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Abstract
A semi-microscopic model to study the neutron- and proton-induced
backbending phenomena in some deformed even–even nuclei from the rare
earth region is proposed. The space of particle–core states is defined by the
angular momentum projection of a quadrupole deformed product state. The
backbending phenomena are described by mixing four rotational bands, defined
by a set of angular momentum projected states, and a model Hamiltonian
describing a set of paired particles moving in a deformed mean field
and interacting with a phenomenological deformed core. The ground band
corresponds to the configuration where all particles are paired, while the other
rotational bands are built on one neutron or/and one proton broken pair. Four
rare earth even–even nuclei which present the second anomaly in the observed
moments of inertia are successfully treated within the proposed model.

(Some figures may appear in colour only in the online journal)

1. Introduction

The irregular behavior of the moment of inertia in the yrast band at intermediate and high spin
states, known as backbending, has always attracted considerable experimental and theoretical
attention. Since its first experimental observation [1], many attempts were made to explain the
phenomenon. It is commonly accepted that it is caused by the intersection of two rotational
bands. This interpretation was proposed by Stephens and Simon [2] based on the rotational
alignment of the individual single-particle angular momenta of a broken pair along the rotation
axis. The pair breaking is caused by the Coriolis force which violates the time-reversal
symmetry. The first theoretical interpretation based on the Coriolis anti-pairing effect was due
to Mottelson and Valatin [3] where the backbending phenomenon was the result of a drastic
change in the pairing field.
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Although the band hybridization method was always known and applied to this particular
problem within some phenomenological approaches [4–6], the nature of the involved rotational
bands was not yet well established. Only after the rotational alignment hypothesis was
confirmed, it became clear that the first backbending is due to the intersection of the ground
band (g) and a two quasiparticle (2qp) band built upon a broken pair from a high angular
momentum orbital. The second band is often referred to as the S(tockholm) band. Thus, the
anomalous increase of the moment of inertia is interpreted as the reduction of the energy
cost to achieve a certain total angular momentum by aligning the angular momenta carried
by the constituents of a broken pair. Stephens and Simon noted that in the rare earth region
the first broken pair is from the neutron intruder orbital 6i13/2. Actually, this picture was later
confirmed by many theoretical calculations, mostly based on the cranking Hartree–Fock–
Bogoliubov (CHFB) [7, 8] calculations and the core plus quasiparticle models [2, 9, 10]. The
backbending is a relatively widespread phenomenon within the rare earth region, but only very
few nuclei exhibit a second anomaly in the moment of inertia. It was for the first time measured
for 158Er [11], and the early interpretation was based on the alignment of the individual angular
momenta resulting from breaking a 5h11/2 proton pair [12]. Other nuclei which exhibit a second
moment of inertia anomaly are located around the N = 90 rare earth isotopes. The proton
nature of the second broken pair was at a first glance queried in [13], since in the same
energy region of the spectrum, the alignment of a 5h9/2 neutron broken pair might also play
an important role. However, the proton nature of the second backbending was later confirmed
by several more detailed theoretical studies [7, 14] based on blocking arguments offered by
the experimental investigations of the odd-proton and odd-neutron neighboring nuclei of the
N ≈ 90 isotopes [15, 16]. As a result, the second backbending is regarded as being caused by
a successive breaking of a neutron and a proton pair, where the neutron broken pair is the one
which causes the first backbending [17]. As a matter of fact, the suspected neutron pair 5h9/2

which may break at a time with the 5h11/2 proton pair is causing, indeed, a third anomaly in the
moment of inertia of some isotopes of Yb [18]. Indeed, for this nucleus, a weak up-bending is
noticed at spins beyond J = 36.

Of course, the band hybridization is a conventional name used in the early publications
quoted above. Hereafter, we replace it by band mixing which might be used in a brighter
context.

The most extensive calculations on the double backbending were performed in the
framework of the CHFB approach, which provided one of the most reliable qualitative
descriptions of the phenomenon over a large number of nuclei. One of the most important
features of the CHFB approach is that it embraces all the mechanisms known to cause the
backbending, i.e. the particle alignment, the pairing phase transition and the sudden change
of deformation. However, the CHFB description is a semiclassical one, which encounters
difficulties in describing the states near the band crossing. An important improvement is
obtained by the angular-momentum-projected Tamm–Dancoff approximation which was
successfully applied for the dysprosium isotopes [19, 20]. Therefore, in order to achieve
a quantitative description of the multiple backbending, a full quantal formalism is necessary.
Such models were proposed based on mainly two directions: genuine shell model formalisms
[17] can better trace the influence of the single-particle degrees of freedom on the pair-
breaking process while the particle–core models [10, 21] put emphasis on the rotational
alignment description. The calculations based on the interacting boson model [22, 23] can
also be included in the first category. For a quantitative description of the energy spectra with
double backbending, one advocates for the second solution. The advantage of the particle–
core approach consists in the fact that it treats the single-particle and collective degrees of
freedom on equal footing. It is worth mentioning that a qualitative explanation of the first
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backbending in some isotopes of Pt, W and Os was obtained in [24] by using the general
collective model [25, 26], where, of course, the particle degrees of freedom are missing.
Therein, the backbending is determined by the angular momentum dependence of the moment
of inertia; induced by the specific ways, the structure coefficients are fixed.

In a previous publication [27], we proposed a semi-microscopic model for the description
of the backbending phenomenon within the band-mixing picture. The rotational bands implied
in the mixing procedure were defined by the angular momentum projection from quadrupole
deformed product states and a model Hamiltonian describing a set of intruder neutrons
interacting among themselves through pairing forces and coupled to a phenomenological
deformed core. By projecting the angular momentum, one avoids the difficulties showing
up when one treats observables which are sensible to the angular momentum fluctuations.
Indeed, working with states of good angular momentum is more advantageous than applying
cranking methods which encounter enormous angular momentum fluctuations in the band-
crossing region. The distinctive feature of our model is that although we use a spherical
projected particle–core basis, the core and the single-particle trajectories are deformed. The
mixing of the rotational bands was achieved by diagonalizing the model Hamiltonian in an
orthogonal basis constructed from the projected states of g and S-bands. The model was meant
to reproduce only the first backbending, which was done quite well for six even–even nuclei
from the rare earth region. Besides the reproduction of the backbending plots, the formalism
[27] also provided some useful information regarding the rotational alignment of the particles
moving in an intruder orbital.

In this paper, we extend the formalism from [27] to the second backbending induced by a
proton broken pair. This is done by performing the mixing of four rotational bands. The first
two are obviously the g-band and the S-band with a neutron broken pair, whereas the other two
are associated with a proton broken pair and to two, one of neutron type and another of proton
type, broken pairs, respectively. The projected states which define the four bands have specific
single-particle factors describing each case mentioned above. The protons and neutrons are
treated through BCS model states associated only with 6νi13/2 and 5πh11/2 orbitals. The
intruder particles are coupled to a phenomenological core which is deformed and described by
means of the coherent state model (CSM) [28]. The projected states are deformed and therefore
not orthogonal but can be used to construct an orthogonal basis. The lowest eigenvalues of the
model Hamiltonian in this orthogonal basis define the yrast band. The main purpose of this
work is to reproduce the experimental yrast spectrum and its backbending behavior for some
even–even rare earth nuclei which are known to be double backbenders, as well as to provide
a thorough analysis of the rotational alignment process and the possible consequences for the
E2 transition properties along the yrast band.

The description of the method and results are presented according to the following plan.
The model Hamiltonian and the projected particle–core product basis used for the description of
the double backbending phenomenon are presented in section 2. The E2 transition probabilities
are considered in section 3 and the emerging numerical calculations are given in section 4.
Final conclusions are drawn in section 5.

2. The model Hamiltonian and a particle–core product basis

In this study, we present a new and simple semi-phenomenological model to explain the first
two backbendings seen in some rare earth nuclei. The spectra exhibiting a double backbending
will be described by a particle–core Hamiltonian whose eigenvalues are calculated within a
particle–core space. The nucleons are moving in a deformed mean field and the alike ones
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interact among themselves by a pairing force. The core is deformed and described by a
phenomenological quadrupole coherent state [28]:

ψc = ed(b†
20−b20 )|0〉b, (2.1)

where b†
2µ with −2 ! µ ! 2 denotes the quadrupole boson operator, and d is a real parameter

which simulates the nuclear deformation. The two subsystems interact with each other by a
qQ and a spin–spin, i.e. !Jf · !Jc, interaction. The associated Hamiltonian is

H = Hc + Hsp + Hpair + Hpc. (2.2)

The core term Hc is a quadratic polynomial of the quadrupole boson number operator,
N̂ =

∑
µ b†

2µb2µ:

Hc = ωb
0N̂ + ωb

1N̂2. (2.3)

As for the single-particle Hamiltonian Hsp, this is a sum of two terms corresponding to neutrons
and protons, each of them describing a set of particles in an intruder spherical shell model
orbital |nl j〉:

Hsp =
∑

i=ν,π

(εnili ji − λi)
∑

mi=all

c†
nili jimi

cnili jimi . (2.4)

Here, c†
nl jm and cnl jm are the creation and the annihilation operators for a particle in a spherical

shell model state |nl jm〉 with the energy εnl j, while λ is the Fermi level energy for the system
of paired particles. Alike nucleons interact through a pairing force

Hpair = −
∑

i=ν,π

Gi

4
P†

ji Pji , (2.5)

where P†
j and Pj denote the creation and annihilation operators of a Cooper pair in the intruder

orbital j.
The particle–core interaction consists of two terms, the quadrupole–quadrupole (qQ) and

the spin–spin interaction:

Hpc = HqQ + HJf Jc ,

HqQ = −Ac

∑

i=ν,π

∑

µ,mi,m′
i

〈nili jimi|r2Y2µ|nili jim′
i〉c

†
nili jimi

cnili jim′
i
[(−)µb†

2−µ + b2µ],

HJf Jc = C!Jf · !Jc. (2.6)

Here, the total angular momentum carried by protons and neutrons is denoted by

!Jf = !Jp + !Jn. (2.7)

The interaction strength AC is taken to be the same for neutrons and protons. The parameters
AC and C are free in this work and therefore are to be fixed by a fitting procedure.

The mean field is defined by averaging H̃(= Hsp + HqQ) with the coherent state (2.1),
which results in obtaining a single-particle Hamiltonian which is similar to the deformed
Nilsson Hamiltonian [34]. In the first order of perturbation, the energies of the deformed mean
field are given by

εnl jm = εnl j − 4d XC(2n + 3)C j 2 j
1
2 0 1

2
C j 2 j

m 0 m, with

XC = !
8Mω0

√
5
π

AC, (2.8)
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where n is the principal quantum number of the intruder orbital, while M and ω0 are the
nucleon mass and the harmonic oscillator frequency. εnl j denotes the spherical shell model
energies corresponding to the parameters given in [35]:

!ω0 = 41A−1/3, C′ = −2!ω0κ, D = −!ω0κµ, (2.9)

where the parameters (κ, µ) have the values (0.0637, 0.42) for neutrons and (0.0637, 0.6) for
protons. The second term on the right-hand side of equation (2.8) is obtained by averaging
the non-spherical part of the mean field with the spherical shell model state |nl jm〉. The true
eigenvalues of the mean-field would be obtained by diagonalization, when the off-diagonal
matrix elements of the deformed term are taken into account.

Of course, one could argue that the single-particle energies with linear dependence on the
deformation look unrealistic. One undesired feature is that the state with j = 1/2 is not affected
by deformation. Actually, we were aware of this drawback and corrected for it [36, 37]. Briefly,
a quadratic term in d could be obtained for example by adding the second-order perturbative
correction or by adding the monopole–monopole interaction to the particle–core Hamiltonian
and then applying the first-order perturbation theory to the unperturbed spherical term, as
we actually did in the quoted references. Diagonalizing the mean-field Hamiltonian in the
‘asymptotic’ basis, one obtains the Nilsson energies and wavefunctions.

We opted for the linear dependence on d for energies and the deformed basis |nl jm〉
because of the advantage of having the angular momentum as a good quantum number and
that happens despite the fact that the states are deformed. The mentioned problem of j = 1/2
does not matter at all here since the intruders have high angular momenta. Moreover, for small
deformation the single-particle energies approximate reasonably well the Nilsson ones. The
pragmatic feature that is worth to be mentioned refers to the fact that the Fermi level in our
model corresponds to the sub-state m which is equal to ( associated with the Fermi level
from the Nilsson scheme. This feature gave us the certainty that the essential ingredient for
approaching the backbending behavior is included.

Pairing correlations with such a deformed basis but in a different context has also been used
in [22]. Since only the relative energies to the Fermi level are involved in the BCS equations,
the orbital energy εnl j is taken to be zero. Moreover, due to the fact that the quantum numbers
n and l do not change within a multiplet, we simplify the notation and denote the resulting
energies by ε jm. From here it is obvious that two states related by a time-reversal transformation
have the same energy, and therefore, one can restrict the single-particle space to the states | jm〉
with m > 0, keeping in mind that each such state is occupied by a pair of nucleons. The sum
of the mean field term and the pairing interaction for alike nucleons is brought to a diagonal
form through the Bogoliubov–Valatin (BV) transformation:

α†
jk = Ujkc†

jk − Vjk(−) j−kc j−k,

α jk = Ujkc jk − Vjk(−) j−kc†
j−k. (2.10)

The output of the BCS calculation consists of the occupation probabilities of the m-substates,
the gap parameter *, as well as the Fermi energy λ. Consequently, the average number of
nucleons in the j-multiplet 2〈Nτ j

pair〉, with τ = ν,π , is readily obtained:
〈
Nτ j

pair

〉
=

∑

m>0

V 2
τ jm. (2.11)

For the chosen nuclei, the Fermi levels for neutrons and protons, lie close to a sub-state of the
intruders 6i13/2 and 5h11/2, respectively. If the particle–core basis was a deformed one, then
the lowest state |2qp〉|ψc〉 would correspond to a sub-state of the two intruders, respectively.
The mentioned substates have m = 1/2 for neutrons and m = 7/2 for protons. Since the core
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state does not contribute to the total K quantum number, the projection of the total angular
momentum on the symmetry axis, we say that the intrinsic states leading to the yrast band have
K = 1/2 for the neutrons and K = 7/2 for protons. Also, in the Nilsson model, the last filled
neutron state has ( = 1/2, while the last proton occupies the state ( = 7/2. The choice of the
K = 1/2 sub-state as the Fermi level of the neutron system was made in [27] to describe the
first backbending. As for considering the K = 7/2 Fermi level for the proton system, breaking
the corresponding pair and aligning the resulting quasiparticle angular momenta to that of the
core as prerequisite conditions of the second backbending, these features are in full agreement
with the microscopic formalism used in the literature. In this respect in [7], the alignment of
a ( = 7/2 broken pair is used to explain the second backbending in 158Er and 160Yb. The
last nucleus mentioned is also treated by Cwiok and collaborators in [29], while 158Er by
Riley [15].

A great simplification is obtained if the single-particle space is restricted to the intruder
multiplets where a number of nucleons equal to 2〈Nτ j

pair〉 are distributed. Solving the BCS
equations in the restricted space, the quasiparticle energies depend on m but are still invariant
at changing m to −m. However, in a pure microscopic formalism, where the Coriolis interaction
is included in the mean field, the time-reversed quasiparticle states are no longer degenerate
and consequently the broken pair is a K = 1 state. Here, the term !Jf · !Jc, which simulates
the Coriolis interaction in the sense specified in [27] is only subsequently used, when the
whole Hamiltonian is diagonalized and thereby the broken pairs with K = 1 are used. An
important technical simplification is achieved if these pairs are obtained by applying the
angular momentum raising operator on the K = 0 pairs.

If the quasiparticles were not deformed and moreover the dangerous graphs were
eliminated at the level of BCS calculations, one would expect that the interaction between states
with different number of quasiparticles is vanishing. Under these circumstances, truncating
the particle–core space to the states with 0qp, 2qp and 4qp is a reasonable approximation.
Since the rotation process involved in the angular momentum projection operation changes the
K quantum number, and moreover, particles and holes are mixed by the BV transformation,
the overlap of states with different number of particles is however nonvanishing. Despite this
feature, we keep the restriction of the quasiparticle space as specified above. The reason is
that the mixing weight of components with more than four quasiparticles would be at least of
sixth order in the U and V coefficients and consequently small.

Thus, the restricted space of angular momentum projected states to be used for treating
the model Hamiltonian Hqp written in the quasiparticle representation is

{
, (1)

JM ,, (2)
JM;1( jnν),, (3)

JM;1( jpπ ),, (4)
JM;2( jnν; jpπ )

}
. (2.12)

The set members are defined by

, (1)
JM = N (1)

J PJ
M0|nBCS〉d |pBCS〉dψc, (2.13)

, (2)
JM;1( jnν) = N (2)

J1 ( jnν)PJ
M1

[
J+α†

jnνα
†
jn−ν |nBCS〉d

]
|pBCS〉dψc, (2.14)

, (3)
JM;1( jpπ ) = N (3)

J1 ( jpπ )PJ
M1|nBCS〉d

[
J+α†

jpπ
α†

jp−π |pBCS〉d
]
ψc, (2.15)

, (4)
JM;2( jnν; jpπ ) = N (4)

J2 ( jnν; jpπ )PJ
M2

[
J+α†

jnνα
†
jn−ν |nBCS〉d

][
J+α†

jpπ
α†

jp−π |pBCS〉d
]
ψc,

(2.16)

where the reciprocal norms can analytically be expressed. Also, α†
jµ/α jµ stand for the

creation/annihilation quasiparticle operators. The Hill–Wheeler projection operator [30] has
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the form

PJ
MK = 2J + 1

8π2

∫
DJ∗

MKR̂(()d(. (2.17)

The angular momentum projection from the many-body fermion states is achieved by using
the procedure of [31]. The Pauli principle restrains the maximal angular momentum of a given
configuration [32] to

Jmax
τ = Nτ j

pair

(
2 jτ − 2Nτ j

pair + 1
)
, (2.18)

where Nτ j
pair pairs of τ particles occupy the states of angular momentum jτ .

The set of projected states mentioned above is not orthogonal. We orthogonalized first
the angular momentum projected basis and then diagonalized the model Hamiltonian written
in the quasiparticle representation. Note that the band mixing is achieved by two processes,
the orthogonalization procedure of the initial basis and then by diagonalizing the model
Hamiltonian H (2.2). The lowest eigenvalues of the total Hamiltonian H in the orthogonal
basis defines the yrast band.

The energy spectrum of the rotational bands is approximated by the average of the total
Hamiltonian with each projected state from the set (2.12).

The mixing of these bands is achieved following the procedure of [27] extended to the
case of four interacting bands. Here, we briefly present the main ingredients of this procedure.

Indeed, denoting by αJ
m the eigenvalues and by V J

im the eigenvectors of the overlap matrix
corresponding to J '= 0, it can be checked that the set of functions

-JM
m = 1

√
αJ

m

4∑

i=1

, (i)
JMV J

im, m = 1, 2, 3, 4, (2.19)

is orthogonal.
Writing the total wavefunction as an expansion in the newly obtained orthogonal basis

-JM
Tot =

4∑

m=1

XJ
m-JM

m , (2.20)

the eigenvalue equation associated with the model Hamiltonian acquires the following matrix
form:

4∑

m′=1

H̃ (J)
mm′XJ

m′ = Em
J XJ

m. (2.21)

The Hamiltonian matrix H̃ (J)
mm′ is defined as

H̃ (J)
mm′ = 1

√
αJ

mαJ
m′

4∑

n,n′=1

V J
nm

〈
, (n)

JM

∣∣H
∣∣, (n′)

JM

〉
V J

n′m′ . (2.22)

Solving the homogeneous system of linear equations (2.21) for a given J '= 0 and then
changing J, one obtains four J-sets of energies. Collecting the lowest energy from each J-set
of solutions, one obtains the so-called yrast band.

3. E2 transition probabilities

The reduced quadrupole transition probabilities are calculated by truncating the transition
operator to the boson part, i.e. we suppose that the collective transition is due to the core
component of the wavefunction. The microscopic structure of the yrast states have however
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Table 1. The fitted parameters for the four nuclei are listed. The nuclear quadrupole deformation
β2, taken from [38], is presented for comparison with the deformation parameter d.

Nucleus d XC (keV) Gn (MeV) Gp (MeV) ωb
0 (MeV) ωb

1 (keV) C (keV) d · XC (keV) β2

156Er 1.9498 84.0455 0.2146 0.2626 1.1420 0.255 3.042 163.87 0.177
158Er 2.4910 68.6731 0.1803 0.2593 1.1525 −1.426 5.866 171.06 0.203
160Yb 2.2870 74.9940 0.1892 0.2619 1.2684 −0.514 2.270 171.51 0.195
162Hf 2.1490 78.2942 0.2000 0.2583 1.3104 8.674 −1.991 168.25 0.184

an indirect contribution. The boson structure of the transition operator is assumed to be of the
form

Q2µ = q′
1α2µ + q′

2(αα)2µ, (3.1)

where α2µ denotes the quadrupole coordinate that depends linearly on the boson operators

α2µ = 1√
2
(b†

2µ + (−)µb2−µ). (3.2)

In terms of quadrupole bosons, the transition operator has the expression

Q2µ = q1
(
b†

2µ + (−)µb2,−µ

)
+ q2

((
b†

2b†
2

)
2µ

+ 2
(
b†

2b2̃

)
2µ

+ (b2̃b2̃)2µ

)
, (3.3)

where

q1 = 1√
2
q′

1, q2 = 1
2 q′

2. (3.4)

The reduced probability for the quadrupole transition in the yrast band, using the Rose’s
convention [33], can be written as

B(E2, J+ → J′+) =
∣∣〈-J

Tot

∣∣∣∣Q2
∣∣∣∣-J′

Tot

〉∣∣2
, (3.5)

where the functions involved are the states (2.20) obtained by diagonalizing the matrix H̃ (J)
mm′ .

If the final state is 0+, then instead of -J′

Tot with J′ = 0 we use , (1)
0 . The transition matrix

elements involve two parameters q1 and q2, which are to be fixed by a fitting procedure. The
reduced matrix elements of the transition operator have analytically been expressed in [49, 50].

4. Numerical application and discussions

There are very few nuclei in the rare earth region which present a second anomaly in their
moment of inertia evolution along the yrast band. The most studied nuclei are 156Er, 158Er,
160Yb and 162Hf since for them a great deal of experimental data are available. These nuclei
will be treated within the formalism described in the previous sections.

4.1. Parameters

The model involves seven parameters. Six of them, namely the neutron and proton pairing
constants Gn and Gp, the strengths of the qQ and spin–spin interactions, i.e. XC and C, and the
strengths ωb

0 and ωb
1 of the two boson terms, are the structure coefficients defining the model

Hamiltonian. The remaining parameter d defines the coherent state ψc and plays the role of
the deformation parameter. The fitted values of these parameters are given in table 1. In what
follows, we explain how these parameters were fixed.

In the first step, the BCS equations were separately solved for protons and neutrons.
The pairing constants and the single-particle energies represent the input data for the BCS
equations. The single-particle energies are defined in equation (2.8) and linearly depend on
the deformation parameter, as can be seen from figures 1 and 2. From these one can see
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Figure 1. Neutron (top) and proton (bottom) single-particle energy levels given in units of
!ω0(= 41A−1/3 MeV) and calculated with equation (2.8) for 156Er (left) with XC = 84.0455 keV
and 158Er (right) with XC = 68.6731 keV. The vertical lines indicate the single-particle
configurations corresponding to the fitted deformation parameter d. The Fermi energy level
resulting from the BCS calculations is also pointed out.

that the product dXC plays the role of the deformed mean field strength, like the quadrupole
nuclear deformation β2 in the Nilsson model [34]. Given the fact that here we deal only with
neutrons from the 6i13/2 intruder orbital and protons from the 5h11/2 intruder orbital, which
are responsible for the first and the second band crossing, respectively, the BCS equations are
solved only for a subset of the entire neutron and proton single-particle space which contains
the states that might interact with the mentioned intruder states. Since the single-particle
energies yielded by the deformed mean-field are m-dependent quantities, the substates of the
intruders will be specified by adding a lower index m to the standard notation specific to the
spherical single-particle states. Thus, for neutrons, the subset comprises all states of the n = 5
shell, excepting the substates with |m| < 11/2 coming from the 5h11/2 orbital, together with
the intruder states 6i13/2,m and the state 5h11/2,11/2 coming from below, which is an intruder for
the n = 4 shell. Similarly, the proton subset comprises all states of the n = 4 shell, the intruder
state 4g9/2,9/2 for the n = 3 shell coming from below and of course all intruder states 5h11/2,m.
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Figure 2. Neutron (top) and proton (bottom) single-particle energy levels given in units of
!ω0(= 41A−1/3 MeV) and calculated with equation (2.8) for 160Yb (left) with XC = 74.9940 keV
and 162Hf (right) with XC = 78.2942 keV. The vertical lines indicate the single-particle
configurations corresponding to the fitted deformation parameter d. The Fermi energy level
resulting form the BCS calculations is also pointed out.

In total, one has to solve the BCS equations in a space of 23 neutron states and 17 proton
states where each single-particle state can accommodate two nucleons. The nuclei 158Er, 160Yb
and 162Hf are N = 90 isotones, such that we distributed in the neutron subspace ten particles
for each, and 20, 22 and 24 particles in the proton subspace, respectively. As for 156Er, this
has 8 neutrons and 20 protons distributed in the corresponding subspaces. Judging from the
observed degree of the shell filling, for all considered nuclei, the last occupied proton intruder
state h11/2 has the projection 7/2, while the neutron intruder state i13/2 which is closest to the
neutron Fermi level has the projection 1/2. Thus, the m substates that correspond to the broken
neutron and proton pairs (mν, mπ ) = (1/2, 7/2) are the same for all four nuclei, even though
they have different neutron and proton numbers.

The pairing interaction constants Gn and Gp and the qQ interaction strength are fixed
so that the observed sequence of the single-particle levels and the last occupied state for
a given deformation d of the core are reproduced. Later on, a fine tuning is performed in
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Table 2. The neutron and proton Fermi level energies, gap parameters and the quasiparticle energies
are given for each treated nucleus. The average number of pairs determined with (2.11) and the
corresponding exact and approximated maximal angular momenta (2.18), obtained by replacing
the number of pairs Nτ j

pair with the average number 〈Nτ j
pair〉, are also given.

Neutron k = 1/2 Proton k = 7/2

λn *n En
qp λp *p E p

qp

Nucleus (MeV) (MeV) (MeV) 〈Nνi13/2

pair 〉 〈Jmax
n 〉 Jmax

n (MeV) (MeV) (MeV) 〈Nπh11/2

pair 〉 〈Jmax
p 〉 Jmax

p

156Er 48.350 1.394 75 1.446 62 0.95 11.51 12 44.271 1.460 21 1.460 81 3.33 17.79 18
158Er 48.496 1.135 89 1.139 05 1.26 14.50 14 44.083 1.392 34 1.392 88 3.34 17.77 18
160Yb 48.268 1.228 48 1.230 84 1.29 14.74 14 44.395 1.359 84 1.461 15 3.71 16.98 16
162Hf 48.056 1.346 56 1.346 81 1.30 14.78 14 44.678 1.274 07 1.619 59 4.05 15.81 16

order to improve the position of the band-crossing points. Solving the BCS equations, one
obtains the quasiparticle energies, the gap parameter *, the Fermi level energy λ and the
occupation probability parameters U and V . The projected neutron and proton single-particle
states (2.13)–(2.16) describe only the nucleons from the intruder orbitals 6νi13/2 and 5πh11/2.
Thus, in further calculation, one would need only the BCS parameters concerning the seven
neutron states i13/2 and the six proton states h11/2. Using the occupation probabilities of the
intruder states, one calculates the average number of pairs in the considered intruder orbitals
〈Nτ j

pair〉.
It is needless to say that the BCS calculations performed only for the single-particle states

of the considered intruder orbitals with a number 〈Nτ j
pair〉 of occupying pairs would provide

results equivalent to those obtained for the larger single-particle subspaces chosen above.
Even though equation (2.18) is designed for an even and integer number of pairs, it can be
used to determine an approximate higher limit of the angular momentum realized in a virtual
configuration of 〈Nτ j

pair〉 pairs. The value obtained in this manner is then rounded to the closest
even integer, defining in this way the upper limits of the summations over neutron and proton
angular momenta Jn and Jp involved in the definition of the projected single-particle states.
All this information and the BCS results are given in table 2. With all these data, the projected
states (2.13)–(2.16) are fully determined.

In conclusion, the BCS calculation in the extended single-particle space is used to calculate
the average number of pairs in the intruder orbitals. Once these are determined, we solved
the BCS equation for each intruder keeping the obtained restriction for the number of the
τ -particles. Also using the average number of the τ -pairs, we calculate the maximal values of
the angular momentum carried by the given system of fermions. In this way, the space of the
four particle–core projected states is readily defined. Thus, we stress again the fact that our
method is based on a single j calculation and not on many j. We used the many- j calculation
just to remove the ambiguity in determining the number of the τ -nucleons which should be
distributed among the intruder substates.

It is worth making some remarks concerning the BCS results. The observed single-neutron
level structure of all four nuclei for the tabulated values of the quadrupole deformation β2

shows that none of the neutron intruder states i13/2 are occupied. In the present model, the
single-particle energies (2.8) linearly depend on the deformation parameter d contrary to the
Nilsson case. Because of this feature, one finds that for the N = 90 isotones the Fermi level
provided by the BCS equations is right above the first intruder state 6νi13/2, as indicated in
figures 1 and 2. Exception is for the 156Er isotope that has fewer neutrons and cannot fill any
intruder 6νi13/2 sub-state, but due to the large value of the pairing strength Gn the occupation
probability is considerably extended above the Fermi level λn and thus placing an average
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number of two nucleons in the intruder orbital i13/2 (see table 2). Also, according to the shell
filling, the proton Fermi level of the Er isotopes must be placed under the intruder state
5πh11/2,7/2, but as can be seen in figure 1 the obtained Fermi level λp is placed right above
this state. This is caused by the fact that the intruder state h11/2,7/2 and the state d3/2,1/2 of the
n = 4 shell are almost degenerated for the chosen value of the deformation parameter d, and
consequently, the occupation probability corresponding to one pair of protons is shared by the
two states.

The deformation parameter d affects both the single-particle and the collective degrees
of freedom. Indeed, on one hand, it is embedded in the strength dXC of the deformed mean
field, and on the other hand, it defines the energy of the core. One may therefore assert that the
particle–core interaction induces a deformation effect on both the single-particle and the core
motion. However, it can be easily checked that the ground band energies are not very sensible
to the single-particle degrees of freedom. Indeed, the overwhelming contribution to the total
energy of the ground band is due to the core because all the intruder particles are paired and
do not carry any angular momentum. This fact implies that up to the first band crossing the
whole angular momentum dependence is given by the core.

Besides the deformation parameter d, the core energy is also parametrized by ωb
0 and ωb

1,
the strengths of the two boson terms. The core parameters d, ωb

0 and ωb
1 are determined in

the first approximation such that to reproduce the first yrast energy levels which are purely
collective. The final value of the deformation d is fixed by achieving a consensus between the
reproduction of the single-particle levels configuration and the best description of the angular
momentum dependence of the total energy of the g-band up to the first backbending.

The final touch to the formalism is made by fixing the strength C of the spin–spin
interaction. The effect of the spin–spin interaction was presented in detail in [27].3 Basically,
it simulates the Coriolis force in the intrinsic reference frame and is actually the model
Hamiltonian term which is responsible for the pair breaking. Indeed, recalling the fact that
the pair breaking is equivalent to the time-reversal symmetry breaking of the system it is then
clear that it cannot be achieved by the qQ interaction, and therefore, the spin–spin interaction
is necessarily demanded. It is found that this term does not have any effect on the energies of
crossing bands up to the first critical angular momentum, but on the contrary has a strong effect
on the moderate and high spin states in the yrast band. Because of this feature the strength C
is fixed such that to reproduce the moderate and high spin yrast state energies.

Apparently, the number of parameters used is large, but three of them, i.e. d, Gp and Gn,
are not freely changed when we pass from one nucleus to another. Indeed, the deformation
parameter linearly depends on the nuclear deformation and therefore fixing it for one nucleus,
e.g., by fitting the B(E2; 0+ → 2+) value, it is known for all remaining ones. This is shown
in figure 3, where the fitted values of d were interpolated by a straight line.

Also, the results for the strengths of proton and neutron pairing interactions can be
interpolated by a function proportional with 1/A:

Gp = 41.410
A

MeV, Gn = 31.165
A

MeV. (4.1)

The A dependence of Gτ , τ = p, n, is quite close of the A-parametrization of the interaction
strengths which interpolates the values obtained by fitting the even–odd mass difference:

Gp = 42.316
A

MeV, Gn = 31.360
A

MeV. (4.2)

3 In table 2 of [27], the values of C ·10 were listed. By a lamentable error, the factor 10 accompanying C was omitted.
However, all results of the quoted reference correspond to the true values of C.
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Figure 3. The deformation parameter d (square) is presented as a function of the nuclear
deformation β2. The fitted values of d can be interpolated by the straight line given by
d = 19.55β2 − 1.49.

4.2. Energies

The energies of the rotational bands implied in the present model are approximated by the
diagonal matrix elements of the model Hamiltonian between the projected states of the set
(2.12) and calculated using the parameters listed in table 1. The band mixing is achieved by
orthogonalizing the projected states (2.12) and then diagonalizing H (2.2) in the resulting
orthogonal basis. For a given total angular momentum J, one obtains a set of four eigenvalues
Em

J , with m = 1, 2, 3, 4. The lowest energies Em
J define the yrast band E(J).

The band mixing is schematically shown in figure 4 where all involved rotational bands and
the resulting yrast band are plotted versus the total angular momentum J. Similar dependence
of the rotational bands on the angular momentum was obtained in [2, 17], where the energies
were computed only in a projected quasiparticle space with a relatively large number of single-
particle states. As can be seen from figure 4, the proton S-band does not interact with the other
bands or is very weakly interacting with the g-band at high spin states in the case of 162Hf.
Moreover, its energy is higher than that of other bands, such that it has no influence on the yrast
band. Thus, the inclusion of this band is made for the sake of completeness; otherwise, it could
be ignored. However, the unperturbed proton S-band provides valuable information regarding
the dynamics of the system’s angular momenta. Indeed, the minimum displayed by both the
neutron and the proton S-bands in figure 4 indicates the amount of angular momentum carried
by the corresponding broken pair. This is suggested by the following reasoning. First of all,
one must note that the slopes of the curves from figure 4 determine the rotational frequencies
of the bands. The negative slopes of the neutron and the proton S-bands at low spins imply a
negative rotational frequency which is due to the core that must compensate the already high
angular momentum realized by the decoupled broken pair. In the minimum point, where the
slope vanishes, the core is no longer rotating and the total angular momentum is coming from
the broken pair alone. Thus, the spin at which the S-bands show a minimum represents the
angular momentum carried by the broken pair.

Inspecting figure 4, one finds that for all considered nuclei the neutron broken pair carries
almost 8–10 units of angular momentum, while the angular momentum of the proton broken
pair is about 6–8!. But as we already remarked, the second backbending is due to the crossing

13



J. Phys. G: Nucl. Part. Phys. 40 (2013) 025109 R Budaca and A A Raduta

0 4 8 12 16 20 24 28 32 36
J [h- ]

0

2

4

6

8

10

12

14
E

(J
) 

[M
eV

]

0 4 8 12 16 20 24 28 32 36
J [h- ]

0

2

4

6

8

10

12

14

E
(J

)  
[M

eV
]

0 4 8 12 16 20 24 28 32 36
J [h- ]

0

2

4

6

8

10

12

14

E
(J

) 
[M

eV
]

0 4 8 12 16 20 24 28 32 36
J [h- ]

0

2

4

6

8

10

12

14

E
(J

) 
[M

eV
]

156
Er

158
Er

160
Yb

162
Hf

Figure 4. Energy trajectories implied in the band mixing are presented as a function of the total
angular momentum. The g-band is represented by the straight line, neutron S-band by the dashed
line and the proton S-band by the dotted line, while the dash–dotted line corresponds to the
neutron–proton S-band. The yrast energies (circles) resulted from the diagonalization of the total
Hamiltonian in the orthogonal basis (2.19) are also visualized.

of the neutron S-band with the neutron–proton S-band and not with the proton one. Of course,
the 4qp band associated with two broken pairs, one of neutron type and another of proton
type, has a different structure from a 2qp S-band. As can be seen from figure 4, such a band
has an extended plateau which means that the total angular momentum is due to both broken
pairs without any core contribution. As a matter of fact, the total spin where the plateau ends
and the core starts to rotate is equal to the sum of the angular momenta provided by the broken
pairs, which is around J = 16.

For a better understanding of the multiple backbending phenomena, the theoretical results
and the experimental data are compared by means of backbending plots and the corresponding
energy spectra. The backbending plot is a graph that shows the dependence of the moment of
inertia on the angular frequency squared. If one adopts for the moment of inertia the following
expression:

I = 4J + 6
E(J + 2) − E(J)

, (4.3)
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Figure 5. Backbending plots for 156Er, 158Er, 160Yb and 162Hf isotopes comparing theory (squares)
with experiment (circles). Experimental data are taken from [39–42].

where E(J) are the yrast energies, and defines the rotational frequency as

!ω(J) = dE(J)

dJ
≈ 1

2
[E(J + 2) − E(J)], (4.4)

one readily obtains the experimental and the theoretical backbending curves for the four
nuclei treated here. These plots are shown in figure 5 where the description is limited to the
experimental yrast states up to the spin J = 36 for 158Er, 160Yb and 162Hf and J = 32 for 156Er.
The nature of states with the angular momentum higher than 36 might be different from that of
the states considered in this work. Indeed, since the states density increases with the spin, one
expects that a larger band admixture takes place. Even so, the number of experimental states
described here is enough to account for the most important features of the second moment of
inertia anomaly. The smaller number of yrast states considered in the case of 156Er is due to
the fact that the states beyond J = 32 have not yet an angular momentum assigned.

Coming back to the backbending plots of figure 5, it is obvious that the double zigzag
shape is reproduced quite well for all four nuclei. An especially good agreement is found for
moderate spin states at the first backbending which is, indeed, very well reproduced in all
cases. The second backbending is supposed to be less pronounced than the first one, because,
as figure 4 shows, the crossing angle between the neutron S-band and the neutron–proton
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Figure 6. The backbending plot corresponding to two sets of parameters for the pairing strengths:
one obtained by the fitting procedure described in the text (squares) and one fixed so that the
even–odd mass difference (diamonds) be reproduced.

S-band is much smaller than the one between the g-band and the neutron S-band. However,
the experimental data offer a rather sharp second backbending for nuclei 156Er, 160Yb and
162Hf, while the theoretical calculations predict a smoother backbending behavior. In the case
of 158Er, the second observed moment of inertia anomaly is not a real backbending but a
relatively weak up-bending. Note that the theoretical results also predict an up-bending which
is however much steeper. This is consistent with the results from figure 4 where the crossing
angle between the neutron and the neutron–proton S-bands for this nucleus is very small.

Concerning the comments on the pairing constants given in section 2.2, the question which
certainly arises is what is the effect on the backbending plot when we use the Gτ parameters
obtained by fitting the even–odd mass difference instead of the interaction strengths fixed as
described above. The answer is given in figure 6 for 160Yb. Indeed, comparing the results
corresponding to the two sets of Gτ , one may state that there is no significant difference
between the two plots. In conclusion, the real number of the free parameters is 4.

The good agreement between the theoretical and the experimental backbending plots
is reflected also in the corresponding energy spectra. Thus, figure 7 suggests a very good
agreement between the results of our calculations and the corresponding data, which is
quantitatively expressed by relatively small root-mean-square (rms) values for deviations.
Note that the energy spectra are better reproduced at high spins than at low spins, contrary
to the backbending plots where the first backbending is better described than the second one.
This happens because the backbending curves do not depend on the absolute energies of
the angular momentum states, but on the energy difference between consecutive states and
moreover through a quadratic law (!ω)2 that is more sensitive to small deviations. Examining
figure 7, one remarks an increasing behavior of the critical energies with Z for the N = 90
isotones. This feature might be ascribed to the constant decrease of the deformation which
increases the frequency of the collective rotation.

The four nuclei treated here are γ -unstable. Thereby, the collective motion of the N = 90
isotones 160Yb and 162Hf can be well described by the O(6) dynamic symmetry [43]. The
softness of these nuclei points to a possible dynamic deformation which is increasing with
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Figure 7. Experimental and theoretical yrast spectra of 158Er, 160Yb, 162Hf and 156Er, with
numerical values given in units of keV. The starting point of the backbendings is indicated for
each nucleus by a dashed line. At the beginning of each spectrum one can find the corresponding
root-mean-square (rms) values.

the angular momentum. Indeed, judging by the behavior of the g-bands from figure 4, the
energy spectrum at lower spins is of the rotational type, while for larger spins it becomes more
vibrational like. This change in the energy spectra is most likely caused by the increase of
the γ deformation because β is fixed for these nuclei. The structure of 156Er is different. The
observed collective spectrum of 156Er exhibits signatures of the E(5) dynamical symmetry
[44] which is assigned to the critical point of the phase transition from the O(6) to the U (5)

symmetry. The critical point potential has a much extended minimum in the deformation
parameter β around the origin which corresponds to a spherical shape described by the U (5)

dynamical symmetry. As a matter of fact, the observed nuclear deformation of 156Er is indeed
small. In this case, one can also have a variation of the β deformation along its flat minimum
as the nucleus is increasing its rotation.

4.3. Angular momentum alignment

In order to study the alignment of the angular momenta involved in the system’s dynamics, it
is useful to compute the averages of the involved angular momenta:

J̃n(J̃n + 1) =
〈
-JM

Tot

∣∣!J2
n

∣∣-JM
Tot

〉
, (4.5)

J̃p(J̃p + 1) =
〈
-JM

Tot

∣∣!J2
p

∣∣-JM
Tot

〉
, (4.6)
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Figure 8. Expected values of the angular momenta corresponding to the neutron and proton broken
pairs, the total fermionic angular momentum of the neutron and proton intruder orbitals and the
core angular momentum. The deviation *J of the total angular momentum is also visualized.

J̃ f (J̃ f + 1) =
〈
-JM

Tot

∣∣!J2
f

∣∣-JM
Tot

〉
, (4.7)

J̃c(J̃c + 1) =
〈
-JM

Tot

∣∣!J2
c

∣∣-JM
Tot

〉
. (4.8)

The deviation

*J = |J − (J̃c + J̃ f )| (4.9)

is a measure for the departure from the full alignment of the fermionic and core angular
momenta, i.e. when J̃c+J̃ f equates the total angular momentum J of the system. All the average
angular momenta (4.5)–(4.8) and the deviation *J are plotted in figure 8 as the functions of
total angular momentum J. These plots reveal additional information for the backbending
phenomenon. Indeed, from figure 8, one can extract the angular momentum carried by the
neutron and proton broken pairs, the composition of the total angular momentum, the critical
spins of the band crossings, or one can even investigate the alignment of different angular
momenta of the system. The difference between the values of J̃ f , J̃n and J̃p before and after
the critical angular momenta associated with the pair breaking gives the amount of angular
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Table 3. The results of the fitting procedure performed for the quadrupole transition probabilities
shown in figure 9 are listed for each treated nucleus together with the Q0 value defining the values
of B(E2)rot.

Nucleus q1 (W.u.)1/2 q2 (W.u.)1/2 rms (W.u.) Q0 (W.u.)1/2

156Er 12.310 60 11.739 00 60.3801 57.4669
158Er 2.106 13 −1.583 05 74.4017 77.340 75
160Yb 7.891 59 7.557 47 55.0754 68.371 70

momentum carried by the broken pairs which is consistent to those determined from analyzing
the plots of figure 4. An interesting feature can be seen from figure 8, which is the essential
difference between the two band crossings. Indeed, while the neutron angular momentum J̃n

has a clear discontinuity reflected in a jump to a plateau of higher spin, the proton angular
momentum has a steady increase extended around the critical angular momentum where the
second band crossing actually takes place, although the curve changes substantially its slope.
This was somehow expected due to the smaller crossing angle between the neutron and the
neutron–proton S-bands. The smaller crossing angle means a larger range of the angular
momentum where the bands are effectively interacting. The neutron and neutron–proton S-
bands start to interact from J = 22 for 156Er and J = 24 for the rest of nuclei and keep
interacting afterward. After this spin, the states are no longer of a pure nature and the nucleus
is described by a coexistence of 2qp and 4qp states of broken pairs. This is contrary to the
case of the first band crossing where the interacting range is finite and very short, about 2
units of angular momentum. Investigating the behavior of the core angular momentum J̃c, one
observes that it has a sudden fall at the first band crossing of about 2–3!, while at the second
band crossing it drops very little (under 1!), keeping approximately the same value for few
total angular momentum states.

Concerning the angular momenta alignment, one remarks that before the band crossings
the alignment defect *J has a minimum and right after a local maximum. Note that here
we deal with a rotational alignment and that is why the deviation *J decreases with the total
angular momentum. Even though, the full alignment *J = 0 is not possible because of the fact
that after the first band crossing the yrast states are of K '= 0 nature. However, at the beginning
of the second band crossing, one finds that *J ≈ 0. This approximate alignment is due to the
fact that the proton orbital starts to aid more consistently the fermionic angular momentum
J̃ f when the neutron S-band starts to interact with the neutron–proton S-band and the proton
pair just slowly begins to break. This leads us to the conclusion that the angular momenta of
the broken pairs first align to each other and only after that they align with the core angular
momentum. The last alignment seems to be hindered, as shown in figure 8 where the angular
momentum defect does not decrease after the second band crossing, and moreover, at some
point, it starts to increase in parallel with the core angular momentum. The increasing behavior
of *J at high angular momentum states points to the fact that the rotation at high spins starts
to work against the alignment between the core and the fermionic angular momenta.

4.4. Electric quadrupole transitions

A very sensitive test of the wavefunctions describing the energy levels is the quadrupole
transition probabilities. In figure 9, one compares the numerical results provided by the
formulae from section 3 with the corresponding experimental data available only for 156Er,
158Er and 160Yb. The parameters q1 and q2 of the quadrupole transition operator are fixed
by fitting the experimental B(E2) values and the obtained results are given in table 3.
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Figure 9. Theoretical predictions for the reduced E2 transition probabilities are compared with
experimentally available data for 156Er, 158Er and 160Yb taken from [39–41]. The open symbols
indicate experimental data with assumed or derived assignment and were not taken into account
for the fitting procedure only in the case of 156Er nucleus. The rigid rotor limit of the B(E2) is also
shown for comparison.

The theoretical and experimental values are also compared with the rotational limit of the
quadrupole transition probability corresponding to the rigid rotor wavefunctions defined as

B(E2, J+ → J′+)rot = 5
16π

Q2
0

(
CJ2J′

0 0 0

)2
, (4.10)
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with Q0 fixed by fitting the first experimental transition probability B(E2, 0+ → 2+). The
values of Q0 corresponding to each considered nucleus are also given in table 3.

The transitions along the yrast band directly reflect the structural changes of the total
wavefunction in the band crossing region. Indeed, investigating the theoretical points from
figure 9, one notes that at the first band crossing only one transition is sizably hindered. This
indicates the fact that the interaction of the g-band with the neutron S-band is weak such that
the transition from 0qp to the 2qp nature is very sudden, taking place in the interval of no
more than 2 units of total angular momentum. This behavior is also found in the experimental
data; although in the case of the 156Er nucleus, the minimum calculated transition is somehow
shifted to the next transition in respect to experimental results. The situation at the second band
crossing is essentially different because in this case both model states are of the quasiparticle
nature which enforces the interband interaction leading to a less visible decrease of the
transition probability with an extended minimum in the band-crossing region. Looking at
the experimental values, especially those before the first band crossing, we observe some
significant deviations from the rigid rotor behavior. The largest deviations are obtained in the
case of the 156Er nucleus. Judging by the moderately small values of the nuclear deformation
β2 and of the obtained values for the deformation parameter d, it is not surprising that 156Er
deviates the most from the perfect rigid rotor case. The large discrepancy at the low spins
between the experimental data and the predicted rigid rotor behavior could also be due to
the fact that these nuclei are relatively sensitive to the shape fluctuations. This is, in fact,
consistent with the previous comment about the γ softness of these nuclei. The oscillation
of the transition probabilities before the first band crossing, although not yet well understood
from the phenomenological point of view, is well reproduced by the theoretical results. Indeed,
even the unusual parabolic dependence on the angular momentum of the B(E2) values before
the first band crossing in the 158Er and 160Yb nuclei is simulated quite well by the model
predictions.

Another feature which deserves attention consists of that the parameters q1 and q2 for
156Er and 158Er are quite different. One reason was already mentioned, namely that the two
isotopes have different deformation, which makes 158Er be closer to the rotor behavior. Another
reason might be the fact that 156Er reaches the conditions of a critical point of the shape phase
transition U (5) → O(6) exhibiting a E(5) symmetry which results in having a discontinuity in
the strength parameters of the transition operator. Indeed, the ratios of the excitation energies
E4+/E2+ for the two isotopes are 2.315 and 2.743, respectively, which have to be compared with
the E(5) limit that amounts of 2.2. Therefore, a smooth behavior of the q1 and q2 parameters
in the isotopic chain of Er isotopes is expected to be broken at 158Er, which is close to the
critical point of the shape phase transition.

4.5. Gyromagnetic factor

The magnetic dipole moment of the particle–core system is defined as
!µ = gc !Jc + g f !Jf ≡ gJ !J, (4.11)

where gc and g f denote the gyromagnetic factors of the core and fermionic subsystems,
respectively. The structure of the total wavefunction is reflected by the total gyromagnetic
factor gJ :

gJ = gc + g f − gc

2

[
1 + J̃ f (J̃ f + 1) − J̃c(J̃c + 1)

J(J + 1)

]
. (4.12)

For the core gyromagnetic factor, one takes the rotational value

gc = Zc

Ac
, (4.13)
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given in units of nuclear magneton µN , where Zc and Ac are the nuclear charge and the mass
number of the core:

Zc = Z − 2
〈
Nπh11/2

pair

〉
, (4.14)

Ac = A − 2
〈
Nνi13/2

pair

〉
− 2

〈
Nπh11/2

pair

〉
, (4.15)

with the expected number of neutron and proton pairs determined from the BCS equations
and given in table 2.

As for the fermionic gyromagnetic factor, it is obtained from the following decomposition
of the fermionic magnetic moment:

!µ f = g f !Jf = gn !Jn + gp !Jp, (4.16)

which gives an expression for g f in terms of J̃n, J̃p and J̃ f similar to (4.12):

g f = gp + gn − gp

2

[
1 + J̃n(J̃n + 1) − J̃p(J̃p + 1)

J̃ f (J̃ f + 1)

]
. (4.17)

Knowing that the intruder neutrons are from the i13/2 orbital, and the intruder protons are from
the h11/2 orbital, one obtains the following values for the proton and neutron gyromagnetic
factors:

gn = g(n)
l +

(
g(n)

s − g(n)
l

)
/13 = gs

13
= −0.22µN, (4.18)

gp = g(p)
l +

(
g(p)

s − g(p)
l

)
/11 = 1.29µN . (4.19)

For the above calculation, we used the free value of gl while for gs the free values were
quenched by the factor 0.75, which accounts for the nuclear medium effect [45]:

gn
l = 0, gp

l = 1 µN, gn
s = −3.8256 × 0.75 µN, gp

s = 5.5855 × 0.75 µN . (4.20)

The total gyromagnetic factor is plotted in figure 10 as a function of the total angular momentum
J. Its change in the behavior reflects the transition from states of different nature. Before the
first band crossing, its value is almost constant and close to the rotational limit, although
slightly overestimated. Of course, even if the nature of the g-band is collective, it is far from
being perfectly rotational as it is suggested by the small values of the deformations d and β2

from table 1. Indeed, it can be seen from figure 10 that the departure of the gyromagnetic factor
from its rotational limit Z/A before the first band crossing is bigger for 156Er and 162Hf nuclei,
which turn out to be the less deformed ones. At the first band crossing, the gyromagnetic
factor has a sudden fall down, reaching very small values where the total magnetic moment
almost vanishes. This discontinuity marks the change of the yrast band from a 0qp to a 2qp
neutron character. The fall of gJ at the first band crossing is due to the negative value of the
neutron gyromagnetic factor coming from the decoupled neutron pair. After the first band
crossing, the rotation of the core starts to dominate and the gyromagnetic factor increases
almost linearly with J. This trend keeps up to the second band crossing where the ascendant
slope becomes bigger due to the positive value of the proton gyromagnetic factor coming from
the proton broken pair. The second band crossing is reflected in an inflexion point of gJ as a
function of J. This is consistent to the slowness of the consequent breaking of the proton pair
which does not offer a jump like in the case of the first band crossing. The growth of the gJ

persists only for a few states and then it comes to a saturation in the vicinity of the rotational
limit value. As a matter of fact, the mentioned plateau begins at the spin where the second
backbending ends. Few remarks are necessary regarding the comparison of calculation results
with the experimental values of the gyromagnetic factor. Leaving aside the nuclei 156Er and
162Hf where relevant experimental data are lacking, the other two reproduce quite well the
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Figure 10. Calculated gyromagnetic factor for yrast states (circles) given in units of nuclear
magneton is represented as a function of angular momentum. There are also visualized few
experimental values (squares) taken from [39–42] together with the rotational limit Z/A of the
gyromagnetic factor.

sudden fall of gJ at the first band crossing. An especially good agreement between theory and
experiment is obtained for 158Er where not only the discontinuity of the gyromagnetic factor
but also its absolute values are reproduced.

Before closing this section, we would like to comment on the obtained values of some
of the model parameters. First of all, one notes the linear dependence of the deformation
parameter d on the nuclear deformation β2. This property can be used to approximately
determine the deformation d for other nuclei from the rare earth region. The numerical values
of the deformation parameter d are in the range of values determined in [46, 47] for other
isotopes of the nuclei treated in this paper. This feature pleads in favor of both the CSM
formalism and the present approach. The other parameter that deserves a special attention
is the strength of the spin–spin interaction. Although such an interaction was already used
in connection to the backbending phenomena [21], here it brings an essentially different
contribution. First of all in [21], the spin–spin interaction was found to be repulsive while
in the present model it can be both attractive and repulsive. Indeed, the spin–spin interaction
matrix elements are going from negative to positive values in the 2qp and 4qp bands as well
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as in the corresponding non-diagonal matrix elements. The picture is opposite for negative
values of the strength C, as happens in the case of 162Hf. It is interesting to mention that the
second backbending in 162Hf is difficult to explain due to its unexpected sharpness. Indeed,
before the second backbending was experimentally observed in 162Hf, the CHFB calculations
predicted for this nucleus a small up-bending or even no backbending [48]. As a matter of fact
in our approach, the reproduction of the second backbending in this nucleus was possible only
by choosing a negative value for the spin–spin strength C. This feature proves the importance
of the spin–spin interaction in explaining the backbending phenomenon which thus appears
to be the result of an interplay between the Coriolis-like force and the Qq interaction.

5. Conclusions

The present model provides a consistent explanation for the pair-breaking process in connection
with the rotational alignment of the angular momenta involved in the system. Using simple
arguments, one determines the critical angular momentum J where the pair breaking takes
place. While the neutron pair breaking takes place at J = 10 or 12, one cannot accurately say
at what angular momentum the proton pair is broken because at high spin states the crossing
bands interact within a larger interval. This is suggesting that the proton pair breaking is a
slower process than the neutron pair breaking.

Concerning the rotational alignment, it is found that the proton and neutron angular
momenta first align to each other and only after that they align to the core angular momentum.
The full alignment between the fermionic and the core angular momenta cannot be achieved
due to the intrinsic properties of the higher spin states which are of the K = 1 and K = 2
nature. However, strong alignments are obtained at the band crossing critical angular momenta.
Another interesting result of the present approach is that the rotational alignment lessens after
the second backbending, which is pointing to the fact that the 2qp and 4qp bands still interact
even after the band crossing.

The first backbending manifests itself in the gyromagnetic factor plot by a big fall down
of gJ . By contradistinction, the second backbending is reflected by an inflexion point in the
above-mentioned plot.

The effect brought by each term of the model Hamiltonian on the spectrum in the region
of the band crossing is in extenso analyzed. In this way, the free parameters acquire a well-
established significance.

Over time, various versions of angular momentum projection have been used with the aim
of describing the backbending phenomena [8–12, 14, 18–21].

What distinguishes our model from the others? First of all the three components of
neutrons, protons and the core are described by deformed wavefunctions. Moreover, the mean
fields of neutrons and of protons are derived from the particle–core coupling term and thereby
the three components have similar deformation properties. The total wavefunction describing
the nucleus in the laboratory reference frame is obtained by the angular momentum projection
procedure from the product of the mentioned three deformed functions, which is not an easy
task. We suspect that due to the specific construction, the wavefunction has a complex structure
that allows us to quantitatively describe the spectra in the region of the two backbendings.
The accuracy of description is reflected not only in the backbending plot but also by transition
probabilities (figure 9) and gyromagnetic factors (figure 10).

Note that the core is described by projecting out the angular momentum from a coherent
state and by an anharmonic boson Hamiltonian. Therefore, the core moment of inertia is not
constant but depends on the angular momentum. In this context, we could assert that our model
is on a par with those particle–core approaches using a variable moment of inertia.
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As a final conclusion, one can say that the present formalism is able to quantitatively
describe the double backbending phenomenon. Moreover, a consistent qualitative explanation
of the combined contribution of the pair breaking and rotational alignment to the backbending
phenomenon is provided.
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[10] Grümmer F, Schmid K W and Faessler A 1975 Nucl. Phys. A 239 289
[11] Lee I Y et al 1977 Phys. Rev. Lett. 38 1454
[12] Faessler A and Ploszajczak M 1978 Phys. Lett. B 76 1
[13] Bryski T et al 1981 Phys. Lett. B 102 235
[14] Ploszajczak M and Faessler A 1982 Nucl. Phys. A 379 77
[15] Riley M A et al 1984 Phys. Lett. B 135 275
[16] Holzmann R et al 1983 Phys. Rev. Lett. 50 1834
[17] Hara K and Sun Y 1991 Nucl Phys. A 529 445
[18] Li Z Y et al 2008 Phys. Rev. C 77 064323
[19] Sun Y and Egido J L 1994 Nucl. Phys. A 580 1
[20] Jungclaus A et al 2002 Phys. Rev. C 66 014312
[21] Ikeda A and Onishi N 1983 Prog. Theor. Phys. 70 128
[22] Bes D, Broglia R A, Maglione E and Vitturi A 1983 Phys. Scr. 28 527
[23] Iachello F and Vretenar D 1991 Phys. Rev. C 43 R945
[24] Hess P O, Maruhn J and Greiner W 1981 J. Phys. G: Nucl. Phys. 7 737
[25] Gneuss G, Mosel U and Greiner W 1969 Phys. Lett. B 30 397
[26] Gneuss G and Greiner W 1971 Nucl. Phys. 171 449
[27] Raduta A A and Budaca R 2011 Phys. Rev. C 84 044323
[28] Raduta A A, Ceausescu V, Gheorghe A and Dreizler R M 1982 Nucl. Phys. A 381 253
[29] Cwiok S et al 1980 Nucl. Phys. A 333 139
[30] Hill D L and Wheeler J A 1953 Phys. Rev. 89 1102
[31] Kelemen A and Dreizler R M 1976 Z. Phys. A 278 269
[32] Hamermesh N 1962 Group Theory and Its Application to Physical Problems (New York: Dover)
[33] Rose M E 1957 Elementary Theory of Angular Momentum (New York: Wiley)
[34] Nilsson S G et al 1969 Nucl. Phys. A 131 1
[35] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer) p 76
[36] Raduta A A, Escuderos A and Moya de Guerra E 2002 Phys. Rev. C 65 024312
[37] Raduta A A, Escuderos A, Faessler A, Moya de Guerra E and Sarriguren P 2004 Phys. Rev. C 69 064321
[38] Lalazissis G A and Raman S 1999 At. Data Nucl. Data Tables 71 140
[39] Reich C W 2003 Nucl. Data Sheets 99 753
[40] Helmer R G 2004 Nucl. Data Sheets 101 325
[41] Reich C W 2005 Nucl. Data Sheets 105 557
[42] Reich C W 2007 Nucl. Data Sheets 108 1807
[43] Iachello F and Arima A 1987 The Interacting Boson Approximation Model (Cambridge: Cambridge University

Press)

25

http://dx.doi.org/10.1016/0370-2693(71)90150-X
http://dx.doi.org/10.1016/0375-9474(72)90658-6
http://dx.doi.org/10.1103/PhysRevLett.5.511
http://dx.doi.org/10.1016/0370-2693(74)90672-8
http://dx.doi.org/10.1016/0370-2693(75)90002-7
http://dx.doi.org/10.1016/0375-9474(79)90322-1
http://dx.doi.org/10.1016/0375-9474(76)90097-X
http://dx.doi.org/10.1016/0370-2693(78)90508-7
http://dx.doi.org/10.1016/0375-9474(75)90452-2
http://dx.doi.org/10.1103/PhysRevLett.38.1454
http://dx.doi.org/10.1016/0370-2693(78)90083-7
http://dx.doi.org/10.1016/0370-2693(81)90865-0
http://dx.doi.org/10.1016/0375-9474(82)90557-7
http://dx.doi.org/10.1016/0370-2693(84)90390-3
http://dx.doi.org/10.1103/PhysRevLett.50.1834
http://dx.doi.org/10.1016/0375-9474(91)90580-Y
http://dx.doi.org/10.1103/PhysRevC.77.064323
http://dx.doi.org/10.1016/0375-9474(94)90811-7
http://dx.doi.org/10.1103/PhysRevC.66.014312
http://dx.doi.org/10.1143/PTP.70.128
http://dx.doi.org/10.1088/0031-8949/28/5/004
http://dx.doi.org/10.1103/PhysRevC.43.R945
http://dx.doi.org/10.1088/0305-4616/7/6/009
http://dx.doi.org/10.1016/0375-9474(71)90596-3
http://dx.doi.org/10.1103/PhysRevC.84.044323
http://dx.doi.org/10.1016/0375-9474(82)90143-9
http://dx.doi.org/10.1016/0375-9474(80)90019-6
http://dx.doi.org/10.1007/BF01409178
http://dx.doi.org/10.1016/0375-9474(69)90809-4
http://dx.doi.org/10.1007/978-3-642-61852-9
http://dx.doi.org/10.1006/adnd.1998.0795
http://dx.doi.org/10.1006/ndsh.2003.0013
http://dx.doi.org/10.1016/j.nds.2004.02.001
http://dx.doi.org/10.1016/j.nds.2005.08.001
http://dx.doi.org/10.1016/j.nds.2007.07.002
http://dx.doi.org/10.1017/CBO9780511895517


J. Phys. G: Nucl. Part. Phys. 40 (2013) 025109 R Budaca and A A Raduta

[44] Iachello F 2000 Phys. Rev. Lett. 85 3580
[45] Castel B and Towner I S 1990 Modern Theories of Nuclear Moments (Oxford: Clarendon)
[46] Raduta A A, Budaca R and Faessler A 2010 J. Phys. G: Nucl. Part. Phys. 37 085108
[47] Raduta A A, Budaca R and Faessler A 2012 Ann. Phys. 327 671
[48] Faessler A and Ploszajczak M 1980 Phys. Rev. C 22 2609
[49] Raduta A A, Sabac C and Stoica S 1982 Rev. Roum. Phys. 27 897
[50] Raduta A A, Ceausescu V and Gheorghe A 1978 Nucl. Phys. A 311 118

26

http://dx.doi.org/10.1088/0954-3899/37/8/085108
http://dx.doi.org/10.1016/j.aop.2011.10.004
http://dx.doi.org/10.1103/PhysRevC.22.2609
http://dx.doi.org/10.1016/0375-9474(78)90505-5

	1. Introduction
	2. The model Hamiltonian and a particle–core product basis
	3. transition probabilities
	4. Numerical application and discussions
	4.1. Parameters
	4.2. Energies
	4.3. Angular momentum alignment
	4.4. Electric quadrupole transitions
	4.5. Gyromagnetic factor

	5. Conclusions
	Acknowledgments
	References

