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Abstract. A semi-microscopic model to study the double backbending phenomenon in
some deformed even-even nuclei from the rare earth region is proposed. The backbending
phenomena are described by mixing four rotational bands, defined by a set of angular mo-
mentum projected states with a specific single-particle factor, and a model Hamiltonian
describing a set of paired particles moving in a deformed mean field and interacting with
a phenomenological deformed core. Due to the specific construction, the wave function
acquires a complex structure which allows a quantitative description of the yrast states in
the region of the two backbendings.

1 Introduction

The intersection of the ground band with a quasiparticle band built upon one or few broken pairs from
a high angular momentum orbital causes an anomalous behavior of the moment of inertia in the yrast
band known as backbending. In the rare earth region the first broken pair is from the neutron intruder
orbital 1i13/2. The backbending is a relatively widespread phenomenon within the rare earth region,
but only very few nuclei exhibit a second anomaly in the moment of inertia which is regarded as being
caused by a successive breaking of a 1h11/2 proton pair. Here we present a simple semi-microscopic
model for the simultaneous description of the proton- and neutron-induced backbending phenomena
which are the results of the mixing between the ground band and decoupled 2qp and 4qp bands.

2 The theoretical model

The particle-core system is studied using the Hamiltonian H = Hc + Hsp + Hpair + Hpc [1]. The core
Hamiltonian Hc is a harmonic quadrupole boson operator:

Hc = ωb
0N̂ + ωb

1N̂2, where N̂ =
∑
µ

b†2µb2µ, (1)
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described by a phenomenological quadrupole coherent state ψc = ed
(
b†20−b20

)
|0〉b [2]. As for the single-

particle Hamiltonian Hsp, this is a sum of two spherical shell model terms corresponding to intruder
neutrons and protons. The alike nucleons interact among themselves also through a pairing force.

The particle-core interaction consists of two terms Hpc = HqQ + HJ f Jc [3]:

HqQ = −AC

∑
i=ν,π

∑
µ,mim′i

〈nili jimi|r2Y2µ|nili jim′i〉c
†

nili jimi
cnili jim′i

[
(−)µb†2−µ + b2µ

]
, (2)

HJ f Jc = C ~J f · ~Jc, with ~J f = ~Jn + ~Jp.

The mean field is defined by averaging H̃(= Hsp + HqQ) with the coherent state for the boson
operators. In the first order of perturbation, its energies are given by

εnl jm = εnl j − 4dXC(2n + 3)C j 2 j
1
2 0 1

2
C j 2 j

m0m, with XC =

√
5~AC

8
√
πMω0

. (3)

The sum of the mean field term and the pairing interaction for alike nucleons is then treated within the
BCS formalism. The results of the BCS calculation corresponding to the neutron and proton intruder
orbitals completely determine the single-particle factor state of the restricted particle-core space of
angular momentum projected states with 0qp, 2qp and 4qp which is defined by:

Ψ
(1)
JM = N

(1)
J PJ

M0|nBCS 〉d |pBCS 〉dψc,

Ψ
(2)
JM;1( jnν) = N

(2)
J1 ( jnν)PJ

M1

[
J+α

†

jnν
α†jn−ν|nBCS 〉d

]
|pBCS 〉dψc,

Ψ
(3)
JM;1( jpπ) = N

(3)
J1 ( jpπ)PJ

M1|nBCS 〉d
[
J+α

†

jpπ
α†jp−π

|pBCS 〉d
]
ψc,

Ψ
(4)
JM;2( jnν; jpπ) = N

(4)
J2 ( jnν; jpπ)PJ

M2

[
J+α

†

jnν
α†jn−ν|nBCS 〉d

] [
J+α

†

jpπ
α†jp−π

|pBCS 〉d
]
ψc. (4)

When applied on a K = 0 pair of quasiparticles, the operator J+ simulates the breaking of the cor-
responding pair which acquires a projection K = 1. The projection of the core coherent state is
completely described within the Coherent State Model [2]. While for angular momentum projection
of the many-body fermion states one used the procedure of Ref.[4] taking into account the fact that
Pauli principle restrains the maximal angular momentum of a given configuration to

Jmax
τ = Nτ j

pair

(
2 jτ − 2Nτ j

pair + 1
)
, (5)

where Nτ j
pair pairs of τ particles occupy the states of angular momentum jτ.

The set of projected states mentioned above is not orthogonal, but using the eigenvalues and the
eigenvectors of the overlap matrix one can construct an orthogonal basis [5]. The lowest eigenvalues
of the total Hamiltonian H in this orthogonal basis define the yrast band and the total wavefunction is
then given as an expansion in the same basis.

The quadrupole transition probabilities represent a very good test for the total wavefunctions cor-
responding to the yrast states. Here we suppose that the total transition is due to the core component of
the wavefunction, such that the E2 transition probabilities are calculated by truncating the transition
operator to the boson part [6],

Q2µ = q1α2µ + q2 (αα)2µ , (6)

where α2µ = 1
√

2

[
b†2µ + (−)µb2−µ

]
denotes the quadrupole collective coordinate. The microscopic

structure of the yrast states have however an indirect contribution through the single-particle factor
state.
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Figure 1. Backbending plots for 156Er, 158Er, 160Yb and 162Hf isotopes comparing theory (squares) with experi-
ment (circles). Experimental data are taken from [9].

3 Numerical results

Four rare earth even-even nuclei which present the second anomaly in the observed moments of inertia
are treated within the proposed model which involves seven parameters. Six of them, Gn, Gp, XC , C,
ωb

0 and ωb
1 are the structure coefficients defining the model Hamiltonian. The remaining parameter

d defines the coherent state ψc and plays the role of the deformation parameter. Its numerical values
happen to be in the range of values determined in [7, 8] for other isotopes of the nuclei treated here.

Using the calculated and measured energies of the yrast states one readily obtains the theoretical
and experimental backbending curves. From Figure 1 it is obvious that the double zigzag shape is
reproduced quite well for all four nuclei.

The transitions along the yrast band directly reflect the structural changes of the total wavefunc-
tion. In Figure 2 (left) one compares the theoretical predictions for B(E2) with available experimental
data [9] and the rigid rotor limit. From this figure one notes that at the first band crossing only one
transition is sizably hindered while the second backbending leads to a less visible minimum of the
transition probability in the corresponding band crossing region. This behavior is also found in the
total gyromagnetic factor represented in Figure 2 (right) as function of total angular momentum J.
Before the first band crossing it is almost constant and close to the rotational limit. Then it has a
sudden fall down at the transition between the 0qp and 2qp states caused by the negative value of the
neutron gyromagnetic factor coming from the decoupled neutron pair. After that, the rotation of the
core starts to dominate, leading to an almost linear increase with J which only changes its slope at the
second band crossing consistently with the slowness of the consequent breaking of the proton pair.
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Figure 2. Electromagnetic properties of the treated nuclei along the yrast band. The theoretical results are
compared with the available experimental data [9] for E2 probabilities (left) and gyromagnetic factors (right).

4 Conclusions

The present model provides a consistent explanation for the pair breaking process in connection with
the rotational alignment of the angular momenta involved in the system. Based on the energy spectrum
and the electromagnetic properties of the yrast states, one identified the major differences between the
neutron- and the proton-induced backbendings. The theoretical results suggest that the proton pair
breaking is a slower process than the neutron pair breaking.

The accuracy of description is reflected not only in the backbending plot but also by transition
probabilities and gyromagnetic factors. As a final conclusion, one can say that the present formalism
is able to quantitatively describe the double backbending phenomenon.
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