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Abstract. The phenomenon of backbending in rare earth nuclei is described by means of
the band hybridization mechanism. The hybridization of two rotational bands is performed
by treating a model Hamiltonian associated with a set of interacting particles moving in a
deformed mean field and coupled to a phenomenological core described in terms of quadrupole
boson operators, in a product space of angular momentum projected states. The model states for
the ground and S bands are obtained by angular momentum projection of a deformed product
state with an axially symmetric coherent boson state standing for the core factor function and
a BCS type single-particle factor function defining the nature of the band. The yrast band
energies are defined by the lowest eigenvalues of the model Hamiltonian in an orthogonal basis
constructed by diagonalizing the overlap matrix of the ground and S band states, which are
not mutually orthogonal. The formalism is positively tested on six deformed even-even nuclei
known to exhibit a backbending behavior in their moment of inertia.

1. Introduction
The backbending phenomenon is known to be the result of the crossing between the ground band
and another band with a larger moment of inertia known as S(tockholm) band [1]. The S band
is built on a broken pair with aligned individual high angular momentum. Such that in the rare
earth region the first backbending is caused by the breaking of a neutron pair from the intruder
orbital i13/2, while the second one is due to the subsequent breaking of a proton h11/2 pair. The
first backbending is described in this work by means of a semi-microscopic model based on the
bands hybridization mechanism. The physical system to be treated consists of a set of particles
from the intruder orbital where the pair breaking occurs and a phenomenological deformed
core defined by the remaining nucleons. The motion of the i13/2 intruder neutrons is described
by a BCS state, while the collective core by the Coherent State Model (CSM) [2]. The core
deformation generates through the mutual coupling a deformed mean field for the single nucleon
motion. However, the system is considered in the laboratory reference frame where the rotation
invariance holds and thereby the angular momentum projected states should be constructed
based on the intrinsic wave function defined above. Due to the deformation of the particle-core
space the projected states are not mutually orthogonal. From this basis a new orthogonal basis
is constructed which mixes the original projected states. The lowest eigenvalues of the model
Hamiltonian in the orthogonal basis define the yrast band. Six even-even nuclei from the rare
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earth region with N = 90−94, which exhibit a backbending behavior are quantitatively treated
within the proposed formalism.

2. Theoretical framework
A particle-core Hamiltonian is treated in a space defined by a set of spherical projected product
functions:

Ψ ≡ ψfψc, (1)

where ψf stands for the fermion factor state corresponding to the intruder particles and is chosen
to be of BCS type, while the collective factor state ψc describing the core, is a coherent state

for the quadrupole bosons b†20:

ψc = ed(b
†
20−b20)|0⟩b. (2)

|0⟩b is the quadrupole boson vacuum state whereas d is a real parameter which actually simulates
the nuclear deformation. The fermion factor function specifies the nature of the rotational band.
Thus, the ground band (g band), where all neutrons are paired, is given by a deformed BCS
state associated to the set of neutrons placed in the intruder deformed states. On the other
hand, the S band, which crosses the g band and produces the backbending, is build upon a
broken pair of particles whose states are no longer connected by a time reversal transformation.
The time reversal symmetry breaking, in the present formalism, is achieved by applying the

operator J+α
†
jkα

†
j−k on the mentioned deformed BCS state with α†

jk being the creation operator

for a quasiparticle in the single-particle state |jk⟩.
The projected particle-core functions of the g and S band are obtained by applying the Hill-

Wheeler projection operator on the product state (1) with a specific fermionic factor state and
can be written in the following form:

Ψ
(1)
JM = N (1)

J P J
M0|BCS⟩dψc = N (1)

J

∑
JfJc

C
JfJcJ
0 0 0

NBCS
Jf

N
(g)
Jc

[
ΦBCS
Jf

ϕ
(g)
Jc

]
JM

, (3)

Ψ
(2)
JM ;1(jk) = N (2)

J1 (jk)P
J
M1

[
J+α

†
jkα

†
j−k|BCS⟩d

]
ψc

= N (2)
J1 (jk)

∑
JfJc

C
JfJcJ
1 0 1

N jk
Jf1
N

(g)
Jc

[
Φjk
Jf1
ϕ
(g)
Jc

]
JM

, (4)

with the corresponding normalization factors

[
N (1)

J

]−2
=

∑
JfJc

 C
JfJcJ
0 0 0

NBCS
Jf

N
(g)
Jc

2

,
[
N (2)

J1 (jk)
]−2

=
∑
JfJc

 C
JfJcJ
1 0 1

N jk
Jf1
N

(g)
Jc

2

. (5)

ϕ
(g)
Jc

is the core projected state (2) with the norm equal to unity, while ΦBCS
JfMf

and Φjk
Jf1;Mf

from

(3) and (4) are the angular momentum projected fermionic factor states corresponding to the
0qp and 2qp BCS states, respectively:

ΦBCS
JfMf

= NBCS
Jf

P
Jf
Mf0

|BCS⟩d, Φjk
Jf1;Mf

= N jk
Jf1
P

Jf
Mf1

J+α
†
jkα

†
j−k|BCS⟩d. (6)

The norms of these states are calculated using the recipe given in Ref.[3], while the norm N
(g)
Jc

of
the projected coherent boson state (2) was presented by A. A. Raduta in Ref.[2] in connection to
CSM. It is worth to mention that the summations from Eqs.(3) and (4) over Jf are restricted by
Jf 6 24. This upper limit value is provided by the group theory [4] and represents the maximal
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angular momentum that can be realized in the j = 13/2 configuration, when the Pauli principle
is obeyed.

The model Hamiltonian describing the particles and core interacting system is a sum of three
terms:

H = Hc +Hp +Hpc. (7)

The core Hamiltonian Hc is represented by the quadrupole boson number operator:

Hc = ~ωb

∑
µ

b†2µb2µ, (8)

while Hp is associated to a set of particles from an intruder shell model orbital j which interact
between themselves through a pairing force:

Hp = (εnlj − λ)
∑

m=all

c†nljmcnljm − G

4
P †
j Pj , (9)

where P †
j (Pj) are creation(annihilation) operators of a Cooper pair in the intruder orbital j.

The particles and core subsystems interact with each other by a quadrupole-quadrupole (qQ)
and a spin-spin interaction

Hpc = HqQ+HC = −AC

∑
µ,m,m′

⟨nljm|r2Y2µ|nljm′⟩c†nljmcnljm′

[
b†2−µ(−)µ + b2µ

]
+CJ⃗c · J⃗f . (10)

The particle-core interaction induces a mutual deformation for both the quadrupole bosons
and the single-nucleon mean field. The later one can be written as

Hmf =
∑

m=all

εnljmc
†
nljmcnljm, (11)

with energies given in the first order of perturbation by:

εnljm = εnlj − 4dXC(2n+ 3)Cj 2 j
1
2
0 1
2

C j 2 j
m 0m, where XC =

~
8Mω0

√
5

π
AC . (12)

Treating the sum Hmf + Hpair through the BCS formalism, one obtains the occupation
probabilities V and U , the energy gap ∆, the quasiparticle energies and the Fermi level energy,
λ. With these quantities, the single-particle factor of the projected particle-core product basis
is completely determined. Due to the dangerous graphs vanishing the matrix elements between
total projected states of the single-particle term Hmf +Hpair and of the qQ interaction, written
in the quasiparticle representation, acquire very compact expressions due.

The matrix elements of the remaining Hamiltonian terms are easily obtained by using the
tensorial form of the projected states (3) and (4). For the harmonic boson Hamiltonian we
make use of its matrix elements on projected coherent states given in Ref.[5], while the spin-spin
interaction matrix elements are obtained from the basic properties of the angular momentum
operators. In this way the energy spectra of the g and S bands are completely determined by
the average of the total Hamiltonian on the corresponding projected state, (3) or (4). In order to
achieve the hybridization of these bands, one must diagonalize the total Hamiltonian in a basis
defined by the projected states (3) and (4), which unfortunately are not orthogonal. However,
using the eigenvalues αm(J, jk) and the eigenvectors Vnm(J, jk) of the overlap matrix defined
by the non-orthogonal states, one can construct the functions [6]:

ΦJM
m (jk) =

1√
αm(J, jk)

[
Ψ

(1)
JMV1m(J, jk) + Ψ

(2)
JM ;1(jk)V2m(J, jk)

]
, m = 1, 2, (13)

which are mutually orthogonal. Diagonalizing the total Hamiltonian in this orthogonal basis,
for each angular momentum J one obtains a set of two hybridization energies, with the lowest
ones defining the yrast band.
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Figure 1. (color online)Backbending plots for 156Dy, 160Yb,
158,160Er and 164,166Hf isotopes comparing theory (black
squares) with experiment (red circles). Experimental data are
taken from [7, 8, 9, 10, 11].
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Figure 2. The coupling
scheme for g band (a) and for
S band (b).

3. Numerical application
The nuclei 156Dy, 160Yb, 158,160Er and 164,166Hf are known to be good backbenders. These nuclei
are treated within the formalism described in the previous section. The model involves five free
parameters, with four of them, namely, the pairing constant G, the qQ and spin-spin interaction
strengths XC and C, and the boson frequency ~ωb being the structure coefficients of the model
Hamiltonian. The remaining parameter is the deformation d which defines the collective factor
state. The manner in which these parameters are fixed is detailed in Ref.[3]. Solving the
BCS equations for an extended subset of 23 single-particle states comprising all possible levels
which might interact with the i13/2 intruder states, one obtains the gap parameter ∆, the Fermi
level energy, the quasiparticle energies and consequently the occupation probabilities U and V .
The input data for the BCS equations are the pairing constant G and the mean field single-
particle energies defined by Eq.(12) and which depend linearly on the deformation parameter
d. Collecting the BCS quantities only for the i13/2 neutron orbital and using the values of
the model parameters found in Ref.[3], one calculates the system energy by diagonalizing the
total Hamiltonian in the orthogonal basis of states (13). The lowest hybridization energies for
each angular momentum J defines the yrast band. It is worth mentioning that besides the
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description of the energy spectra, the fitted parameters also reproduce the observed sequence
of the single-particle levels with a deformation d being in the range of values determined in
Refs.[12, 13].

The theoretical results are compared with experimental data in Fig.1 by means of backbending
plots. The backbending plot is a graphical representation of the moment of inertia dependence
on the angular frequency squared. From Fig.1 it is obvious that in all cases the general zigzag
behavior is reproduced quite well. An especially good agreement is found for moderate spin
states situated right in the backbending region. The theoretical yrast energies associated to the
backbending plots from Fig.1 have the r.m.s. deviations of about 30 keV from the corresponding
experimental energies. The angular momentum where the backbending starts represent the band
crossing point. From Fig.1 one can see that for Er isotopes and 166Hf the band crossing takes
place at J = 12, while for 164Hf and 160Yb at J = 10, and for 156Dy at J = 14. At the band
crossing point there is a transition of the yrast band from 0qp to 2qp states caused by the
breaking of a neutron intruder pair. The mechanism of pair breaking and the alignment of the
involved angular momenta is visualized in Fig.2. At low values of the core angular momentum the
nucleon angular momenta are anti-aligned along the symmetry axis of the mean-field (J⃗f = 0)

and the whole angular momentum is due to the core alone (J⃗c = J⃗) which is perpendicular
to the symmetry axis (Fig.2(a)). The alignment of the particle angular momenta to the core
angular momentum is shown in Fig.2(b). The full alignment between the core and fermion
angular momenta is not possible due to the fact that the total K for the two neutrons is equal
to unity.

4. Conclusions
A semi-microscopic formalism was applied to describe the moment of inertia anomalies at low
spins in even-even rare earth nuclei. The theoretical yrast energies obtained as the lowest
eigenvalues of a particle-core Hamiltonian in an orthogonal basis constructed from the projected
product states are used to calculate the backbending plots for six nuclei. The experimental
backbending curves are fairly well reproduced by the numerical results of the proposed formalism.
The shape and sharpness of the backbendings are in a good agreement with experiment. The
first energy levels before the backbending are determined by the 0qp projected states and after
a critical angular momentum, where the bands g and S cross each other, the states become of a
2qp nature. The advantage of the present formalism over other models consists in the fact that
it also provides a qualitative explanation of the combined effect of the pair breaking mechanism
and rotational alignment of the angular momenta implied in the system, on the backbending
behavior of the moment of inertia. Concluding, one can say that the model proposed is able to
describe quantitatively the main features of the first backbending in rare earth nuclei, revealing
in the same time new features regarding its mechanism.
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