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Abstract
The eigenvalue equation associated with the Bohr–Mottelson Hamiltonian
is considered in the intrinsic reference frame and amended by replacing the
harmonic oscillator potential in the β variable with a sextic oscillator potential
with centrifugal barrier plus a periodic potential for the γ variable. After
the separation of variables, the β equation is quasi-exactly solved, while
the solutions for the γ equation are just the angular spheroidal functions.
An anharmonic transition operator is used to determine the reduced E2
transition probabilities. The formalism is conventionally called the sextic and
spheroidal approach (SSA) and applied for several X(5) candidate nuclei:
176,178,180,188,190Os, 150Nd, 170W, 156Dy and 166,168Hf. The SSA predictions
are in good agreement with the experimental data of the mentioned nuclei. The
comparison of the SSA results with those yielded by other models, such as
X(5) (Iachello 2001 Phys. Rev. Lett. 87 052502), infinite square well (Raduta
et al 2009 Nucl. Phys. A 819 46) and Davidson like potential (Raduta et al) for
the β, otherwise keeping the spheroidal functions for the γ , and the coherent
state model (Raduta et al 1981 Phys. Lett. B 99 444, Raduta et al 1982 Nucl.
Phys. A 381 253, Raduta et al 1987 Phys. Rev. C 36 2111, Raduta et al 1983
Z. Phys. A 313 69, Raduta et al 1997 Phys. Rev. C 55 1747, Raduta et al 2002
Phys. Rev. C 65 064322, Raduta and Sabac 1983 Ann. Phys., NY 148 1, Raduta
2004 Recent Research Developments in Nuclear Physics vol 1) respectively,
suggests that SSA represents a good approach to describe nuclei achieving the
critical point of the U(5)→SU(3) shape phase transition.

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the liquid drop model was developed [1], the quadrupole shape coordinates were widely
used by both phenomenological and microscopic formalisms to describe the basic properties

0954-3899/13/025108+29$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0954-3899/40/2/025108
mailto:raduta@nipne.ro
http://stacks.iop.org/JPhysG/40/025108


J. Phys. G: Nucl. Part. Phys. 40 (2013) 025108 A A Raduta and P Buganu

of nuclear systems. Based on these coordinates, one defines quadrupole boson operators in
terms of which model Hamiltonians and transition operators are defined. Since the original
spherical harmonic liquid drop model was able to describe only a small amount of data for
spherical nuclei, several improvements have been made. Thus, the Bohr–Mottelson model was
generalized by Faessler and Greiner [2] in order to describe the small oscillations around a
deformed shape which results in obtaining a flexible model, called vibration–rotation model,
suitable for the description of deformed nuclei. Later on [3], this picture was extended by
including anharmonicities as low-order invariant polynomials in the quadrupole coordinates.
With a suitable choice of the parameters involved in the model Hamiltonian, the equipotential
energy surface may exhibit several types of minima [4] such as spherical, deformed prolate,
deformed oblate, deformed triaxial, etc. To each equilibrium shape, specific properties for
excitation energies and electromagnetic transition probabilities show up. Due to this reason,
one customarily says that static values of intrinsic coordinates determine a phase for the nuclear
system. The boson description with a complex anharmonic Hamiltonian makes use of a large
number of structure parameters which are to be fitted. A smaller number of parameters are
used by the coherent state model (CSM) [5] which uses a restricted collective space generated
through angular momentum projection by three deformed orthogonal functions of coherent
type. The model is able to describe in a realistic fashion transitional and well-deformed nuclei
of various shapes including states of high and very high angular momenta. Various extensions
to include other degrees of freedom such as isospin [6], single particle [7] or octupole [8, 9]
degrees of freedom have been formulated [10].

It has been noted that a given nuclear shape may be associated with a certain symmetry.
Hence, its properties may be described with the help of the irreducible representation of the
respective symmetry group. Thus, the gamma unstable nuclei can be described by the O(6)

symmetry [13], the gamma-rigid triaxial rotor by the D2 symmetry [14], the symmetric rotor
by the SU (3) symmetry and the spherical vibrator by the U (5) symmetry. Thus, even in the
1950s, the symmetry properties have been greatly appreciated. However, a big push forward
was brought by the interacting boson approximation (IBA) [15, 16], which succeeded to
describe the basic properties of a large number of nuclei in terms of the symmetries associated
with a system of quadrupole (d) and monopole (s) bosons which generate the U (6) algebra of
the IBA. The three limiting symmetries U (5), O(6) and SU (3) mentioned above in the context
of the collective model are also dynamic symmetries for U (6). Moreover, for each of these
symmetries a specific group reduction chain provides the quantum numbers characterizing
the states, which are suitable for a certain region of nuclei. Besides the virtue of unifying the
group theoretical descriptions of nuclei exhibiting different symmetries, the procedure defines
very simple reference pictures for the limiting cases. For nuclei lying close to the region
characterized by a certain symmetry, the perturbative corrections are to be included.

In [17, 18], it has been proved that on the U(5)–O(6) transition leg there exists a critical
point for a second-order phase transition, while the U(5)–SU(3) leg has a first-order phase
transition. Actually, the first-order phase transition takes place not only on the mentioned leg
of the Casten’s triangle, but covers all the interior of the triangle up to the second order [19].
Examples of such nuclei, falling inside the triangle, are the Os isotopes [20].

Recently, Iachello [21, 22] pointed out that these critical points correspond to distinct
symmetries, namely E(5) and X (5), respectively. For the critical value of an ordering
parameter, energies are given by the zeros of a Bessel function of half-integer and irrational
indices, respectively.

The description of low lying states in terms of Bessel functions was used first by Jean and
Willet [13], but the interesting feature saying that this is a critical picture in a phase transition
and defines a new symmetry was indeed advanced first in [21].
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Representatives for the two symmetries have been experimentally identified. To give
an example, the relevant data for 134Ba [23] and 152Sm [24] suggest that they are close to
the E(5) and X (5) symmetries, respectively. Another candidate for E(5) symmetry is 102Pd
[25, 27]. A systematic search for E(5) behavior in nuclei has been reported in [26].

In [30], we advanced the hypothesis that the critical point in a phase transition is state
dependent. We tested this with a hybrid model for 134Ba and 104Ru. A similar property of the
phase transition was investigated in the context of a schematic two-level model in [31, 32]. A
rigorous analysis of the characteristics of excited state quantum phase transitions is performed
in [33].

The departure from the γ unstable picture has been treated by several authors [28]
whose contributions are reviewed by Fortunato in [34]. The difficulty in treating the γ degree
of freedom consists in the fact that this variable is coupled to the rotation variables. A full
solution for the Bohr–Mottelson Hamiltonian including an explicit treatment of γ deformation
variable can be found in [35–39]. Therein, we treated separately also the γ unstable and the
rotor Hamiltonian. A more complete study of the rotor Hamiltonian and the distinct phases
associated with a tilted moving rotor is given in [40].

The treatment of the γ variable becomes even more complicated when we add to the
liquid drop Hamiltonian a potential depending on β and γ at a time. To simplify the starting
problem related to the inclusion of the γ variable, one uses model potentials which are sums
of a beta and a γ depending potentials. In this way, the nice feature for the beta variable
to be decoupled from the remaining four variables, specific to the harmonic liquid drop, is
preserved. Further, the potential in γ is expanded either around to γ = 0 or around γ = π

6 . In
the first case, if only the singular term is retained, one obtains the infinite square well (ISW)
model described by Bessel functions in gamma. If the γ 2 term is added to this term, then the
Laguerre functions are the eigenstates of the approximated gamma depending Hamiltonian,
which results in defining the functions characterizing the X(5) approach.

The drawback of these approximation consists in that the resulting γ depending functions
are not periodic as the starting Hamiltonian is. Moreover, they are orthonormalized on unbound
intervals although the underlying equation was derived under the condition of |γ | small. The
scalar product of the space of the resulting functions is not defined based on the measure
| sin 3γ |dγ as happens in the liquid drop model. Under these circumstances it happens that the
approximated Hamiltonian in γ looses its hermiticity.

In some earlier publications [41, 42], we proposed a scheme where the gamma variable
is described by a solvable Hamiltonian whose eigenstates are spheroidal functions which are
periodic. Here, we give details about the calculations and describe some new numerical
applications. Moreover, the formalism was completed by treating the β variable by a
Schrödinger equation associated with the Davidson potential. Alternatively, we considered the
equation for a five-dimensional square well potential. We have shown that the new treatment of
the gamma variable removes the drawbacks mentioned above and moreover brings a substantial
improvement of the numerical analysis.

Here, we keep the description of the gamma variable by spheroidal functions and use a
new potential for the beta variable which seems to be more suitable for a realistic description
of more complex spectra. We call this approach as sextic and spheroidal approach (SSA). The
potential is that of a sextic oscillator plus a centrifugal term which leads to a quasi-exactly
solvable model. The resulting formalism will be applied to ten nuclei which were not included
in our previous descriptions and moreover are suspected to be good candidate for exhibiting
X (5) features having the ratio of excitation energies of the ground band members 4+ and 2+

close to the value of 2.9. The results of our calculations are compared with those obtained
through other methods such as the ISW, D and CSM.

3



J. Phys. G: Nucl. Part. Phys. 40 (2013) 025108 A A Raduta and P Buganu

The goals presented in the previous section will be developed according to the following
plan. In section 2, the main ingredients of the theoretical models X (5), ISW, D and SSA will
be briefly presented. The CSM is separately described in section 3. Numerical results are given
and commented in section 4, while the final conclusions are drawn in section 5.

2. The separation of variables and solutions

In order to describe the critical nuclei of the U(5)–SU(3) shape phase transition, we resort the
Bohr–Mottelson Hamiltonian with a potential depending on both the β and γ variables:

Hψ(β, γ ,%) = Eψ(β, γ ,%), (2.1)

where

H =− !2

2B

[
1
β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4β2

3∑

k=1

Q̂2
k

sin2 (
γ − 2π

3 k
)

]

+ V (β, γ ).

(2.2)

Here, β and γ are the intrinsic deformation variables, % denotes the Euler angles θ1, θ2 and
θ3, Q̂k are the angular momentum components in the intrinsic reference frame, while B is the
so-called mass parameter.

2.1. The separation of variables

To achieve the separation of variables in equation (2.1), some approximations are necessary.
Choosing the potential energy in the form [13, 34]

V (β, γ ) = V1(β) + V2(γ )

β2
, (2.3)

the β variable is separated from the γ and the Euler angles %, which are still coupled due to
the rotational term:

W = 1
4

3∑

k=1

Q̂2
k

sin2 (
γ − 2π

3 k
) . (2.4)

Furthermore, the γ is separated from the Euler angles by using the second-order power
expansion of the rotational term around the equilibrium value γ0 = 00 (see equation (B.5)
from [42]):

W ≈ 1
3

Q̂2 +
(

1

4 sin2 γ
− 1

3

)
Q̂2

3 + 2

2
√

3

(
Q̂2

2 − Q̂2
1

)
γ + 2

3

(
Q̂2 − Q̂2

3

)
γ 2 + O(γ 3), (2.5)

and then averaging the result with the Wigner function D(L)
M,K :

〈W 〉 = 1
3

L(L + 1) +
(

1

4 sin2 γ
− 1

3

)
K2 + 2

3
[L(L + 1) − K2]γ 2. (2.6)

The term L(L + 1)/3 multiplied by 1/β2 is transferred to the equation for β,
[
− 1

β4

∂

∂β
β4 ∂

∂β
+ L(L + 1)

3β2
+ v1(β)

]
f (β) = εβ f (β), (2.7)

while the sum of remaining terms, denoted with Ṽ (γ , L, K), is kept in the equation for γ :
[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ Ṽ (γ , L, K) + v2(γ )

]
η(γ ) = ε̃γ η(γ ). (2.8)
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In equations (2.7) and (2.8), the following notations were used:

v1(β) = 2B
!2

V1(β), v2(γ ) = 2B
!2

V2(γ ), εβ = 2B
!2

Eβ, ε̃γ = 〈β2〉2B
!2

Eγ . (2.9)

Equations (2.7) and (2.8) are to be separately solved and finally the full solution of
equation (2.1) is obtained by combining the contributions coming from each variable. In
what follows, we shall give the necessary details for solving the above-mentioned equations.

2.2. Solutions of the β equation

Solutions of the β equation, corresponding to different potentials, were considered by several
authors [34, 43]. Here, we mention only three of them, namely the ISW, the Davidson and the
sextic potentials. Details about how to solve the β equation for these potentials can be found
in [42, 44].

2.2.1. The infinite square well potential. The solution of the β equation with an ISW
potential, having the expression

v1(β) =
{

0, β ! βω

∞, β > βω

, (2.10)

was first time given in [13] and then in [21, 22] for E(5) and X(5) models. The β wavefunctions
are written in terms of the Bessel functions of half-integer [21] and irrational indices [22],
respectively. The solution for X(5) is

fs,L(β) = Cs,Lβ
− 3

2 Jν

(
xs,L

βω

β

)
, ν =

√
L(L + 1)

3
+ 9

4
, s = 1, 2, 3, . . . . (2.11)

Here, Cs,L is the normalization factor, which is determined from the condition
∫ βω

0
( fs,L(β))2β4 dβ = 1. (2.12)

The corresponding eigenvalues are given in terms of the Bessel zeros xs,L:

Eβ (s, L) = !2

2B

(
xs,L

βω

)2

. (2.13)

2.2.2. The Davidson potential. Choosing in equation (2.7) a Davidson potential [29] of the
form

v1(β) = β2 +
β4

0

β2
, (2.14)

solutions are the generalized Laguerre polynomials:

fnβ ,mβ
(β) =

√
2nβ!

,(nβ + mβ + 1)
Lmβ

nβ
(β2)βmβ− 3

2 e− β2

2 , mβ =
√

L(L + 1)

3
+ 9

4
+ β4

0 . (2.15)

The wavefunctions, fnβ ,mβ
(β), are normalized to unity with the integration measure β4 dβ.

Energies have the following expression:

Eβ (nβ, L) = !2

2B

(

2nβ + 1 +
√

L(L + 1)

3
+ 9

4
+ β4

0

)

, nβ = 0, 1, 2, . . . , nβ = s − 1.

(2.16)
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2.2.3. The sextic oscillator potential with a centrifugal barrier. The solution of the β

equation with a sextic potential, for critical nuclei of the U(5)→SU(3) shape phase transition,
was obtained by taking into consideration the solution of the Schrödinger equation with a
sextic potential given in [45] and applied to the E(5) like nuclei in [46] and to the triaxial
nuclei in [44].

In order to reduce the β equation to the Schrödinger equation with a sextic potential [45],
we rewrite the averaged rotational term, given by equation (2.6), in the following form:

〈W 〉 = [L(L + 1) − 2] +
[

2 − 2
3

L(L + 1)

]
+

(
1

4 sin2 γ
− 1

3

)
K2 + 2

3
[L(L + 1) − K2]γ 2.

(2.17)

As already mentioned, the first term of the above equation is added to the β equation, while
the other terms remain in the γ equation. Making the substitution f (β) = β−2ϕ(β), we have

[
− ∂2

∂β2
+ L(L + 1)

β2
+ v1(β)

]
ϕ(β) = εβϕ(β). (2.18)

The sextic potential is chosen such that to obtain the description from [44]:

v±
1 (β) = (b2 − 4ac±)β2 + 2abβ4 + a2β6 + u±

0 , c± = L
2

+ 5
4

+ M. (2.19)

Here, c is a constant which has two different values, one for L even and other for L odd:

(M, L) : (k, 0); (k − 1, 2); (k − 2, 4); (k − 3, 6) . . . ⇒ c = k + 5
4 ≡ c+(L-even), (2.20)

(M, L) : (k, 1); (k − 1, 3); (k − 2, 5); (k − 3, 7) . . . ⇒ c = k + 7
4 ≡ c−(L-odd). (2.21)

The constants u±
0 are fixed such that the potential for L odd has the same minimum energy

as the potential for L even. The solutions of equation (2.18), with the potential given by
equation (2.19), are

ϕ(M)
nβ ,L(β) = Nnβ ,LP(M)

nβ ,L(β2)βL+1 e− a
4 β4− b

2 β2
, nβ = 0, 1, 2, . . . M, (2.22)

where Nnβ ,L are the normalization factor, while P(M)
nβ ,L(β2) are polynomials in x2 of nβ order.

The corresponding excitation energy is

Eβ (nβ, L) = !2

2B

[
b(2L + 3) + λ(M)

nβ
(L) + u±

0

]
, nβ = 0, 1, 2, . . . , M, (2.23)

where λ(M)
nβ

= εβ − u±
0 − 4bs is the eigenvalue of the equation:

[
−

(
∂2

∂β2
+ 4s − 1

β

∂

∂β

)
+ 2bβ

∂

∂β
+ 2aβ2

(
β

∂

∂β
− 2M

)]
P(M)

nβ ,L(β2) = λ(M)
nβ

P(M)
nβ ,L(β2).

(2.24)

2.3. Solutions of the γ equation

2.3.1. The X(5) model. Within the X(5)model [22], devoted to the description of the critical
point in the phase transition SU (5) → SU (3), the potential is a sum of an ISW in the β

variable and a harmonic oscillator in the γ variable. For the rotational term and the other terms
of the γ equation, the first-order Taylor expansion around γ0 = 00 is considered, which results
in obtaining for the γ variable the radial equation of a two-dimensional oscillator with the
solution

ηnγ ,K (γ ) = Cn,Kγ |K/2| e−(3a)γ 2/2L|K|
n (3aγ 2), n =

(
nγ − |K|

2

)
, (2.25)
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Table 1. The fitted values of the parameters involved in the expressions of the energies and transition
probabilities of the X(5) model are given for each considered nucleus.

X(5) 176Os 178Os 180Os 188Os 190Os 150Nd 156Dy 166Hf 168Hf 170W

B1 (keV) 18.08 18.13 18.79 25.56 26.92 17.77 17.02 23.46 20.14 20.68
X (keV) 822.28 818.68 880.10 452.71 438.53 966.50 950.46 698.15 770.26 799.14
t [W.u.]1/2 1.29 1.22 0.84 0.86 0.76 1.03 1.19 0.99 1.19 0.89
t′ [W.u.]1/2 – – – 0.92 1.19 0.49 0.81 – – –

where L|K|
n are the generalized Laguerre polynomials. The eigenvalue of the γ equation has

the following expression:

εγ = 3a
√

〈β2〉
(nγ + 1) − (K/2)2

〈β2〉
4
3
, (2.26)

where a is a parameter characterizing the oscillator potential in the γ variable. The total energy
and wavefunction are obtained by combining the results of all variables:

E(s, L, nγ , K) = E0 + B1(xs,L)2 + Anγ + CK2, (2.27)

/(β, γ ,%) = 1√
2(1 + δK.0)

fs,L(β)
[
ηnγ ,K (γ )DL

M,K (%) + (−1)L+Kηnγ ,−K (γ )DL
M,−K (%)

]
.

(2.28)

If the total energy (2.27) is normalized to the energy of the ground state, then we will have for
the ground band and for the first beta band the expression

E(s, L, 0, 0) − E(1, 0, 0, 0) = B1
(
x2

s,L − x2
1,0

)
, s = 1, 2; L = 0, 2, 4, 6, . . . , (2.29)

while for the first γ band

E(s, L, 1, 2) − E(1, 0, 0, 0) = B1
(
x2

1,L − x2
1,0

)
+ A + 4C, L = 2, 3, 4, 5, . . . . (2.30)

One notes that the parameters A and C give contribution only to the γ band energies, and that
these two parameters can be replaced with only one parameter, for example X = A + 4C. The
total energy for the ground band and for the first β and γ bands, normalized to the energy of
the ground state, can be written in the following form:

E(s, L, nγ , K) − E(1, 0, 0, 0) = B1
(
x2

s,L − x2
1,0

)
+ δK,2X. (2.31)

Further, the parameters B1 and X will be fitted by the least-squares procedure for each
considered nucleus.

2.3.2. The ISW model. Within the ISW model, employed in this paper, the β equation is
treated as in the X(5) model, using an ISW, while the γ equation is reduced to a spheroidal
equation. The ISW model was proposed by one of the authors (AAR) and his collaborators in
[41] and subsequently with more details and applications in [42]. Here, only the solutions will
be presented. The potential v2(γ ) was chosen such that a minimum in γ = 00 is achieved:

v2(γ ) = u1 cos 3γ + u2 cos2 3γ . (2.32)

This potential is renormalized by a contribution coming from the γ rotational term and
consequently an effective reduced potential for the γ variable results

ṽ2(γ ) = u1 cos 3γ + u2 cos2 3γ + 9

4 sin3 3γ
, (2.33)
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Table 2. The same as in table 1, but for the ISW model.

ISW 176Os 178Os 180Os 188Os 190Os 150Nd 156Dy 166Hf 168Hf 170W

B1 (keV) 14.30 14.54 13.21 25.50 21.83 14.68 11.43 23.31 19.12 14.87
F (keV) 24.24 23.19 44.66 0.69 36.73 28.88 45.99 1.69 11.30 41.12
u1 −159.24 −168.08 −36.729 −25 000 −4999.35 −152.35 −12.55 −10 000 −385.35 −44.36
u2 0 0 0 0 2560.22 0 0 0 0 0
t1 [W.u.]1/2 −52.91 473.53 3302.3 503.11 419.67 538.99 591.54 1881.39 1197.94 1827.11
t2 [W.u.]1/2 −4305.14 −1323.6 14 304.2 −241.19 −48.09 −387.08 −468.57 8242.45 2702.98 6436.57

Table 3. The same as in table 1, but for the D model.

D 176Os 178Os 180Os 188Os 190Os 150Nd 156Dy 166Hf 168Hf 170W

E (keV) 316.34 317.31 334.32 559.76 462.44 369.50 324.08 532.22 463.88 379.93
F (keV) 38.41 37.33 39.01 28.48 42.45 26.48 33.11 11.87 25.87 37.72
β0 1.64 1.56 1.61 1.98 1.64 1.71 1.45 1.79 2.02 1.63
u1 −55.48 −57.20 −52.40 −7.70 −4098.61 −168.78 −58.16 −320.01 −130.49 −54.50
u2 0 0 0 0 2167.18 0 0 0 0 0
t1 [W.u.]1/2 197.92 264.47 758.41 126.88 126.70 154.70 191.28 448.76 329.01 411.63
t2 [W.u.]1/2 −25.31 78.30 931.21 −17.09 −3.92 −25.31 −13.46 430.42 193.06 363.66
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Table 4. The same as in table 1, but for the SSA model.

SSA 176Os 178Os 180Os 188Os 190Os 150Nd 156Dy 166Hf 168Hf 170W

E (keV) 0.99 0.46 1.46 2.53 5.29 0.75 0.91 1.82 0.54 0.31
F (keV) 2.67 3.12 1.69 11.31 5.55 3.87 1.93 15.97 1.99 2.84
a 951.49 4466.56 600.70 644.98 111.79 2636.48 1248.40 1205.13 7897.62 13197.99
b 126 279 50 27 15.8 88 87 46 32 341
u1 −5607.45 −4048.06 −15 000 −215.19 −452.74 −3877.84 −10 000 −224.90 −9980.01 −4585.44
u2 0 0 0 0 0 0 0 0 0 0
t1 [W.u.]1/2 376.70 2260.6 8541.32 1033.43 675.12 1754.26 1882.91 4759.23 3463.05 8901.59
t2 [W.u.]1/2 −32 619.3 −22 343.8 117781 −1022.41 32.73 −6698.41 −4846.17 46 113.3 15 247.9 200 989

Table 5. The same as in table 1, but for the CSM model.

CSM 176Os 178Os 180Os 188Os 190Os 150Nd 156Dy 166Hf 168Hf 170W

A1 (keV) 17.03 17.26 16.51 10.25 9.063 19.219 15.45 14.87 16.04 16.19
A2 (keV) 4.33 4.32 5.19 14.40 15.68 3.467 5.2 7.13 6.40 6.018
A3 (keV) −395.96 −240.13 −7.39 101.362 6.84 −658.299 −559.913 −5.04 −61.47 −186.946
A4 (keV) −275.24 −158.87 13.83 0.0 0.0 −491.884 −398.775 0.0 −36.48 −124.55
A5 (keV) −4.93 30.76 80.01 0.0 0.0 −438.394 −32.15 0.0 0.0 0.0
d 2.33 2.36 2.26 2.35 2.05 2.42 2.1 2.08 2.43 2.14
q1 [W.u.]1/2 0.411 0.246 0.86 0.409 0.229 0.527 1.112 0.158 0.211 –0.217
q2 [W.u.]1/2 −3.698 −3.862 6.99 0.785 1.213 −4.916 −9.474 −5.075 −3.936 −5.602
q3 [W.u.]1/2 0.0 0.0 0.0 −5.222 −9.395 6.344 19.576 0.0 0.0 0.0
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Table 6. The energy spectra of the ground and first β and γ bands of the 176Os nucleus yielded
by the X(5), ISW, D, SSA and CSM models are compared with the corresponding experimental
data taken from [53]. The energies are given in keV units. The approach which describe best the
experimental data is mentioned in a box.

176Os Exp. X(5) ISW D SSA CSM

2+
g 135 126 115 125 125 135

4+
g 396 367 340 386 377 394

6+
g 743 686 647 746 723 742

8+
g 1158 1072 1026 1176 1143 1159

10+
g 1634 1520 1473 1661 1624 1631

12+
g 2168 2028 1986 2192 2157 2152

14+
g 2755 2593 2564 2764 2736 2718

16+
g 3382 3216 3205 3374 3354 3326

18+
g 4019 3894 3909 4017 4008 3973

20+
g 4683 4628 4673 4693 4695 4660

22+
g 5399 5417 5499 5399 5412 5385

24+
g 6147 6261 6385 6134 6157 6147

0+
β 601 714 565 633 498 601

2+
β 742 942 760 757 723 742

4+
β 1026 1351 1118 1019 1075 1032

6+
β 1432 1865 1578 1378 1511 1432

8+
β 2458 2121 1808 2011 1914

10+
β 3121 2738 2293 2565 2411

2+
γ 864 949 951 926 943 989

3+
γ 1038 1058 1056 1045 1053 1081

4+
γ 1224 1189 1184 1196 1195 1201

5+
γ 1410 1340 1333 1371 1345 1342

6+
γ 1509 1503 1568 1542 1511

7+
γ 1694 1691 1784 1719 1689

8+
γ 1895 1898 2016 1962 1900

9+
γ 2111 2124 2264 2161 2106

10+
γ 2343 2367 2525 2444 2354

rms (keV) 156 119 25 41 39

whose minima are shifted with respect to the v2(γ ) minima. This can be viewed as the reduced
potential of

Ṽ2 = !2

2B
ṽ2. (2.34)

Performing a second-order expansion in sin 3γ of v2(γ ) and of the terms originating from
the rotational term, i.e. 9

4 sin3 3γ
, and then making the change of variable x = cos 3γ in

equation (2.8), we obtain the equation for the spheroidal functions [42]:

[

(1 − x2)
∂2

∂x2
− 2x

∂

∂x
+ λmγ ,nγ

− c2x2 −
m2

γ

1 − x2

]

Smγ ,nγ
(x) = 0, (2.35)

10
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Table 7. The same as in table 6, but for 178Os. The experimental data are taken from [57].

178Os Exp. X(5) ISW D SSA CSM

2+
g 132 127 116 131 130 132

4+
g 399 368 342 402 388 389

6+
g 762 688 650 769 739 736

8+
g 1194 1075 1031 1203 1163 1152

10+
g 1682 1525 1479 1689 1647 1625

12+
g 2220 2033 1994 2220 2181 2147

14+
g 2805 2600 2572 2789 2758 2715

16+
g 3429 3224 3214 3395 3374 3325

18+
g 4020 3905 3918 4033 4025 3975

20+
g 4663 4641 4684 4701 4706 4664

22+
g 5382 5432 5510 5399 5415 5391

24+
g 6155 6278 6397 6125 6150 6155

0+
β 651 716 574 635 493 651

2+
β 771 944 771 766 730 771

4+
β 1023 1355 1133 1037 1092 1029

6+
β 1396 1870 1598 1403 1535 1396

8+
β 2464 2144 1838 2041 1850

10+
β 3129 2766 2324 2599 2374

2+
γ 864 945 947 916 936 999

3+
γ 1032 1055 1052 1041 1048 1091

4+
γ 1213 1187 1181 1195 1195 1211

5+
γ 1416 1338 1331 1375 1346 1350

6+
γ 1507 1501 1575 1546 1519

7+
γ 1692 1690 1793 1725 1696

8+
γ 1894 1898 2027 1971 1907

9+
γ 2111 2123 2275 2170 2113

10+
γ 2343 2367 2537 2455 2361

rms (keV) 170 141 22 61 54

where

λmγ ,nγ
= 1

9

[
ε̃γ − u1

2
− 11

27
D + 1

3
L(L + 1)

]
,

c2 = 1
9

(
u1

2
+ u2 − 2

27
D

)
,

mγ = K
2

, D = L(L + 1) − K2 − 2. (2.36)

From equation (2.36), we can determine the eigenvalue of the γ equation:

Eγ (nγ , mγ , L, K) = 1
〈β2〉

!2

2B

(
9λmγ ,nγ

(c) + u1

2
+ 11

27
D − L(L + 1)

3

)
. (2.37)

In equation (2.37), the term u1/2 is washed out when the total energy is normalized to the
ground state energy, which results in obtaining the γ eigenvalue depending on the sum of the
γ potential parameters, due to the term c2. Hence, in some cases we can set one parameter to
be equal to zero, for example u2, and consequently fit only u1. The γ functions are normalized
to unity with the integration measure | sin 3γ | dγ as the Bohr–Mottelson model requires

3(2nγ + 1)(nγ − mγ )!
2(nγ + mγ )!

∫ π
3

0
|Smγ ,nγ

(cos 3γ )|2| sin 3γ | dγ = 1. (2.38)

11
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Table 8. The same as in table 6, but for 180Os. The experimental data are taken from [58].

180Os Exp. X(5) ISW D SSA CSM

2+
g 132 131 124 133 125 147

4+
g 409 381 374 412 384 423

6+
g 795 713 723 792 748 792

8+
g 1257 1115 1163 1244 1196 1234

10+
g 1768 1580 1688 1752 1716 1735

12+
g 2309 2108 2297 2308 2299 2291

14+
g 2875 2695 2987 2906 2937 2897

0+
β 736 742 522 669 555 736

2+
β 831 979 720 802 774 831

4+
β 1053 1404 1093 1080 1137 1051

6+
β 1379 1938 1584 1460 1596 1379

8+
β 2554 2175 1912 2133 1799

10+
β 3243 2858 2421 2734 2299

2+
γ 870 1011 975 935 985 969

3+
γ 1023 1125 1090 1062 1100 1068

4+
γ 1197 1262 1233 1221 1245 1198

5+
γ 1406 1418 1402 1406 1402 1348

6+
γ 1627 1593 1596 1614 1609 1529

7+
γ 1881 1786 1813 1841 1797 1718

8+
γ 1995 2054 2084 2057 1944

9+
γ 2411 2220 2318 2344 2270 2164

10+
γ 2460 2604 2617 2577 2429

rms (keV) 194 96 38 92 35

The total energy is obtained by summing the contributions coming from the β (2.13) and the
γ (2.37) equations:

E(s, nγ , mγ , L, K) = B1x2
s,L + F

[
9λmγ ,nγ

(c) + u1

2
+ 11

27
D − L(L + 1)

3

]
, (2.39)

where the following notations were introduced:

B1 = 1
β2

ω

!2

2B
, F = 1

〈β2〉
!2

2B
. (2.40)

The total wavefunction is

/(β, γ ,%) = Cs,LCnγ ,mγ
CL,Kβ− 3

2 Jν

(
xs,L

βω

β

)
Smγ ,nγ

(cos 3γ )
[
DL

M,K (%) + (−1)LDL
M,−K (%)

]
,

(2.41)

where with Cnγ ,mγ
was denoted the normalization factor of the γ function, while CL,K is the

normalization factor of the Wigner function:

CL,K =
√

2L + 1
16π2(1 + δK,0)

. (2.42)

2.3.3. The D model. The D model was proposed by the present authors and collaborators in
[42] and differs from the ISW model by that the ISW potential for the β variable is replaced

12
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Table 9. The same as in table 6, but for 188Os. The experimental data are taken from [59].

188Os Exp. X(5) ISW D SSA CSM

2+
g 155 179 179 151 152 150

4+
g 478 519 519 479 476 468

6+
g 940 970 970 945 935 934

8+
g 1515 1516 1516 1512 1501 1535

10+
g 2170 2149 2150 2156 2154 2264

12+
g 2856 2867 2868 2860 2877 3116

0+
β 1086 1009 1007 1120 1063 1164

2+
β 1305 1331 1328 1270 1330 1305

4+
β 1910 1907 1599 1808 1621

6+
β 2636 2632 2064 2421 2096

8+
β 3474 3470 2632 3132 2717

10+
β 4412 4407 3276 3920 3475

2+
γ 633 631 631 627 641 665

3+
γ 790 786 785 773 791 790

4+
γ 966 972 971 959 969 956

5+
γ 1181 1185 1185 1180 1172 1157

6+
γ 1425 1423 1423 1432 1434 1399

7+
γ 1686 1685 1684 1709 1674 1669

8+
γ 1969 1969 2009 2008 1983

9+
γ 2275 2275 2329 2273 2318

10+
γ 2602 2603 2666 2670 2701

rms (keV) 27 27 16 13 36

with the Davidson potential (2.14). Hence, the total energy of the system is obtained by adding
the energy of the β equation with the Davidson potential given by equation (2.16) and the
energy of the γ equation (2.37):

E(nβ, nγ , mγ , L, K) = E

(

2nβ + 1 +
√

L(L + 1)

3
+ 9

4
+ β4

0

)

+ F
[

9λmβ ,nγ
(c) + u1

2
+ 11

27
D − L(L + 1)

3

]
, (2.43)

where E = !2/2B. The total wavefunction has the expression

/(β, γ ,%) = Cnβ ,LCnγ ,mγ
CL,K fnβ ,L(β)Smγ ,nγ

(cos 3γ )
[
DL

M,K (%) + (−1)LDL
M,−K (%)

]
, (2.44)

where Cnβ ,L is the normalization factor of fnβ ,L(β) given by equation (2.15).

2.3.4. The present approach. In the present approach, called conventionally the SSA, a
sextic potential (2.19) for the β variable is considered, while for the γ variable a periodic
potential (2.32) with a minimum at γ0 = 00. The β equation is quasi-exactly solved, having
the solutions given by equations (2.22) and (2.23), while the γ equation is reduced to the
spheroidal equation (2.35) with

λmγ ,nγ
= 1

9

[
ε̃γ − u1

2
− 11

27
D + 1

3
L(L + 1)

]
+ 2L(L + 1)

27
,

c2 = 1
9

(
u1

2
+ u2 − 2

27
D

)
,

mγ = K
2

, D = L(L + 1) − K2 − 2. (2.45)
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Table 10. The same as in table 6, but for 190Os. The experimental data are taken from [60].

190Os Exp. X(5) ISW D SSA CSM

2+
g 187 188 182 178 172 180

4+
g 548 547 541 551 531 531

6+
g 1050 1022 1034 1062 1034 1031

8+
g 1666 1597 1647 1672 1653 1670

10+
g 2357 2264 2373 2359 2367 2441

0+
β 912 1063 862 925 860 912

2+
β 1115 1402 1166 1103 1168 1072

4+
β 2012 1729 1476 1682 1417

6+
β 2777 2457 1987 2331 1925

8+
β 3659 3319 2596 3083 2582

10+
β 4647 4305 3283 3921 3380

2+
γ 558 627 594 583 593 618

3+
γ 756 789 756 750 754 756

4+
γ 955 985 955 957 954 939

5+
γ 1204 1210 1187 1199 1172 1156

6+
γ 1474 1461 1451 1469 1459 1419

7+
γ 1736 1745 1764 1718 1708

8+
γ 2090 2035 2067 2081 2080 2045

9+
γ 2358 2419 2417 2370 2401

10+
γ 2772 2702 2799 2770 2798 2810

rms (keV) 98 26 10 27 36

In equation (2.45), the term 2L(L + 1)/3 multiplied with 1/9 comes from the rotational
term (2.17). The expression for the total energy of the system is obtained by using
equations (2.23) and (2.45):

E(nβ, nγ , mγ , L, K) = E
[
b(2L + 3) + λ(M)

nβ
+ u±

0

]

+ F
[

9λmβ ,nγ
(c) + u1

2
+ 11

27
D − L(L + 1)

]
. (2.46)

The corresponding wavefunction is

/(β, γ ,%) = Nnβ ,LCnγ ,mγ
CL,Kβ−2ϕnβ ,L(β)Smγ ,nγ

(cos 3γ )
[
DL

M,K (%) + (−1)LDL
M,−K (%)

]
,

(2.47)

where ϕnβ ,L(β) is given by equation (2.22).

2.4. E2 transition probabilities

The reduced E2 transition probabilities are determined by

B(E2; Li → L f ) = |〈Li||T (E2)
2 ||L f 〉|2, (2.48)

where the Rose convention [47] was used. For the ISW, D and SSA models, in equation (2.48),
an anharmonic transition operator is used:

T (E2)
2µ = t1β

[
cos γ D2

µ0(%) + sin γ√
2

(D2
µ2(%) + D2

µ,−2(%))

]

+ t2

√
2
7
β2

[
− cos 2γ D2

µ0(%) + sin 2γ√
2

(D2
µ2(%) + D2

µ,−2(%))

]
. (2.49)
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Table 11. The same as in table 6, but for 150Nd. The experimental data are taken from [61].

150Nd Exp. X(5) ISW D SSA CSM

2+
g 130 124 121 124 111 130

4+
g 381 361 358 384 348 386

6+
g 720 675 682 738 683 734

8+
g 1130 1054 1084 1158 1098 1149

10+
g 1599 1494 1560 1625 1580 1618

12+
g 2119 1993 2106 2129 2118 2133

14+
g 2683 2549 2722 2664 2707 2688

0+
β 675 702 580 739 630 675

2+
β 851 926 783 863 822 852

4+
β 1138 1328 1157 1123 1158 1167

6+
β 1541 1833 1639 1477 1590 1541

8+
β 2415 2209 1897 2095 1931

10+
β 3067 2859 2364 2661 2319

2+
γ 1062 1091 1087 1076 1091 1101

3+
γ 1201 1198 1197 1195 1197 1191

4+
γ 1353 1327 1333 1345 1328 1310

5+
γ 1476 1491 1518 1474 1448

6+
γ 1641 1671 1713 1663 1615

7+
γ 1823 1872 1924 1838 1790

8+
γ 2020 2093 2151 2079 1998

9+
γ 2233 2334 2390 2276 2201

10+
γ 2461 2594 2641 2561 2445

rms (keV) 114 48 28 29 20

The parameters t1 and t2 will be determined by the least-squares method. For the X(5) model,
in the limit of γ -small, only the harmonic part of the transition operator (2.49) is used:

T (E2)
2µ,X (5) = tβD2

µ0(%) + tβ
γ√

2
(D2

µ2(%) + D2
µ,2(%)). (2.50)

The first term of equation (2.50) gives contributions only to +K = 0 transitions, while the
second term to +K = 2 transitions. For +K = 0 transitions, the matrix element of the γ

variable is reduced to the orthogonality condition, while for +K = 2 the γ matrix element
can be considered as an intrinsic transition matrix element. Finally, the reduced transition
probabilities will depend on two parameters [48]. Here, we will denote these two parameters
with t and t ′ for +K = 0 and +K = 2 transitions, respectively.

3. The coherent state model

The CSM defines [5] first a restricted collective space whose vectors are model states of
the ground, β and γ bands. In choosing these states, we were guided by some experimental
information which results in formulating a set of criteria to be fulfilled by the searched states.

All these restrictions required are fulfilled by the following set of three deformed
quadrupole boson states:

ψg = e[d(b†
0−b0 )]|0〉 ≡ T |0〉, ψγ = %†

γ ,2ψg, ψβ = %†
βψg, (3.1)
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Table 12. The same as in table 6, but for 156Dy. The experimental data are taken from [63].

156Dy Exp. X(5) ISW D SSA CSM

2+
g 138 119 114 140 131 168

4+
g 404 345 344 422 391 457

6+
g 770 646 668 796 745 829

8+
g 1216 1009 1079 1230 1175 1267

10+
g 1725 1431 1572 1712 1667 1761

12+
g 2286 1908 2145 2232 2151 2307

14+
g 2888 2440 2796 2787 2807 2899

0+
β 676 672 451 648 461 676

2+
β 829 886 629 788 703 829

4+
β 1088 1272 966 1070 1068 1102

6+
β 1437 1755 1413 1444 1515 1452

8+
β 1859 2313 1955 1878 2026 1859

10+
β 2316 2937 2584 2360 2593 2312

2+
γ 891 1069 898 839 928 921

3+
γ 1022 1172 1004 970 1041 1024

4+
γ 1168 1296 1136 1129 1188 1159

5+
γ 1336 1438 1292 1312 1339 1312

6+
γ 1525 1596 1472 1514 1542 1497

7+
γ 1729 1771 1674 1732 1720 1686

8+
γ 1959 1960 1899 1964 1972 1913

9+
γ 2192 2163 2145 2210 2171 2131

10+
γ 2448 2381 2413 2467 2464 2395

11+
γ 2712 2613 2702 2735 2680 2636

12+
γ 2997 2859 3013 3013 2949 2934

13+
γ 3274 3118 3345 3301 3240 3153

14+
γ 3391 3698 3600 3606 3526

15+
γ 3861 3677 4071 3908 3847 3805

rms (keV) 232 114 35 90 41

where the excitation operators for β and γ bands are defined by

%†
γ ,2 = (b†b†)2,2 + d

√
2
7

b†
2,2, %†

β = (b†b†b†)0 + 3d√
14

(b†b†)0 − d3

√
70

. (3.2)

Here, d is a real parameter simulating the nuclear deformation. From the three deformed states,
one generates through projection three sets of mutually orthogonal states

ϕi
JM = Ni

JPJ
M0ψi, i = g, β, γ , (3.3)

where PJ
MK denotes the projection operator:

PJ
MK = 2J + 1

8π2

∫
DJ∗

MKR̂(%) d%, (3.4)

Ni
J the normalization factors and DJ

MK the rotation matrix elements. The rotation operator
corresponding to the Euler angles % is denoted by R̂(%). It was proved that the deformed and
projected states contain the salient features of the major collective bands. Since we attempt to
set up a very simple model, we rely on the experimental feature saying that the β band is largely
decoupled from the ground as well as from the γ bands and choose a model Hamiltonian whose
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Table 13. The same as in table 6, but for 166Hf. The experimental data are taken from [64].

166Hf Exp. X(5) ISW D SSA CSM

2+
g 159 164 164 152 149 177

4+
g 470 476 476 471 458 488

6+
g 897 891 890 906 883 897

8+
g 1406 1391 1392 1415 1392 1385

10+
g 1972 1973 1975 1973 1966 1943

12+
g 2566 2631 2635 2566 2588 2568

0+
β 1065 926 921 1064 1000 1098

2+
β 1219 1222 1215 1216 1286 1219

4+
β 1753 1745 1536 1761 1490

6+
β 2419 2410 1970 2344 1870

8+
β 3189 3178 2479 3002 2342

10+
β 4049 4038 3038 3713 2893

2+
γ 810 862 862 854 864 899

3+
γ 1007 1004 1003 997 1007 1011

4+
γ 1174 1174 1177 1178 1160

5+
γ 1419 1370 1370 1385 1364 1330

6+
γ 1589 1588 1617 1611 1535

7+
γ 1829 1829 1867 1822 1748

8+
γ 2090 2090 2133 2132 2002

9+
γ 2370 2372 2411 2357 2251

10+
γ 2671 2673 2701 2720 2550

rms (keV) 51 53 18 38 39

matrix elements between beta states and states belonging either to the ground or to the gamma
band are all equal to zero. The simplest Hamiltonian obeying this restriction is

H = A1(22N̂ + 5%†
β ′%β ′ ) + A2Ĵ2 + A3%

†
β%β, (3.5)

where N̂ is the boson number, Ĵ2-angular momentum squared and %†
β ′ denotes

%†
β ′ = (b†b†)00 − d2

√
5
. (3.6)

Higher order terms in boson operators can be added to the Hamiltonian H without altering
the decoupling condition for the beta band. An example of this kind is the correction

1H = A4(%
†
β%2

β ′ + h.c.) + A5%
†2
β ′ %

2
β ′ . (3.7)

The energies for beta band and for the gamma band states of odd angular momentum
are described as average values of H (3.5), or H + 1H on ϕ

β
JM and ϕ

γ
JM (J-odd), respectively.

As for the energies for the ground band and those of gamma band states with even angular
momentum, they are obtained by diagonalizing a 2×2 matrix for each J.

The quadrupole transition operator is considered to be a sum of a linear term in bosons
and one which is quadratic in the quadrupole bosons:

Q2µ = q1(b
†
2µ + (−)µb2,−µ) + q2((b†b†)2µ + (bb)2µ) + q3(b†b)2µ. (3.8)

Note that if q3 = 2q2, the quadrupole transition operator can be obtained from the quadrupole
transition operator expressed in terms of the collective quadruple coordinates α2µ:

Q2µ = Q1α2µ + Q′
1(α2α2)2µ. (3.9)
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Table 14. The same as in table 6, but for 168Hf. The experimental data are taken from [65].

168Hf Exp. X(5) ISW D SSA CSM

2+
g 124 141 140 120 108 128

4+
g 386 409 409 382 351 389

6+
g 757 765 769 757 710 756

8+
g 1214 1195 1207 1215 1172 1206

10+
g 1736 1694 1720 1736 1723 1730

12+
g 2306 2259 2303 2307 2354 2320

0+
β 942 795 755 928 878 942

2+
β 1059 1049 1002 1048 1039 1049

4+
β 1285 1505 1449 1310 1368 1285

6+
β 2077 2015 1684 1823 1630

8+
β 2738 2672 2143 2380 2068

10+
β 3477 3412 2664 3024 2587

2+
γ 876 911 906 902 928 939

3+
γ 1031 1033 1028 1020 1042 1035

4+
γ 1161 1179 1178 1172 1171 1161

5+
γ 1386 1347 1350 1353 1334 1311

6+
γ 1551 1535 1543 1558 1530 1492

7+
γ 1741 1755 1786 1733 1687

8+
γ 1965 1988 2033 1992 1916

9+
γ 2206 2239 2297 2226 2148

10+
γ 2464 2508 2576 2543 2421

rms (keV) 75 70 15 43 31

The anharmonic term in the above expression can be obtained by expanding the deformed
mean field around the spherical equilibrium shape [50, 51] of the nuclear surface. For the
near vibrational regime, the interband matrix elements of the q3 term vanish within the
CSM [5]. Moreover, a transition operator depending on two free parameters seems to be
suitable for describing the E2 transition probabilities in several regions of the nuclide’s
chart [52].

Using the Rose convention [47], the reduced probability for the E2 transition J+
i → J+

f
can be expressed as

B(E2; J+
i → J+

f ) =
(
〈J+

i ||Q2||J+
f 〉

)2
. (3.10)

Three specific features of the CSM are worth mentioning.

(a) The model states are generated through projection from a coherent state and two
excitations of that through simple polynomial boson operators. Thus, it is expected that
the projected states may account for the semiclassical behavior of the nuclear system
staying in a state of high spin.

(b) The states are an infinite series of bosons and thus highly deformed states can be described.
(c) The model Hamiltonian is not commuting with the boson number operator and because

of this property a basis generated from a coherent state is expected to be most suitable.

The CSM has been successfully applied to several nuclei exhibiting various equilibrium
shapes which, according to the IBA classification, exhibit the SO(6), SU(5) and SU(3)
symmetries. Several improvements of the CSM have been proposed by considering additional
degrees of freedom such as isospin [6], quasi-particle [7] or collective octupole coordinates

18



J. Phys. G: Nucl. Part. Phys. 40 (2013) 025108 A A Raduta and P Buganu

Table 15. The same as in table 6, but for 170W. The experimental data are taken from [66].

170W Exp. X(5) ISW D SSA CSM

2+
g 157 145 133 145 151 171

4+
g 462 420 398 447 446 475

6+
g 876 785 767 858 844 873

8+
g 1363 1226 1228 1347 1323 1346

10+
g 1902 1739 1777 1894 1869 1882

12+
g 2464 2319 2411 2489 2471 2477

14+
g 3118 2965 3128 3126 3124 3128

16+
g 3816 3677 3927 3801 3821 3831

0+
β 816 587 760 507 823

2+
β 953 1077 804 905 790 953

4+
β 1202 1545 1208 1207 1204 1215

6+
β 1578 2132 1736 1618 1706 1578

8+
β 2810 2367 2107 2277 2020

10+
β 3568 3093 2654 2905 2531

2+
γ 937 944 945 928 936 965

3+
γ 1074 1068 1068 1066 1064 1074

4+
γ 1220 1219 1219 1238 1231 1217

5+
γ 1391 1397 1438 1400 1381

6+
γ 1584 1600 1662 1630 1578

7+
γ 1796 1828 1906 1828 1783

8+
γ 2025 2080 2168 2109 2027

9+
γ 2273 2355 2446 2329 2264

10+
γ 2538 2653 2739 2655 2550

rms (keV) 200 90 21 58 13

[8, 9]. The CSM has also been used to describe some nonaxial nuclei [49], and the results
were compared with those obtained with the rotationvibration model [2]. A review of the CSM
achievements is found in [10]. The terms involved in the model Hamiltonians used in by the
CSM [5] and its generalized version [6] have microscopic counterparts as shown in [11] and
[12], respectively.

4. Numerical results

4.1. Parameters

The parameters which define the energies and the E2 transition probabilities of the models
X(5), ISW, D, SSA and CSM were fitted by the least-squares method for ten nuclei:
176,178,180,188,190Os, 150Nd, 156Dy, 166,168Hf and 170W. In the least-squares procedure, all
experimental energies were considered. The resulting values are those given in tables 1–5. For
the first three and the last three nuclei from table 1, the parameter t ′ cannot be determined
since the corresponding term from the transition operator does not contribute to the intraband
decays.

Some parameters vary by a large amount from one isotope to another but the relative
variation is small. For example in the case of Os isotopes, the parameters could be interpolated
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Table 16. The reduced E2 transition probabilities determined with the X(5), ISW, D, SSA and
CSM models for the 176Os nucleus are compared with the corresponding experimental data taken
from [54].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 144+5
−5 167 127 145 136 144

4+
g → 2+

g 243+5
−5 264 224 228 227 253

6+
g → 4+

g 305+11
−11 330 305 292 297 328

8+
g → 6+

g 321+15
−14 379 377 360 366 393

10+
g → 8+

g 441+88
−63 419 438 433 435 452

12+
g → 10+

g 517+336
−146 450 490 510 504 517

Table 17. The same as in table 16, but for 178Os. The experimental data are taken from [54–56]

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 138 147 137 146 141 138
4+

g → 2+
g 226 232 225 226 226 227

6+
g → 4+

g 290 291 287 280 283 282
8+

g → 6+
g 327 334 337 332 334 327

10+
g → 8+

g 384 369 378 384 382 368

Table 18. The same as in table 16, but for 180Os. The experimental data are taken from [58].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 120+30
−30 70 152 148 151 150

4+
g → 2+

g 193+25
−25 111 167 177 172 149

6+
g → 4+

g 160+40
−40 139 132 139 135 120

8+
g → 6+

g 63+13
−13 160 95 83 90 96

by smooth curves. One parameter falls aside namely those of 188Os, which seems to achieve
the critical point of the shape transition, i.e. exhibits an X (5) behavior.

We note that the parameter F involves the average value 〈β2〉 which, in principle, is
an angular-momentum-dependent quantity. Therefore, the differential equation in γ should
be iteratively solved, at each step the inserted average value being calculated with the
wavefunction provided in the previous step. When the convergence of the process is met,
one keeps the average value for the chosen angular momentum. Here, 〈β2〉 was kept constant.
Whether this hypothesis is valid or not can be posterity checked. To this goal, we represented
in figure 1, the average 〈β2〉 for each of the models ISW, D and SSA. We note that the average
value only slightly depends on J and that is especially true for ISW and SSA. If the limit of
〈β2〉, when the convergence of the iterations mentioned above is reached, depends on J like
the averages shown in figure 1, one could say that keeping 〈β2〉 constant one ignores a slight
decrease of energy with angular momentum.

With the parameters listed above the potentials in the variables β and γ and the
wavefunctions describing the low lying states from the ground, beta and gamma bands
respectively, are represented for four nuclei, as shown in figures 2–5. Analyzing these figures,
several features can be noted. The β potential has a deformed minimum located at a deformation
which differs from one nucleus to another. The wavefunctions in β for 0+

g and 2+
γ are almost
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Figure 1. The average values of β2 versus the angular momentum calculated within the ISW (panel
a)), the D (panel b)) and the SSA (panel c)) models.

identical and have only one maximum and no node, while the band for 0+
β has one node,

one maximum and one minimum. The maximum of the |φ|2 distribution for the three states
represented in the quoted figures is achieved at a point which is close to the potential minimum.
If |φ|2 is multiplied with the integration measure over β, then the probability distribution has
a maximum closer to the potential minimum. The state 0+

β is characterized by two maxima
for the probability distribution of the beta variable. This feature reflects the specific structure
of the excitation operator of this state, from the ground state, i.e. nβ = 1. The behavior of
the wavefunctions in the variable γ is mainly determined by the discontinuity for γ = 0 and
γ = π

3 . The potential has two minima, one well pronounced near the first wall and one very
flat close to the γ = π

3 discontinuity. Due to this structure, the wavefunction describing a
state in the ground band has two maxima located above the mentioned minima. The state 2+

γ

heading the gamma band has an additional maximum.

4.2. Energies

The spectra of the chosen nuclei, determined by the models X(5), ISW, D, SSA and CSM, are
compared with the corresponding experimental data in tables 6–15. The quality of agreement
between the results of our calculations and the corresponding experimental data is given by
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(a) (b)

(c) (d)

Figure 2. The solutions for the equation in β, corresponding to various angular momenta and the
potential from the left-bottom panel, are plotted, in panel left-up, as a function of β. Similarly, on
the right column the wavefunctions for γ for different angular momenta and the effective potential
shown in the right-bottom panel are plotted as a function of γ . The results correspond to 150Nd.

(a) (b)

(c) (d)

Figure 3. The same as in figure 2, but for 166Hf.

the rms values of the deviations. Thus, comparing the rms values corresponding to different
models we conclude that for 180Os, 150Nd and 170W the best description of the spectra is that
given by the CSM approach, energies of 188Os calculated with the SSA are closest to the
experimental ones, while for the remaining nuclei the D formalism provides the most realist
picture.

Using the experimental data listed in tables 6–15, one can calculate the ratio of the
excitation energies for the states 4+

g and 2+
g , denoted by R4+

g /2+
g
. The results are 2.93 (176Os,

190Os, 150Nd, 156Dy), 2.94 (170W), 2.96 (166Hf), 3.02 (178Os), 3.08 (188Os), 3.10 (180Os) and
3.11 (168Hf). We note that all nuclei are characterized by a ratio R4+

g /2+
g

which is close to the
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(a) (b)

(c) (d)

Figure 4. The same as in figure 2, but for 188Os.

(a) (b)

(c) (d)

Figure 5. The same as in figure 2, but for 190Os.

value of 2.9 assigned to the critical point of the transition SU(5)→SU(3), which is described
by the solvable model called X (5). Despite this, the X (5) approach provides a description
which is worse than those obtained with the other models proposed here.

4.3. Reduced transition probabilities

As mentioned before, the parameters involved in the transition operators employed by different
models have been fixed by fitting through a least-squares procedure the existent data. With
the fitted parameter, the results for the reduced E2 transition probabilities are presented in
tables 16–25 where one also gives for comparison the available experimental data. For the
lightest three isotopes of Os as well as for 166,168Hf and 170W, the available experimental data
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Table 19. The same as in table 16, but for 188Os. The experimental data are taken from [59].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 79+2
−2 74 72 79 82 42

4+
g → 2+

g 133+8
−8 118 115 121 123 87

6+
g → 4+

g 138+8
−8 147 144 147 145 125

8+
g → 6+

g 161+11
−11 169 166 174 162 161

10+
g → 8+

g 188+25
−25 187 184 203 178 195

0+
β → 2+

g 0.95+0.08
−0.08 47 48 33 21 0.95

0+
β → 2+

γ 4.3+0.5
−0.5 5.2 5.2 1.9 1.5 44

4+
γ → 2+

γ 47+10
−10 47 50 52 56 14

4+
γ → 3+

γ 320+120
−120 112 117 120 132 43

6+
γ → 4+

γ 70+30
−30 107 111 114 118 31

2+
γ → 0+

g 5+0.6
−0.6 8.4 10.9 10.8 9.9 5

2+
γ → 2+

g 16+2
−2 13 17 16 14 10.4

2+
γ → 4+

g 34+5
−5 0.65 0.85 0.80 0.73 1.4

4+
γ → 2+

g 1.29+0.19
−0.19 5.7 7.1 6.7 6.1 1.7

4+
γ → 4+

g 19+3
−3 18 23 20 19 10.7

4+
γ → 6+

g 16+7
−7 2 2 2 2 5

6+
γ → 4+

g 0.21+0.11
−0.11 5.3 6.4 5.8 5.3 0.9

6+
γ → 6+

g >9.4 21 25 23 20 8.3

Table 20. The same as in table 16, but for 190Os. The experimental data are taken from [60].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 72+2
−2 58 57 56 61 45

4+
g → 2+

g 105+6
−6 91 91 88 94 83

6+
g → 4+

g 113+10
−10 115 113 112 112 112

8+
g → 6+

g 137+20
−20 131 130 138 126 137

10+
g → 8+

g 120+30
−30 145 143 165 139 160

0+
β → 2+

g 2.2+0.5
−0.5 36 36 30 19 2.2

0+
β → 2+

γ 23+7
−7 8.9 9 8 5 148

4+
γ → 2+

γ 53+5
−5 36 38 37 41 20.4

4+
γ → 3+

γ 65+13
−13 87 90 87 98 84

6+
γ → 4+

γ 65+13
−13 83 85 84 89 49

8+
γ → 6+

γ 61+16
−16 112 113 119 115 72

2+
γ → 0+

g 5.9+0.6
−0.6 14.2 15.6 15.9 16.2 14

2+
γ → 2+

g 33+4
−4 21 24 24 24 33

4+
γ → 2+

g 0.68+0.06
−0.06 9.7 10.3 10.4 10.3 4.3

4+
γ → 4+

g 30+4
−4 31 33 33 32 31

6+
γ → 4+

g <0.8 9 10 10 9 1.7
6+

γ → 6+
g 31+8

−8 36 38 40 36 26

refer to the states of ground band. Agreements with the experimental data showed up by the
five theoretical models are comparable in quality.

For 156Dy, besides the intraband transitions in the ground band, a few interband transitions
from the gamma to the ground band are experimentally known. As seen from table 22,
agreement between calculations with the experimental data is quite good.
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Table 21. The same as in table 16, but for 150Nd. The experimental data are taken from [62].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 115+2
−2 107 104 92 116 81

4+
g → 2+

g 182+2
−2 169 168 144 177 160

6+
g → 4+

g 210+2
−2 212 210 183 211 222

8+
g → 6+

g 278+25
−25 243 243 224 240 278

10+
g → 8+

g 204+12
−12 269 269 268 266 330

2+
β → 0+

β 114+23
−23 85 83 130 86 116

4+
β → 2+

β 170+51
−51 128 125 194 144 165

0+
β → 2+

g 39+2
−2 67 73 51 37 41.2

2+
β → 0+

g 1.2+0.2
−0.2 2.1 2.9 3.1 1.6 5.2

2+
β → 2+

g 9+2
−2 10 10 9 6 9

2+
β → 4+

g 17+3
−3 39 42 40 26 26

4+
β → 2+

g 0.12+0.02
−0.02 1.07 1.61 1.64 0.57 5.6

4+
β → 4+

g 7+1
−1 6 8 8 5 7.2

4+
β → 6+

g 70+13
−13 30 33 46 26 26

2+
γ → 0+

g 3+0.8
−0.8 2.4 8 9.8 5.1 16.3

2+
γ → 2+

g 5.4+1.7
−1.7 3.6 11.9 14.3 7.3 5.4

2+
γ → 4+

g 2.6+2.0
−2.0 0.2 0.6 0.7 0.4 0.74

4+
γ → 2+

g 0.9+0.3
−0.3 1.6 5 6.1 3 28.6

4+
γ → 4+

g 3.9+1.2
−1.2 5.3 15.5 18.9 9 9.6

Table 22. The same as in table 16, but for 156Dy. The experimental data are taken from [63].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 149.3+2.5
−2.5 142 138 111 137 66

4+
g → 2+

g 261+17
−17 225 223 179 219 149

6+
g → 4+

g 200+15
−15 282 279 235 271 221

8+
g → 6+

g 289+14
−14 323 323 295 316 289

10+
g → 8+

g 366+25
−25 358 358 359 357 354

12+
g → 10+

g 382+22
−22 385 386 425 395 418

2+
γ → 0+

g 7.2+0.4
−0.4 6.6 9.9 23.3 11.6 7.2

2+
γ → 2+

g 9.4+1.0
−1.0 9.8 14.6 35.1 17.4 9.4

2+
γ → 4+

g 12.6+1.9
−1.9 0.5 0.7 1.8 0.9 19.5

In [62], measured data in 150Nd for intraband transitions ground to ground and beta to
beta as well interband transitions to ground band have been reported. These data are described
reasonably well by the five approaches as shown in table 21. One remarks the good agreement
obtained with the CSM approach. The largest discrepancies with the experimental data are
obtained for the transitions 4+

β → 2+
g and 4+

γ → 2+
g which are overestimated by the theoretical

results.
As for 188,190Os, the available data are about the intraband transitions ground to ground

and gamma to gamma bands as well about the interband transition beta to ground and gamma
to ground. They are compared with the results of our calculations in tables 19 and 20. Again,
the agreement qualities obtained with the five sets of calculations are comparable with each
other. The predictions for the decay probabilities of the transitions 4+

γ → 2+
g and 6+

γ → 4+
g
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Table 23. The same as in table 16, but for 166Hf. The experimental data are taken from [64].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 128+7
−7 98 153 154 155 128

4+
g → 2+

g 202+7
−7 155 212 216 215 203

6+
g → 4+

g 221+13
−13 194 225 232 226 245

8+
g → 6+

g 280+30
−30 223 225 230 225 280

10+
g → 8+

g 250+640
−110 246 220 219 218 311

12+
g → 10+

g 155+550
−70 265 213 199 209 351

Table 24. The same as in table 16, but for 168Hf. The experimental data are taken from [65].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 154+7
−7 141 165 176 175 154

4+
g → 2+

g 244+12
−12 223 250 257 255 249

6+
g → 4+

g 285+18
−18 279 294 292 291 304

8+
g → 6+

g 350+50
−50 320 322 318 316 350

10+
g → 8+

g 370+60
−60 354 342 338 338 391

12+
g → 10+

g 320+120
−120 381 356 354 357 438

Table 25. The same as in table 16, but for 170W. The experimental data are taken from [66].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM

2+
g → 0+

g 124+3
−3 79 133 126 129 124

4+
g → 2+

g 179+18
−18 125 179 177 179 168

6+
g → 4+

g 189+14
−14 157 184 189 187 182

8+
g → 6+

g 190+50
−50 180 180 187 183 190

10+
g → 8+

g 170+40
−40 199 173 175 174 197

12+
g → 10+

g 160+30
−30 214 167 158 162 214

are larger than the corresponding experimental data. Also, the result for 0+
β → 2+

γ obtained
within the CSM is about 6.5 larger than the corresponding experimental value. For some cases,
the value of the t2 obtained through the least-squares procedure is very large. The reason is as
follows.

Within the SSA, the t2 term of the transition operator contributes mainly to the interband
transitions, while its matrix elements between states of a given band are very small. However,
for the mentioned cases there are only few experimental data for interband transitions, most of
the data referring to the intraband transitions. Consequently, the least-squares procedure uses
small matrix elements of the intraband transitions which results in obtaining a huge number
for t2. An equally good description of these cases would be obtained by ignoring the t2 term.
We kept however this term just for the sake of having an unitary approach.

The results for the E2 transitions raise the question: Why the models X (5), ISW, D, SSA
predict close results, although the states involved are described by different wavefunctions in
the variables β and γ ? It seems that these differences are washed out by the fitting procedure
adopted for the strengths of the transition operator. Moreover, the factor function depending
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on the Euler angles are common in the mentioned four approaches, thus giving the dominant
contribution to the reduced transition probability.

One signature for the triaxiality of the nuclear shape is the equality:

E2+
1

+ E2+
2

= E3+
1
. (4.1)

The departure from this rule, 1E = |E2+
1

+ E2+
2

− E3+
1
|, is equal to 2 and 11 keV for 188Os

and 190Os, respectively. The magnitude of these deviations was the argument for treating the
two isotopes as triaxial nuclei [44]. On the other hand, the ratio E4/2 amounts to 2.93 and 3.08
for 188Os and 190Os, respectively, which are quite close to the specific value of X (5) nuclei.
Given these facts, we asked ourselves whether these nuclei are axially symmetric or behave
like a triaxial rigid rotor. In order to answer this question, we compared the rms values of
deviations for both energies and B(E2) values provided by the SMA and SSA approaches,
respectively. Concerning the excitation energies in the three major bands, the rms values of
prediction deviations from the corresponding experimental data yielded by the SMA for 188Os
and 190Os are 24 and 32 keV, respectively, while the SSA results for these values being 13
and 27 keV, respectively. Therefore, regarding the excitation energies the two isotopes behave
more like axially deformed nuclei. However, comparing the results for the reduced transition
probabilities, it comes out that the triaxial rigid rotor behavior is favored. Indeed, the rms
values for the SMA approach applied to 188Os and 190Os are 13 and 16 W.u., respectively,
while those corresponding to the SSA are 16 and 17 W.u., respectively. Remarkable is the fact
that the differences of the rms values characterizing the two approaches, SMA and SSA, are
quite small. Therefore, one could conclude that the two investigations, from [44] and from
here, indicate that the two nuclei might be equally well described by both approaches.

5. Conclusions

Here, we summarize the main results obtained by this work. We selected ten nuclei
characterized by a ratio R4+

g /2+
g

close to 2.9 which is specific to the so-called X(5) nuclei.
Spectra of these nuclei are described by a new approach which treats the beta variable by
the Schrödinger equation associated with a sextic oscillator plus a centrifugal potential. For
the variable γ , one finds a differential equation which is satisfied by the spheroidal function.
The excitation energies are obtained by summing the eigenvalues provided by the differential
equations for the β and γ variables, respectively, while the corresponding functions are used
to calculate the E2 transition probabilities. The results are compared with the corresponding
experimental data as well as with those obtained through other formalisms called X(5), ISW,
D and CSM which were previously used by the present authors to describe the spectroscopic
properties of other X(5) like nuclei.

Note that while the formalisms X(5), ISW, D and SSA treat the energies and transition
probabilities using the intrinsic coordinates and the rotation matrix function, the CSM is a
quadrupole boson approach and therefore the mentioned observables are calculated with the
collective coordinates which are specific to the laboratory frame.

A comparison of the rms values yielded by the five approaches shows that the D, CSM
and SSA approaches produce the best agreement with the experimental energies. Concerning
the E2 transitions, one may show that all five sets of results quantitatively describe the
experimental situation in a comparable manner with a slight advantage for SSA and CSM.
Since the formalisms ISW, D, and SSA differ from each other by the way the variable beta
is treated, otherwise the γ equation being the same, the transition probabilities produced by
the three approaches exhibit similar agreement with the experimental data. The SSA method
produces very good agreement with the experimental energies for 188Os, 150Nd and 168Hf.
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Table 5 shows that these nuclei have the largest deformations and moreover for the first two
nuclei the ratio R4+/2+ has the values 3.08 and 3.11, respectively, which deviate most from
the X(5) value. The quoted ratio for 150Nd is 2.93, which is close to the X(5) value but its
deformation is the largest one.

The sextic potential for the β ensures a more realistic description of the excited states
where the excitation of the beta degree of freedom is important. This is best seen in the
excellent agreement of the calculated excitation energies in the beta and gamma bands with
the corresponding experimental data.

The final conclusion is that the SSA, proposed in this paper, proves to be a suitable tool
for a realistic description of the X(5) like nuclei.
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