in next Sections as follows: In Section

II, the projected spherical Nilsson’s states and the corresponding single particle energies

are defined. A projected spherical particle-core basis is introduced in Section III. Therein

one proves that such a basis could be used as a basis in the particle space. The connection

with the projected Nilsson’s basis is discussed both numerically and analytically. The fitting

procedure of the parameters involved is described in detail in Section IV.

Numerical results regarding the fitting procedure are given in Section V for 194 isotopes.

Here we also compare the nucleon densities yielded by the projected spherical and Nilsson’s

bases. The final conclusions are drawn in Section VI.

II. PROJECTED NILSSON BASIS

To describe the single-particle motion in deformed nuclei one usually use a quadrupole

deformed mean-field which is simulated by an anisotropic harmonic oscillator potential.

Such a potential can be understood as the average field describing the motion of a particle

around an ellipsoidal core. Therefore the shell model Hamiltonian is replaced by,

H = − ~2

2m
∆+

mω2
0

2

(

Ω2
⊥ρ

2 + Ω2
zz

2
)

+ C~l · ~s+D~l2, (2.1)

where the cylindrical coordinates are used. The deformation of the spherical equipotential

surface to an ellipsoidal shape is performed with the restriction that the enclosed volume is

preserved. This condition is automatically satisfied by few parametrizations of the frequen-

cies Ω⊥ and Ωz. The one adopted here:

Ω⊥ =

(

2 + δ

2− δ

)1/3

, Ωz =

(

2 + δ

2− δ

)−2/3

, (2.2)

is different from that used by the Nilsson model [3],

Ω2
⊥ = 1 +

2

3
δ, Ω2

z = 1− 4

3
δ, (2.3)

which is actually the first order approximation of (2.2). Our choice is justified by the fact

that in the former case the oscillator frequency is the same as in the spherical limit, while

the latter case requires a renormalization through a deformation dependent term. Note that
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the deformation parameter δ can be linked to the more popular deformation β through the

relation δ =
√

45
16π
β.

With the parametrization (2.2), the Hamiltonian (2.1) can be rewritten as:

HNilsson = ~ω0

[

1

2

(

−∆′2 + r′2
)

+
1

2
V1r

′2 + V2r
′2Y20

]

+ C~l · ~s+D~l2, (2.4)

where one used the stretched coordinates r′ =
√
αr with α = mω0

~
and the notations:

V1 = −1 +
1

3
Ω2

z +
2

3
Ω2

⊥, (2.5)

V2 = −
√

π

5

2

3

(

Ω2
⊥ − Ω2

z

)

. (2.6)

The eigenvalues of this Hamiltonian, obtained by diagonalization, depend on deformation

and so does the eigenstates:

|Ωπα〉 =
∑

N,l,j

Cα
Nlj(δ)|NljΩ〉. (2.7)

Here Ω is the projection of the single-particle angular momentum j on z axis, π is the

parity while N = 2n + l with n and l being the principal quantum number and the orbital

angular momentum, respectively. For a given Ωπ the solutions provided by diagonalization

are labeled by the completeness quantum number α. If one neglects the ∆N = 2 interaction

matrix elements, then the eigenstates are

|NΩα〉 =
∑

j

Cα
j (δ)|NljΩ〉. (2.8)

Finally, projecting out the angular momentum from the state defined above, one recovers

the spherical shell model state |NljΩ〉. Therefore, in the angular momentum projected

Nilsson model the single-particle energies are given by the diagonal matrix elements of the

Hamiltonian (2.4) corresponding to the projected states |NljΩ〉,

εNilss
nljΩ = 〈NljΩ|HNilsson|NljΩ〉

= εnlj + ~ω0V2

(

N +
3

2

)

√

5

4π
Cj2j

Ω0ΩC
j2j
1

2
0 1

2

+
1

2
~ω0V1

(

N +
3

2

)

= εnlj − ~ω0

(

N +
3

2

)

Cj2j
Ω0ΩC

j2j
1

2
0 1

2

(Ω2
⊥ − Ω2

z)

3

+
1

2
~ω0

(

−1 +
1

3
Ω2

z +
2

3
Ω2

⊥

)(

N +
3

2

)

. (2.9)

εnlj is the spherical shell model single-particle energy.
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III. THE PROJECTED PARTICLE-CORE PRODUCT BASIS

The mean field that defines the single-particle motion approximates the interaction of a

single particle with the rest of the particles which can be assimilated with a phenomenological

core. Supposing that the spherical limit of the mean field is the spherical shell model single-

particle Hamiltonian HSM , the particle-core Hamiltonian is defined as:

Hpc = Hcore +HSM −mω2
0r

2
∑

λ=0,2

λ
∑

µ=−λ

α∗
λµYλµ, (3.1)

where

Hcore = ωb

∑

µ

b†2µb2µ (3.2)

is a harmonic quadrupole boson Hamiltonian associated with the phenomenological core.

The particle-core interaction represented by the last term, depends on the nuclear deforma-

tion through the monopole and quadrupole shape coordinates, α00 and α20. The latter ones

are related to the boson operators b†2µ defining the harmonic oscillation of the core, through

a canonical transformation

α2µ =
1√
2k

[

b†2µ + (−)µb2µ

]

, (3.3)

which is defined up to an arbitrary constant k, at our disposal. The restriction of volume

conservation provides a relation between the monopole and quadrupole coordinates:

α00 = − 1√
4π

∑

µ

|α2µ|2 , (3.4)

whose boson representation is

α00 = − 1

4
√
πk2

{

5 +
∑

µ

[

2b†2µb2µ +
(

b†2µb
†
2−µ + b2−µb2µ

)

(−)µ
]

}

. (3.5)

Averaging Hpc on the eigenstates |nljm〉 of HSM one obtains a deformed boson Hamiltonian

whose ground state is described by a coherent state:

ψg = ed(b
†
20
−b20)|0〉b, (3.6)

where |0〉b is the vacuum state of the boson operators, while d is a real parameter which

simulates the nuclear deformation. On the other hand, the average of Hpc with ψg is a single

particle Hamiltonian, similar to that of the Nilsson model [3]:

Hmf = 〈ψg|Hpc|ψg〉 = ωbd
2 +HSM − ~ω0r

′2

[√
2d

k
Y20 −

1

8πk2
(5 + 4d2)

]

, (3.7)
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where the stretched coordinates are used. Indeed, extracting from the above Hamiltonian

the zero point deformation energy

lim
d→0

(Hmf −HSM) =
5~ω0r

′2

8πk2
, (3.8)

one arrives to a more recognizable form:

Hmf = ωbd
2 +HSM − ~ω0r

′2

(√
2d

k
Y20 −

1

2πk2
d2

)

. (3.9)

We note that the deformed terms involved in the Nilsson model Hamiltonian and the mean

field Hmf are identical provided the following equation holds:

d

k
=

β√
2
, (3.10)

One recovers the original Nilsson Hamiltonian [3]:

HNilsson(β) = HSM − ~ω0r
′2βY20. (3.11)

if in (3.9) one ignores the constant terms i.e., those which are independent of the particle

coordinates. Concluding, once the coordinates associated to one of the particle-core factor

functions are frozen, the rotational symmetry is broken and a mean field for the motion of

the unfrozen degree of freedom is obtained. We may use the mean field to define a new

single particle basis which could be further involved in a many body calculation. Since the

measured data have the symmetries specific to laboratory frame, we have to project out the

good angular momentum from the many body state, which as a matter of fact is not an easy

task.

Our proposal was [39] to treat the particle-core system, which is rotationally invariant,

with the projected states:

ΦIM
nlj (d) = N I

j P
I
MI [|nljI〉Ψg] ., (3.12)

which form a basis for the particle-core space. Note that the unprojected particle-core state

involved in (3.12) is a product function of the eigenstates of HSM and 〈nljm|Hpc|nljm〉 ,

respectively. In this way we assume that the deformation is carried only by the core. At

this level the single particle factor state preserves the rotational symmetry, the deformation

of the single particle motion being determined due to the interaction with the core. The

tensorial form of this state,

ΦIM
nlj (d) = N I

j

∑

J

Cj J I
I 0 I

[

N
(c)
J

]−1 [

|nlj〉φ(c)
J

]

IM
, (3.13)
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is often used for analytical calculations. Here we used the notation

φ
(c)
JM = N

(c)
J P J

M0ψg, (3.14)

for the angular momentum projected coherent state, which is the ground band model state

in the CSM model [19, 20]. The norm of this state

[

N
(c)
J

]−2

= (2J + 1)I
(0)
J e−d2 , (3.15)

as well as the corresponding matrix elements of any boson polynomial are expressed in terms

of the overlap integrals:

I
(k)
J =

dkI
(0)
J

dxk
, I

(0)
J (x) =

∫ 1

0

PJ(y)e
−xP2(y)dy, x = d2, (3.16)

where PJ(y) denotes the Legendre polynomial of rank J . These integrals have been ana-

lytically calculated in Refs.[19, 20]. Knowing the norm of the core projected state, one can

write down the norm of the total particle-core state (3.12) as

(

N I
j

)−2
=
∑

J

(

Cj J I
I 0 I

)2 [

N
(c)
J

]−2

. (3.17)

We mention the fact that the limit of ΦIM
nlj when d → 0 exists even though the norms

(3.17) for j = I, in the same limit, are indeterminate. Besides the orthogonality and other

properties discussed in Refs.[39, 41], one of the most important property of the basis (3.12)

is that for vanishing deformation d it recovers the full spherical shell model basis described

by the product state |nljM〉|0〉b.
In general, i.e. for any deformation parameter, this basis although defined in the particle-

core space, can be used as a single particle basis. This assertion is hinging on the fact that

when a matrix element of a particle-like operator is calculated, one integrates first on core’s

coordinates which results in generating a deformation of the matrix element corresponding to

the spherical shell model state. An example on this line concerns the single particle energies,

which compared with those of projected Nilsson model proves that the deformation induced

in this process is the appropriate one.

A. Energies

Since the core contribution does not depend on the single-particle quantum numbers,

the single-particle energies of the mean field defined by the particle-core Hamiltonian (3.1)

7



are given in the first order of perturbation by the average of Hpc − Hcore on the projected

single-particle basis (3.12):

εInlj = 〈ΦIM
nlj (d)| (Hpc −Hcore) |ΦIM

nlj (d)〉

= εnlj − ~ω0

(

N +
3

2

)

√

5

4π
Cj2j

I0IC
j2j
1

2
0 1

2

d
√
2

k
+

~ω0

(

N +
3

2

)






1 +

5

2d2
+

∑

J

(

CjIJ
I−I0

)2

I
(1)
J

∑

J

(

CjIJ
I−I0

)2

I
(0)
J







d2

4πk2
. (3.18)

Given the fact that the basis (3.12) recovers the spherical shell model basis in the vibrational

limit, the corresponding single-particle energies (3.18) have also to reproduce the spherical

shell model energy in the limit of d→ 0. However the limit

lim
d→0

εInlj = εnlj + ~ω0

(

N +
3

2

)[

5

2
+

1

2

[

j − I +
1

2

(

1− (−)j−I
)

]]

1

4πk2
, j 6= I, (3.19)

is different from εnlj by the 1/k2 term in the above equation which is actually a measure

of the so called zero point energy. The deviation is however very small due to the constant

k whose usual value varies around 10. However, at high j orbitals the correction becomes

sizable and a split of the energy correction over the quantum number I, shows up at vanishing

deformation. In order to avoid this one must normalize the single-particle energies (3.18) by

extracting a zero point deformation energy given by the correction term from (3.19). Thus,

the normalized single-particle energies are expressed as

εInlj(d; k) = εnlj − ~ω0

(

N +
3

2

)

√

5

4π
Cj2j

I0IC
j2j
1

2
0 1

2

d
√
2

k
+

~ω0

(

N +
3

2

)






1 +

∑

J

(

CjIJ
I−I0

)2

I
(1)
J

∑

J

(

CjIJ
I−I0

)2

I
(0)
J







d2

4πk2

−~ω0

(

N +
3

2

)[

j − I +
1

2

(

1− (−)j−I
)

]

1

8πk2
. (3.20)

Apart from deformation parameter d these single-particle energies depend on the canonical

transformation constant k which can be fixed by fitting a collective observable as will be

shown in the next section. The dependence on the deformation of the proton and neutron

single-particle energies (3.20) for a fixed value of k is presented in Fig. 1. The shell model

parameters κ and µ used there are taken from Ref.[15] and correspond to the majority of

the rare earth nuclei.
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FIG. 1: Proton and neutron single-particle energies in the region of N = 5 and N = 6 shells

respectively, given by Eq.(3.20) where the shell model parameters κ = 0.0637 and µ = 0.60 for

protons and µ = 0.42 for neutrons were used. The canonical transformation constant is fixed to

k = 10.

Few words about the role of the constant k are necessary. The plots of Fig. 1 are sensible

to the variation of k. Indeed, increasing k the energy curves approach straight lines. One can

say that k plays the role of a scaling parameter. Indeed, the leading term in deformation

depend on the quantity d/k rather on the deformation alone. This is also true for the

quadratic term, because the ratio of the overlap integrals is a fractional quantity and thus

a scalable one, at least in the extreme limits of vibrational and asymptotic regimes..

The averages (3.20) can be viewed as approximations of the single-particle energies in

the deformed Nilsson orbits. As a matter of fact these are very close to the single-particle

energies (2.9) of the projected Nilsson model. In order to compare the two models one must

first relate the nuclear deformation with deformation parameter d defining the coherent state

(3.6). By equating the leading deformation terms of both expressions for the single-particle
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energies, one arrives at the relation:

d

k
=

√

2π

45

(

Ω2
⊥ − Ω2

z

)

, (3.21)

where Ω⊥ and Ωz can be expressed either in δ or β nuclear deformations. The dependence

of the above ratio on the nuclear deformation β is shown in Fig. 2, where it is also compared

with the linear correspondence (3.10). It is worth to mention that the linear dependence is

a fairly good approximation even for large values of β. Another interesting feature seen in

Fig.2 is that the relation (3.21) is not symmetric when the sign of β is changed. Indeed, for

higher values of β the deviation from linearity is bigger for negative values.

d � k = Β � 2

d � k = f HΒL

-0.4 -0.2 0.0 0.2 0.4
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Β

d
�k

FIG. 2: The ratio d/k given as function of the nuclear deformation β according to the linear

dependence (3.10) and the more complex one given by Eq.(3.21).

In virtue of the correspondence (3.21), one can rewrite now the single-particle energies

(3.20) as function of the nuclear deformation as

εInlj(β; k) = εnlj − ~ω0

(

N +
3

2

)

Cj2j
I0IC

j2j
1

2
0 1

2

(Ω2
⊥ − Ω2

z)

3
+

~ω0

(

N +
3

2

)






1 +

∑

J

(

CjIJ
I−I0

)2

I
(1)
J

∑

J

(

CjIJ
I−I0

)2

I
(0)
J







(Ω2
⊥ − Ω2

z)
2

90

−~ω0

(

N +
3

2

)[

j − I +
1

2

(

1− (−)j−I
)

]

1

8πk2
. (3.22)
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These energies can be directly compared to those obtained in the framework of the projected

Nilsson model, due to the dependence on the same deformation variable. This is done in

Fig.3 for protons and Fig.4 for neutrons. The similarity between the two model single-

particle energies is obvious. There are of course some differences, mainly in large deformation

regime. The projected Nilsson model energies are more bent than the energies provided by

Eq.(3.22). In the dependence on the deformation parameter d of the latter, the canonical

transformation constant k was responsible for the degree of the lines’ bending. However,

the energy dependence on the nuclear deformation β, as given in (3.22), is almost insensible

to the variation of k. It is worth mentioning that for a chosen nucleus and a given value

of β, the last occupied single-particle states in the two models differ from each other due

to the small displacement of the level crossing. This is an important difference between the

two approaches, given the fact that the valence nucleons play an important role in many

phenomena.

-0.4 -0.2 0 0.2 0.4
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4.5

5
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6
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[h-
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d
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s
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h- ω
0]

82

50

g
7/2

d
5/2

h
11/2

d
3/2

s
1/2

FIG. 3: The proton single-particle energies (2.9) of the projected Nilsson model (left) are compared

with those provided by Eq.(3.22) with k = 10 (right). The shell model parameters are the same as

in Fig.1.
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FIG. 4: The neutron single-particle energies (2.9) of the projected Nilsson model (left) are compared

with those provided by Eq.(3.22) with k = 10 (right). The shell model parameters are the same as

in Fig.1.

Concluding, the projected spherical single particle and projected Nilsson model bases pro-

vide similar single particle energies. Small differences are noticed for very large deformations

where the Nilsson model energy curves are more bent. Also, in that region of deformation

some differences in the level crossings may occur. This in turn generates differences in filling

up the last occupied states which might be important for those properties determined mainly

by the valence nucleons.

B. Nucleon density function

Another property of the spherical projected single-particle basis is the distribution of

the nucleons on the states associated to the energies (3.20). In the previous subsection one

showed the similarity of these single-particle energies with those of the projected Nilsson

model. However, the quantum numbers indexing the states are different in the two cases.
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From the comparison of the two schemes it is obvious that the projection I of the spherical

projected single-particle basis (3.12) plays the role of the Ω quantum number from the

Nilsson model, and moreover have the same domain of values. Besides the double degeneracy

coming from the K and −K invariance common to both sets of quantum numbers, the states

of basis (3.12) are also 2I+1 degenerate with respect toM . Even if degeneracies are different

in the two cases, the number of nucleons distributed on a state indexed by I or Ω should be

the same, i.e. two. This desire is accomplished by inserting in the expression of the particle

density function, a statistical factor which reflects the occupation probability of a substate

M :

ρ̂ =
∑

nljIM

2

2I + 1

∣

∣ΦIM
nlj (d)

∣

∣

2
. (3.23)

Using the tensorial form of the projected particle-core state (3.13), and replacing the product

of the projected core states and their corresponding complex conjugates by their scalar

product, one obtains:

〈ρ̂〉coll = 2
∑

nljm>0

||nljm〉|2 , (3.24)

which is exactly the spherical shell model nucleon density. The consistency with the pro-

jected Nilsson states is then complete.

Thus, although the projected spherical state carries the nuclear deformation through the

projected core states, the rotational symmetry, reclaimed by the the projected spherical oper-

ation, prevails in what the nuclear density function is concerned.

However it is desirable to induce a deformation dependence of the particles distribution.

Inspired by the fact that the deformation dependence of the mean field is obtained by

averaging the particle-core Hamiltonian on the quadrupole boson coherent state (3.6), we

extend the procedure to the nucleon density (3.23) with the results:

〈ψg|ρ̂|ψg〉 =
∑

nljIM

2

2I + 1

∣

∣〈ψg|ΦIM
nlj (d)〉

∣

∣

2
. (3.25)

Similarly, the wave function associated to the deformed single particle mean field might be

viewed as the overlap of the projected spherical state with the core’s coherent state:

〈ψg|ΦIM
nlj (d)〉 = N I

j

∑

J

F jI
JM(d)|nljM〉, (3.26)

where

F jI
JM(d) = Cj J I

I 0 I C
j J I
M 0M (NJ)

−2 . (3.27)
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At this point it is worth comparing the deformation effect provided by (3.25) with that

calculated with the unprojected Nilsson states:

ρNilss =
∑

NΩα

||NΩα〉|2 =
∑

NΩα

jj′

Cα
j (δ)

(

Cα
j′(δ)

)∗ |NljΩ〉〈Nlj′Ω|. (3.28)

Although the deformation is accounted for in different manners by the two approaches, one

expects however some similarities.

A direct connection between the k-pole transition densities defined by the projected

spherical single particle and the spherical shell model bases, can be obtained by using the

second quantization form of a one body operator, which is a tensor of rank k and projection

m with respect to the rotation transformations [55]:

T̂km =
∑

√

2

2I + 1
〈ΦIM

nlj |T̂km|ΦI′M ′

n′l′j′〉
√

2

2I ′ + 1
c†αIMcα′I′M ′

=
∑ 2

Î Î ′
〈ΦI

nlj||T̂k||ΦI′

n′l′j′〉CI′kI
M ′mMc

†
αIMcα′I′M ′

=
∑

αI;α′I′

2

Î Î ′
〈αI||T̂k||α′I ′〉ρ̂pskm(αI;α′I ′). (3.29)

For the sake of simplicity we have used the abbreviations and notations:

|αIM〉 = |ΦIM
nlj 〉, α = (nlj), Î =

√
2I + 1,

ρ̂pskm(αI;α
′I ′) = − Î

k̂

(

c†αIcα̃′I′

)

km
, c

α̃IM
= (−1)I−McαI,−M . (3.30)

The upper index ”ps” accompanying the density matrix indicate that it is associated to

the ”projected spherical” single particle basis. Changing the single particle basis to that of

spherical shell model and following the same procedure one finds:

T̂km =
∑

〈nlj||T̂k||n′l′j′〉ρ̂smkm(nlj;n′l′j′), with

ρ̂smkm(nlj;n
′l′j′) = − ĵ

k̂

(

c†nljcñ′l′j′

)

km
. (3.31)

Connection of the reduced matrix elements in the two bases, projected spherical and spherical

shell model, was established in Ref.[39]:

〈ΦI
nlj||T̂k||ΦI′

n′l′j′ = f j′I′

jI;k(d)〈nlj||T̂k||n′l′j′〉,

f j′I′

jI;k(d) = N I
j N I′

j′ ĵÎ
′
∑

J

Cj J I
I 0 I C

j′ J I′

I′ 0 I′W (jkJI ′; j′I) (N c
J)

−2 . (3.32)
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Using this equation and the linear independence of the nucleon transition densities for dif-

ferent pairs of shell model states one obtains:

ρ̂smkm(nlj;n
′l′j′) =

∑

I,I′

2

Î Î ′
f j′I′

jI;k(d)ρ̂
ps
km(nljI;n

′l′j′I ′). (3.33)

Taking into account the explicit expression of the norms N I
j and the analytical form of the

Racah coefficient with one vanishing index, it can be proved that for k = 0 the factor f is

equal to unity:

f j′I′

jI;0(d) = δI,I′δj,j′ . (3.34)

Consequently, we have:

ρ̂sm00 (nlj;nlj) =
∑

I

2

2I + 1
ρ̂ps00(nljI;nljI). (3.35)

Going back to the definition of ρ̂ in the two basis, (3.30) and (3.31), by a direct and simple

calculation one finds that Eqs. (3.35) and (2.24) are identical.

IV. DEFORMED SINGLE-PARTICLE AND COLLECTIVE MOTIONS

To study the particle-core interaction of the whole nucleus one has to consider separate

cores and single-particle orbits for protons and neutrons. To this purpose, the CSM has

been extended [21, 22, 42] by assuming that the collective excitations of the proton and

neutron systems are independent and therefore described by distinct boson operators, b†pµ

and b†nµ. The extended version is conventionally called the generalized coherent state model

(GCSM). In the framework of GCSM the phenomenological core is described by a coherent

state of the form (3.6) with the inclusion of the isospin degrees of freedom:

ψGCSM
g = edn(b

†
n0

−bn0)edp(b
†
p0−bp0), (4.1)

where one considered different deformations for the proton and neutron systems, dp and dn.

The ground band state is defined as in CSM, through the angular momentum projection of

the above coherent state. The norm of the projected state

φg
JM(dn, dp) = NJ(dp, dn)P

J
M0ψ

GCSM
g (4.2)

and the corresponding matrix elements of the boson invariants can also be expressed in

terms of the overlap integrals (3.16), if one replaces ”d” with ”ρ” defined by

ρ2 = d2n + d2p. (4.3)
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Similarly, if one considers for the description of the phenomenological collective core a

quadrupole harmonic boson Hamiltonian,

HGCSM
core = ωb

∑

τµ

b†τµbτµ, (4.4)

then the ground band energies are also functions of the global deformation parameter ρ

alone,

EJ(ρ) = 〈φg
JM(dn, dp)|HGCSM

core |φg
JM(dn, dp)〉

= ωbρ
2 I

(1)
J (ρ2)

I
(0)
J (ρ2)

. (4.5)

Although the projected wave function depends on two independent deformation parameters,

dp and dn, the ground band energy depends only on ρ. Using this expression for the energy

of the first two excited states, one can easily find ρ for any nucleus by fitting the calculated

ratio

R4/2 =
E4+(ρ)− E0+(ρ)

E2+(ρ)− E0+(ρ)
(4.6)

to the corresponding experimental value. Even if the ground band energies depend only

on ρ, this is not a suitable deformation variable since there are observables, which depend

explicitly on both dp and dn. If one considers d = dn = dp then the single-particle and

collective features of the nuclear structure can be described through a single isospin inde-

pendent deformation parameter d and a unique canonical transformation constant k. ρ can

be extracted from experiment, as explained above, and then through the relation ρ =
√
2d,

one gets d, while k can be fixed by using Eq. (3.21) for a known nuclear deformation β.

Of course this is an oversimplified case because in general the deformation features of the

proton and neutron subsystems are different even if not very much. In order to determine

the isospin differentiated deformation parameters dp and dn one must fit besides the ratio

(4.6) another observable which must be isospin dependent. Such a quantity is B(E2) tran-

sition probability which is dominantly determined by the proton degrees of freedom. The

E2 transition operator is given as [43]:

T2µ =
3Ze

4π
R2αpµ, (4.7)

where αpµ is the proton quadrupole shape variable defined in terms of proton boson operators

as in Eq.(3.3). The reduced matrix element of αpµ between the GCSM projected ground
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states is expressed as [22]

〈φg
J(dn, dp)||αp||φg

J ′(dn, dp)〉 =
1

2kp
CJ ′2 J

0 0 0 ρ
NJ

NJ ′

[

1 +
2J ′ + 1

2J + 1

(

NJ ′

NJ

)2
]

. (4.8)

In the Bohr-Mottelson parametrization [38], the rotational invariance of the nuclear potential

leads to
∑

µ α2µα
∗
2µ = β2. Such that the E2 transition probability between J = 0 and J = 2

ground states can be written as

B(E2; 0+ → 2+) = |〈φg
0(dn, dp)||T2µ||φg

2(dn, dp)〉|2

=

(

3

4π

)2

e2Z2R4β2. (4.9)

Using Eq.(4.8) in the above equation one obtains [43]:

β =

√
5

2

ρ

kp

[

N2

N0

+
1

5

N0

N2

]

, (4.10)

which relates the nuclear deformation β with the global deformation parameter ρ and the

proton canonical transformation constant kp. The global deformation parameter ρ being

fixed by fitting the experimental value of R4/2 and with nuclear deformation β taken from

nuclear data tables, the above expression becomes a determining equation for kp. Making

use of Eq.(4.3) and Eq.(3.21) alternatively for protons and neutrons, one determines the

complete set of parameters dp, dn, kp and kn which are needed for a consistent description

of the collective and single-particle degrees of freedom.

V. NUMERICAL APPLICATION AND DISCUSSIONS

For a complete understanding of the formalism based on the spherical projected single-

particle basis, it would be useful to determine the domain of values for the deformation

parameters d, dp and dn as well as of the corresponding canonical transformation constants

k, kp and kp. We chose to make such a systematics for isotopic chains of medium and heavy

nuclei whose occupied single-particle states cover N = 4 and N = 5 proton shells but not fill

them completely. Thus, one performed calculations for the isotopic chains of Ge, Se, Zr, Mo,

Cd, Te, Sm, Gd, Dy, Er, Hf, Os, Pt, Th and U. In order to obtain the parameters describing

each nucleus, one first determines its global parameter ρ by fitting the experimental value

of the ratio R4/2 with the theoretical expression (4.6). Before doing this for all considered
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isotopes, it is instructive to investigate the behavior of the theoretical ratio R4/2 as function

of the global deformation parameter ρ defined by Eq.(4.6). Using the asymptotic [44] and

vibrational limits [45] of the overlap integrals (3.16), one can easily check that for ρ → ∞
one have R4/2 = 3.33 which is exactly the value provided by the axially symmetric rotor

model, while for ρ → 0 one obtain the spherical vibrator value R4/2 = 2. What happens

between these two limiting cases can be seen in Fig.5, where the expression (4.6) of R4/2 is

plotted as function of ρ. From there one notices that the function (4.6) acquires even values

smaller than two. Moreover, it exhibits a minimum value of 1.954 reached at ρ = 0.930, such

that there exists an interval where for two distincts ρ the ratio takes a common value. The

ambiguity of R4/2 is removed by restricting our considerations to the values ρ ≥ 0.930 where

the function has a bijective character. Another fact which is worth to be mentioned, is that

starting from relatively small values of ρ (≈ 3.6) the ratio R4/2 approaches asymptotically

the rotational value R4/2 = 3.33. These findings allow us to define the domain of accepted

values for the global deformation parameter ρ, to be 0.930 < ρ < 5.

0 1 2 3 4 5
1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Ρ

E
4�E

2

FIG. 5: The theoretical ratio R4/2 given by Eq.(4.6) as function of the global deformation parameter

ρ. The mentioned ratio reaches the absolute minimum at ρ = 0.930. The minimum value is 1.954.
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Note that the global deformation parameter can be fixed in the way described above only

for nuclei which have the first two collective excited states measured. After fixing it one

can further get an isospin independent deformation parameter d = ρ/
√
2 which describes

the single-particle aspects of the corresponding nucleus. Using this value in equation (3.21)

together with a tabulated nuclear deformation [46] one obtains the canonical transformation

constant k valid for both proton and neutron single-particle degrees of freedom. In order to

obtain isospin differentiated deformation parameters dp and dn with corresponding scaling

constants kp and kn, one first make use of the Eq.(4.10) where one plugs the value of ρ

obtained earlier as well as the nuclear deformation taken from Ref. [46] to obtain kp. The

rest of parameters are easily obtained by considering the relation (3.21) for protons and

neutrons taking also into account the relation (4.3) between the deformation parameters.

All of these quantities are listed in Tables I-XV for each considered isotopic chain where one

also presented the nuclear deformation taken from [46] and the experimental value of the ratio

R4/2. The calculated values for the deformation parameter d are in agreement with those

obtained for some selected nuclei in Refs.[48–50] where the same parameter was determined

by fitting all experimentally available collective states including β and γ vibrational states

with a more complex quadrupole boson Hamiltonian.

Although the calculations are straightforward for most of the considered nuclei, there are

also some special situations where a roundabout method is required to obtain consistent

results. As can be seen from the Tables I-XV, the nuclei around a shell closure always

exhibit a ratio R4/2 smaller than two and sometimes even smaller than the theoretical

minimum value predicted by Eq.(4.6), i.e. 1.954. In these cases one cannot determine

the global parameter ρ and consequently any other quantity of interest. However, in some

cases even if R4/2 < 1.954 but not much smaller, one can still consider the value ρ = 0.930

corresponding to the minimum of Eq.(4.6). This approximation was made for nuclei with

1.7 < R4/2 < 1.954 which are indicated in the captions of the Tables IV-XI and XIV. Another

difficulty arises when computing the deformation parameters and canonical transformation

constants for vanishing or very small values of the nuclear deformation β. Indeed, the

calculation algorithm explained above cannot be applied in case of vanishing β, while for

very small values of β the results for the canonical constants are much exaggerated to be

taken into account. In order to avoid this problem and therewith to obtain a description of

these nuclei, one uses different values for the nuclear deformation β found by interpolating
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FIG. 6: Linear fits with vanishing intercept of the tabulated nuclear deformation β as function of

the global deformation parameter ρ obtained by reproducing the experimental value of the R4/2

ratio, by means of Eq.(4.6), are presented for the lightest isotopic chains. The data points with

β = 0 or very small are excluded from the fit.

the linear fit of the remaining (ρ, β) data points for a certain isotopic chain. In Tables

I-XV the interpolated values are replacing those taken form Ref.[46] and the corresponding

nuclei are indicated in captions or are simply given in a separate column for isotopic chains

with more such cases. The linear fits used for interpolation are shown in Figs.6 and 7 for

the lighter and heavier isotopic chains respectively, where the equation of the fitting line is

indicated for each one of them. It must be mentioned that due to the relation between β and

d the linear fits are restricted to have a vanishing intercept. The same fits are also used for

interpolating values of ρ for nuclei where it cannot be determined (240U) or where the value

obtained in the usual way provides results conflicting the relation (4.3) (72Se). The sign of

the nuclear deformation β is carried towards the deformation parameters d, dp and dn, but

in the case of the vanishing β one choose by default the positive values for the deformation

parameters d, dp and dn.

The slope of the fits can be viewed as an average value of the k over the chosen isotopic

chain. As a matter of fact this result is consistent with the linear dependence (3.10) of d/k

on the nuclear deformation β given the fact that ρ =
√
2d.
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FIG. 7: Linear fits with vanishing intercept of the tabulated nuclear deformation β as function of

the global deformation parameter ρ obtained by reproducing the experimental value of the R4/2

ratio, by means of Eq.(4.6), are presented for the heavier isotopic chains. The data points with

β = 0 or very small and with R4/2 > 3.33 (240U) are excluded from the fit.

Knowing the deformation d for a nucleus, one can investigate its shape by calculating

the total nucleon density as function of the stretched radial coordinate r′ and the azimuthal

angle θ. Note that due to the assumed axial symmetry of the nucleus, the nucleon density is

independent of the polar angle ϕ. For illustration, one considers two isotopes of Gd which

are sizeably distinguished by the values of both the nuclear deformation β and the isospin

independent deformation parameter d. The chosen isotopes are 150Gd with β = 0.161 and

d = 0.971, and 156Gd with β = 0.271 and d = 2.232, the deformation parameters being

those from Table VIII.

Keeping in mind our declared aim of comparing the spherical projected single-particle

basis with the projected Nilsson states, the total nuclear density in the spherical shell model

is the common feature of the two projected spherical bases. This quantity is plotted in Fig.8
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FIG. 8: Total nuclear density given by Eq.(3.24) is represented as function of x = r′ sin θ and

z = r′ cos θ in units of α
3

2 in 3D plots (up) and contour plots (down) for 150Gd (left) and 156Gd

(right). In both cases the densities corresponding to two adjacent curves differ from each other by

0.21α3/2.

for the two nuclei 150Gd and 156Gd. In order to fully represent an axial section of the nuclei,

the domain for θ was extended from [0, π] to [0, 2π].

Since the density in the spherical shell model does not depend on deformation, being

rotationally symmetric, the graphs shown in Fig.8 for the two nuclei are almost identical. The
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Ρ � ΡMax

FIG. 9: Total nuclear density projected on the quadrupole boson coherent state defined by Eq.(3.24)

and normalized to its maximum value is represented as function of x = r′ sin θ and z = r′ cos θ in

3D plots (up) and contour plots (down) for 150Gd (left) and 156Gd (right). Contur plots are made

with a step of 0.062/ρmax.

only difference is caused by the additional occupied single-particle states, whose contribution

stays in the outer layers of the nucleus 156Gd, around r′ = 1.5− 2.5.

In Fig.9 one depicted the projected total nuclear density given by Eq. (2.25) normalized

to its maximum value for the two considered Gd isotopes as functions of the same variables
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TABLE I: Numerical values of ρ, d, k, dp, kp, dn and kn obtained for the isotopic chain of Ge(Z = 32).

The nuclear deformation β taken from [46] and the experimental value of R4/2 taken from [47], are

also listed. For nuclei with R4/2 < 1.7 the calculations were not possible.

Nucleus N β R4/2 ρ d k dp kp dn kn

64Ge 32 0.219 2.276 1.794 1.269 8.6855 1.228 8.4070 1.308 8.9554

66Ge 34 0.229 2.271 1.788 1.264 8.2965 1.222 8.0168 1.306 8.5671

68Ge 36 -0.275 2.233 -1.742 -1.232 5.7072 -1.409 6.5295 -1.024 4.7444

70Ge 38 -0.241 2.071 -1.497 -1.059 5.6803 -1.234 6.6225 -0.847 4.5468

72Ge 40 -0.224 2.072 -1.498 -1.059 6.1597 -1.226 7.1284 -0.861 5.0070

74Ge 42 -0.224 2.457 -1.979 -1.399 8.1376 -1.543 8.9706 -1.240 7.2089

76Ge 44 0.143 2.505 2.025 1.432 14.7473 1.394 14.3528 1.469 15.1316

78Ge 46 0.153 2.535 2.053 1.452 14.0091 1.408 13.5871 1.494 14.4187

80Ge 48 0.144 2.644 2.153 1.522 15.5746 1.476 15.0968 1.568 16.0381

82Ge 50 0.053 1.505

84Ge 52 0.142 2.676 2.183 1.544 16.0059 1.496 15.5121 1.590 16.4849
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TABLE II: The same as in Table I but for the isotopic chain of Se(Z = 34). Here for nucleus 72Se,

the experimental ratio R4/2 is not much smaller than the minimum theoretical value 1.954 and one

can adopt the corresponding minimum value. However, the yielded value ρ = 0.930 would further

produce dp > ρ, which contradicts Eq.(4.3). Due to this reason for this nucleus one takes that ρ

which corresponds to the tabulated β value and lies on the line obtained by fitting the rest of the

points for this isotopic chain (Fig.6).

Nucleus N β R4/2 ρ d k dp kp dn kn

68Se 34 0.240 2.275 1.792 1.267 7.9526 1.221 7.6640 1.311 8.2310

70Se 36 -0.307 2.158 -1.643 -1.162 4.7521 -1.363 5.5755 -0.917 3.7523

72Se 38 -0.283 1.899 -2.346 -1.659 7.4420 -1.859 8.3412 -1.431 6.4180

74Se 40 -0.250 2.148 -1.628 -1.151 5.9319 -1.319 6.7973 -0.954 4.9164

76Se 42 -0.241 2.380 -1.904 -1.346 7.2246 -1.500 8.0505 -1.172 6.2911

78Se 44 0.143 2.449 1.971 1.394 14.3541 1.359 13.9999 1.427 14.6998

80Se 46 0.153 2.554 2.070 1.464 14.1251 1.419 13.6921 1.507 14.5452

82Se 48 0.154 2.650 2.159 1.527 14.6404 1.476 14.1538 1.576 15.1112

84Se 50 0.053 1.459

86Se 52 0.125 2.227 1.735 1.227 14.3883 1.221 14.3163 1.233 14.4599
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TABLE III: Same as in Table I but for the isotopic chain of Zr(Z = 40). For few nuclei, 82,84,86,88Zr,

the nuclear deformation β is too small to provide acceptable results. For these nuclei one considered

the nuclear deformation βfit corresponding to the linear fit from Fig.6 performed for the rest of

the data points.

Nucleus N β βfit R4/2 ρ d k dp kp dn kn

80Zr 40 0.433 2.858 2.365 1.672 6.0102 1.529 5.4944 1.804 6.4850

82Zr 42 0.053 0.299 2.557 2.073 1.466 7.4710 1.377 7.0158 1.550 7.9001

84Zr 44 0.053 0.269 2.339 1.862 1.317 7.4162 1.255 7.0705 1.375 7.7465

86Zr 46 0.053 0.249 2.217 1.723 1.218 7.3838 1.179 7.1454 1.256 7.6149

88Zr 48 0.053 0.200 2.024 1.386 0.980 7.3165 1.015 7.5793 0.944 7.0439

90Zr 50 0.053 1.407

92Zr 52 0.053 1.600

94Zr 54 0.062 1.600

96Zr 56 0.217 1.571

98Zr 58 0.330 1.674

100Zr 60 0.358 2.656 2.165 1.531 6.5834 1.420 6.1046 1.635 7.0296

102Zr 62 0.369 3.151 2.819 1.993 8.3309 1.833 7.6590 2.142 8.9526

104Zr 64 0.381 3.246 3.197 2.261 9.1672 2.072 8.4032 2.434 9.8723

106Zr 66 0.373 3.133 2.774 1.962 8.1150 1.803 7.4574 2.109 8.7233

108Zr 68 0.365 3.003 2.542 1.797 7.5899 1.656 6.9933 1.928 8.1429
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TABLE IV: Same as in Table I but for the isotopic chain of Mo(Z = 42). For few nuclei,

84,86,88,90,94,96Mo, the nuclear deformation β is too small to provide acceptable results. For these

nuclei one considered the nuclear deformation βfit corresponding to the linear fit from Fig.6 per-

formed for the rest of the data points. The experimental ratio R4/2 for 94Mo and 98Mo is not much

smaller than the minimum theoretical value 1.954 such that one adopted for them the corresponding

minimum value ρ = 0.930.

Nucleus N β βfit R4/2 ρ d k dp kp dn kn

84Mo 42 0.053 0.299 2.517 2.036 1.440 7.3377 1.354 6.8990 1.521 7.7516

86Mo 44 0.053 0.274 2.343 1.866 1.319 7.3037 1.256 6.9547 1.380 7.6368

88Mo 46 0.053 0.256 2.235 1.745 1.234 7.2841 1.190 7.0242 1.276 7.5350

90Mo 48 0.053 0.231 2.112 1.571 1.111 7.2296 1.100 7.1572 1.122 7.3013

92Mo 50 0.035 1.512

94Mo 52 0.053 0.137 1.807 0.930 0.658 7.0587 0.864 9.2779 0.343 3.6839

96Mo 54 0.080 0.226 2.092 1.536 1.086 7.2171 1.083 7.1940 1.090 7.2402

98Mo 56 0.180 1.918 0.930 0.658 5.4296 0.855 7.0615 0.365 3.0158

100Mo 58 0.244 2.121 1.587 1.122 6.9332 1.105 6.8281 1.139 7.0367

102Mo 60 0.329 2.507 2.027 1.433 6.6748 1.341 6.2442 1.520 7.0794

104Mo 62 0.349 2.917 2.431 1.719 7.5718 1.590 7.0017 1.839 8.1020

106Mo 64 0.361 3.045 2.605 1.842 7.8593 1.698 7.2427 1.976 8.4309

108Mo 66 0.333 2.924 2.439 1.725 7.9405 1.599 7.3616 1.842 8.4800

110Mo 68 0.335 2.805 2.309 1.633 7.4749 1.516 6.9389 1.742 7.9750
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TABLE V: The same as in Table I but for the isotopic chain of Cd(Z = 48). For few nuclei,

100,102,104,124,126,128Cd, the nuclear deformation β is zero or too small to provide acceptable results.

For these nuclei one considered the nuclear deformation βfit corresponding to the linear fit from

Fig.6 performed for the rest of the data points. The experimental ratio R4/2 for 100Cd is not much

smaller than the minimum theoretical value 1.954 such that one adopted for it the corresponding

minimum value ρ = 0.930. For two isotopes 98,130Cd the algorithm of this paper fails since the

ratio R4/2 is too small.

Nucleus N β βfit R4/2 ρ d k dp kp dn kn

98Cd 50 0.027 1.493

100Cd 52 0.035 0.086 1.792 0.930 0.658 11.0931 0.876 14.7800 0.312 5.2597

102Cd 54 0.053 0.144 2.109 1.567 1.108 11.3355 1.120 11.4593 1.096 11.2104

104Cd 56 0.089 0.164 2.268 1.784 1.261 11.3877 1.238 11.1726 1.285 11.5989

106Cd 58 0.126 2.361 1.885 1.333 15.5122 1.311 15.2606 1.354 15.7598

108Cd 60 0.135 2.383 1.907 1.348 14.6811 1.322 14.3920 1.374 14.9646

110Cd 62 0.144 2.345 1.868 1.321 13.5129 1.295 13.2458 1.346 13.7748

112Cd 64 0.144 2.292 1.812 1.281 13.1078 1.261 12.8966 1.302 13.3157

114Cd 66 0.163 2.299 1.819 1.286 11.6795 1.259 11.4316 1.313 11.9224

116Cd 68 -0.241 2.375 -1.899 -1.343 7.2056 -1.497 8.0316 -1.169 6.2718

118Cd 70 -0.241 2.388 -1.912 -1.352 7.2549 -1.506 8.0809 -1.178 6.3219

120Cd 72 0.135 2.379 1.903 1.346 14.6503 1.319 14.3649 1.371 14.9302

122Cd 74 0.108 2.334 1.857 1.313 17.7443 1.300 17.5690 1.326 17.9179

124Cd 76 0.000 0.163 2.260 1.775 1.255 11.3970 1.233 11.1926 1.277 11.5979

126Cd 78 0.000 0.162 2.250 1.763 1.247 11.3871 1.226 11.1968 1.267 11.5742

128Cd 80 0.000 0.158 2.215 1.721 1.217 11.3860 1.202 11.2499 1.231 11.5206

130Cd 82 0.000 1.407
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TABLE VI: The same as in Table I but for the isotopic chain of Te(Z = 52). For few nuclei,

128−138Te, the nuclear deformation β is zero such that for these nuclei one considered the nuclear

deformation βfit corresponding to the linear fit from Fig.6 performed for the rest of the data

points. The experimental ratio R4/2 for 130Te and 132Te is not much smaller than the theoretical

minimum value 1.954 hence one adopted for them the corresponding minimum value ρ = 0.930.

The horizontal line after 134Te indicates the change of neutron shell model parameters κ and µ.

Nucleus N β βfit R4/2 ρ d k dp kp dn kn

106Te 54 0.099 2.035 1.416 1.001 14.7246 1.056 15.5232 0.944 13.8802

108Te 56 0.134 2.062 1.477 1.044 11.4526 1.076 11.7988 1.012 11.0957

110Te 58 0.152 2.133 1.605 1.135 11.0214 1.139 11.0564 1.131 10.9863

112Te 60 0.161 2.142 1.620 1.146 10.5259 1.144 10.5141 1.147 10.5376

114Te 62 0.161 2.094 1.539 1.088 9.9996 1.101 10.1129 1.076 9.8849

116Te 64 0.180 2.002 1.319 0.933 7.7006 0.990 8.1731 0.872 7.1972

118Te 66 -0.147 1.992 -1.279 -0.904 8.2657 -1.076 9.8359 -0.691 6.3166

120Te 68 -0.156 2.073 -1.499 -1.060 9.0970 -1.193 10.2405 -0.907 7.7873

122Te 70 -0.139 2.094 -1.540 -1.089 10.5574 -1.209 11.7191 -0.954 9.2510

124Te 72 -0.113 2.072 -1.497 -1.059 12.7470 -1.173 14.1240 -0.930 11.2020

126Te 74 -0.105 2.043 -1.435 -1.015 13.1885 -1.136 14.7652 -0.877 11.3958

128Te 76 0.000 0.133 2.014 1.358 0.960 10.6064 1.019 11.2544 0.898 9.9161

130Te 78 0.000 0.091 1.945 0.930 0.658 10.4980 0.875 13.9679 0.315 5.0315

132Te 80 0.000 0.091 1.716 0.930 0.658 10.4980 0.875 13.9679 0.315 5.0315

134Te 82 0.000 1.232

136Te 84 0.000 1.698

138Te 86 0.100 0.140 2.040 1.428 1.010 10.6144 1.050 11.0380 0.968 10.1731
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TABLE VII: The same as in Table I but for the isotopic chain of Sm(Z = 62). For 142Sm and

146Sm the nuclear deformation β is zero such that for these nuclei one considered and listed the

nuclear deformation corresponding to the linear fit from Fig.7 performed for the rest of the data

points. The experimental ratio R4/2 for 146Sm is not much smaller than the minimum theoretical

value 1.954 hence one adopted for it the corresponding minimum value ρ = 0.930. The horizontal

line indicates the change of neutron shell model parameters κ and µ.

Nucleus N β R4/2 ρ d k dp kp dn kn

132Sm 70 0.323 3.183 2.913 2.060 9.7604 1.907 9.0383 2.202 10.4327

134Sm 72 0.312 2.939 2.457 1.737 8.5062 1.616 7.9137 1.850 9.0600

136Sm 74 0.237 2.692 2.199 1.555 9.8760 1.474 9.3591 1.632 10.3672

138Sm 76 0.190 2.571 2.086 1.475 11.5647 1.416 11.1056 1.531 12.0062

140Sm 78 -0.148 2.348 -1.871 -1.323 12.0053 -1.422 12.9062 -1.216 11.0310

142Sm 80 0.171 2.332 1.855 1.312 11.3755 1.278 12.9062 1.344 11.6581

144Sm 82 0.000 1.320

146Sm 84 0.086 1.849 0.930 0.658 11.0931 0.876 14.7800 0.312 5.2597

148Sm 86 0.161 2.145 1.624 1.148 10.5519 1.146 10.5344 1.150 10.5693

150Sm 88 0.206 2.316 1.837 1.299 9.4276 1.257 9.1235 1.340 9.7223

152Sm 90 0.243 3.009 2.551 1.804 11.1882 1.699 10.5408 1.903 11.8001

154Sm 92 0.270 3.255 3.261 2.306 12.9428 2.155 12.0937 2.448 13.7395

156Sm 94 0.279 3.290 3.666 2.592 14.1057 2.417 13.1502 2.757 15.0005

158Sm 96 0.279 3.301 3.880 2.744 14.9291 2.557 13.9155 2.918 15.8782

160Sm 98 0.290 3.291 3.668 2.594 13.6067 2.413 12.6583 2.763 14.4932
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TABLE VIII: The same as in Table I but for the isotopic chain of Gd(Z = 64). For 144Gd and

148Gd the nuclear deformation β is zero such that for these nuclei one considered and listed the

nuclear deformation corresponding to the linear fit from Fig.7 performed for the rest of the data

points. The experimental ratio R4/2 for 148Gd is not much smaller than the minimum theoretical

value 1.954 hence one adopted the corresponding minimum value ρ = 0.930. The horizontal line

indicates the change of neutron shell model parameters κ and µ.

Nucleus N β R4/2 ρ d k dp kp dn kn

138Gd 74 0.256 2.741 2.245 1.587 9.3712 1.497 8.8379 1.673 9.8759

140Gd 76 0.210 2.545 2.062 1.458 10.3901 1.395 9.9397 1.519 10.8219

142Gd 78 -0.156 2.346 -1.869 -1.322 11.3424 -1.425 12.2327 -1.209 10.3760

144Gd 80 0.160 2.348 1.871 1.323 12.2297 1.291 11.9382 1.354 12.5144

146Gd 82 0.000 1.324

148Gd 84 0.080 1.806 0.930 0.658 11.9051 0.878 15.8885 0.308 5.5696

150Gd 86 0.161 2.019 1.373 0.971 8.9210 1.019 9.3600 0.921 8.4592

152Gd 88 0.207 2.194 1.693 1.197 8.6486 1.173 8.4714 1.221 8.8223

154Gd 90 0.243 3.015 2.559 1.809 11.2232 1.705 10.5732 1.909 11.8376

156Gd 92 0.271 3.239 3.157 2.232 12.4863 2.086 11.6672 2.370 13.2548

158Gd 94 0.271 3.288 3.629 2.566 14.3531 2.396 13.4022 2.726 15.2447

160Gd 96 0.280 3.302 3.913 2.767 15.0052 2.578 13.9834 2.943 15.9618

162Gd 100 0.291 3.302 3.901 2.758 14.4240 2.565 13.4136 2.939 15.3681

164Gd 102 0.301 3.300 3.863 2.732 13.8348 2.536 12.8420 2.914 14.7609
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TABLE IX: The same as in Table I but for the isotopic chain of Dy(Z = 66). For 146Dy and 150Dy

the nuclear deformation β is zero such that for these nuclei one considered and listed the nuclear

deformation corresponding to the linear fit from Fig.7, performed for the rest of the data points.

Also, the experimental ratio R4/2 for 150Dy is not much smaller than the minimum theoretical

value 1.954, hence for it one adopted the corresponding minimum value ρ = 0.930. The horizontal

line indicates the change of neutron shell model parameters κ and µ.

Nucleus N β R4/2 ρ d k dp kp dn kn

140Dy 74 0.267 2.800 2.304 1.629 9.2417 1.532 8.6879 1.721 9.7642

142Dy 76 0.219 2.529 2.047 1.447 9.9104 1.383 9.4665 1.510 10.3353

144Dy 78 -0.164 2.365 -1.889 -1.336 10.8707 -1.443 11.7468 -1.219 9.9175

146Dy 80 0.158 2.355 1.878 1.328 12.4247 1.296 12.1296 1.359 12.7131

148Dy 82 0.000 1.447

150Dy 84 0.078 1.813 0.930 0.658 12.2035 0.878 16.2959 0.306 5.6831

152Dy 86 0.153 2.055 1.461 1.033 9.9694 1.063 10.2564 1.002 9.6740

154Dy 88 0.207 2.234 1.743 1.232 8.9040 1.201 8.6786 1.263 9.1239

156Dy 90 0.235 2.934 2.451 1.733 11.0968 1.637 10.4816 1.824 11.6795

158Dy 92 0.262 3.206 3.000 2.121 12.2509 1.986 11.4723 2.248 12.9829

160Dy 94 0.272 3.270 3.400 2.404 13.4006 2.245 12.5137 2.553 14.2322

162Dy 96 0.281 3.294 3.723 2.633 14.2286 2.453 13.2589 2.800 15.1362

164Dy 98 0.292 3.301 3.872 2.809 14.6390 2.611 13.6104 2.993 15.6000

166Dy 100 0.293 3.310 4.173 2.951 15.3302 2.743 14.2488 3.145 16.3402

168Dy 102 0.304 3.313 4.278 3.025 15.1782 2.806 14.0782 3.229 16.2038

170Dy 104 0.295 3.264 3.338 2.360 12.1841 2.195 11.3287 2.515 12.9833
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TABLE X: The same as in Table I but for the isotopic chain of Er(Z = 68). For 152Er the nuclear

deformation β is to small to provide acceptable results such that one considered and listed for this

nucleus the nuclear deformation corresponding to the linear fit from Fig.7 performed for the rest

of the data points. Also the experimental ratio R4/2 for the same nucleus is not much smaller than

the minimum theoretical value 1.954 hence for it one adopted the corresponding minimum value

ρ = 0.930. The horizontal line indicates the change of neutron shell model parameters κ and µ.

Nucleus N β R4/2 ρ d k dp kp dn kn

148Er 80 -0.156 2.357 -1.881 -1.330 11.4153 -1.433 12.3026 -1.218 10.4529

150Er 82 -0.008 1.453

152Er 84 -0.074 1.832 -0.930 -0.658 12.2625 -0.921 17.1767 -0.128 2.3870

154Er 86 0.143 2.072 1.499 1.060 10.9167 1.085 11.1715 1.035 10.6558

156Er 88 0.189 2.314 1.836 1.298 10.2302 1.261 9.9394 1.334 10.5128

158Er 90 0.216 2.744 2.248 1.590 11.0274 1.512 10.4879 1.664 11.5417

160Er 92 0.253 3.099 2.702 1.911 11.4056 1.795 10.7129 2.020 12.0586

162Er 94 0.272 3.230 3.107 2.197 12.2457 2.053 11.4415 2.332 13.0004

164Er 96 0.273 3.277 3.471 2.454 13.6330 2.291 12.7270 2.607 14.4823

166Er 98 0.283 3.289 3.636 2.571 13.8032 2.395 12.8586 2.736 14.6872

168Er 100 0.294 3.309 4.131 2.921 15.1271 2.715 14.0577 3.114 16.1258

170Er 102 0.296 3.310 4.153 2.937 15.1106 2.728 14.0369 3.131 16.1129

172Er 104 0.287 3.312 4.228 2.990 15.8390 2.782 14.7381 3.184 16.8682
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TABLE XI: The same as in Table I but for the isotopic chain of Hf(Z = 72). For 156Hf the nuclear

deformation β is to small to provide acceptable results such that one considered and listed for this

nucleus the nuclear deformation corresponding to the linear fit from Fig.7 performed for the rest

of the data points. Also the experimental ratio R4/2 for the same nucleus is not much smaller than

the minimum theoretical value 1.954 hence for it one adopted the corresponding minimum value

ρ = 0.930.

Nucleus N β R4/2 ρ d k dp kp dn kn

156Hf 84 0.076 1.849 0.930 0.658 12.5176 0.879 16.7247 0.305 5.8023

158Hf 86 0.107 2.169 1.659 1.173 15.9962 1.182 16.1212 1.164 15.8702

160Hf 88 0.152 2.306 1.827 1.292 12.5458 1.267 12.3059 1.316 12.7813

162Hf 90 0.180 2.560 2.076 1.468 12.1202 1.413 11.6699 1.521 12.5543

164Hf 92 0.208 2.786 2.290 1.619 11.6447 1.542 11.0870 1.693 12.1770

166Hf 94 0.226 2.966 2.491 1.761 11.7043 1.666 11.0727 1.852 12.3036

168Hf 96 0.254 3.110 2.723 1.925 11.4514 1.808 10.7525 2.036 12.1100

170Hf 98 0.274 3.194 2.951 2.087 11.5505 1.950 10.7923 2.215 12.2620

172Hf 100 0.284 3.248 3.211 2.271 12.1492 2.116 11.3223 2.415 12.9233

174Hf 102 0.285 3.268 3.381 2.391 12.7500 2.227 11.8765 2.544 13.5673

176Hf 104 0.277 3.284 3.572 2.526 13.8379 2.356 12.9067 2.685 14.7102

178Hf 106 0.278 3.291 3.668 2.594 14.1614 2.418 13.2047 2.758 15.0575

180Hf 108 0.279 3.307 4.039 2.856 15.5409 2.662 14.4843 3.038 16.5301

182Hf 110 0.270 3.295 3.741 2.645 14.8479 2.470 13.8656 2.809 15.7691

184Hf 112 0.260 3.264 3.341 2.362 13.7428 2.212 12.8652 2.504 14.5677
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TABLE XII: The same as in Table I but for the isotopic chain of Os(Z = 76). For 162Os the nuclear

deformation β is to small to provide acceptable results such that one considered and listed for this

nucleus the nuclear deformation corresponding to the linear fit from Fig.7 performed for the rest

of the data points.

Nucleus N β R4/2 ρ d k dp kp dn kn

162Os 86 0.104 1.990 1.273 0.900 12.6183 0.989 13.8670 0.801 11.2315

164Os 88 0.107 2.201 1.702 1.203 16.4108 1.207 16.4600 1.200 16.3615

166Os 90 0.134 2.363 1.887 1.334 14.6318 1.310 14.3631 1.358 14.8956

168Os 92 0.162 2.513 2.032 1.437 13.1245 1.391 12.7101 1.481 13.5263

170Os 94 0.171 2.616 2.127 1.504 13.0435 1.449 12.5678 1.557 13.5025

172Os 96 0.190 2.661 2.170 1.534 12.0303 1.470 11.5276 1.596 12.5129

174Os 98 0.226 2.743 2.247 1.589 10.5579 1.508 10.0196 1.666 11.0700

176Os 100 0.246 2.927 2.444 1.728 10.5948 1.629 9.9851 1.822 11.1713

178Os 102 0.247 3.017 2.562 1.812 11.0637 1.705 10.4139 1.912 11.6773

180Os 104 0.238 3.093 2.689 1.901 12.0285 1.792 11.3341 2.005 12.6849

182Os 106 0.239 3.155 2.828 2.000 12.6000 1.883 11.8623 2.110 13.2969

184Os 108 0.229 3.203 2.985 2.111 13.8507 1.990 13.0604 2.225 14.5982

186Os 110 0.220 3.165 2.856 2.019 13.7673 1.909 13.0129 2.124 14.4825

188Os 112 0.192 3.083 2.671 1.889 14.6604 1.798 13.9570 1.975 15.3316

190Os 114 0.164 2.934 2.452 1.734 15.6518 1.664 15.0254 1.801 16.2540

192Os 116 0.155 2.376 1.900 1.344 12.8041 1.311 12.4937 1.375 13.1072

194Os 118 0.145 2.750 2.255 1.595 16.2040 1.542 15.6701 1.645 16.7209

196Os 120 -0.156 2.533 -2.051 -1.450 12.4469 -1.551 13.3137 -1.342 11.5151

198Os 122 -0.096 2.307 -1.828 -1.293 18.4353 -1.367 19.4936 -1.214 17.3124
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TABLE XIII: The same as in Table I but for the isotopic chain of Pt(Z = 78). For 200Pt and 202Pt

the nuclear deformation β is to small to provide acceptable results such that for these nuclei one

considered and listed the nuclear deformation corresponding to the linear fit from Fig.7 performed

for the rest of the data points.

Nucleus N β R4/2 ρ d k dp kp dn kn

168Pt 90 -0.096 2.249 -1.761 -1.245 17.7596 -1.324 18.8764 -1.162 16.5677

170Pt 92 0.107 2.301 1.822 1.288 17.5679 1.279 17.4395 1.298 17.6953

172Pt 94 0.126 2.338 1.861 1.316 15.3147 1.296 15.0878 1.335 15.5383

174Pt 96 0.153 2.262 1.777 1.257 12.1257 1.237 11.9356 1.276 12.3129

176Pt 98 0.171 2.137 1.611 1.139 9.8792 1.137 9.8563 1.142 9.9020

178Pt 100 0.254 2.510 2.029 1.435 8.5328 1.361 8.0953 1.505 8.9489

180Pt 102 0.265 2.681 2.188 1.547 8.8392 1.458 8.3303 1.631 9.3203

182Pt 104 0.255 2.708 2.213 1.565 9.2720 1.477 8.7514 1.648 9.7649

184Pt 106 0.247 2.675 2.182 1.543 9.4227 1.460 8.9140 1.622 9.9053

186Pt 108 0.239 2.560 2.076 1.468 9.2495 1.395 8.7890 1.538 9.6881

188Pt 110 -0.164 2.526 -2.044 -1.445 11.7627 -1.551 12.6240 -1.331 10.8331

190Pt 112 -0.156 2.492 -2.012 -1.423 12.2103 -1.524 13.0785 -1.314 11.2753

192Pt 114 -0.156 2.479 -2.000 -1.414 12.1374 -1.515 13.0065 -1.305 11.2011

194Pt 116 -0.148 2.470 -1.992 -1.409 12.7817 -1.505 13.6591 -1.305 11.8394

196Pt 118 -0.139 2.465 -1.987 -1.405 13.6218 -1.497 14.5099 -1.307 12.6716

198Pt 120 -0.139 2.419 -1.943 -1.374 13.3202 -1.466 14.2161 -1.279 12.3595

200Pt 122 -0.180 2.347 -1.870 -1.322 9.7430 -1.440 10.6067 -1.194 8.7949

202Pt 124 -0.180 2.344 -1.867 -1.320 9.7274 -1.437 10.5916 -1.191 8.7785
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TABLE XIV: The same as in Table I but for the isotopic chain of Th(Z = 90). For few nuclei,

214,218,220Th, the nuclear deformation β is too small to provide acceptable results. For these nuclei

one considered the nuclear deformation, βfit, corresponding to the linear fit from Fig.7 performed

for the rest of the data points. The experimental ratio R4/2 for 218Th is not much smaller than

the minimum theoretical value 1.954 hence one adopted for it the corresponding minimum value

ρ = 0.930. The horizontal line indicates the change of neutron shell model parameters κ and µ.

Nucleus N β βfit R4/2 ρ d k dp kp dn kn

214Th 124 -0.052 -0.111 2.332 -1.855 -1.312 16.0918 17.0779 -1.392 -1.226 15.0411

216Th 126 0.008 1.227

218Th 128 0.008 0.056 1.732 0.930 0.658 16.8913 22.6978 0.884 0.290 7.4458

220Th 130 0.030 0.085 2.035 1.416 1.001 17.0840 18.0800 1.060 0.939 16.0263

222Th 132 0.111 2.399 1.923 1.360 17.8927 17.6360 1.340 1.379 18.1457

224Th 134 0.164 2.896 2.407 1.702 15.3645 14.7567 1.635 1.767 15.9492

226Th 136 0.173 3.136 2.782 1.967 16.8710 16.1244 1.880 2.051 17.5860

228Th 138 0.182 3.235 3.130 2.213 18.0814 17.2250 2.108 2.313 18.8990

230Th 140 0.198 3.271 3.408 2.410 18.1638 17.2308 2.286 2.528 19.0512

232Th 142 0.207 3.284 3.563 2.519 18.2014 17.2280 2.385 2.647 19.1253

234Th 144 0.215 3.291 3.669 2.594 18.0777 17.0786 2.451 2.730 19.0245

TABLE XV: The same as in Table I but for the isotopic chain of U(Z = 92). For 240U the

experimental ratio R4/2 exceeds its asymptotic value 3.33, such that for this nucleus one considered

and listed the value of ρ interpolated by the linear fit from Fig.7 for the corresponding β.

Nucleus N β R4/2 ρ d k dp kp dn kn

230U 138 0.199 3.274 3.436 2.430 18.2252 17.2844 2.304 2.549 19.1197

232U 140 0.207 3.291 3.670 2.595 18.7480 17.7435 2.456 2.727 19.7014

234U 142 0.215 3.296 3.762 2.660 18.5360 17.5101 2.513 2.800 19.5080

236U 144 0.215 3.304 3.958 2.799 19.5017 18.4198 2.643 2.946 20.5266

238U 146 0.215 2.303 3.950 2.793 19.4623 18.3827 2.638 2.940 20.4850

240U 148 0.229 3.347 4.004 2.831 18.5790 17.4942 2.666 2.987 19.6038

37



as in Fig.8. Such a normalization is necessary in order to have the same scale for both

nuclei given the fact that the absolute values for the two nuclei are different due to the

nonorthogonality of the involved projected state (3.26). Now the difference between the two

nuclei is conspicuous. Indeed, for the less deformed nucleus 150Gd, the density probability

(3.25) is mostly distributed in the center with a small extension radius, while in the case of

the more deformed nucleus 156Gd, the same density covers a broader space which does not

have a spherical symmetry, approximately satisfied in the first case. The specific manner of

inducing the deformation effect seems to determine a slight hexadecapole deformation due

to squaring the expression (2.26) which already includes the quadrupole deformation.

In Fig. 10 the nucleon density corresponding to the Nilsson model and determined by

Eq.(3.28), is plotted as function of r′cosθ and r′sinθ. Comparing it with the density calcu-

lated with projected Nilsson states and given by Eq. (2.25) one may decelate the nuclear

deformation effect. Indeed, the two sets of pictures resemble with each other in many re-

spects the differences regarding the inner part corresponding to a high density which in the

case of Fig. 10 is more deformed along the axis r′cosθ. Thus, we may say that the deforma-

tion affects mainly the nuclear core, the outer shells keeping the spherical symmetry. If you

look carefully to the section of the nucleon density presented in Fig. 10 one notices a slight

distortion of equidensity levels, in the high density region, along the axis r′sinθ. The slight

hexadecapole distortion might be caused by the inclusion of the ∆l = 2 matrix elements in

the diagonalization procedure used for determining the eigenstates. A similar effect, but in

a more pronounced manner, is seen in the density plotted in Fig. 9 by means of Eq. (2.25).

Studying some contour lines made at very high values of the nucleon density for both

nuclei, in Fig.11 it is found that the elongated oval shape is preserved when the density is

increased, in the case of the less deformed nucleus 150Gd, while for 156Gd the presence of the

two peaks shown in the upper right part of Fig. 10 is reflected in Fig. 11 by a neck which

is more pronounced for higher density. The full separation of the two peaks for very high

density is translated in the contour line plot by two disconnected drops.

VI. CONCLUSIONS

Results of the present work can be summarized as follows. Besides the nuclear shell

model parameters, the projected single particle basis involves another two, namely the de-
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FIG. 10: Total nuclear density in the Nilsson model given by Eq.(3.28) is represented as function

of x = r′ sin θ and z = r′ cos θ in units of α
3

2 in 3D plots (up) and contour plots (down) for 150Gd

(left) and 156Gd (right). Contour plots are made wit a step of 0.21α3/2.

formation parameter d and the constant k entering the canonical transformation relating

the quadrupole coordinates with the boson operator. When some tuning properties which

are isospin dependent are concerned, the single particle projected basis for protons and neu-

trons should be different and consequently different parameters d and k are to be used. The

isospin dependence of these parameters is underlined by using different notations for them,
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FIG. 11: Contour lines of constant and very high density in the Nilsson model, given by Eq.(3.28),

is represented as function of x = r′ sin θ and z = r′ cos θ in units of α
3

2 for 150Gd (up) and 156Gd

(down).

when they are involved in the equation for protons, dp and kp, and neutrons, dn and kn,

respectively. The algorithm of fixing these parameters is defined by several steps: a) By

equating the theoretical result for the ratio R4/2 to the experimental value, one obtains a

relation determining the global deformation ρ (=d
√
2) (4.3); b) Inserting d in Eq. (2.21) the

parameter k is readily obtained; c) From the expression of the B(E2) value associated to the

transition 0+ → 2+ the parameter kp is obtained; d) Using again Eq.(2.21) corresponding

to the proton system, the deformation parameter dp is calculated; e) From Eq. (4.3) we

determine dn; f) The equation (2.21) for neutrons finally determines kn. This procedure was

applied to 194 isotopes and the resulting parameters are listed in Tables I-XV.

The ratio R4/2 represented as function of ρ exhibits a flat minimum in the beginning

of the considered interval then a transitional region and finally a plateau reached in the

asymptotic region of the deformation. For isotopes where the experimental mentioned ratio

is below the calculated minimum as well as for those characterized by an experimental values

larger than the rotational limit of 3.33, this algorithm cannot be applied. The domain of ρ

where the ratio is unambiguously defined and employed in solving the equation determining

ρ is [0.930,5].

The results of ρ for fifteen isotopic chains are plotted as function of the nuclear deforma-

tion β and then the bulk of points interpolated by a straight line. There are few isotopes
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where the nuclear deformation is very close to zero and consequently equation (2.21) cannot

be used. In these cases the linear interpolation is used to determine a new deformation

parameter called βfit considered to be the deformation which corresponds to the known ρ.

One aim of this paper consists of making explicit the relationship between the projected

spherical single particle basis and the basis of Nilsson model. The comparison is made in

terms of the predicted single particle energies and nucleon density. The detailed comparison

supply us with the results: i) If one diagonalizes the Nilsson Hamiltonian in a spherical shell

model basis with ∆N = 0 and then projecting out the good angular momentum the spherical

shell model state is obtained. Averaging now the Hamiltonian with the resulting projected

spherical Nilsson’ s state one obtains an analytical expression for energies denoted by ǫNilss
nljΩ

(2.9). These energies are compared with those characterizing the projected spherical single

particle basis(3.22) in Figs. 3 and 4. As may be seen the two sets of energies are almost

identical. ii) The projected spherical single particle basis (2.13) and the projected Nilsson

basis yield identical nucleon density with that associated to the spherical shell model (see

Fig. 8). This was actually expected due to the common rotational symmetries. iii) However

the deformation can be implemented in the game of projected spherical basis by averaging

the result on the coherent state of the core (2.25). This is represented as both a 3D and

a contour plot for two isotopes of Gd, 150Gd and 156Gd. Since the density is obtained by

squaring the modulus of the wave function which includes already a quadrupole deformation

a high order like hexadecapole deformation effect is seen. Similar plots are performed for the

density provided by Nilsson states (2.28). The effect of hexadecapole deformation is seen in

the 3D plot by the split of the peak seen for high density as well as in the contour plot where

some equidensity curves are stretched on both along the r′cosθ and along the r′sinθ axes.

For even inner shells the stretching along the r′sinθ axis is changed to a compressing effect.

This is shown in Fig. 11 where the contour lines are plotted for very high density. For the

more deformed isotope, i.e. 156Gd, the effect is more evident, the contour shape resembling

that of a lens grain. Increasing the density the neck is shrunk ending by the extreme shape of

two disconnected drops. An equation relating the k-pole transition densities defined by the

spherical shell model and the projected spherical basis respectively, is analytically derived.

In several places it is commented why the particle-core projected basis can be used as

a single particle basis. Indeed, it was underlined the fact that the role of the core factor

function is to generate the deformation. Thus, the matrix elements of a particle-like operator
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between two states of the new basis are factorized, one factor carrying the deformation while

the other one being just the matrix element between the corresponding spherical shell model

states. It is amazing that the projected basis can be used also for many body calculations

although each particle has its own core. In Ref.[41] we have proved that the matrix elements

of a two body interaction between two pairs of projected states are very close to the matrix

elements of the same interaction between two states, each of them consisting of two single

particle shell model states and a common core wave function. As a matter of fact this basis

was used to describe microscopically the scissor like and spin flip states [41] as well as for

calculating the transition rate of a double beta decay [51–54].

Concluding the results of this paper let the projected spherical single particle basis be an

efficient tool for describing in a unified fashion the spherical and deformed nuclei.
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