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Preface

It is easy to understand that the structure as well as the value of a book depends
essentially on the author’s experience in the chosen field and on the readers for
whom it is intended. After accumulating experience over many years of research
and teaching, I felt the need to share my knowledge in theoretical nuclear physics
with people whom I don’t know.

Many of the procedures described in this book are different from the traditional
ones, and also very powerful in describing the experimental data. In this context, I
express my belief that real progress in our field may be achieved only by constantly
trying something new. Although nowadays it is fashionable to concentrate on
numerical analysis with complicated codes, this book is mostly based on analytical
calculations which are to be used in numerical calculations. Over the years, I have
had valuable collaborations with many outstanding physicists from all over the
world. From each of them I have learned many new things. Now, it is a challenge for
me to integrate their influences in a single style of presentation, so as to optimize the
impact on readers. Let me mention the list of my collaborators from abroad to whom
I will always be grateful for both illuminating discussions on the subject of this book
and financial support: Profs. R.M. Dreizler, A. Faessler, N. Lo Iudice, E. Moya de
Guerra, L. Zamick. Special thanks I owe to my friend Dr. A.C. Gheorghe for the
wonderful and fruitful collaboration. Many of my Ph.D. students have chosen for
their thesis subjects related to this work. To avoid forgetting to mention any one
of them, I don’t give the long list with their names but, instead, I thank them all at
one go, but most heartily.

A special contribution was made by my wife Emilia who has always been near
me, her affection helping me to have sufficient strength to accomplish this project
and, at the same time, to continue with my normal activities. I thank her immensely
for what she represents and does for me.
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People who fail in explaining some of the existing data with the approaches they
have at hand are advised to consult this work. I honestly hope that they will either
find the solution here or be inspired to exploit the coherent state field to overcome
the difficulties encountered. Of course readers will be the true judge of the validity
and usefulness of my proposal. I certainly look forward to receive an echo from
them.

Apolodor Aristotel Raduta
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Chapter 1
Introduction

It is customary to divide nuclear physics into two parts, one dealing with the nuclear
structure and the other one with reaction mechanisms. The two domains interplay in
treating common physics. In fact, the structural properties of nuclei are explored by
various reactions and, in turn, the nuclear structure helps in interpreting reaction data.
It is interesting to note that the range of subjects addressed by the nuclear structure
field is closely related to the energy pumped to the projectiles which is further trans-
ferred to the target nucleus.Depending on themass of the projectile ion, the populated
levels are located at low or at large excitation energies. The intermediate compound
nucleus loses neutrons or decays through α, proton or γ channels. To identify the
final state of the residual nucleus, one has to interpret the data of γ -particle and γ -γ
coincidence, angular distribution or the measurement through various methods of
the lifetime of the metastable state. It is obvious that such achievements depend on
the development of heavy ion accelerators as well as detection techniques. In this
context wemention that nowadaysmany large heavy ion accelerators are in operation
and sophisticated detectors (to give only few examples, we mention EUROGAM,
GAMMASPHERE, EUROBALL, and JUROSPHERE) are functioning with a high
efficiency. Both devices contribute to investigating a large number of nuclear states
belonging to different bands and ranging from low up to a high and very high spins.
The number of nuclei explored has been enlarged due to the experimentswith radioac-
tive beams, where the unstable nuclei used as projectile could be investigated.

Of course at the beginning of the 50’s of the last century, the linear accelerators for
protons and α particles could identify only few states. Therefore the theories were
aimed mainly at explaining the observed properties related to these levels. In the
meantime, as the experimental devices were improved, the volume of the data has
continuously increased and, as expected, the existing theoretical approaches were
not able to explain some of the newly accumulated information. Under these circum-
stances, it became necessary to improve the previous formalisms or to propose new
approaches. In this way several models appeared over time, of which I shall refer
only to the phenomenological ones. In chronological order the proposed formalisms
were: (a) The liquid drop model proposed by Bohr and Mottelson; (b) The model
of Wilets and Jean devoted to the γ unstable nuclei and possible phase transitions;
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(c) The model of the triaxial rotor proposed by Davydov and Filippov; (d) The
rotation–vibration model of Faessler and Greiner; (e) The model of Gneuss and
Greiner which studies anharmonic Hamiltonians in the quadrupole shape coordi-
nates; (f) The projection method proposed by Lipas; (g) The two-rotor model of Lo
Iudice and Palumbo; (h) The interaction boson approximation which exploits the
nuclear system symmetries, and (i) The coherent state model proposed by Raduta
and his collaborators. Microscopic theories have also made notable progress but, due
to the very large many body basis they require, it is not yet possible to approach the
high spin states in heavy nuclei, although this target may not to be too far away.

Oncemanydata aswell as awealth of theoretical resultswere accumulated, several
books appeared with the ambitious goal of describing the current status of the field
in an exhaustive manner. I think that all readers will have consulted at least one of
the books authored by: Preston, Bohr and Mottelson, De Shalit and Talmi, De Shalit
and Feshbach, Eisenberg and Greiner, Ring and Schuck, Williams, Suhonen, etc.
The later the date on which the book appeared, the more complete is the description
of the nuclear system.

As mentioned already, each model has specific merits and on the other hand many
drawbacks. For this reason, the newly proposed approaches focus on the properties
not explained by the preceding models. In this context one could assert that the
coherent state model has the merit of covering the previous descriptions and of
attacking new features.

The present book is structured as follows. We start by emphasizing the essential
properties which recommend the use of the coherent states in describing nuclear
systems. One knows that the coherent state has the defining property of minimizing
the uncertainty equations associated with a pair of canonical conjugate coordinates.
Also, the function does not obey some symmetries which must be fulfilled in the
laboratory frame. The question we posed is whether these properties are preserved
or violated, to a certain extent, when the broken symmetries are restored. Since
in many circumstances one needs to factorize the coherent state involved in the
specific treatment, a proof of the factorization theoremofBaker-Campbell-Haussdorf
is given. All these issues are discussed in Chap.2. In Chap.3 we present the closed
formula for the ground band energies proposed byHolmberg and Lipas (HL). Further
another three compact formulas for these energies are proposed. All three describe
the excitation energies in the ground band up to high and very high spin. They are
distinct generalizations of the HL result.

Chapter4 is devoted to a time-dependent variational principle (TDVP) description
of a triaxial rotor. Several boson representations for the initial quantum mechanical
object are described. A tilted rotor is semiclassically treated. Classical trajectories
corresponding to various phases are analytically obtained and then quantized.

The use of a coherent state as a trial function for the TDVP equation associated
with paired many body systems is presented in Chap.5. Here it has been proved that
the BCS, RPA (random phase approximation) and boson expansion approaches have
a classical origin. With a coherent state as a variational state for a generalized BCS
ground state one derives analytical expressions for the gauge and isospin projected
states and corresponding energies. Comparing themwith the exact results, for a single

http://dx.doi.org/10.1007/978-3-319-14642-3_2
http://dx.doi.org/10.1007/978-3-319-14642-3_3
http://dx.doi.org/10.1007/978-3-319-14642-3_4
http://dx.doi.org/10.1007/978-3-319-14642-3_5
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j case one concludes that the projected states describe the irreducible representation
of the O(5) group. Making use of a coherent state for the group SU(1,1), one obtains
the full space of states describing a systemof bosons correlated by pairing interaction.

Chapter6 is devoted to the coherent state model for three interaction bands:
ground, β and γ . Energies and transition rates are expressed in terms of a single
overlap integral and its first derivative. These quantities are further analyzed in the
extreme limits, vibrational and rotational. For these limits we provide compact ana-
lytical results which are easy to use in numerical applications. Also the model is
presented in the intrinsic frame of reference. Numerical results for a large number of
nuclei, possessing various symmetries, agree very well with the experimental data.

The CSM is extended to the pear-shaped nuclei in Chap.7. To the three bands
described byCSMone attaches three partner bands of negative parity. Besides that the
dipole parity partner bands are considered. Thus, the mentioned extension describes
simultaneously eight rotational bands, four of positive and four of negative parity.
Signatures for the existence of a static octupole deformed shape are pointed out.
Comparison with available experimental data reveals good agreement.

In Chap.8, to a phenomenological CSM core we couple a set of interacting nucle-
ons. Thus, we study the crossing of a collective and a two quasiparticle-core bands in
even-even nuclei and of one quasiparticle and three quasiparticles bands in even-odd
nuclei. These states are all of positive parity. Switching on the interaction with a
system of octupole bosons, three pairs of parity partner bands in even-odd nuclei are
presented.

Chapter9 deals with a generalized coherent state model (GCSM) which distin-
guishes between the proton- and neutron-like bosons. The model describes simul-
taneously the ground, β and γ bands and an additional band built on the top of a
magnetic state of scissors type. The model for the scissors-like state 1+, contains
the results of the two rotors (TRM) and two liquid drop models (TLDM) as limiting
cases.

In Chap.10, we study two applications of the GCSM: (a) Chiral symmetries in
even-even nuclei and (b) Monopole charge properties of nuclei.

The results obtained by the author of this book and his collaboration concerning
the quadrupole boson basis and its degeneracies are given in Chap.11.

The overcomplete property of the coherent state allows it to be used as a generating
function for a collective basis. Moreover, Chap. 12 gives a prescription for how to
generate a projected spherical single particle basis, which may describe in an unified
fashion the spherical and the deformed nuclei.

Chapter13 describes semiclassically a fourth- and a solvable sixth-order boson
Hamiltonian. For the first case one obtains a set of RPA like equations for small oscil-
lations around a minimum value of the potential energy. Also, by a Fourier analysis
of the classical action density, one obtains the quantal spectrum corresponding to a
large amplitude motion of the system. In the second case analytical trajectories in
a double well potential are provided. Also some signatures for the phase transition
from one well to another are pointed out. A quantitative result for the tunneling
process through the barrier separating the two wells is given. The trajectories in
the two wells are quantized by a specific restriction on the classical action. Finally,

http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_7
http://dx.doi.org/10.1007/978-3-319-14642-3_8
http://dx.doi.org/10.1007/978-3-319-14642-3_9
http://dx.doi.org/10.1007/978-3-319-14642-3_10
http://dx.doi.org/10.1007/978-3-319-14642-3_11
http://dx.doi.org/10.1007/978-3-319-14642-3_12
http://dx.doi.org/10.1007/978-3-319-14642-3_13
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we consider another sixth-order boson Hamiltonian, which is diagonal in the SU(5)
basis |Nvα J M〉. Both the semiclassical and the quantal spectra are given by sim-
ple expressions in terms of the involved quantum numbers. These were successfully
used to interpret some recent data concerning the monopole (0+) and quadrupole
(2+) multiplets.

The 13 chapters have some common features: (a) Most results are presented in
an analytical form; (b) In order not to alter the reading of the essential part of the
concrete issue, the complicated formulas are collected in an Appendix, placed at the
end of the book; (c) They are applied numerically for many nuclei and comparedwith
the available experimental data as well as with those obtained through a different
approach.

A detailed comparison of the CSM with five other phenomenological models
is presented in Chap.14, while Chap.15 summarizes the main results of the present
book.Backmatter is a collection of appendiceswhich either list the complex formulas
referred to in the preceding chapters or are devoted to the mathematical tools needed
in the book.

http://dx.doi.org/10.1007/978-3-319-14642-3_14
http://dx.doi.org/10.1007/978-3-319-14642-3_15


Chapter 2
Classical Versus Quantal Features
in a Projected Coherent State

2.1 Definitions and Preliminaries

Most properties of the low lying spectra can be described in terms of few collective
degrees of freedom. These can be given either phenomenologically [RBD95, RBF11]
or in terms of single particle motion. Thus, projecting out the collective degrees of
freedom from a many body system was always a central topic of nuclear structure
theory [BaVe78, Vil77]. Accounting for collective motion and moreover for the cou-
pling of the mentioned degrees of freedom with the non-collective coordinates is not
an easy task. A significant simplification is achievedwhen one defines a semiclassical
approach by means of a variational principle. Transferring the quantum mechanical
many body problem to a semiclassical picture allows us to use the classical mechan-
ical tools which are more developed and efficient. This operation is conventionally
called dequantization procedure which is most reliable if the variational state is of the
coherent type. The meaning of this statement is that the quantized classical trajecto-
ries lead to a spectrum, which is close to that corresponding to the initial many body
Hamiltonian. Due to the overcomplete property of coherent states a full account of
the dynamic in the whole Hilbert space is possible. Indeed, by expanding the coher-
ent state in a Hilbert space basis, no expansion coefficient is vanishing. For example
if we treat a boson Hamiltonian with coherent states the matrix elements include
the contribution from all states of the boson space, which is not the case when a
diagonalization method is adopted.

As a matter of fact this is the property which was exploited in many publications
about the Coherent State Model (CSM) [RD76, RCGD82, HHL70]. This model uses
an axially quadrupole deformed coherent state of Glauber type as an intrinsic ground
state. Moreover, other two deformed states are defined by lowest order polynomial
excitations of ground state, the excitations being defined so that some experimental
data are satisfied. These states are modeling the intrinsic beta and gamma bands
states, respectively. By angularmomentum projection three sets of states are obtained
which are to describe the main properties of the ground, beta and gamma bands. By
construction the polynomial excitations are chosen such that the three intrinsic states

© Springer International Publishing Switzerland 2015
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6 2 Classical Versus Quantal Features in a Projected Coherent State

as well as the three sets of projected states are mutually orthogonal, respectively.
Within the restricted boson space of projected states, obtained as described above, an
effective Hamiltonian is defined such that the three bands are maximally decoupled.
The CSM works especially well for high spin states. These states behave more or
less semiclassically. This can be proved by the following simple reasoning. Suppose
we have a spherical rigid rotor with the spectrum

E J = J (J + 1)�2

2J . (2.1.1)

Going with � to zero and with J to infinity like k/� with k constant one obtains that
E J is a constant with respect to J which in fact reclaims a classical behavior.

To prove the fact that a coherent state is suitable for accounting the classical
properties we have to study the behavior of both unprojected and angular momentum
projected state, from the point of view of the Heisenberg uncertainty relations.

Let us consider the coherent state defined with the z-component of the quadrupole
boson operators b†2μ, b2μ with −2 ≤ μ ≤ 2:

|�〉 = e(db†20−d∗b20)|0〉, (2.1.2)

where |0〉 stands for the boson vacuum state while d is a complex number. The
coherent nature of this function is determined by:

b20|�〉 = d|�〉, 〈�|b†20 = d∗. (2.1.3)

This equation can be proved by using the operator equation:

eÂ Ôe− Â =
∞∑

n=0

1

n! [[A, . . . [A, O] ..]] . (2.1.4)

Indeed, choosing Ô = b20 and − Â = db†20 − d∗b20, one obtains:

b20|�〉 = e− Âe Âb20e− Â|o〉 = e− Â(b20 + d)|0〉 = d|�〉 (2.1.5)

The second Eq. (2.1.3) is obtained from the first one by applying the Hermitian
conjugation operation to it.

Using the Baker-Campbell-Hausdorff factorization:

eA+B = eAeBe− 1
2 [A,B], (2.1.6)

the coherent state is written in the form:

|�〉 = e− |d|2
2 edb†20 |0〉. (2.1.7)
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The average of the quadrupole operator:

Q20 = q0
(

b†20 + b20
)

, (2.1.8)

with the coherent state has the expression:

〈�|Q20|�〉 = 2q0Re d. (2.1.9)

Thus the real part of d has the significance of the quadrupole deformation. Similarly,
averaging the quadrupole momentum, conjugate of Q20, with the coherent state
one finds that the imaginary part of d is proportional with the classical quadrupole
momentum. The function |�〉 is a vacuum state for the shifted quadrupole boson
operator:

(b20 − d) |�〉 = 0. (2.1.10)

which is obvious from (2.1.5). The function |�〉has not a definite angularmomentum,
i.e. it is not eigenfunction of the angular momentum operator squared, Ĵ 2. However
it is eigenstate of Ĵz . Due to this feature we say that |�〉 is an axially deformed
function. This statement can be easily proved by writing the r.h.s. of Eq. (2.1.7) as a
boson power series:

|�〉 = e− |d|2
2

∑

n=0

1

n!dn
(

b†20

)n |0〉. (2.1.11)

The first term of the expansion is proportional to the vacuum state which is of zero
angular momentum, the second term is a quadrupole state while the third one is
proportional to

∑

J=0,2,4

C2 2 J
0 0 0

(
b†2b†2

)

J0
|0〉 ≡

∑

J=0,2,4

AJ |2, J, 0〉 (2.1.12)

where in the r.h.s. is a superposition of states of two bosons, angular momentum
J (=0, 2, 4) and projection zero. Similarly, the three boson term is a superposition
of states |3, J, 0〉 with J = 0, 2, 3, 4, 6. Therefore, the coherent state is a super-
position of components with various angular momenta and vanishing projection. It
is clear now that the state under consideration breaks two symmetries, namely the
rotational and the gauge ones. The last symmetry breaking is evident since according
to Eq. (2.1.11), |�〉 is a sum of components with different number of bosons.

Since we want to discuss the classical features which might be described with
the CSM we restrict our considerations to the case of real d. In terms of bosons, the
quadrupole coordinate and its conjugate momentum can be defined as:

α2μ = 1

k
√
2

(
b†2μ + (−1)μb2,−μ

)
, π2μ = ik√

2

(
(−1)μb†2,−μ − b2μ

)
. (2.1.13)
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The above transformation is canonical irrespective of the value of the real constant
k. The vacuum state |0〉 is a function of coordinate only. Indeed, the equation

b20|0〉 = 0, (2.1.14)

can be written as:
∂

∂α20
|0〉 = −k2α20 (2.1.15)

This equation can be integrated with the result:

|0〉 = Ce− k2α220
2 . (2.1.16)

with C an integration constant. Therefore the vacuum state depends only on the
quadrupole coordinate but not on the momenta. For the sake of simplicity let us
denote by

F(α2μ) = |0〉. (2.1.17)

The coherent state can be written as:

� = e−i
√
2d
k π20 F(α2μ) = e

−
√
2d
k

∂
∂α20 F(α2μ)

=
∑

n

(−√
2d

k )n

n!
(

∂

∂α20

)n

F(α2μ) = F(α2,−2,α2,−1,α20 −
√
2d

k
,α21,α22).

(2.1.18)

This equation shows that the coherent state is just the vacuumstatewith the coordinate

α20 shifted to α20 − d
√
2

k . The shift operation is achieved by the displacement
operator:

D(d) = ed(b†20−b20). (2.1.19)

The mentioned operator breaks the rotational symmetry. Indeed, let us consider the
simplest invariant, namely a harmonic Hamiltonian:

H = ω
∑

μ

b†2μb2μ (2.1.20)

Under the action of the operator D(d) one obtains a rotational non-invariant term:

D(d)H D(−d) = H − dω
(

b†20 + b20
)

+ ωd2. (2.1.21)
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Note that the displacement operator transforms the scalar operator H into an operator
which is not invariant to rotations. Let us consider now the Hermitian operator:

H
′ = H + λb†20 + λ∗b20 (2.1.22)

Applying this equation on the coherent state �, we obtain:

H
′
� =

(
ωdb†20 + λb†20 + λ∗d

)
� (2.1.23)

Choosing d such that ωd + λ = 0, the above equation becomes:

H
′
� = −|λ|2

ω
� (2.1.24)

From this equation it results that the deformed Hamiltonian H
′
admits the coherent

state as eigenstate. Consider now that the coefficients λ and λ∗ are functions of time
in the Hamiltonian:

H(t) = ωb†20b20 + λ(t)b†20 + λ∗(t)b20 ≡ H0 + Hint (2.1.25)

The Hamiltonian H0 has the eigenstates:

H0|n〉 = nω|n〉, |n〉 = 1√
n!

(
b†20

)n |0〉. (2.1.26)

On the other hand the coherent state can be written as:

|�〉 ≡ |d〉 = e− |d|2
2

∑

n

1

n!
(

db†20

)n |0〉 = e− |d|2
2

∑

n

dn

√
n! |n〉 (2.1.27)

Within the interaction representation we define the time dependent state:

|d(t)〉 = e−i H0t/�|d〉 = e− |d|2
2

∑

n

(
de−iωt

)n

√
n! |n〉 = |de−iωt 〉 (2.1.28)

The time dependent Schrödinger equation associated to H(t) reads:

i
∂

∂t
|φ(t)〉 = H(t)|φ(t)〉 =

[
ωb†20b20 + λ(t)b†20 + λ∗(t)b20

]
|φ(t)〉. (2.1.29)
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Supposing that at the initial moment of time the system stays in the vacuum state.
Then the formal solution of the above equation is [ZH90]:

|φ(t)〉 = e
− i

�

t∫

0
dt ′

(
�ωb†20b20+λ(t ′)b†20+λ∗(t ′)b20

)

|0〉
= exp

[
d(t)b†20 − d∗(t)b20

]
|0〉eiη(t) = |d(t)〉eiη(t), (2.1.30)

where the following notations have been used:

d(t) = −ie−iωt

t∫

0

λ∗(τ )eiωτ dτ ,

η(t) = −1

2
ωt −

t∫

0

Re [λ(τ )d(τ )] dτ (2.1.31)

This result says that the system remains always in a coherent state. Therefore, if
at the initial time the system is in a coherent state, including the extremal state, it
will remain in a coherent state for ever.

Now we shall present another definition of the coherent state based on the group
theory. Let us note first that the set of operators {n̂ = b†20b20, b†20, b20, I } where I
stands for the unity operator, form a Lie algebra denoted by h4. The corresponding
group is conventionally called the Heisenberg-Weyl group and denoted by H4. The
Hilbert space of H4 is spanned by the eigenstate of the number operator:

b†20b20|n〉 = n|n〉. (2.1.32)

Using the notation H0 = b†20b20, we have:

H0|n〉 = n|n〉 (2.1.33)

It results that the vacuum state is the ground state of H0. In that respect the vacuum
state is an extremal state for H0. We shall call stability subgroup that subgroup which
leaves the extremal state invariant. For H4 the stability subgroup is U (1) ⊗ U (1)
with an algebra spanned by {n̂, I }. The stability group consists of all operations of
the form:

h = ei(δn̂+ϕI ). (2.1.34)

Thus

h|0〉 = |0〉eiϕ. (2.1.35)
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The coset H4/U (1) ⊗ U (1) is a set of elements � which provides for any element
g from H4 a unique decomposition:

g = Dh (2.1.36)

A typical representative in the coset space H4/U (1) ⊗ U (1) is:

D(d) = exp(db†20 − d∗b20). (2.1.37)

By definition a coherent state is the action of the coset elements on the extremal
state.

� = D(d)|0〉. (2.1.38)

Remarkably, the coherent state of the Glauber type and the one defined on group
theory grounds are identical. This is not generally true. This will be explicitly shown
for the case of the SU (2) group.

The properties mentioned above for the coherent states are the basic ones, which
will be used in various contexts along this book. In this chapter we shall focus on
the semiclassical features of the coherent states with symmetries restored.

2.2 Unprojected State

2.2.1 The Quadrupole Coordinate and Momentum

The conjugate coordinates:

α̂20 = 1√
2

(
b†20 + b20

)
, π̂20 = i√

2

(
b†20 − b20

)
, (2.2.1)

satisfy the equation:

[α̂20, π̂20] = i, (2.2.2)

where “i” denotes the imaginary unit. Conventionally, we use the units systemwhere
� = 1.

The averages of α̂ and α̂2 on |�〉 are:

〈�|α̂20|�〉 = √
2d, 〈�|α̂2

20|�〉 = 2d2 + 1

2
. (2.2.3)
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The conjugate momentum and its square have the averages:

〈�|π̂20|�〉 = 0, 〈�|π̂2
20|�〉 = 1

2
. (2.2.4)

Using these results, the uncertainty relation associated to the conjugate coordinates
α and π has the form:

�α̂20�π̂20 = 1

2
, (2.2.5)

where by�x one denotes the dispersion of the coordinate x . Notice that the dispersion
product reaches the minimum value of the set allowed by the Heisenberg uncertainty
principle. Due to this feature one asserts that the coherent state |�〉 is an optimal state
to describe the properties which define the border of quantal and classical behavior.

2.2.2 The Boson Number and Its Conjugate Phase

In this subsection we consider again that d is a complex number. Let us denote by
N̂0 the boson number operator:

N̂0 = b†20b20. (2.2.6)

Writing the operator N̂ 2
0 in a normal order, the expectation values for N̂0 and N̂ 2

0 can
be easily calculated:

〈�|N̂0|�〉 = |d|2 ≡ N0,

〈�|N̂ 2
0 |�〉 = |d|2 + |d|4 = N0 + N 2

0 . (2.2.7)

Thus, the dispersion of the boson number operator can be easily calculated:

(�N̂ )2 = |d|2 ≡ N0. (2.2.8)

Writing the complex number d in the polar form

d = |d|eiϕ (2.2.9)

and using Eq. (2.1.3) one obtains:

〈�|b20|�〉 = |d|eiϕ = N 1/2
0 eiϕ,

eiϕ = 〈�|b20|�〉
(
〈�|N̂0|�〉

)−1/2
. (2.2.10)
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The question which arises is whether such a factorization holds also for the operators
whose averages are involved in the above equation. Before dealing with the quantum
mechanical problem of the boson number and its conjugate phase we would like to
present first the classical counterpart of this long standing problem.

Let H be a Hamiltonian defined in terms of the quadrupole boson operators
b†2m, b2m with −2 ≤ m ≤ 2 and consider the Time Dependent Variational Prin-
ciple (TDVP) equation:

δ

t∫

0

〈�|H − i
∂

∂t ′
|�〉dt ′ = 0, (2.2.11)

where the variational state is the coherent state |�〉 (2.1.2), with d a complex number
depending on time. Let us denote by

H = 〈�|H |�〉. (2.2.12)

The TDVP leads to the Hamilton equations of motion for the classical coordinates d
and d∗.

∂H
∂d

= −i
•
d

∗
,

∂H
∂d∗ = i

•
d, (2.2.13)

where “•” indicates the time derivative. From these equations it results that d and
d∗ play the role of a classical coordinate and its conjugate momentum, respectively,
whileH is the classical energy function, orHamilton function. Changing the classical
coordinates d, d∗ to the polar coordinates by the transformation

(d, d∗) → (r,ϕ), (2.2.14)

with r = |d|2, the equations of motion become:

∂H
∂r

= − •
ϕ,

∂H
∂ϕ

= •
r . (2.2.15)

These equations suggest that the classical image (the average of N̂0 with �) of
the boson number operator, i.e. r , and the phase ϕ are, indeed, conjugate classical
coordinates, namely r is a classical coordinate and ϕ its conjugate momentum. One
can check that their Poisson bracket is equal to unity. Certainly, it would be desirable
that a pair of Hermitian operators whose commutator is the imaginary unity exists
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such that their averages with� are just the canonical conjugate classical coordinates
r and ϕ. In what follows we devote some space to the issue just formulated.

It is useful to introduce the off-diagonal operator

P̂†
0 = N̂−1/2

0 b†20 (2.2.16)

which is the quantal counterpart of Eq. (2.2.10). The operator N̂−1/2
0 is defined by

the following equation:

N̂−1/2
0 = 1√

π

∞∫

−∞
dx exp

(
−x2 N̂0

)
. (2.2.17)

The Hermitian conjugate operator P̂0, satisfies the commutation relation:

[
P̂0, N̂0

]
= P̂0. (2.2.18)

The conjugate coordinate corresponding to the boson number operator is:

�̂0 = −i ln P̂0. (2.2.19)

Indeed, considering the power expansion of the ln function in terms of (P̂0 − 1), one
checks that the operators N̂0 and �̂0 satisfy the commutation relation:

[
N̂0, �̂0

]
= i. (2.2.20)

For monopole bosons, the conjugate coordinates of boson number and phase were
described in details in Ref. [Hol80]. By contradistinction to the monopole case, here
the rotation symmetry is broken. Indeed, while the boson number operator is a scalar,
the phase operator P̂ is a tensor of rank two and projection zero. It is an open question
whether a construction of a scalar phase operator P̂ is possible or not.

We note that our derivation of the phase operator is based onEq. (2.2.18). Actually,
this equation may be looked at as a defining equation for P̂0. Certainly the solution
of this equation is not unique. For example, a possible solution is:

P̂0 = b20. (2.2.21)

In this case we have:
�̂0 = −i ln b20. (2.2.22)

One can check that the following equations for the expectation values hold:
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〈�|�̂0|�〉 = −i ln d, 〈�|�̂2
0|�〉 = − (ln d)2 . (2.2.23)

Consequently, the corresponding dispersion is vanishing:

��̂0 = 0, (2.2.24)

which reflects the fact that � is an eigenfunction of �̂0:

�̂0|�〉 = −i (ln d) |�〉. (2.2.25)

A direct use of Eq. (2.2.19) to calculate the uncertainty relation for the boson num-
ber and phase, is quite a cumbersome task especially due to the logarithm function.
However, a considerable simplification is obtained by noticing that the deviation of
�̂0 from its expectation value can be expressed as:

δ�̂0 = −i
δ P̂0

P̂0
. (2.2.26)

We define a new dispersion of the phase operator by:

D�̂0 = �P̂0

〈�|P̂0|�〉 . (2.2.27)

We shall prove [Hol80] that the newly defined quantity satisfies theHeisenberg uncer-
tainty relation. Indeed, following the procedure of Ref. [CaNi68] one successively
obtains:

〈�|P̂0|�〉 = de−|d|2
∞∑

k=0

|d|2k

k!√k + 1
,

〈�|P̂2
0 |�〉 = d2e−|d|2

∞∑

k=0

|d|2k

k!√(k + 1)(k + 2)
. (2.2.28)

In the asymptotic region of |d|, compact forms for the sums involved in the above
equation were obtained in Ref. [CaNi65], such that the final expressions for the
considered expectation values are:

〈�|P̂0|�〉 = d

|d|
[
1 − 1

8|d|2 + · · ·
]

,

〈�|P̂2
0 |�〉 = d2

|d|2
[
1 − 1

2|d|2 − 3

8|d|4 + · · ·
]

. (2.2.29)
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With these results one finds that for large values of |d|, the following uncertainty
relation holds:

�N̂0D�̂0 = 1

2
. (2.2.30)

As we shall show in what follows, this equation is valid in the region of large number
of bosons. Indeed, in the region of large |d| the � composing terms of maximal
weights are those of large boson number.

The uncertainty relation of the boson number operator and its conjugate phase
has been first studied for photons by Dirac [Dir27] and for oscillator by Susskind
and Glover [SuGl64]. The above equations have been obtained by representing the
photon annihilation operator as a product of a unitary operator, written as U =
eiφ, and a selfadjoint function of the boson number operator f (N̂ ). The solution is
f = N̂ 1/2 and is based on the assumption that φ is a self-adjoint operator. Later
on it was proved that the conjugate phase variable is not well defined and therefore
the corresponding uncertainty relation is doubtful. Indeed, one can check that the
operator U is not unitary and, consequently, φ is not a self-adjoint operator and
thereby cannot be assigned to a physical observable [CaNi65]. The reason for non-
unitary is the presence of a vanishing boson number in the spectrum of N̂ . Even if we
exclude this value, which prevents N̂ to be invertible, the phase is not well defined
for small values of N [Loui63]. Indeed, denoting by |n0〉 the eigenstates of N̂0, the
matrix elements of Eq. (2.2.20) lead to:

〈n0|�̂0|m0〉 = i
δn0,m0

n0 − m0
, (2.2.31)

which doesn’t make sense for small values of the boson number. However, for large
values of the boson number this can be assimilated with a continuous variable and
the ratio from the right hand side of Eq. (2.2.31) is just the first derivative of the Dirac
δ-function which is a well-defined entity.

Positive attempts to define Hermitian operators depending on the phase, which
together with the boson operator N̂0 satisfy the uncertainty relation, have been made
by several authors [CaNi65, Loui63, CaNi68, Lev65]. Thus, the operators:

Ĉ0 = 1

2
(P̂0 + P̂†

0 ),

Ŝ0 = 1

2i
(P̂0 − P̂†

0 ) (2.2.32)

are Hermitian and satisfy the uncertainty relations [CaNi68]:

�N̂0�Ŝ0 ≥ 1

2
〈Ĉ0〉,

�N̂0�Ĉ0 ≥ 1

2
〈Ŝ0〉, (2.2.33)
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where 〈..〉 denotes the average of the operator involved, with the coherent state. The
limitation on simultaneous measurement of observables S0 and C0 associated to the
above mentioned Hermitian operators is expressed by the uncertainty product:

(�Ŝ0)(�Ĉ0) ≥ 1

4
e−N0 , (2.2.34)

with N0 denoting the square of the dispersion �N̂0. A more symmetric uncertainty
relation in the regime of large |d| is obtained by combining the already obtained
results:

(�N̂0)
2 (�Ĉ0)

2 + (�Ŝ0)2

(〈Ĉ0〉)2 + (〈Ŝ0〉)2
≥ 1

4
. (2.2.35)

Although here we deal with quadrupole bosons the proof of the uncertainty relations
mentioned above goes identically with those given in Refs. [CaNi65, CaNi68].

2.3 Projected Spherical States

As alreadymentioned, the coherent state has neither a definite angularmomentumnor
a definite number of bosons. The question is whether the classical features, revealed
by |�〉 and reflected in the Heisenberg uncertainty equations of pairs of conjugate
coordinates, are preserved when the rotational symmetry is restored, i.e. from the
deformed state one projects out the components of a definite angular momentum.
The same question is valid also for the gauge invariance restoration. Ameasure of the
deviation from the classical behavior is again the departure of the dispersion product
from the classical value. In what follows we attempt to answer these questions for
the two pairs of conjugate coordinates considered above.

2.3.1 The Case of α,π Coordinates

Aswe proceeded above and,moreover, in order to keep close track to theCSM,which
will be fully treated in one of the next chapters, for the case of (α,π) coordinates the
parameter d is taken real.

Through angular momentum projection one generates a set of orthogonal states:

φ
(g)
J M = N (g)

J P J
M0|�〉, (2.3.1)

where P J
M K denotes the angular momentum projection operator

P J
M K = 2J + 1

8π2

∫
D J∗

M K (�)R̂(�)d�, (2.3.2)
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with D J
M K standing for the Wigner function, or rotation matrix, R̂(�) is the rotation

defined by the Euler angles �, while N (g)
J is the normalization factor. The projected

functions account for the main features of the rotational ground band [RCGD82].
For this reason the function is accompanied by the upper index “(g)”. The norms have
been analytically studied for any deformation and moreover very simple formulas
for near vibrational and well deformed regimes have been obtained [RBF12]. For
the sake of completeness we give the necessary expressions:

(
N (g)

J

)−2 = (2J + 1)I (0)
J e−d2

, (2.3.3)

with

I (k)
J (x) =

1∫

0

PJ (y) (P2(y))k ex P2(y)dy, x = d2, (2.3.4)

where Pk(x) is the Legendre polynomial of rank k. Expectation values of the
conjugate coordinates and their squares have the expressions:

〈φ(g)
J M |α̂|φ(g)

J M 〉 = √
2dC J 2 J

M 0 M C J 2 J
0 0 0 ,

〈φ(g)
J M |α̂2|φ(g)

J M 〉 = 1

2
+ d2

⎡

⎣
∑

J ′=0,2,4

C J J ′ J
M 0 M C J J ′ J

0 0 0

(
C2 2 J ′
0 0 0

)2

+
∑

J ′=0,2,4

(
C J ′ 2 J
0 0 0

)2 (
C J ′2 J

M 0 M

)2
(

N (g)
J

N (g)

J ′

)2
⎤

⎦ ,

〈φ(g)
J M |π̂|φ(g)

J M 〉 = 0,

〈φ(g)
J M |π̂2|φ(g)

J M 〉 = 1

2
+ d2

⎡

⎣−
∑

J ′=0,2,4

C J J ′ J
M 0 M C J J ′ J

0 0 0

(
C2 2 J ′
0 0 0

)2

+
∑

J ′=0,2,4

(
C J ′ 2 J
0 0 0

)2 (
C J ′ 2 J

M 0 M

)2
(

N (g)
J

N (g)

J ′

)2
⎤

⎦ .

(2.3.5)

Standard notation, C j1 j2 j
m1 m2 m , for the Clebsch-Gordan coefficient is used. From here

the dispersions of α̂ and π̂ are readily obtained and then the dispersion product is
analytically expressed.

Now we simultaneously restore the rotation and gauge symmetries. The boson
number projection operator is defined by:
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P̂N = 1

2π

2π∫

0

eiφ(N̂−N )dφ. (2.3.6)

Applying successively the projection operators P J
M K and P̂N on the coherent state

�, one obtains a state of good angular momentum and boson number:

|NJM〉 = NN J P̂N P J
M K |�〉. (2.3.7)

Here NJ N denotes the normalization factor and has the expression:

(NN J )−2 = e−d2 d2N

N ! (2J + 1)SN J , (2.3.8)

where the matrix Sm J is defined by:

Sm J =
1∫

0

(P2(x))m PJ (x)dx . (2.3.9)

Following the path described in Ref. [RD76], one obtains:

Sl J (d) =
l∑

m=0

(−)l−m3m(l)!(2m)!(m + 1
2 J )!

2l−J m!(l − m)!(m − 1
2 J )!(2m + J + 1)! . (2.3.10)

The overlapmatrix elements given above satisfy the restriction: they are nonvanishing
only if l ≤ J/2.

The explicit expression of the projected state is:

|NJM〉 = NN J e−d2/2 d N

N !
2J + 1

8π2

∫
D J∗

M0(�)R̂(�)
(

b†20

)N
d�|0〉, (2.3.11)

where R̂(�) is the rotation defined by the set of Euler angles �.
The expectation values of the conjugate variables α̂20 and π̂20 are equal to zero

since each of the composing terms changes the boson number by one unit. Therefore,
the corresponding dispersions squared are just the average values of their squares.
By direct calculations one finds:

�α̂20�π̂20 = 1

2
+

∑

J ′=0,2,4

(
C J ′ 2 J

M 0 M

)2 (
C J ′ 2 J
0 0 0

)2
d2

( NN J

N(N−1)J ′

)2

. (2.3.12)
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2.3.2 Dispersions of N̂ and P̂ on Projected States

Note that while averaging the boson number operator with the coherent state |�〉
only the component b†20b20 gives a non-vanishing contribution, when the average
is performed with the angular momentum projected state all the terms involved in
the expression of the boson number operator, contribute. Therefore in this case the
boson number N̂0 is to be replaced with the boson total number operator:

N̂ =
∑

−2≤m≤2

b†2mb2m . (2.3.13)

The phase operator P̂ satisfying the commutation relation

[
P̂, N̂

]
= P̂, (2.3.14)

has the expression:

P̂ =
∑

−2≤m≤2

b2m N̂−1/2, (2.3.15)

where the reciprocal square root operator is defined as in Eq. (2.2.17). Within the
same spirit and with similar caution as before the conjugate phase operator is:

�̂ = −i ln P̂. (2.3.16)

The expectation values of the boson number operator N̂ and its square N̂ 2 have
been analytically obtained Ref. [RD76].

〈φ(g)
J M |N̂ |φ(g)

J M 〉 = |d|2 I (1)
J

I (0)
J

,

〈φ(g)
J M |N̂ 2|φ(g)

J M 〉 = |d|2 I (1)
J

I (0)
J

+ |d|4 I (2)
J

I (0)
J

. (2.3.17)

One can check that the overlap integral ratios involved in the above equations are
related by the following equation [RCGD82, RBF12]:

x2
I (2)

J

I (0)
J

= 1

2
x(x − 3)

I (1)
J

I (0)
J

+ 1

4

(
2x2 + J (J + 1)

)
, x = |d|2. (2.3.18)
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From these equations one obtains the dispersion of N̂ :

(
�N̂

)

J
= −|d|4

(
I (1)

J

I (0)
J

)2

+ 1

2
|d|2(|d|2 − 1)

I (1)
J

I (0)
J

+ 1

4

(
2|d|4 + J (J + 1)

)
. (2.3.19)

The uncertainty relations will be calculated by choosing as conjugate operator the
phase operator P̂ divided by its average value [Hol80] and alternatively theHermitian
operators Ĉ and Ŝ defined as before [CaNi68]:

Ĉ = 1

2

(
P̂ + P̂†

)
,

Ŝ = 1

2i

(
P̂ − P̂†

)
. (2.3.20)

In what follows we shall describe a method of calculating the dispersion of the
associated phase operator P̂ . The average of P̂ corresponding to the angular momen-
tum projected state |φ(g)

J M 〉 is:

〈φ(g)
J M |P̂|φ(g)

J M 〉 =
(

N (g)
J

)2 〈�|P J†
M0

∑

μ

b2μ P J
M0 N̂−1/2|�〉

= e− |d|2
2

(
N (g)

J

)2 〈�|P J†
M0

∑

μ

b2μ P J
M0

1√
π

+∞∫

−∞

(−)m x2m

m! N̂ mdn b†n
20
n! dx |0〉

= e− |d|2
2

(
N (g)

J

)2 〈�|P J†
M0

∑

μ

b2μ P J
M0

1√
n

dn b†n
20
n! |0〉

= e− d2
2 C J 2 J

M 0 M C J 2 J
0 0 0

(
N (g)

J

)2 〈�|P J
00

∞∑

n=1

dn
√

n

(
b†20

)n−1

(n − 1)! |0〉

= de−|d|2C J 2 J
M 0 M C J 2 J

0 0 0

(
N (g)

J

)2 2J + 1

2

+1∫

−1

dx

×
[ ∞∑

m=0

1

m!√m + 1

(
|d|2P2(x)

)m
PJ (x)

]
. (2.3.21)

The final result is:

〈φ(g)
J M |P̂|φ(g)

J M 〉 = C J 2 J
M 0 M C J 2 J

0 0 0d
I(0)

J

I (0)
J

, (2.3.22)
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where we denoted:

I(0)
J =

∞∑

m=0

|d|2m

m!√m + 1
Sm J . (2.3.23)

Applying a similar procedure as before but for P̂2, one obtains the final result:

〈φ(g)
J M |P̂2|φ(g)

J M 〉 = C J
M d2 T (0)

J

I (0)
J

, (2.3.24)

with

C J
M =

∑

J ′=0,2,4

C2 2 J ′
0 0 0 C J J ′ J

0 0 0C J J ′ J
M 0 M

∑

μ

C2 2 J ′
μ −μ 0,

T 0
J =

∞∑

m=0

|d|2m

m!√(m + 1)(m + 2)
Sm J . (2.3.25)

Having the expressions of the expectation values of P̂ and P̂2, the dispersion of
P is readily obtained.

(
�P̂

)2
J M

= 〈φ(g)
J M |P̂2|φ(g)

J M 〉 −
(
〈φ(g)

J M |P̂|φ(g)
J M 〉

)2
. (2.3.26)

Although calculating the average of �̂ is quite a cumbersome task, that is possible.
However according to Ref. [Hol80] the Heisenberg uncertainty inequality is satisfied
by the dispersions of N̂ and

(D P̂)J M = (�P̂)J M

|〈φ(g)
J M |P̂|φ(g)

J M 〉|
(2.3.27)

Therefore the departure from the classical limit is measured by (�N̂ )J (D P̂)J M .
The expectation values of the Hermitian operators Ĉ and Ŝ, defined by

Ĉ = 1

2

(
P̂ + P̂†

)
,

Ŝ = 1

2i

(
P̂ − P̂†

)
(2.3.28)

are easily obtained from Eqs. (2.3.22) and (2.3.24).

〈φ(g)
J0 |Ĉ|φ(g)

J0 〉 =
(

C J 2 J
0 0 0

)2
(Re d)

I(0)
J

I (0)
J

,
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〈φ(g)
J0 |Ŝ|φ(g)

J0 〉 =
(

C J 2 J
0 0 0

)2
(Im d)

I(0)
J

I (0)
J

. (2.3.29)

Following the procedure described above we obtain:

〈φ(g)
J0 |Ĉ2 + Ŝ2|φ(g)

J0 〉 = |d|2
∑

J ′

(
C J 2 J ′
0 0 0

)2 U (0)
J ′

I (0)
J

+ 5

2

U (0)
J

I (0)
J

, (2.3.30)

with

U (0)
J =

∞∑

k=0

|d|2k

(k + 1)! Sk J . (2.3.31)

The normalized sum of dispersions associated to the two observables Ĉ and Ŝ is:

(�Ĉ)2J0 + (�Ŝ)2J0

〈Ĉ〉2J0 + 〈Ŝ〉2J0
= 1

|d|2 (
C J 2 J
0 0 0

)4

×
[
|d|2

∑

J ′

(
C J 2 J ′
0 0 0

)2 U (0)
J ′ I (0)

J

(I(0)
J )2

+ 5

2

U (0)
J I (0)

J

(I(0)
J )2

]
− 1

≡ (�R)2J , (2.3.32)

where the low index J0 suggests that the involved dispersions and average values
correspond to the angular momentum projected state φ

(g)
J0 . Also, the notation 〈Ô〉J0

was used for the average value of Ô with the mentioned projected state.
The uncertainty relation associated to the two observables is obtained by equating

FJ = (�N̂ )J

√√√√ (�Ĉ)2J0 + (�Ŝ)2J0

〈Ĉ〉2J0 + 〈Ŝ〉2J0
(2.3.33)

to the product of the right hand sides of Eq. (2.3.19) and (�R)J given by (2.3.32).
The departure of F from the value of 1/2 constitutes a measure for the quantal nature
of the system behavior.

Concerning the N , J projected states and the pair of coordinates (N̂ , P̂) the results
are as follows. The dispersion of N̂ is vanishing since the projected state is eigenstate
of N̂ . Also, the operators P̂ and P̂2 violate the boson number conservation and
therefore their corresponding averages are vanishing if the number of bosons N is
nonvanishing. The mentioned averages are undetermined for the state with N = 0.
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How the projection of symmetries affect the uncertainty inequalities and therefore
how far from the classical limit one could go by these operations, will be quantita-
tively analyzed in several numerical applications.

2.4 Numerical Analysis

We start by giving the expansion weights of� corresponding to various boson basis:

|�〉 =
∑

n

Cn|n〉,

|�〉 =
∑

J

CJ0|J0〉,

|�〉 =
∑

N J

CN J0|N J0〉. (2.4.1)

where |n〉 are eigenstates of the boson number operator b†20b20, |J0〉 denotes the
eigenstates of angular momentum square, Ĵ 2, and its projection on z-axis, J0. The
third basis {|N J0〉} is determined by the quantum numbers: the boson number N ,
the angular momentum J and z-projection of the angular momentum, 0. Actually,
these expansions correspond just to the boson bases defined above by the studied
symmetry projection.

Using the results described before, one finds out that the expansion weights have
the following analytical expressions:

Cn = e−d2/2 dn

√
n! ,

CJ0 =
(

N (g)
J

)−1
,

CN J = (NN J )−1 . (2.4.2)

These weights have been plotted in Fig. 2.1a–c, as function of the deformation
parameter d. The curves have maxima for some deformations which indicate that
for such deformations the corresponding states, showing up in the expansion, are the
dominant components.

The dispersions product of the conjugate coordinates α̂20 and π̂20 calculated with
the J−projected states is presented as function of d in Fig. 2.2c. It is well known that
the classical limit of this quantity is 1/2 (units of �). According to Fig. 2.2c the J = 0
projected state is the only projected state which behaves semiclassically in the region
of small d(≤1.5). The remaining states lay apart from the classical limit. The larger
J , the larger the deviation from the classical limit. In the region of large d(>3.) the
deviation from the classical limit is an increasing function of d, irrespective the values
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Fig. 2.1 Expansion
coefficients of the coherent
state |�〉 in three distinct
basis, |n〉 (panel a), |J0〉
(panel b), and |N J0〉 (panel
c), are plotted as function of
the deformation parameter d

(a)

(b)

(c)

of J . This behavior trend is determined by the increasing nature of the dispersion of
α̂20. Thus for both conjugate coordinates mentioned above, the nuclear deformation
favors the quantal behavior of the system.

In Fig. 2.3 we represented the product of α̂20 and π̂20 dispersions as function of d,
using the states |N J M〉, which restore both symmetries mentioned above. As seen
in Fig. 2.3, the dispersion product has a strong J -dependence for small values of
d while for large valued of d, i.e. in the rotational limit, this tends to the classical
limit. In contrast to the case of the J -projected function here increasing d, favors the
classical behavior. This is reflected in the decreasing J -dependence of the dispersion
product as well as in approaching the classical value.

It is worth raising the question whether the features mentioned above depend on
the chosen pair of conjugate coordinates. We do not attempt to give a general answer
but analyze, for comparison, what happens when the pair of conjugate variables is
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Fig. 2.2 Dispersions of the
conjugate coordinates α20
and π20, as well as their
product are given as
functions of d in panels a, b
and c for angular momentum
projected states

(a)

(b)

(c)

Fig. 2.3 Dispersion product
for the conjugate coordinates
α̂20 and π̂20, corresponding
to the N J -projected states
are plotted as function of the
deformation parameter d
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Fig. 2.4 Dispersions for the
boson number operator
(panel a) and the
corresponding phase
operator P (panel b) are
plotted as function of d.
Also, the dispersion product
is given in panel c.
Calculations are performed
for angular momentum
projected states

(a)

(b)

(c)

(N̂ , P̂). The results are pictured in Fig. 2.4a–c. Dispersion of N increases with d
and the split due to the J dependence increases slowly from zero within a narrow
interval. Note that for d going to zero the projected function φ

(g)
J M goes to the state

| J
2 , J

2 , 0, J, M〉 [RCGD82] with the standard notation |N , v,λ, J, M〉: N being the
number of bosons, v the seniority, λ the missing quantum number, J the angular
momentum and M the projection on the laboratory z-axis. Therefore, in the spherical
limit N becomes a goodquantumnumber and the dispersion is vanishing.By contrast,
the normalized dispersion D(P) has a large spread over J for small values of d but
for large deformation the J = 2 dispersions attain a common value. Note that apart
from the quantitative aspects, the dispersion product preserves the look of �N .
The behavior of the pair of coordinates (N , R) is visualized in Fig. 2.5a–c. The
split of R-dispersions due to their J-dependence is quite large for small deformation
and is decreasing with d. The situation when dispersion of RJ with J = 2 get a



28 2 Classical Versus Quantal Features in a Projected Coherent State

Fig. 2.5 Dispersions for the
boson number operator
(panel a) and for the
observable R̂ defined by
(2.3.32) (panel b) as well as
their product (c) are plotted
as function of d for angular
momentum projected states

(a)

(b)

(c)

common value is reached for d larger than the maximum value shown in Fig. 2.4.
The uncertainty relation for the pair (N , R) is shown in the plot of FJ (2.3.33)
as a function of d. One notices that the departure from the classical limit is an
increasing function of angular momentum. Also, this is increasing with the nuclear
deformation. It is worth noticing that for large deformation, the J = 2 values become
indistinguishable from each other.

The results obtained so far can be summarized as follows. The expansion weights
of the coherent states in three distinct bases, exhibit a maximum when represented
as function of the deformation parameter d. The larger are the selected quantum
numbers the larger is the deformation for which the weight is maximum.

In the (α,π) representation only the J = 0 projected state behaves classically
and that happens for small values of d. In the region of large d the departure from
the classical picture is slightly increasing with the deformation.
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The behavior of the (α,π) pair of conjugate coordinates in a N J -projected state is
different from that described above for a J -projected state. Indeed, from Fig. 2.3 we
notice that the quantal features prevail for small deformation, while for the rotational
limit of large d the associated Heisenberg relation approaches the classical limit.
Also, in this limit the J -dependence of the uncertainty relations is very weak.

From Figs. 2.2c and 2.3 we conclude that in the (α,π) and J-projected states
representation the system departs from the classical picture by increasing d while
for the (N , J ) projected states the larger the deformation the closer is the system to
the classical behavior. In both cases the small deformation region is characterized
by a quantal behavior reflected by the departure from the classical limits as well
as by the split of the dispersion product due to the J-dependence. Comparing the
figures referring to the uncertainty relations for the (α,π) in the J projected and N J
projected states respectively, onemay conclude that the share of classical and quantal
features depends on the symmetry of the wave function. In the specific situations the
more symmetric is the system the closer is its behavior to the classical picture.

The delicate problem of boson number and the conjugate phasewas treated by two
alternative choices for the conjugate phase-like operator. In the first case the operator
is P̂ with a proper normalization. Although this is not a Hermitian operator the
Heisenberg uncertainty relation holds for a large number of bosons. The dispersion
product is quickly increasing with d starting with values close to zero (≈0.162).
The behavior for small deformation is justified by the fact that the J -projected state
becomes eigenstate of N̂ . For larger d the system behaves in a classical manner while
for small deformation the quantal features prevail. The split of the dispersion product
due to its J -dependence is not significant for J = 2. One may say that although the
departure from the classical limit of the dispersion product is large the classical
feature reclaiming a weak J -dependence, still persists. The dispersion product is
increasing with d and is also J independent for large values of J .

For the second alternative situation the phase like operators Ĉ and Ŝ were used to
define, for the sake of having a symmetrical form, the dispersion of the observable R.
The dispersion product denoted by FJ is increasing with d. For small d the split over
J is large while for large deformation the values of FJ for large J , are more or less
the same. Here, as well as in the case of (α,π) coordinates, the coordinate dispersion
is increasing with d, while the conjugate momentum dispersion is decreasing when
d increases.

Comparing the results for (α,π) and (N , P) /or (N , R) coordinates we notice
that the interplay of quantal and classical feature depends on the pair of conjugate
coordinates under study.

Before the symmetries were restored the system behaves classically which is
reflected by that the uncertainty relations achieve their minima, irrespective of the
chosen pair of conjugate coordinate. Moreover, the expectation value for angular
momentum square has a continuous value [RCGD82]:

〈�| Ĵ 2|�〉 = 6|d|2. (2.4.3)
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Symmetry projection leads to a J (or NJ)-dependence for the uncertainty relations
which is large for small deformation. Increasing |d|, the system tends to recover the
classical behavior.

2.5 The Baker-Campbell-Hausdorff Formula for the SU(2)
Algebra

Along this book we shall use, in several places, the coherent state for the SU(2)
algebra. In order to handle it in a comfortablemanner it is necessary to use a factorized
form which will be derived in what follows. Therefore, here we try to factorize an
operator of the form.

Ô = eÂ+B̂ . (2.5.1)

In some special cases such an operator can be written as a product of two exponential
factors.

Ô = eÂeB̂ . (2.5.2)

For example this factorization holds if the operators A and B commute with each
other. The factorization is still simple if the commutator of the two operators is a
constant. In this case the following equation holds:

eÂ+B̂ = eÂeB̂e
− 1

2

[
Â,B̂

]

. (2.5.3)

An example of an exponential operator which can be factorized in this manner is the
Glauber function or equivalently the coherent state for the Weyl group:

|d〉 = edb†−d∗b|0〉, (2.5.4)

where b and b† are boson operators, while d a complex parameter and |0〉 is the
vacuum state for the boson operator b. In this case one can verify that:

edb†−d∗b|0〉 = edb†e−d∗be− |d|2
2 |0〉. (2.5.5)

This is a direct consequence of Eq. (2.5.3), but can be also obtained by direct calcu-
lation. Indeed, if the factorization mentioned is valid then the coherent state can be
written in the form:

|d〉 = Cedb† |0〉. (2.5.6)
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Remembering the fact that the coherent state is normalized to unity, we have:

〈d|d〉 = |C |2〈0|ed∗bedb† |0〉 = |C |2e|d|2 = 1. (2.5.7)

It results that modulo a phase factor the coherent state can be written as:

|d〉 = e− 1
2 |d|2edb† |0〉. (2.5.8)

Thus, up to a factor depending on the annihilation operator b, which acting on |0〉, it
reproduces it, the exponential operator has the expression from Eq. (2.5.8).

Another case which will be considered here is that where the operators Â and B̂
are generators for the SU (2) algebra. This case is often met in Nuclear Physics both
in microscopic and phenomenological models. Indeed, we remember that the BC S
function for the case where the space of correlated states is restricted to a single j
state is written as an exponential of a sum of the quasispin generators S+ and S−.
Working with this function is a difficult task since the associated power series must
be rewritten in a normal order. Thereby it is much simpler to use from the beginning
a factorized form, two of the factors being just the exponential operators of S+ and
S−, respectively [KIR67].

Here we shall treat the case of a rotation around the axis OY, e−iθ2 Jy , which will
be expressed as product of three exponential operators corresponding to the rotation
generators: J+, J− and Jz . Rotation around OY is a particular case, s = 1, of the
more general rotation e−isθ2 Jy . It is convenient to write this operator in the form:

e−iθ2s Jy = eF1 J−eF2 Jz eF3 J+ ≡ B(s), (2.5.9)

where F1, F2, F3 are functions of s which are to be determined such that the following
restrictions be satisfied:

F1(0) = F2(0) = F3(0) = 0. (2.5.10)

Notations for the raising and lowering operators are the standard ones:

J+ = Jx + i Jy, J− = Jx − i Jy . (2.5.11)

Their commutation relations are those characterizing the SU (2) algebra:

[
J+, J−

] = 2Jz,
[
J±, Jz

] = ∓J±. (2.5.12)

If we perform the first derivative of Eq. (12.1.34) with respect to s we obtain:

•
B = •

F1 J− B + eF1 J−
•

F2 JzeF2 Jz eF3 J+ + eF1 J−eF2 Jz
•

F3 J+eF3 J+ . (2.5.13)

http://dx.doi.org/10.1007/978-3-319-14642-3_12
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Now let us bring the non-exponential operators on the first position. To this aim one
uses the identity

eA Be−A = B +
∑

n=1

1

n! [A, [A, . . . [︸ ︷︷ ︸
n times

A, B] . . .]]. (2.5.14)

In the present case the mentioned identity becomes:

eF1 J− Jze−F1 J− = Jz + F1
[
J−, Jz

] = Jz + F1 J−. (2.5.15)

Hence:
eF1 J− Jz = (Jz + F1 J−)eF1 J− . (2.5.16)

eF2 Jz J+e−F2 Jz = J+ + F2
[
Jz, J+

] + 1

2! F2
2

[
Jz,

[
Jz, J+

]] + · · ·

= J+ + F2 J+ + 1

2! F2
2 J+ + · · · = J+eF2

eF2 Jz J+ = J+eF2eF2 Jz

eF1 J− J+e−F1 J− = J+ + F1
[
J−, J+

] + 1

2! F2
1

[
J−,

[
J−, J+

]] + · · ·
= J+ − 2F1 Jz − F2

1 J−. (2.5.17)

Therefore:

eF1 J−eF2 Jz J+eF3 J+ = (J+ − 2F1 Jz − F2
1 J−)eF2 B. (2.5.18)

Finally, the derivative of B becomes:

•
B =

[ •
F1 J− + (Jz + F1 J−)

•
F2 +(J+ − 2F1 Jz − F2

1 J−)eF2
•

F3

]
B,

θ2

2
(J− − J+)B =

[
(

•
F1 +F1

•
F2 − •

F3 F2
1 eF2 )J− + (

•
F2 −2F1eF2

•
F3)Jz + J+eF2

•
F3

]
B.

(2.5.19)

The generators J+, J− and Jz are linear independent operators, which result in having
equal coefficients for the mentioned operators which show up in the l.h.s. and r.h.s.
respectively.

•
F1 + F1

•
F2 − F2

1

•
F3 eF2 = θ2

2
⇒ •

F1 = θ2

2
(1 + F2

1 ),

•
F2 − 2F1

•
F3 eF2 = 0 ⇒ •

F2 = −θ2F1,
•

F3 eF2 = −θ2

2
⇒ •

F3 = −θ2

2
e−F2 . (2.5.20)
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The solutions of these equations, which obey the initial conditions, are:

F1 = tg
θ2

2
s,

F2 = 2 ln cos
θ2

2
s,

F3 = −F1 = −tg
θ2

2
s. (2.5.21)

For the rotation operator of interest the value s = 1 corresponds:

e−iθ2 Jy = e(tg
θ2
2 )J−e(2 ln cos θ2

2 )Jz e−(tg
θ2
2 )J+ . (2.5.22)

Let us act with this equation on an eigenstate for J 2 and Jz of maximum projection
and take into account the fact that J+|J J 〉 = 0. It results:

e−iθ2 Jy |J J 〉 = e(tg
θ2
2 )J− cos2J θ2

2
|J J 〉. (2.5.23)

The same procedure could be applied to the operator

ez J−−z∗ J+ , z = |z|eiϕ. (2.5.24)

In this case the equations for the factor F1, F2, F3 are:

•
F1 = F2

1 z∗ + z,
•

F2 = −2F1z∗,
•

F3 = −e−F2 z∗. (2.5.25)

Integrating these equations and then put s = 1, one obtains:

F1 = eiϕtg|z|,
F2 = −ln(1 + tg2|z|),
Ḟ3 = −e−iϕtg|z|. (2.5.26)

Using the notations

ζ = eiϕtg|z|, θ

2
= |z|, (2.5.27)
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the following factorization is obtained:

ez J−−z∗ J+ = eζ J−e−ln(1+|ζ|2)Jz e−ζ∗ J+ . (2.5.28)

If we want that the product to have as first factor the exponential operator corre-
sponding to the raising operator J+, one could repeat the previous procedure with
the result:

ez J−−z∗ J+ = e−ζ∗ J+e−ln(1+|ζ|2)Jz eζ J− . (2.5.29)

Acting with the operators involved in Eq. (2.5.28) on the state of maximum weight
|J J 〉 and taking into account that J+|J J 〉 = 0, Jz |J J 〉 = J |J J 〉, one arrives at the
following expression:

|J, z〉 = ez J−−z∗ J+|J J 〉 = 1

(1 + |ζ|2)J
eζ J−|J J 〉. (2.5.30)

This function is the coherent state for the group SU(2). Such property results from
the following considerations:

(1) The function |J J 〉 is extremal for the set of eigenstates of J 2 and Jz . Indeed,
all states of this set can be obtained by successively acting on the extremal state
with the lowering operator:

|J M〉 =
(

2J
J − M

)−1/2 1

(J − M)! (J−)J−M |J J 〉. (2.5.31)

(2) The stability subgroup G for this extremal is the group of rotations around the
OZ axis.

(3) The exponential operator ez J−−z∗ J+ is an element of the quotient group SU (2)/G.
(4) As shown before, the function |J, z〉 is obtained by acting with an element of

the quotient group on the extremal state.

This function is often used in nuclear physics to study semiclassically the rota-
tional degrees of freedom.

We notice that the stereographic projection of a sphere S2 of a diameter equal to
unity, d = 1, on a plane placed at the distance d from the sphere center, achieves
an one to one correspondence of the sphere points of coordinates (1/2, θ/2,ϕ) and
the points ζ of the complex plane. This correspondence is illustrated in Fig. 2.6. The
mentioned sphere is known as the Bloch sphere. Adding to the complex plane the
point from infinity, the complex plane can be compacted, according to the theo-
rem of Alexandrov. In this manner the correspondence evidenced above becomes a
homeomorphism of two compact manifold.

The coherent states corresponding to two different points z are not orthogonal
except for those corresponding to the two sphere poles. Indeed, one can prove that
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Fig. 2.6 The
correspondence between the
points of the sphere S2 and
those of the complex plane
(ζ), achieved by the
stereographic projection

the scalar product of two coherent states corresponding to two different points of the
complex plane is:

|〈J, z′|J, z〉|2 =
[
1 + n(�′) · n(�)

2

]2J

= cos4J �

2
, (2.5.32)

where n(�) is the unity vector representing the point on the Bloch sphere of
coordinate (1/2, θ/2,ϕ), while � is the angle of the two directions.

Resolution of unity for the spin coherent states is expressed by the relation:

2J + 1

4π

∫
d�|J, z〉〈J, z| =

∑

M

|J M〉〈J M | = 1. (2.5.33)

An extremely useful property of the coherent states is that the matrix element of
any operator can be obtained by calculating the derivative of one of the generating
function:

〈J, z|eα+ J+ eα0 J0eα− J−|J, z〉 = 1

(1 + |ζ|2)2J

[
e

α0
2 + (α− + ζ)(α+ + ζ∗)e− α0

2

]2J
,

〈J, z|eα− J− eα0 J0eα+ J+|J, z〉 = 1

(1 + |ζ|2)2J

[
e

α0
2 (1 + α+ζ)(1 + α−ζ∗) + |ζ|2e− α0

2

]2J
.

(2.5.34)
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In order to derive these expressions some preliminaries are needed. Thus, the first
relation can be obtained by a straightforward calculation and using the results:

eα− J−|J, z〉 = 1

(1 + |ζ|2)J

[
|J, J 〉 + (α− + ζ)

(
2J
1

)1/2

|J, J − 1〉

+ · · · + (α− + ζ)k
(
2J
k

)1/2

|J, J − k〉

+ (α− + ζ)2J |J,−J 〉
]

, (2.5.35)

eα0 J0eα− J−|J, z〉 = 1

(1 + |ζ|2)J

[
eα0 J |J, J 〉 + (α− + ζ)

(
2J
1

)1/2

× eα0(J−1)|J, J − 1〉

+ · · · + (α− + ζ)2J e−α0 J |J,−J 〉
]

,

(2.5.36)

〈J, z|eα+ J+ = 1

(1 + |ζ|2)J

[
〈J, J | + (α+ + ζ∗)

(
2J
1

)1/2

× 〈J, J − 1|

+ · · · + (α+ + ζ∗)2J
(
2J
2J

)1/2

〈J,−J |
]

.

(2.5.37)

Concerning the second generating function, the intermediary steps lead to the result:

|J, z〉 = 1

(1 + |ζ|2)J

×
[
|J, J 〉 + z

(
2J
1

)1/2

|J, J − 1〉 + · · · + zk
(
2J
k

)1/2

|J.J − k〉

+ · · · + z2J |J,−J 〉
]
, (2.5.38)
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eα+ J+|J, z〉 = 1

(1 + |ζ|2)J

×
[
|J, J 〉(1 + α+ζ)2J + |J, J − 1〉(1 + α+ζ)2J−1ζ

(
2J
1

)1/2

+ |J, J − 2〉(1 + α+ζ)2J−2ζ2
(
2J
2

)1/2

+ · · · + |J,−J 〉ζ2J

]
,

(2.5.39)

eα0 J0eα+ J+ |J, z〉 = 1

(1 + |ζ|2)J

×
[
|J, J 〉eα0 J (1 + α+ζ)2J + |J, J − 1〉(1 + α+ζ)2J−1ζ

(
2J
1

)1/2

eα0(J−1)

+ |J, J − 2〉(1 + α+ζ)2J−2ζ2
(
2J
2

)1/2

eα0(J−2)

+ · · · + |J, −J 〉ζ2J e−α0 J
]
, (2.5.40)

〈J, z|eα− J− = 1

(1 + |ζ|2)J

×
[
〈J, J |(1 + α−ζ∗)2J + 〈J, J − 1|(1 + α−ζ∗)2J−1ζ∗

(
2J
1

)1/2

+ 〈J, J − 2|(1 + α−ζ∗)2J−2(ζ∗)2
(
2J
2

)1/2
+ · · · + 〈J, −J |(ζ∗)2J

]
.

(2.5.41)



Chapter 3
Compact Formulas for Ground Band
Energies

3.1 Introduction

One of the big merits of the liquid drop model is that it defines in a consistent way
the rotational bands. Many theoretical efforts have been made to describe excitation
energies and electromagnetic transitions probabilities. One of the early claims, was
to obtain a closed formula for the ground band energies which explains the deviations
from the J (J + 1) pattern. Various methods have been proposed which were mainly
based on the principle of variable moment of inertia [MSB69, Harr65, DDK70].
These approaches proposed for ground band energies a series expansion in terms of
J (J + 1) term. The weak point of these expansions is that they do not converge for
high angular momenta. The first attempt to avoid this difficulty was due to Holmberg
and Lipas [HoLi68] who proposed a square root of a linear expression of J (J + 1).
This expression proves to work better than a quadratic expression in J (J + 1).

Here we raise the question whether this formula can be improved so that it can
be extended to the region of states with high angular momenta. In what follows we
describe four solutions for this problem, each of them being obtained in a distinct
manner. One solution is based on a semiclassical treatment of a second order quadru-
pole boson Hamiltonian. Two different expressions for the ground band energies are
given by asymptotic and near vibrational expansions respectively, of an angular mo-
mentum projection formula. Finally, a compact formula is possible within a cranking
approach. The four expressions obtained for energies are used for a large number
of nuclei.

To conclude, in this chapterwe derive analytical formulas for the rotational ground
band energies, which are suitable for a realistic description of a large class of nuclei.

© Springer International Publishing Switzerland 2015
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3.2 Holmberg-Lipas Formula for the Ground
Band Energies

A systematic analysis of the spectra in nuclei from the regions 150 < A < 190
and A > 220 confirmed, in the beginning of 60s of the last century, the description
proposed by Bohr and Mottelson for the low lying states from the ground band of
deformed nuclei:

E = �
2

2I J (J + 1) ≡ AJ (J + 1). (3.2.1)

Later on, the experimental technique development allowed to populate states of
higher angular momenta for which the above simple formula does not work any
longer. It was thus necessary to correct this simple formula by terms of higher power
in J (J + 1). A more realistic expression could be:

E = AJ (J + 1) + B J 2(J + 1)2. (3.2.2)

For states of high and very high spin even this new equation does not suffice for a
realistic description. Attempts to extend the Eq. (3.2.2) have beenmade from both the
microscopic side, by a cranking formalism, and the phenomenological framework
generalizing the above equation to the series:

E = AJ (J + 1) + B J 2(J + 1)2 + C J 3(J + 1)3 + · · · , (3.2.3)

Unfortunately, this expansion is not useful since for high angular momentum is
divergent. An alternative solution has been proposed by Holmberg and Lipas (HL) in
Ref. [HoLi68], which will be described below. The authors noticed that the moment
of inertia is not a constant with respect to the angular momentum. If the l.h.s of
Eq. (3.2.1) one considers the experimental energies corresponding to the angular
momentum J, one could extract then the moment of inertia. Plotting further the
moment of inertia vs energy one obtains a linear dependence excepting the first
excited energy levels:

I = c1 + c2E . (3.2.4)

This linear dependence is shown in Fig. 3.1. Inserting the moment of inertia as given
in Eq. (3.2.4) in (3.2.1) we obtain a second rank equation for energy.

2c2E2 + 2c1E − J (J + 1) = 0. (3.2.5)

The solution of this equation is:

E = a
[√

1 + bJ (J + 1) − 1
]
, (3.2.6)
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Fig. 3.1 The moment of
inertia is represented as
function of energy for
several nuclei

where the new constants a and b are given by:

a = c1
2c2

, b = 2c2
c21

. (3.2.7)

HL formula (3.2.6) can be also obtained on the ground of hydrodynamic model.
Indeed, the energy of a deformed nucleus may be written as:

E(β) = �
2

2I(β)
J (J + 1) + 1

2
(β − β0)

2, (3.2.8)

where β0 is the nuclear static deformation, while β is the dynamic deformation.
Within the hydrodynamic model the moment of inertia is proportional to the square
of the nuclear deformation:

I = 3Bβ2. (3.2.9)

The deformationwhich assures the system equilibrium is obtained from the condition

∂E(β)

∂β
= 0. (3.2.10)
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The result is:

β − β0 ≡ �β = 2E

Cβ0
+ O(�β2). (3.2.11)

Using now this result in connection with (3.2.9), we obtain:

I = 3B
[
β2
0 + 4E

C
+ O(�β2)

]
. (3.2.12)

This equation confirms the linear dependence on energy of the moment of inertia.
Replacing the moment of inertia from Eq. (3.2.8) with the expression (3.2.12) and
neglecting the terms O(�β2), one obtains a second degree equation for the energy
E :

24
B
C

E2 + 6Bβ2
0 E − �

2 J (J + 1) = 0. (3.2.13)

The solution for this equation is of the form (3.2.6) with the parameters a and b given
by:

a = 1

8
Cβ2

0 , b = 8

3

�
2

BCβ4
0

. (3.2.14)

For illustration, in Fig. 3.2 one presents the results for the ground band energies
obtained with formulas (3.2.2) and (3.2.6) [HoLi68]. Comparing the theoretical re-
sults, (3.2.2) and (3.2.6), with the corresponding experimental data one notices that
the HL formula provides a better agreement.

Fig. 3.2 Ground band energies calculatedwith Eq. (3.2.2) (AB) as well as with the Holmberg-Lipas
formula (3.2.6)
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3.3 Angular Momentum Projected State

As variational state we choose the axial symmetric coherent function

|�g〉 = ed(b†20−b20)|0〉, (3.3.1)

This function will be used in connection with the boson Hamiltonian:

H = A1

∑

μ

b†2μb2μ + A2 Ĵ 2. (3.3.2)

The vacuum state for the quadrupole boson operators, b†2μ, b2μ, is denoted by |0〉,
while d is a real quantity which plays the role of the deformation parameter. As
explained already in the previous chapter, the reason is the fact that the average value
of the quadrupole moment written in the lowest order in terms of quadrupole boson
operator, with the function |�g〉 is proportional to d. The component of a given
angular momentum is obtained by a projection procedure:

ϕ
(g)
J M = N (g)

J P J
M0�g, (3.3.3)

where P J
M K is the angular momentum projection operator:

P J
M K = 2J + 1

8π2

∫
D J∗

M K (�)R̂(�)d�, (3.3.4)

and D J
M K theWigner function, while R̂(�) is a rotation operator defined by the Euler

angles �. The system energy is defined as the average value of H with the projected
state:

E (g)
J ≡ 〈ϕ(g)

J M |H |ϕ(g)
J M 〉 = A1d2 I (1)

J (d2)

I (0)
J (d2)

+ A2 J (J + 1), (3.3.5)

where we denoted by I (0)
J the overlap integral:

I (0)
J (x) =

1∫

0

PJ (y)ex P2(y)dy, x = d2. (3.3.6)

with PJ standing for the Legendre polynomial of rank J. The kth derivative of this
integral is denoted by:

I (k)
J (x) = dk I (0)

J

dxk
. (3.3.7)

The normalization factor for the projected state has the expression:
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(
N (g)

J

)−2 = (2J + 1)I (0)
J e−d2

. (3.3.8)

These integrals have been analytically calculated in Ref. [RCGD82]. Actually, the
energies presented here refer to the ground band described by the coherent state
model (CSM) which considers simultaneously three interacting bands, ground, beta
and gamma. In the asymptotic limit of the deformation parameter d, the ground band
energies have the expression [RS83]

E (g,asym)
J = A1

2

[
x − 1

2
+ G1/2

J

]
+ A2 J (J + 1), (3.3.9)

with

G J = 9

4
x(x − 2) +

(
J + 1

2

)2
− 4

9x

(
3 + 10

x
+ 37

x2

)

+ 2

3x

(
1 + 10

3x
+ 13

x2

)
J (J + 1) − 2

9x3
J 2(J + 1)2, x = d2.

(3.3.10)

The parameter x = d2 describes the deformation and is involved in the ansatz for
the variational state (3.3.1). It is worth mentioning that Eq. (3.3.9) generalizes the
Holmberg-Lipas (HL) formula, the J (J + 1) dependence being more complex. The
expression (3.3.9) is obtained by replacing the series expansion in 1/x , associated

to the ratio x
I (1)

J

I (0)
J

,

x
I (1)

J

I (0)
J

= x − 1 − 1

3x
− 5

9x2
− 37

27x3
+
(

1

6x
+ 5

18x2
+ 13

18x3

)
J (J + 1)

− 1

54x3
J 2(J + 1)2 + O(x−4), (3.3.11)

by a faster convergent one.
According to Ref. [RCGP84], for the near vibrational regime (d–close to zero)

the ground state band energies have the expressions:

Eg,vib
J = A1

[
J

2
+ J

2(2J + 3)
x + 9

2

(J + 1)(J + 2)

(2J + 3)2(2J + 5)
x2

+ 27

2

(J + 1)(J + 2)

(2J + 3)3(2J + 5)(2J + 7)
x3
]

+ A2 J (J + 1).

(3.3.12)

For the sake of completeness we present the derivation of the two expressions for
the ground band energies, in the rotational and near vibrational limits.
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3.3.1 Vibrational and Large Deformation Regime

By direct calculations we can check that the overlap integral I (0)
J and its first and

second derivatives satisfy the following differential equation:

d2 I (0)
J

dx2
− x − 3

2x

d I (0)
J

dx
− 2x2 + J (J + 1)

4x2
I (0)

J = 0, (x = d2). (3.3.13)

By a suitable change of function this equation can be brought to the differential
equation characterizing the hypergeometric function of the first rank. Thus, the final
result for I (0)

J is:

I (0)
J = (J !)2

( J
2

)!(2J + 1)! (6d2)
J
2 e− d2

2 1F1

(
1

2
(J + 1), J + 3

2
; 3
2

d2
)

. (3.3.14)

This expression is further used for describing both the asymptotic and vibrational
behavior for the excitation energies in the ground band. Indeed, in the asymptotic
region of d, the hypergeometric function behaves like:

1F1(a, c; z) = �(c)

�(a)
ezza−c[1 + O(|z|−1)]. (3.3.15)

Due to this expression, the dominant term of I (0)
J is:

I (0)
J ∼ ex

3x
. (3.3.16)

This expression suggests an alternative expression for I (0)
J , valid in the asymptotic

region, of the following form:

I (0)
J = ex

∑

n=1

An x−n . (3.3.17)

Inserting this expression into the above differential equation, one obtains the recur-
sion relation for the expansion coefficients Ak:

An+1 = An

6n
(2n + J )(2n − J − 1). (3.3.18)

The leading term (3.3.16) gives A1 = 1
3 and then (3.3.18) determines the whole

set of the expansion coefficients. This way we obtain for the ratio d2 I (1)
J /I (0)

J the
expression:
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x
I (1)

J

I (0)
J

= x − 1 − 1

3x
− 5

9x2
− 37

27x3
+
(

1

6x
+ 5

18x2
+ 13

18x3

)
J (J + 1)

− 1

54x3
J 2(J + 1)2 + O(x−4). (3.3.19)

The convergence in terms of 1/x for the excitation energy may be improved in two
steps. First we write the differential equation for I (0)

J in a different form:

x

(
x

I (1)
J

I (0)
J

)′
+
(

x
I (1)

J

I (0)
J

)2
− x − 1

2

(
x

I (1)
J

I (0)
J

)
− 2x2 + J (J + 1)

4
= 0. (3.3.20)

The derivative

(
x

I (1)
J

I (0)
J

)′
is further calculated by using (3.3.19) and thus the above

equation becomes a second degree algebraic equation for x
I (1)

J

I (0)
J

. Solving this equation

one obtains:

x
I (1)

J

I (0)
J

= 1

2

[
x − 2

2
+√G J

]
, (3.3.21)

where G J is defined by Eq. (3.3.10).
Concerning the near vibrational regime the final expression for energies is ob-

tained in two steps. First, one derives the vibrational limit of the kth derivative:

lim
d→0

(
d2 I (1)

J

I (0)
J

)(k)

= 1

(2J + 3)k

[
J

2
(δk,0 + δk,1) + 9

(J + 1)(J + 2)

2J + 5

×
(

(δk,2 + 9
δk,3

2J + 7

)]
, k = 0, 1, 2, 3.

(3.3.22)

Then, truncating the Taylor expansion of x
I (1)

J

I (0)
J

, around the point x = 0, at the third

order, one obtains:

x
I (1)

J

I (0)
J

= J

2
+ J

2(2J + 3)
x + 9

2

(J + 1)(J + 2)

2J + 3)2(2J + 5)
x2

+ 27

2

(J + 1)(J + 2)

(2J + 3)3(2J + 5)(2J + 7)
x3 + O(x4). (3.3.23)

Therefore (3.3.9) and (3.3.12) describe the energies in the ground band in the as-
ymptotic and vibrational regions of d, respectively.
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3.4 Semiclassical Treatment of a Second Order
Quadrupole Boson Hamiltonian

For a moment we consider the simplest quadrupole boson (b†2,μ,−2 ≤ μ ≤ 2)
Hamiltonian:

H = A1

∑

μ

b†μbμ + A2

∑

μ

(b†μb†−μ + bμb−μ)(−)μ. (3.4.1)

Herewe are interested to study the classical equations provided by the time dependent
variational principle associated to H :

δ

t∫

0

〈�|H − i�
∂

∂t ′
|�〉dt ′ = 0, (3.4.2)

If the variational states span the whole Hilbert space of the boson states, then solving
the variational equations is equivalent to solving the time dependent Schrödinger
equation which is, in general, a difficult task. Therefore, we restrict the trial function
to a coherent state which, we hope, is suitable for describing the semiclassical feature
of the chosen system:

|�〉 = exp
[
z0b†0 − z∗

0b0 + z2(b
†
2 + b†−2) − z∗

2(b2 + b−2)
]
|0〉. (3.4.3)

Indeed, the coherence property results from the obvious equation:

bμ|�〉 = (δμ0z0 + (δμ2 + δμ−2)z2)|�〉. (3.4.4)

In order to write explicitly the equations emerging from (3.4.2) we have to calculate
first the averages of H

H = 〈�|H |�〉, (3.4.5)

as well as of the action operator −i� ∂
∂t . The variational equation (3.4.2) yields the

following classical equations for the complex coordinates zk and z∗
k:

∂H
∂z0

= −i�
•
z
∗
0,

∂H
∂z∗

0
= i�

•
z0,

∂H
∂z2

= −2i�
•
z
∗
2,

∂H
∂z∗

2
= 2i�

•
z2. (3.4.6)

Note that the coordinates zk and z∗
k define a classical phase space, while H plays

the role of a classical Hamilton function. For what follows it is useful to bring these
equations to a canonical form. This is achieved by the transformation:
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qi = 2(k+2)/4Re(zk), pi = �2(k+2)/4Im(zk), k = 0, 2, i = k + 2

2
. (3.4.7)

Indeed, in the new coordinates the classical equations of motion become:

∂H
∂qk

= − •
pk,

∂H
∂ pk

= •
qk. (3.4.8)

In terms of the new coordinates, the Hamilton function is written as:

H = A1 + 2A2

2
(q2

1 + q2
2 ) + A1 − 2A2

2�2
(p21 + p22)

= A

2
(q2

1 + q2
2 ) + A′

2�2
(p21 + p22), (3.4.9)

where we denoted by A = A1 + 2A2 and A′ = A1 − 2A2. Equation (3.4.8)
provides the connection between the generalized momenta and the coordinates time
derivatives:

p1 = �
2

•
q1

A′ , p2 = �
2

•
q2

A′ . (3.4.10)

Taking into account these relations, the classical energy function becomes:

H = �
2

2A′ (
•
q
2

1 + •
q
2

2) + A

2
(q2

1 + q2
2 ). (3.4.11)

For what follows it is useful to use the polar coordinates:

q1 = r cos θ, q2 = r sin θ, (3.4.12)

for the Hamilton function:

H = �
2

2A′ (
•
r
2 + r2

•
θ
2
) + A

2
r2. (3.4.13)

For what follows it is useful to introduce the quantities:

L1 = �

4
((q2

1 + p21 − q2
2 − p22),

L2 = �

2
(q1q2 + p1 p2),

L3 = �

2
(q1 p2 − q2 p1) = �

2

A′ r
2θ̇ (3.4.14)

One can check that
{Li ,Lk} = �εik jLl , (3.4.15)
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where {,} denotes the Poisson bracket while εik j the antisymmetric unit tensor. In
virtue of Eq. (3.4.15) the set of functions Lk with the Poisson brackets as multipli-
cation operation, form a classical SUc(2) algebra. Moreover, they could be obtained
by averaging with | �〉, the generators L̂k

Lk = 〈� | L̂k | �〉; k = 1, 2, 3, (3.4.16)

of a boson SUb(2) algebra defined with the operators b†0, b†±2, as:

L̂1 = �

4

[
2b†0b0 − (b†2 + b†−2)(b2 + b−2)

]
,

L̂2 = �

2
√
2

[
b†0(b2 + b−2) + (b†2 + b†−2)b0

]
,

L̂3 = �

2
√
2i

[
b†0(b2 + b−2) − (b†2 + b†−2)b0

]
. (3.4.17)

The equation
L̂k → L̂k, k = 1, 2, 3, (3.4.18)

and the correspondence between commutators and Poisson brackets

[,] → 1

i
{,}, (3.4.19)

define ahomeomorphismof theboson andclassical algebras generatedby {L̂k}k=1,2,3
and {Lk}k=1,2,3 respectively. Note that the boson SUb(2) algebra does not describe
the rotations in the real configuration space but in a fictitious space. Due to this fact
we shall refer to L̂k as to the components of a pseudo-angular momentum. Using the
equations of motion for the conjugate variables, one can prove that

•
L3 = 0 ,

•
H = 0, (3.4.20)

The first conservation law expressed by (3.4.20) is determined by the invari-
ance against rotation around the 3rd axis in the fictitious space mentioned above:
[H, L̂3] = 0. The second equation asserts that the energy is conserved and that is a
consequence of the variational principle. Since the classical system is characterized
by two degrees of freedom and, on the other hand, there are two constants of motion

H = E , L3 = L , (3.4.21)

the equations of motion are exactly solvable.
The constant value of L3 is conventionally taken to be:

�
2

2A′ r
2 •

θ = L�, (3.4.22)
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which allows us to express the angular variable derivative in terms of the radial one:

•
θ = 2A′L

�r2
. (3.4.23)

Thus, the energy function written in the reduced space, becomes:

H = �
2

2A′
•
r
2 + 2A′L2

r2
+ A

2
r2 ≡ �

2

2A′
•
r
2 + Veff(r). (3.4.24)

We recognize in the effective potential energy:

Veff(r) = 2A′L2

r2
+ A

2
r2, (3.4.25)

just the Davidson potential [Dav32].
Instead of finding the classical trajectories and then quantizing them, here we first

quantize the energy by replacing

�
2 •

r

A′ → −i�
∂

∂r
. (3.4.26)

Thus, one arrives at the Schrödinger equation:

[
− A′

2

∂2

∂r2
+ 2A′L2

r2
+ A

2
r2
]

u(r) = εu(r). (3.4.27)

Making use of the change of variable and function:

x =
√

A

A′ r
2, u(r) = e− x

2 xs f (x), (3.4.28)

one obtains the following differential equation:

[
x

∂2

∂x2
+
(
2s + 1

2
− x

)
∂

∂x
+
(
2s2 − s − 2L2

2x
+ ε

2
√

AA′ − 1

4
− s

)]
f (x) = 0.

(3.4.29)

This should be comparedwith the differential equation for the Laguerre polynomials:

[
x

∂2

∂x2
+ (m + 1 − x)

∂

∂x
+ n

]
Lm

n (x) = 0. (3.4.30)

Indeed, the two equations are identical provided the following equations hold:

1 + m = 2s + 1

2
, n = ε

2
√

AA′ − 1

4
− s, 2s2 − s − 2L2 = 0. (3.4.31)
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From the last equation we derive the expression of s as a function of L . The positive
solution is:

s = 1

4
(1 +

√
1 + 16L2). (3.4.32)

The second equation (3.4.31) yields for the energy ε the following expression:

εnL = 2
√

(A2
1 − 4A2

2)

(
n + 1

2
+ 1

4

√
1 + 16L2

)
, n = 0, 1, 2, . . . L = 0, 1, 2, . . .

(3.4.33)

An approximate expression may be obtained by expanding first the Davidson
potential Veff around its minimum r0 given by the equation:

r20 = 2L

√
A′
A

, (3.4.34)

and truncating the expansion at the quadratic term. The result for the energy func-
tion is:

H = �
2

2A′ ṙ
2 + 2A(r − r0)

2 + 2L
√

AA′. (3.4.35)

Quantizing this Hamilton function we obtain an eigenvalue equation for a harmonic
oscillator whose energy is:

EnL = 2
√

AA′
(

n + 1

2

)
+ 2L

√
AA′

= 2
√

(A2
1 − 4A2

2)

(
n + 1

2
+ L

)
, n = 0, 1, 2, . . . (3.4.36)

We remark the fact that the two spectra, exact and semiclassical coincide when L is
large:

EnL ≈ εn,L , for L = large. (3.4.37)

Note that the initial boson Hamiltonian could be easily diagonalized by a suitable
chosen canonical transformation:

b̃†μ = Ub†μ − V (−)μb−μ,

b̃μ = Ubμ − V (−)μb†−μ. (3.4.38)

Indeed, the coefficients U and V may be chosen such that:

[
b̃μ, b̃†μ′

]
= δμμ′ ,

[
H, b̃†μ

]
= Eb̃†μ. (3.4.39)
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The second equation provides a homogeneous system of equations for the transfor-
mation coefficients (

A1 2A2
−2A2 − A1

)(
U
V

)
= E

(
U
V

)
, (3.4.40)

This determines U and V up to a multiplicative constant to be fixed by the first
equation which gives:

U 2 − V 2 = 1. (3.4.41)

The compatibility condition for Eq. (3.4.40) gives E =
√

A2
1 − 4A2

2, and therefore
the eigenvalues of H are:

En =
√

A2
1 − 4A2

2

(
n + 5

2

)
. (3.4.42)

The frequency obtained is half the one obtained through the semiclassical approach.
The reason is that here the frequency is associated to each of the 5 degrees of freedom
while semiclassically the frequency is characterizing a plane oscillator. Note that
the pseudo-angular momentum L is different from the angular momentum in the
laboratory frame describing rotations in the quadrupole boson space:

Ĵμ = √
10
(

b†2b2
)

1μ
. (3.4.43)

The expected value of the angular momentum square is:

〈�| Ĵ 2|�〉 = 3

[
q2
1 + q2

2 + 1

�2

(
p21 + p22

)]
. (3.4.44)

Since the variational function |�〉 is not eigenstate of Ĵ 2, the above mentioned
average value is not a constant of motion. Indeed, it is easy to check that:

∂〈�| Ĵ 2|�〉
∂t

= 6

�2

(
A′ − A

)
(q1 p1 + q2 p2) �= 0. (3.4.45)

It is instructive to see whether we could crank the system so that the magnitude of
angular momentum is preserved, i.e.

〈�| Ĵ 2|�〉 = �
2 J (J + 1). (3.4.46)

Using the polar coordinates the above equation becomes:

3�2

A′2 ṙ2 + 12L2

r2
+ 3r2 = J (J + 1). (3.4.47)
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This equation is treated similarly with the energy equation. Thus by the quantization:

A′2

�2
ṙ → −i�

∂

∂r
, (3.4.48)

Equation (3.4.47) becomes a differential equation for the wave function describing
the angular momentum:

− ∂2�

∂r2
+
(

4L2

A′2r2
+ r2

A′2

)
� = J (J + 1)

3A′2 �. (3.4.49)

Making the change of variable and function:

x = r2

A′ , � = e− x
2 xs�, (3.4.50)

we obtain the following equation for �:

x
∂2�

∂x2
+
(
2s − x + 1

2

)
∂�

∂x
+
⎛

⎝
2s2 − s − 2L2

A′2

2x
+ J (J + 1)

12A′ − s − 1

2

⎞

⎠� = 0.

(3.4.51)

This equation admits the Laguerre polynomials Lm′
n′ (x) with the quantum numbers

determined as follows:

m′ = 2s − 1

2
, s = 1

4
+ 1

4

√

1 + 16L2

A′2 ,
J (J + 1)

12A′ = n′ + 1

2
+ 1

4

√

1 + 16L2

A′2 .

(3.4.52)

The last relation (3.4.52) can be viewed as an equation determining L:

L =
[(

J (J + 1)

12
− A′(n′ + 1

2
)

)2
−
(

A′

4

)2]1/2
. (3.4.53)

On the other hand taking the harmonic approximation for the potential term in
Eq. (3.4.47) one obtains the classical equation for a harmonic oscillator from which
we get:

J (J + 1) = 12A′
(

n′ + 1

2

)
+ 12L . (3.4.54)

Reversing this equation one can express the pseudo-angular momentum L in terms
of the angular momentum J :

L = J (J + 1)

12
− A′

(
n′ + 1

2

)
. (3.4.55)
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Replacing, successively, the expressions for L , (3.4.53 and 3.4.55), into energy
Eqs. (3.4.33 and 3.4.36), we obtain four distinct expressions for the energies charac-
terizing the starting Hamiltonian H .

E (1)
nn′ J = √

AA′
[
2n + 1 + J (J + 1)

6
− A′ (2n′ + 1

)]
,

E (2)
nn′ J = √

AA′
⎡

⎣2n + 1 + 2

√[
J (J + 1)

12
− A′

(
n′ + 1

2

)]2
−
(

A′
4

)2
⎤

⎦ ,

E (3)
nn′ J = √

AA′
⎡

⎣2n + 1 + 1

2

√

1 + 4

[
J (J + 1)

6
− A′ (2n′ + 1)

]2
⎤

⎦ ,

E (4)
nn′ J = √

AA′
⎡

⎣2n + 1 + 1

2

√

1 + 4

[
J (J + 1)

6
− A′ (2n′ + 1)

]2
− (A′)2

⎤

⎦ .

(3.4.56)

Notice the fact that for a fixed pair of (n, n′) each of the above equations define
a rotational band: The lowest band corresponds to (n, n′) = (0, 0) and defines the
ground band. Except for the band energies E (1)

00J which exhibits a J (J +1) pattern the
other three bands have the same generic expressions. Thus, the excitation energies
have the form:

E J = a
[√

1 + bJ (J + 1) + cJ 2(J + 1)2 − 1
]
. (3.4.57)

which is a generalization of the Holmberg-Lipas formula [HoLi68]. The parameters
a, b and c are to be fixed by fitting three particular experimental energies.

We recall that we required that the average value of Ĵ 2 equals �
2 J (J +1). Subse-

quently we eliminated the energy dependence on the pseudo-angular momentum L .
This way we projected approximately the angular momentum from the variational
state.

3.5 Numerical Results

Since the expressions (3.3.9), (3.3.11) and (3.3.12) are based on series expansion in
1/x and x , respectively, it is worth showing how far the truncated expansions are from

the exact energies. Aiming at this goal in Figs. 3.3 and 3.4 we plotted the ratio d2 I (1)
J

I (0)
J

and the associated truncated series for large and small values of d, respectively,
as functions of d for two angular momenta: J = 12 and J = 16. In the case of
asymptotic regime we considered also the square root expression (3.3.21). In this
case one defines an existence interval of d for which G J ≥ 0. The lower bounds
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Fig. 3.3 d2 I (1)
J /I (0)

J is plotted as a function of d for J = 12 left and J = 16 right. Two approxi-
mations of this function are also presented. One is a truncated expansion in 1/x (Eq.3.3.23), while
the other one is given by a square root expression (Eq.3.3.21) which is slightly faster convergent
than the previously mentioned expansion

Fig. 3.4 d2 I (1)
J /I (0)

J is plotted as a function of d for J = 12 left and J = 16 right. This is compared
with the function given by the near vibrational approximation used in Eq. (3.3.12) (see the factor
multiplied with A1)

of these intervals for J running from 0 to 30 are listed in Table3.1. From Fig. 3.3
we see that for d ≥ 3 the used expressions for energies achieve the convergence
even for high angular momenta. Concerning the energies for the near vibrational
regime one notes that we use a power series of x and therefore one may think that
such an expansion is valid only for x ≤ 1. However, we notice that the coefficients
of this expansion are depending on J and moreover are less than unity. The larger
J the smaller are these coefficients. This fact infers that the convergence radius is
larger than unity and is an increasing function of the angular momentum. As a matter
of fact this is confirmed in the plot shown in Fig. 3.4. Comparing the curves from
Figs. 3.3 and 3.4 one may say that there is a small interval of d were the asymptotic
and small x expansions are matched. This allows us to assert that the reunion of the
two formulas, (3.3.9) and (3.3.12), assures an overall description of nuclei ranging
from small to large deformation.

In Fig. 3.5 we plotted the term G J involved in the energy expression (3.3.9)
as a function of the deformation parameter d. Except for J = 0 and J = 2 all
the other functions vanish for a specific value of d which are, in fact, the lower
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Table 3.1 The smallest value of d, for which G J is positive

J 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

dmin 1.55 0 0 0.65 1.21 1.43 1.59 1.71 1.82 1.91 1.99 2.07 2.14 2.21 2.27 2.33

Fig. 3.5 G J is plotted as
function of d for some
angular momenta. Note that
excepting the cases of
J = 2, 4 all other functions
G J get negative for d
smaller than a critical value.
These limiting values are
listed in Table3.1

J 0

J 30

0 1 2 3 4

0

200

400

600

800

d

G
J

bounds of the existence interval. The basic expressions for energies (3.4.57), (3.3.9)
and (3.3.12) have been used for a large number of nuclei grouped according to the
nuclear phase to which they belong. Thus, for well deformed nuclei behaving like
axially deformed rotor the ratio E4+/E2+ should be close to the value of 3.3, while
for the near vibrational region one expects a ratio close to the value 2. Between
these two extreme values are placed gamma unstable nuclei where the ratio may
run in the interval of 2.5–3.0. The deviation from axial symmetry can affect the ratio
mentioned above. Thus 228Th exhibits some specific feature of a triaxial nucleus with
an equilibrium value γ0 = 300. The corresponding ratio E4+/E2+ is equal to 3.24.
According to the IBA (InteractingBosonApproximation)model [AI76, IAAR87] the
nuclei belonging to the three groupsmentioned above are described by the irreducible
representations of some dynamic groups as SU (3), SU (5) and O(6). Since the nuclei
described by a certain symmetry group exhibit some specific properties one says that
these form a certain nuclear phase. According to Casten [CAIA81] all nuclei of the
periodic table may be placed on the sides of a triangle having in vertexes the three
symmetriesmentioned above. On each side which links two adjacent symmetries one
expects a critical transition point. Few years ago, Iachello [Iac00, IA01] advanced
the idea that each of the critical nuclei laying on the three triangle sides correspond
to specific symmetries. Thus, the transition O(6) → SU (5) is characterized by a
critical symmetry which is E(5). Representatives for the E(5) symmetry are 104Ru
and 102Pd characterized by specific ratios E4+/E2+ = 2.48, 2.29, respectively. In
the transition SU (5) → SU (3), the critical point is close to 3. Such nuclei are 150Nd,
152Sm, 154Gd and 156Dy. Indeed, they prove to be critical points for the mentioned
phase transition when the entire isotopic chains are considered. Recently, it was
shown that some nuclei lay inside the Casten’s triangle.
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The question to answer is whether the compact energy formulas obtained are able
to describe the ground band energies for all nuclei mentioned above. The theoretical
values for energies labeled by Th(1) are obtained with Eq. (3.3.9) if d is large or
with Eq. (3.3.12) when d is smaller than 2. The calculated energies labeled by Th(2)
are obtained with Eq. (3.4.57). The parameters A1, A2, d were obtained by a least
mean square fitting procedure while a, b, c by fixing the energies of three particular
levels. The fitted energies were chosen so as to obtain an overall good agreement
with experimental data. The best set of a, b, c would be obtained by minimizing the
r.m.s. value of deviations which, for this case, is a more tedious procedure.

The agreement of calculated and experimental excitation energies is judged by
the r.m.s (root mean square) values of the deviation, denoted by

χ =
√√√√

N∑

i

(ET h
i − E Exp

i )2

N
. (3.5.1)

The fitting procedure yields for the coefficients b and c double precision numbers,
which are presented, in tables, in a truncated form. Since the square root formula
provides energies which are quite sensitive to small variations for the parameters b
and c, we give their values with a suitable large number of digits. Indeed, with the
listed parameters we get the energies corresponding to the exact parameters yielded
by the fitting procedure. Comparing the values of c for different nuclei, one notices
that the parameter acquires larger values for smaller deformation parameter.

Table3.2 shows the results for some isotopes of Th and U. Except for 228Th, these
isotopes are characterized by large values for the deformation parameter d. As we
already mentioned, 228Th has features which are specific to the triaxial nuclei. We
notice the small values for the r.m.s. obtained in these cases.

The nuclei presented in Table3.3, are characterized by small d and moreover
they satisfy the O(6) symmetry. For these nuclei, the defining Eq. (3.3.12) was used.
One notices that this formula for the near vibrational picture describes the excitation
energies better than the generalized HL formula. This is reflected by the relative
r.m.s. values.

In Table3.4 one finds the results for some isotopes of Nd, Sm and Dy obtained
with the formula characterizing the near vibrational regime. These nuclei may be
viewed as critical points for the phase transition SU (5) → SU (3) [RF05, RGF05,
RGBF09]. However, one expects that for nuclei close to the critical point the other
formula using an asymptotic expansion in terms of 1/x works as well.

Finally, Table3.5 presents two nuclei which satisfy the E(5) symmetry. These
are described with the closed formulas (3.3.12) and (3.4.57). We remark that also
in this case the r.m.s. values are small. The experimental data for these nuclei were
considered up to the angular momentum were the first backbending shows up.

Before closing this section we summarize our results presented in Tables3.2, 3.3,
3.4 and 3.5. For nuclei characterized by ratios E4†

g /E2†
g larger than 2.93 we used the

asymptotic expansion for energies (Eq. (3.3.9)) while for values of this ratio smaller
than 3.02 the expansion for small d, i.e. that given by Eq. (3.3.12), was used. Within
the overlapping interval of d, both formulas are valid.
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Table 3.5 The same as in Table3.2 but for a different set of nuclei: 104Ru [Bl91], 102Pd [FJ98].
These nuclei obey the E(5) symmetry

104Ru 102Pd

Jπ Exp. Th(1) Th(2) Exp. Th(1) Th(2)

2+ 358.03 348.13 358.03 556.43 563.02 520.03

4+ 888.49 901.59 910.87 1275.87 1280.12 1275.87

6+ 1556.30 1561.29 1556.30 2111.35 2100.12 2114.71

8+ 2320.30 2303.22 2287.30 3013.06 3006.50 3019.06

10+ 3111.80 3119.23 3111.80 3992.71 3993.31 3992.71

12+ 4005.75 4039.35 5055.10 5057.87 5043.55

14+ 4960.97 5078.09 6179.80 6198.80 6179.80

16+ 5983.88 6234.53 7428.80 7415.32 7408.97

18+ 7073.86 7513.64 8706.93 8737.58

20+ 8230.5 8919.18 10073.30 10171.10
E4+

g

E2+
g

2.48 2.29

χ 11.33 17.84 9.88 15.41

A1 a 522.4864 562.6938 649.8648 710.6779

A2 b 8.1960 0.2738559 9.2391 0.329923

d c 1.5466 9.51995 × 10−4 1.4174 5.317905 × 10−4

3.6 Another Compact Formula for the Ground Band
Energies

The work with coherent states is particularly simple especially when we want to
calculate matrix elements. This beauty is somehow altered when we pass to the
angular momentum projected states, although even there the matrix element are
analytically estimated. Here we address the question whether for a given angular
momentum there exists a deformation parameter such that the matrix elements with
the projected states are equal to those corresponding to unprojected states. To answer
this questionwe consider themost general four order quadrupole bosonHamiltonian:

H =
{
1

2
D11(b

†
2b2)0 + D20(b

†
2b†2)0 + D30(b

†
2b†2b†)0

+ D21(b
†
2b†2b2)0 + 1

2

∑

J

D(J )
22

[
(b†2b†2)J (b2b2)J

]

0

+ D40(b
†
2b†2)0(b

†
2b†2)0 + D31(b

†
2b†2)0(b

†
2b†2)0

}
+ h.c. (3.6.1)
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Within the coherent state model the lowest eigenvalues of H are approximated by
its average values with the angular momentum projected states:

E (g)
J (d) = 〈ϕ(g)

J |H |ϕ(g)
J 〉,

ϕ
(g)
J M = N (g)

J P J
M0ψ

(g)(d), ψ(g)(d) = ed(b†20−b20)|0〉, (3.6.2)

where N (g)
J denotes the normalization constant expressed in terms of the overlap

integral I (0)
J , defined before, by

(N (g)
J )−2 = (2J + 1)e−d2

I (0)
J , (3.6.3)

while |0〉 stands for the vacuum state of the quadrupole boson operators. Now, we
shall crank the coherent state function such that the angular momentum squared

Ĵ 2 =
∑

μ=±1,0

(−)μ Jμ J−μ, Jμ = √
10(b†2b2)1μ. (3.6.4)

is preserved in the average, i.e.,

〈 Ĵ 2〉 = J (J + 1). (3.6.5)

This restriction provides an equation determining the deformation parameter d:

d2 = 1

6
J (J + 1) ≡ d2

J . (3.6.6)

Note that this restriction transforms a continuous variable into a discrete one. The
same happens with the energy E(d), the average of H with �, if the deformation
parameter d is replaced by dJ :

E(dJ ) = A1 J (J + 1) + A2 J 2(J + 1)2 + A3 [J (J + 1)]3/2 ≡ E J , (3.6.7)

where the following notation was used:

A1 = 1

6
√
5
, (3.6.8)

A2 = 7

45

[
7D(0)

22 + 6D(4)
22 + 2

√
5D(2)

22 + 14(D40 + D31)
]
,

A3 = −1

3
√
105

(D30 + D21). (3.6.9)

Equation (3.6.7) represents a compact three parameters formula for the ground band
excitation energies. The parameters involved are to be determined by a least square
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procedure. The results for several nuclei are given in Tables3.6 and 3.7. As seen in
these tables, the agreement between calculated and experimental excitation energies
is quite good. From Eq. (3.6.7) one can check that the energy spacing E J − E J−2
is a multivalued function of J . Due to this feature one expects that such a simple
formula is able to describe the energy levels in the backbending region. As a mat-
ter of fact among the nuclei treated here the following backbenders are included:
166Yb,184Os,166Hf,168Hf,172Hf,174Hf, 158Er.

In what follows we shall analyze more closely the relationship between the wave
functions ψJ = ψ(dJ ) and ϕ

(g)
J M as well as between E J as given by (3.6.7) and

〈ϕ(g)
J M |H |ϕ(g)

J M 〉.
To this aimwementionfirst a fewproperties forψJ . The set {ψJ } is not orthogonal.

Indeed:

〈ψJ |ψJ ′ 〉 = exp

[
−1

2
(dJ − dJ ′)2

]
. (3.6.10)

Expanding ψ in terms of ϕ
(g)
J0 , one obtains:

ψ(d) =
∑

J ′
CJ ′(d)ϕ

(g)

J ′0(d). (3.6.11)

Denoting CJ J ′ = CJ ′(dJ ), we notice that the average of the angular momentum
operator squared with the above function yields:

∑

J ′
CJ J ′ J ′(J ′ + 1) = J (J + 1). (3.6.12)

Replacing d with dJ in Eq. (3.6.11) and then taking the scalar product of the resulting
equation with ϕ

(g)

J ′0 it results:

CJ J ′ = [NJ ′(dJ )]−1 . (3.6.13)

Moreover, the norm of ψ has the expression:

1 =
∑

J ′
(CJ ′(d))2 (3.6.14)

which for d = dJ yields
∑

J ′

(
N (g)

J ′ (dJ )
)−2 = 1. (3.6.15)
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Now, we want to see whether the expansion coefficients (3.6.11) exhibit an extremal
as function of J ′, and how does this depend on d. Recall that the norm of the projected
state has an analytical expression:

(CJ (d))2 = e−d2
(2J + 1)I (0)

J (d) ≡ MJ (d). (3.6.16)

Taking into account the analytical expression of the overlap integral I (0)
J one can

prove that the first derivative of M(d)with respect to d2 has only one zero.Moreover,
∂M

∂(d2)
is positive for d → 0 and negative for d → ∞ Therefore, the function M(d)

has a sole extremal and this is a maxim. Now, we search for the value of d which
maximizes MJ (d) by using the asymptotic behavior of the Legendre polynomial PJ

involved in the expression of the mentioned overlap integral. To this end it is useful
to expand PJ (x) as:

PJ (
√
1 − t) =

J/2∑

p=0

f pt p, J − even. (3.6.17)

where the coefficients f p are determined from the identity:

PJ (
√
1 − t) =1 F1

(
J + 1

2
,− J

2
, 1, t

)
, (3.6.18)

with 1F1 denoting the hypergeometric function. This relation can be proved by show-
ing that the two functions, PJ and F , satisfy the same differential equation with
similar boundary conditions. The above expansion allows us to write the function
MJ (d) in a more suitable form:

MJ (d) = 2J + 1

2

J/2∑

p=0

λpRp,

Rp =
1∫

0

t p(1 − t)−
1
2 e− 3

2 d2t dt. (3.6.19)

The asymptotic behavior of Rp(d) is given in Ref. [BE53]:

Rp = p!
(

2

3d2

)p+1 [
1 + p + 1

3d2 + O
(

1

d4

)]
. (3.6.20)

Consequently, MJ (d) becomes:

MJ (d) = 2J + 1

2d2 e−y

[
1 + 1

18d2 (4y2 − 15y + 6) + O
(

1

d2

)]
, (3.6.21)
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where

y = J (J + 1)

6d2 . (3.6.22)

Now, the solution of the equation:

∂(MJ (d))

∂(d2)
= 0, (3.6.23)

is found to be:

d2
0 = J (J + 1)

6
− 2

3
+ O

(
1

d2
0

)
. (3.6.24)

Thus for large J we have:
d0 ≈ dJ . (3.6.25)

In what follows we shall compare the m.e. of N̂ , N̂ 2. To begin with we start with N̂ :

〈ψ(d)|N̂ |ψ(d)〉 = d2,

〈ϕ(g)
J0 (d)|N̂ |ϕ(g)

J0 (d)〉 = d2 I (1)
J (d)

I (0)
J (d)

. (3.6.26)

The right hand side can be written in a different form:

d2 I (1)
J (d)

I (0)
J (d)

= d2 + ed2

(2J + 1)I (0)
J

∂[MJ (d)]
∂(d2)

. (3.6.27)

Since d0 is solution for Eq. (3.6.23) one obtains:

〈ϕ(g)
J0 (d0)|N̂ |ϕ(g)

J0 (d0)〉 = 〈ψ(d0)|N̂ |ψ(d0)〉. (3.6.28)

When J is large the above equation becomes:

〈ϕ(g)
J0 (dJ )|N̂ |ϕ(g)

J0 (dJ )〉 = 〈ψ(dJ )|N̂ |ψ(dJ )〉. (3.6.29)

Similarly, the following result for the average of N̂ 2 is obtained

〈ϕ(g)
J0 (d0)|N̂ 2|ϕ(g)

J0 (d0)〉 = 〈ϕ(g)
J0 (d0)|N̂ |ϕ(g)

J0 (d0)〉 + d4
0

I (2)
J (d0)

I (0)
J (d0)

. (3.6.30)
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From the expression of MJ one gets:

d4
0

I (2)
J (d0)

I (0)
J (d0)

= d4
0 + d4

0

MJ (d0)

∂2MJ (d)

∂(d2)2
|d0 ,

d4
0

MJ (d0)

∂2MJ

∂(d2)2
|d0 = −1 + O

(
1

d2
0

)
. (3.6.31)

From the above relations one concludes:

〈ϕ(g)
J0 (dJ )|N̂ 2|ϕ(g)

J0 (dJ )〉 = 〈ψ(dJ )|N̂ 2|ψ(dJ )〉, J − large. (3.6.32)

The matrix elements of the terms involved in H corresponding to the projected state
ϕ

(g)
J0 are either a monomial of d or proportional to the matrix element of N̂ and N̂ 2.

In virtue of the results presented above we have:

〈ψJ |H |ψJ 〉 ≈ 〈ϕ(g)
J0 (dJ )|H |ϕ(g)

J0 (dJ )〉. (3.6.33)

This proves in fact that spectra of H corresponding to the cranking procedure
and the basis of angular momentum projected states respectively, are about the same
in the regime of J large. Also, the deformation parameter fixed by the cranking
restriction maximizes the overlap of unprojected and projected states.

3.7 Conclusions

The results of this chapter can be summarized as follows. By a dequantization proce-
dure we associated to a quantum mechanical Hamiltonian, quadratic in the quadru-
pole bosons, a time dependent classical equation. The classical Hamiltonian has a
separated form, i.e. is a sum of a kinetic and a potential energy terms. The latter one
does not depend on momenta and is of the Davidson type. This actually says nothing
but the fact that the Davidson potential has a classical origin. The centrifugal term is
determined by a pseudo-angular momentum associated to the intrinsic coordinates.
It is worth mentioning that the constraint for the angular momentum in the laboratory
frame yields a differential equation which is connected to that one corresponding to
the energy conservation, which results in obtaining a specific angular momentum
dependence for the quantal energy. Actually, the expression obtained generalizes
the Holmberg-Lipas formula, involving under the square root symbol a J 2(J + 1)2

term as well. A similar expression is also obtainable within the coherent state model
(CSM) for a large deformation regime. Another compact expression was proposed
by CSM for the near vibrational regime, i.e. small nuclear deformation. Numerical
applications prove that the two compact expressions provided by CSM are able to
describe the ground state energies for deformed, near vibrational and transitional
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nuclei. By matching the two expressions, one obtains a unitary description for nuclei
satisfying different symmetries or, with other words, belonging to various nuclear
phases. Also a crancking formula is obtained with a quartic Hamiltonian. Although
results were obtained for a large number of nuclei (44), here however only few ex-
amples are presented. The agreement between results and experimental excitation
energies is quite impressive.

The chosen nuclei range from near vibrational to well deformed nuclei and be-
long to various symmetries. Thus, the nuclei from Table3.2 are axially symmetric
deformed nuclei except for 228Th which exhibits the features of a triaxial nucleus.
Nuclei characterized by relatively small values of d are considered in Tables3.3
and 3.4. They satisfy O(6) Table3.3 and X (5) Table3.4 symmetries. Two nuclei
satisfying the symmetry E(5) are presented in Table3.5.



Chapter 4
Description of the Triaxial Rotor

4.1 The Triaxial Rotor. Diagonalization

The angular momentum components, given in units of �, will be denoted by
L̂ x , L̂ y, L̂ z in the laboratory frame (L) and by L̂1, L̂2, L̂3 in the body fixed reference
frame (B). In the two frames the commutation relations are different:

[
L̂ x , L̂ y

]
= i L̂ z;

[
L̂ y, L̂ z

]
= i L̂ x ;

[
L̂ z, L̂ x

]
= i L̂ y;

[
L̂1, L̂2

]
= −i L̂3;

[
L̂2, L̂3

]
= −i L̂1;

[
L̂3, L̂1

]
= −i L̂2. (4.1.1)

Let � = (θ1, θ2, θ3) be the Euler angles defining the rotation which transforms
(L) in (B):

(L)
R̂(�)→ (B).

Since rotation does not change the vector length it results:

L̂2
x + L̂2

y + L̂2
z = L̂2

1 + L̂2
2 + L̂2

3.

Denoting by |L M K 〉 the common eigenfunctions of L̂2, L̂ z, L̂3, we have:

L̂2|L M K 〉 = L(L + 1)|L M K 〉,
L̂ z |L M K 〉 = M |L M K 〉,
L̂3|L M K 〉 = K |L M K 〉. (4.1.2)

Consider now a rigid body having the moments of inertia with respect to axes 1, 2,
3 equal to I1, I2, I3, respectively. The body can perform rotations around the axes 1,
2, 3. Usually, one calls a triaxial rigid body an object described by the Hamiltonian:

© Springer International Publishing Switzerland 2015
A.A. Raduta, Nuclear Structure with Coherent States,
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HR = �
2

2

[
L̂2
1

I1 + L̂2
2

I2 + L̂2
3

I3

]
. (4.1.3)

To describe the motion of the considered rigid body means to solve the eigenvalue
problemassociated to HR . It is instructive to study separately the particular situations:

(1) The isotropic rotor: I1 = I2 = I3 ≡ I0. In this case we have:

Ĥ = �
2L2

2I0 ,

Ĥ |L M K 〉 = �
2L(L + 1)

2I0 |L M K 〉 ≡ Esym |L M K 〉.

Hence

Esym = �
2

2I0 L(L + 1). (4.1.4)

HR is rotationally invariant i.e. commutes with the R3 generators Lx , L y and
Lz . Due to this property the isotropic rotor is called the symmetric rotor. The state
|L M K 〉 is degenerate over both M and K . What are the possible values of K ? Note
that classically, the rotor can rotate around any axis. From the quantum mechanical
point of view the situation is different. Indeed, under a given rotation a point on
a sphere goes to another point of the sphere. In principle the final state cannot be
distinguished from the initial one since they correspond to the same energy. Since a
transformation is sizable only if something is changed, one says that such rotations
are not possible. Within the frame B, the axes are usually chosen to coincide with
the principal axes of the inertial ellipsoid. Let 3 be the symmetry axis. In the case
of symmetric rotor any axis can be chosen as symmetry axis. The system is also
invariant against rotations around the axis 3. Therefore this is also a not allowed
rotation axis. If the system rotates with the angle ϕ around axis 3, the wave function
transforms as follows:

|L M K 〉 ≡ �(θ1, θ2, θ3) → �(θ1, θ2, θ3 + ϕ) = e−i Kϕ�(θ1, θ2, θ3). (4.1.5)

In order that thewave functionbe invariant to rotations around the axis 3 it is necessary
that K = 0. This selection for K is equivalent to forbidding the rotations around
the axis 3. Indeed, in this case the angular momentum is perpendicular to the axis
3. Another symmetry to be satisfied by the wave function is that determined by the
change of z′ in −z′, which is equivalent to the transformations of the Euler angles:
(θ1, θ2, θ3) → (θ1, π − θ2, π − θ3). When such transformation is performed the
wave functions modify as:

�(θ1, π − θ2, π − θ3) = (−1)L−K �(θ1, θ2, θ3). (4.1.6)
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Fig. 4.1 A rotational band
where the excitation energies
are proportional to L(L + 1),
with L even

Since K = 0, it results that L must be even. Concluding, for the isotropic rotor, the
spectrum is given by Eq. (4.1.4), with L-even. The wave function corresponding to
a given L is |L M0〉. In Fig. 4.1 the spectrum of a symmetric rotor is represented.

(2) Rotor with axial symmetry:

I1 = I2 ≡ I0 �= I3. (4.1.7)

HR is invariant to rotations around axis z but not around the other axes.

HR |L M K 〉 = Easym |L M K 〉, (asym = axial symmetric),

Easym = �
2

2

[
L(L + 1)

I0 + (
1

I3 − 1

I0 )K 2
]

. (4.1.8)

From the above equationone sees that the eigenstates are degenerate over the quantum
number M but not with respect to K . Taking into account the explicit expression of
the angular momentum in the frame (L) and (B), one could prove that a possible
realization of the eigenfunctions |L M K 〉 is:

|L M K 〉 = DL∗
M K , (4.1.9)

where DL
M K denotes the rotation matrix:

DL
M K (�) = 〈L M |e−iθ1Lz e−iθ2L y e−iθ3Lz |L K 〉. (4.1.10)

(3) The general case: I1 �= I2 �= I3. In Fig. 4.2 one can see the energy levels
for a triaxial rotor whose moments of inertia are those of a liquid drop. These are
represented as function of the deformation γ . We notice that the ground band ener-
gies have a degenerate minimum for γ = 0◦ and γ = 60◦. The energies of the
gamma band states, 2+

2 , 3+
1 , 5+

1 , have a minimum in γ = 30◦. Energies for the states
4+
2 , 6+

2 , 8+
2 , . . . , from the γ band have a minimum for γ close to 40◦. One remarks
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Fig. 4.2 The energies of the
triaxial rotor with
hydrodynamic moments of
inertia, as function of the γ

deformation. J0 stands for
the moment of inertia
corresponding to γ = 0

that the rotor has only one state 0+. Indeed, for a given I there are 2I + 1 eigenstates
for the rotor Hamiltonian. It is worth mentioning that the energy levels of the ground
band described by a rotor with hydrodynamic moments of inertia look like being γ

unstable states while the states from the γ band are very well localized. Also, we
notice that the curves corresponding to the γ band states J �= 2 are localized inside
the curve of 2+

2 . Therefore, the stability of the gamma states is an increasing function
of the angular momentum.

Consequently, within the rigid rotor formalism the β band does not exist, this
being of non-collective nature.

Since the system exhibits no symmetry axis, the eigenstate |L M〉 has the form:

|L M〉 =
L∑

K=−L

AK |L M K 〉. (4.1.11)

To obtain the expansion coefficients AK , the associated matrix of HR is to be
diagonalized in the basis |L M K 〉. Aiming at this goal we need to know the matrix
elements of Lμ, the spherical components of angular momentum:

〈L M K ′|Lμ|L M K 〉 = √
L(L + 1)C L1L

K−μK ′(−1)μ, μ = 0,±1. (4.1.12)
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Obviously for HR (4.1.3), the non-vanishing matrix elements are characterized by
	K = 0,±2. Thus we distinguish two classes of states for the rigid rotor: one with
states which are linear combinations of |L M K 〉with K -even and one of states having
only odd K components.

To obtain Eq. (4.1.12) we used the fact that in the body fixed frame the operator

L̂+ = L̂1 + i L̂2, (4.1.13)

plays the role of K -lowering operator while

L̂− = L1 − i L̂2, (4.1.14)

that of raising operator. Indeed, acting on the function |L M K 〉 first with L+ and then
with L3 we obtain:

L̂3 L̂+|L M K 〉 =
([

L̂3, L̂+
]

+ L̂+ L̂3

)
|L M K 〉

= (K − 1)L̂+|L M K 〉. (4.1.15)

It is instructive to calculate the matrix elements of operators L̂±:

〈L M K ∓ 1|L̂±|L M K 〉 = √
(L ± K )(L ∓ K + 1). (4.1.16)

From this equation by a direct calculation one obtains the matrix elements for the
Cartesian components of the angular momentum.

〈L , M K ′|L1|L M K 〉 = 1

2

[√
(L − K )(L + K + 1)δK ′,K+1

+ √
(L + K )(L − K + 1)δK ′,K−1

]
,

〈L , M K ′|L2|L M K 〉 = − i

2

[
−√(L − K )(L + K + 1)δK ′,K+1

+ √
(L + K )(L − K + 1)δK ′,K−1

]
,

〈L , M K ′|L3|L M K 〉 = MδK ′,K . (4.1.17)

Thus L̂1 has, formally, the same m.e. as the operator Lx , in the frame (L) while m.e.
of L̂2 differ from the m.e. of L̂ y by a global sign.

As we have seen, the structure of ĤR is such that the components with even K
are not mixed with those of odd K . Therefore, the diagonalization of ĤR for each of
the cases, K -even and K -odd, is performed in a space of lower dimension. Further,
in order to reduce even more the number of independent expansion coefficients AK

(4.1.11) we want to exploit the D2 symmetry.
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Notice that the labels 1, 2, 3 are arbitrarily chosen. On other hand the observables
should not depend on the way we numerate the axes. It is easy to show that there are
24 distinct ways to form a right thriedral and also 24 choices for a skew thriedral.
Among each class we can transform one system to another without changing the
system physics. To obtain the transformations relating two frames of the same kind
(right or skew) we need the operators:

(a) T1 : 1 ↔ −1; 3 ↔ −3,

T 2
1 = 1; T1 = R2

π .

T1 is a rotation around the axis 2 with π .

(b) T2 : 1 ↔ 2; 2 ↔ −1,

T2 ≡ R3(
π

2
); T 4

2 = 1; T 2
2 = R3

π .

Thus, T2 describes a rotation of angle π
2 around the axis 3.

(c) T3 : 1 → 2 → 3 → 1,

T 3
3 = 1.

Obviously, any transformation of right thriedral to another right thriedral can be
written in the form:

T = T i
1 T j

2 T k
3 ; i = 1, 2; j = 1, 2, 3, 4; k = 1, 2, 3 (24 distinct transformations).

It is instructive to show how do the transformations Tk , with k = 1 ,2, 3 act on the
carthesian coordinates from (B), (x, y, z), on the Euler angles (θ1, θ2, θ3), as well as
on the deformations β, γ . It is easy to check that:

T1(x, y, z) = (x,−y, −z), T1(θ1, θ2, θ3) = (θ1 + π, π − θ2, −θ3), T1(β, γ ) = (β, γ )

T2(x, y, z) = (y,−x, z), T2(θ1, θ2, θ3) = (θ1, θ2, θ3 + π

2
), T2(β, γ ) = (β,−γ )

T3(x, y, z) = (y, z, x), T3(θ1, θ2, θ3) = (θ1, θ2 + π

2
, θ3 + π

2
), T1(β, γ ) = (β, γ + 2π

3
).

(4.1.18)

Concerning the Hamiltonian eigenfunction, it should be the same in all the 24 points
related by the 24 choices of the coordinate system:

(T1) : ψ(β, γ, θ1, θ2, θ3) = ψ(β, γ, θ1 + π, π − θ2,−θ3),

(T2) : ψ(β, γ, θ1, θ2, θ3) = ψ(β,−γ, θ1, θ2, θ3 + π

2
),

(T3) : ψ(β, γ, θ1, θ2, θ3) = ψ(β, γ + 2π

3
, θ1, θ2 + π

2
, θ3 + π

2
). (4.1.19)
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A subgroup of the octahedral group is that of D2, whose irreducible representations
are discussed in Appendix A. This group is defined as a set of rotations of angle
equal to π around the axes 1, 2, 3, respectively.

In particular, the rotation of angle π around the axis 2, that is R2
π , is just T1

while the rotation with angle π around the axis 3 is (T2)2. Since, the elements of D2
commute with ĤR , there exists a set of common eigenfunctions. Therefore, we are
interested in those linear combinations (4.1.11) for which the following conditions
are fulfilled:

T1|L M〉 = ±|L M〉 = R2
π |L M〉 = DL

00|L M〉
= PL(cosπ)|L M〉 = ±|L M〉,

T 2
2 |L M〉 = ±|L M〉 = R3

π |L M〉 =
∑

Ak R3
π |L M K 〉

=
∑

Ak(−)K |L M K 〉 = ±|L M〉. (4.1.20)

There are 4 sets of states for the rigid rotor which correspond to the four sign
choices in (4.1.20), respectively. Actually, these are the four irreducible representa-
tions of the group D2. Since HR (Eq. 4.1.3) commutes with the elements of D2, it
is natural to classify the eigenstates of HR by the irreducible representations of D2.
The restriction (4.1.20) for the trial function (4.1.11) implies certain constraints for
the expansion coefficients and therefore a reduction of the dimension for the diago-
nalization space. To obtain these constraints, we need some properties of the Wigner
functions DL

M K .
Let us denote by |L K 〉(B) the eigenfunctions of L̂2, L3 in the frame (B), while

in the frame (L) the eigenfunctions of L̂2, Lz are |L M〉(L). The connection between
the two functions is:

(i) |L , K 〉(B) =
∑

M

DL
M K |L M〉L ,

(ii) DL
M K (−θ3,−θ2,−θ1) = DL∗

K M (θ1, θ2, θ3) = (−)M−K DL−K ,−M (θ1, θ2, θ3),

(iii) T1 = R2(0, π, 0). (4.1.21)

T1(ϕ1, ϕ2, ϕ3)DL
M K =

∑

K ′
DL

M K ′(ϕ1, ϕ2, ϕ3)DL
K ′K (θ1, θ2, θ3)

=
∑

K ′
DL

M K ′(0, π, 0)DL
K ′K (θ1, θ2, θ3)

=
∑

K ′
(−)L+K ′

δM,−K ′ DL
K ′K (θ1, θ2, θ3)

= (−)L−M DL−M,K (θ1, θ2, θ3). (4.1.22)

Considering the Euler angles � = (−θ3,−θ2,−θ1) and the relation of the Wigner
functions with this argument and θ1, θ2, θ3, respectively, one obtains:
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T1DL∗
M K = (−)L−K DL∗

M,−K . (4.1.23)

(iv) Similarly, one estimates the action of T 2
2 = R3

π on theWigner function DI
M K :

T 2
2 DI

M K =
∑

K ′
DI

M K ′(ϕ1, ϕ2, ϕ3)DI
K ′K (θ1, θ2, θ3)

=
∑

DI
M K ′(0, 0, π)DI

K ′,K (θ1, θ2, θ3)

=
∑

K ′
e−i K ′πδK ′ M DI

K ′K (θ1, θ2, θ3)

= e−i Mπ DI
M K (θ1, θ2, θ3). (4.1.24)

To change DI
M K in DI∗

M K , one proceeds as before and obtains:

T 2
2 DI∗

M K (�) = (−)−i Kπ DI∗
M K (�). (4.1.25)

Finally, the results are:

T1|L M K 〉 = (−)L−K |L M − K 〉,
T 2
2 |L M K 〉 = (−)K |L M K 〉. (4.1.26)

In what follows, we show that the coefficients Ak from the expansion (4.1.11) are
not all independent if |L M〉 are irreducible representations of D2. Indeed, suppose
that the trial function (4.1.11) is a representation of type A for D2. We distinguish
several situations:
Case K-even and the irreducible representation of type A. According to the character
Table from Appendix A, the coefficients A must satisfy:

T1|L M〉 = |L M〉, (χ(R2
π ) = 1),

T 2
2 |L M〉 = |L M〉, (χ(R3

π ) = 1). (4.1.27)

One sees that in order for the second equation to be fulfilled it is necessary that K be
even. Under the given circumstances the second equation is automatically satisfied.
Using this result in connection with the first equation (4.1.27) we obtain:

T1|L M〉 =
∑

K

AK (−)L−K |L M − K 〉

=
∑

K

A−K (−)L |L M K 〉 =
∑

K

AK |L M K 〉 ⇒

AK = (−)L A−K . (4.1.28)
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As for the second equation, this is naturally obeyed. Indeed:

T 2
2 |L M〉 =

∑

K−par

AK (−)K |L M K 〉 =
∑

K−par

AK |L M K 〉 = |L M〉.

Let K be even and |L M〉 a irreducible representation of type B1.

T1|L M〉 = −|L M〉, χ(R2
π ) = −1,

T 2
2 |L M〉 = |L M〉, χ(R3

π ) = +1,

⇒ A−K = (−)L+1AK . (4.1.29)

Case K-odd and |L M〉 a representation of type B2:

T1|L M〉 = |L M〉, χ(R2
π ) = +1,

T 2
2 |L M〉 = −|L M〉, χ(R3

π ) = −1,

⇒ A−K = −(−)L AK . (4.1.30)

Case K-odd and a representation of type B3:

T1|L M〉 = −|L M〉, χ(R2
π ) = −1,

T 2
2 |L M〉 = −|L M〉, χ(R3

π ) = −1,

⇒ A−K = (−)L AK . (4.1.31)

The results above are collected in Table4.1.Note that the number of AK in (4.1.11)
gives the number of linear independent functions provided by the diagonalization
procedure. Thus, among the states of type A we have one state with L = 0, none
with L = 1, two states of L = 2, one state with L = 3, three states L = 4 and
two states with L = 5. In Table4.1 we give the number of states of a given angular
momentum which show up in a certain irreducible representation of the group D2.

Table 4.1 Symmetries for AK in case the wave function (4.1.11) is a irreducible representation
of D2

K AK /A−K T1|L M〉 T 2
2 |L M〉 Nr. of allowed values

= s|L M〉 = s′|L M〉 for |K | in Eq. (4.1.11)

s = ± s′ = ± L = even L = odd

A Even (−)L + + L+2
2

L−1
2

B1 Even −(−)L − + L
2

L+1
2

B2 Odd −(−)L + − L
2

L+1
2

B3 Odd (−)L − − L
2

L+1
2
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Table 4.2 The number of
states of a given angular
momentum, appearing in
each irreducible
representation of D2

L 0 1 2 3 4 5

A 1 0 2 1 3 2

B1 0 1 1 2 2 3

B2 0 1 1 2 2 3

B3 0 1 1 2 2 3

In what follows we consider separately the representations of type A and B and
list the corresponding wave function and eigenvalues. To begin with we start with
the representation A (Table4.2).
There is one state with L = 0:

|0, 0〉 = |0, 0, 0〉. (4.1.32)

The corresponding eigenvalue is 0.
For L = 2, there are two states (because there are two nonvanishing independent
coefficients AK ):

|2M〉(N ) = A(N )
0 |2M0〉 + A(N )

2√
2

(|2M2〉 + |2M,−2〉), (4.1.33)

where N specifies the ordering number of the two solutions. The corresponding
energies are:

E(2N , A) = �
2
(

1

I1 + 1

I2 + 1

I2

)
+ (−)N

�
2

[(
1

I1I2I3

)2

−3

(
1

I1I2 + 1

I1I3 + 1

I2I3

)]1/2
.

(4.1.34)

For L = 3, there is only one state:

|3M〉 = 1√
2
(|3M2〉 − |3M,−2〉), (4.1.35)

with energy:

E(3, A) = 2�
2
(

1

I1 + 1

I2 + 1

I3

)
. (4.1.36)

It is worth noting that these energies are invariant to the way one labels the axes 1,
2, 3. One checks that the following identity holds:

E(21, A) + E(22, A) = E(3, A). (4.1.37)
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Themodel of rigid rotor was introduced, in 1958, byDavydov and Filippov to explain
the collective properties of some particular nuclei. The authors noticed that there are
nuclei where the sum of energies for the first two states of angular momentum 2
is equal or close to the energy of the first 3+, i.e. Eq. (4.1.37) is obeyed. Also,
some properties of the neighboring nuclei are essentially influenced by the fact that
Eq. (4.1.37) is satisfied [Dav32].

Despite the fact that for higher values of L analytical expressions for energies
are no longer possible, one obtains, however, recurrence relations for the excitation
energies which are similar to Eq. (4.1.37).

Indeed, in order to calculate the trace of ĤR we need the diagonal m.e. of L2
k .

〈L M K |L2
1,2|L M K 〉 = 1

2

[
L(L + 1) − K 2

]
,

〈L M K |L2
3|L M K 〉 = K 2 ⇒ (4.1.38)

T r HR =
∑

N

E(L , N ) =
∑

K

〈L M K |HR|L M K 〉 (4.1.39)

= �
2

4

⎡

⎢⎢⎢⎢⎢⎢⎣

(
1

I1 + 1

I2

)
L(L + 1)

L∑

K=0

1 +
(

2

I3 − 1

I1 − 1

I2

) L∑

K=0︸︷︷︸
L(L+1)(L+2)

6

K 2

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Thus we obtain:

∑

N

E(L , N ) = �
2

12
L(L + 1)(L + 2)

(
1

I1 + 1

I2 + 1

I3

)
, L = par,

∑

N

E(L , N ) = �
2

12
(L − 1)L(L + 1)

(
1

I1 + 1

I2 + 1

I3

)
, L = odd,

⇒
∑

N

E(L , N ) =
∑

N ′
E(L + 1, N ′), L = par. (4.1.40)

which is a generalization of Eq. (4.1.37).
Let us turn now our attention to the states of type B. We consider first the states with
L = 1:

|1M〉 = |1M0〉, representation of type B1,

|1M〉 = 1√
2
(|1M1〉 + |1M − 1〉), representation of type B2,

|1M〉 = 1√
2
(|1M1〉 − |1M − 1〉), representation of type B3.
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Their energies are:

E(1, B1) = �
2

2

(
1

I1 + 1

I2

)
,

E(1, B2) = �
2

2

(
1

I1 + 1

I3

)
,

E(1, B3) = �
2

2

(
1

I2 + 1

I3

)
. (4.1.41)

For L = 2, there are three states. There is only one state B1 with |K | = 2:

|2M〉 = 1√
2
(|2M2〉 − |2M − 2〉),

E(2, B1) = �
2

2

(
4

I3 + 1

I1 + 1

I2

)
.

The other two states are of the type B2 and B3, respectively. They have |K | = 1
and energies which are obtainable from one another by permuting the axes 1, 2, 3.

Now we raise the question what is the parity of the states described above?
The parity of a state is taken relatively to the parity of the ground state which is
conventionally taken to be “+”. As the spin of the ground state is zero it results that
such state is of type A. In general, one may connect the parity of a state with the
representation of the group D2 to which the state belongs. Let C be the operator of
complex conjugation. In the framework of angular momentum formalism, C could
be viewed as a reflexion transformation with respect to the plane y = 0. Indeed:

C L± = C(Lx ± i L y) = Lx ∓ i L y = L∓,

which is equivalent to the reflection y → −y.
The parity transformation can be defined either as a reflection with respect to the

origin (x → −x, y → −y, z → −z), or as a product of a reflection with respect
to a plane, for example the plane y = 0, and a rotation of angle π around the axis
perpendicular on the reflection axis.

P = Ry
πC = e−iπ L y C,

P DL∗
M K = Ry

πC DL∗
M K = Ry

π DL
M K = (−)L+M DL−M,K = (−)L−K DL∗

M,−K .

Using the transformation rules AK → A−K for different representations one
obtains:

P|L M〉 = +|L M〉, for A and B2,

P|L M〉 = −|L M〉, for B1 and B3.

The first equation is consistent with the fact that the ground state is of parity +. The
second equation takes place for both even and odd K.
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4.2 Semiclassical Description and Quantization

4.2.1 Introduction

Many collective properties of the low lying states are related to the quadrupole
collective coordinates. The simplest phenomenological scheme of describing them
is the liquid dropmodel (LD) proposed by Bohr andMottelson [BM53]. In the intrin-
sic frame of reference the Schrödinger equation for the five coordinates, β, γ,� can
be separated and an uncoupled equation for the variable β is obtained [GRC78,
RCG78]. However, the rotational degrees of freedom, the Euler angles describing
the position of the intrinsic frame with respect to the laboratory frame and the vari-
able γ , the deviation from the axial symmetry, are coupled together. Under certain
approximations [CA04] the equation describing the dynamic deformation γ is sepa-
rated from the ones associated to the rotational degrees of freedom. Recently, many
papers were devoted to the study of the resulting equation for the gamma variable
[IA01, BONA04, BLMPY05, BLMPY07, GRF07].

Here we focus on the rotational degrees of freedom by considering a triaxial rotor
with rigid moments of inertia. The coupling to other degrees of freedom, collective
or individual, will not be treated in this chapter. We attempt to describe, by a semi-
classical procedure, the wobblingmotion corresponding to various ordering relations
for the moments of inertia. We present four pairs of canonical conjugate variables
to which four distinct boson representations for the angular momentum correspond,
respectively. These could be alternatively used for a boson description of the wob-
blingmotion.We stress on the fact that the semiclassical description provides a better
estimate of the zero point energy. Another advantage of the method presented here
over the boson descriptions consists in separating the potential and kinetic energies.

4.2.2 Semiclassical Description of a Triaxial Rotor

We consider a triaxial rigid rotor with the moments of inertia Ik , k = 1, 2, 3, corre-
sponding to the axes of the laboratory frame, described by the Hamiltonian:

ĤR = Î 21
2I1 + Î 22

2I2 + Î 23
2I3 . (4.2.1)

The angular momentum components are denoted by Îk . They satisfy the following
commutation relations:

[
Î1, Î2

]
= i Î3;

[
Î2, Î3

]
= i Î1;

[
Î3, Î1

]
= i Î2. (4.2.2)
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The raising and lowering angular momentum operators are defined in the standard
way, i.e. Î± = Î1 ± i Î2. They satisfy the mutual commutation relations:

[ Î+, Î−] = 2 Î3; [ Î+, Î3] = − Î+; [ Î−, Î3] = Î−. (4.2.3)

The case of rigid rotor in the intrinsic frame with the axes taken as principal axes
of the inertia ellipsoid is formally obtained by changing the sign of one component,
Î2 → − Î2, and replacing the moments of inertia with respect to axes 1, 2, 3 with
those corresponding to the principal axes of the inertia ellipsoid. Thus if Ik , with
k = 1, 2, 3 were the angular momentum components in the intrinsic frame the r.h.s.
of Eq. (4.2.2) would have the sign minus. The difference in sign with respect to
the case of the laboratory frame comes from the fact that in the product, for example
I1 I2, the second rotation is performed around the axis “1” which in the case of
the body fixed frame was already affected by the first rotation, i.e. the one around
the axis “2”.

This quantum mechanical object has been extensively studied in various con-
texts [CAS31], including that of nuclear physics. Indeed, in Ref. [DF58], the authors
noticed that there are some nuclei whose low lying excitations might be described by
the eigenvalues of a rotor Hamiltonian with a suitable choice for themoments of iner-
tia. Since then, many extensions of the rotor picture have been considered. We just
mention a few: particle-rotor model [MSD74, BM81], two rotors model [LOPA78]
used for describing the scissors mode, the cranked triaxial rotor [GRC78, IY83]. The
extensions provide a simple description of the data but also lead to new findings like
scissors mode [LOPA78], finite magnetic bands, chiral symmetry [FRA01].

In principle it is easy to find the eigenvalues of HR by using a diagonalization
procedure within a basis exhibiting the D2 symmetry. However, when we restrict the
considerations to the yrast band it is by farmore convenient to use a closed expression
for the excitation energies.

An intuitive picture is obtained when two moments of inertia, say those corre-
sponding to axes 1 and 2, are close to each other, inmagnitude, andmuch smaller than
the moment of inertia of the third axis. The system will rotate around an axis which
lies close to the third axis. Since the third axis is almost a symmetry axis, this is con-
ventionally called the quantization axis. Indeed, a basis having one of the quantum
numbers the angularmomentumprojection on this axis is suitable for describing exci-
tation energies and transition probabilities. Small deviations of angular momentum
from the symmetry axis can be quantized, which results in having a boson descrip-
tion of the wobbling motion. This quantization can be performed in several distinct
ways. The most popular one consists in choosing the Holstein-Primakoff (HP) boson
representation [HolPr40] for the angular momentum components and truncating the
resulting boson Hamiltonian at the second order. However, the second order expan-
sion for the rotor Hamiltonian is not sufficient in order to realistically describe the
system rotating around an axis which makes a large angle with the quantization axis.
Actually, there is a critical angle where the results obtained by diagonalizing the
expanded boson Hamiltonian is not converging. On the other hand, one knows from
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the liquid drop model that a prolate system in its ground state rotates around an axis
which is perpendicular to the symmetry axis. Clearly, such a picture corresponds
to an angle between the symmetry and rotation axes, equal to π/2 which is larger
than the critical angle mentioned above. Therefore, this situation cannot be described
with a boson representation of the HP type. In order to treat the system exhibiting
such behavior one has two options: (a) to change the quantization axis by a rotation
of an angle equal to π/2 and to proceed as before in the rotated frame; (b) to keep
the quantization axis but change the HP representation with the Dyson (D) boson
expansion.

Note that if we deal with the yrast states, the zero point oscillation energy cor-
responding to the wobbling frequency contributes to the state energies. There are
experimental data which cannot be described unless some anharmonic terms of HR

are taken into account. It should be mentioned that anharmonicities may renormalize
both the ground state energy and the wobbling frequency.

In what follows we describe a simple semiclassical procedure where these two
effects are obtained in a compact form.

We suppose that a certain class of properties of the Hamiltonian HR can be
obtained by solving the time dependent equations provided by the variational prin-
ciple:

δ

t∫

0

〈ψ(z)|HR − i
∂

∂t ′
|ψ(z)〉dt ′ = 0. (4.2.4)

If the trial function |ψ(z)〉 spans the whole Hilbert space of the wave functions
describing the system, solving the equations provided by the variational principle
is equivalent to solving the time dependent Schrödinger equation associated to HR .
Here we restrict the Hilbert space to the subspace spanned by the variational state:

|ψ(z)〉 = N ez Î−|I I 〉, (4.2.5)

where z is a complex number depending on time and |I M〉 denotes the eigenstates
of the angular momentum operators Î 2 and Î3. N is a factor which assures that the
function |ψ〉 is normalized to unity.

N = (1 + |z|2)−I . (4.2.6)

The function (4.2.5) is a coherent state for the group SU (2) [KS80], generated by
the angular momentum components and, therefore, is suitable for the description of
the classical features of the rotational degrees of freedom.

In order tomake explicit the variational equations,we have to calculate the average
values of HR and the time derivative operator, with the trial function ψ(z). For the
sake of saving the space these will be denoted by 〈..〉. The average values of the
involved operators can be obtained by the derivatives of the norm function:
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〈 Î−〉 = N 2 ∂

∂z
(N−2) = 2I z∗

1 + zz∗ ,

〈 Î+〉 = N 2 ∂

∂z∗ (N−2) = 2I z

1 + zz∗ ,

〈 Î+ Î−〉 = N 2 ∂2

∂z∂z∗ (N−2) = 2I

1 + zz∗ + 2I (2I − 1)zz∗

(1 + zz∗)2
,

〈 Î 2+〉 = N 2 ∂2

∂z∗2 (N−2) = 2I (2I − 1)z2

(1 + zz∗)2
,

〈 Î 2−〉 = N 2 ∂2

∂z2
(N−2) = 2I (2I − 1)z∗2

(1 + zz∗)2
. (4.2.7)

In what follows we shall make use of the equation

eŜ Âe−Ŝ = Â + 1

1! [Ŝ, Â] + 1

2! [Ŝ, [Ŝ, Â]] + · · · , (4.2.8)

which holds for any operators Ŝ and Â, to obtain the averages of I3

〈 Î3〉 = I − z〈 Î−〉 = I − 2I zz∗

1 + zz∗ , (4.2.9)

as well as of the angular momentum squared:

〈 Î 23 〉 = 〈( Î3 − z Î−)(I − z Î−)〉 = I 2 − 2I (2I − 1)zz∗

(1 + zz∗)2

〈 Î 21 〉 = 1

4

[
2I + 2I (2I − 1)

(1 + zz∗)2
(z + z∗)2

]
,

〈 Î 22 〉 = −1

4

[
−2I + 2I (2I − 1)

(1 + zz∗)2
(z − z∗)2

]
. (4.2.10)

From here it results immediately that the average of
∑

k Î 2k is I (I + 1)

〈 Î 21 〉 + 〈 Î 22 〉 + 〈 Î 23 〉 = I (I + 1). (4.2.11)

This, actually, reflects the fact that ψ(z) is an eigenfunction of Î 2.
The averages of HR and the time derivative operator have the expressions:

〈Ĥ〉 = I

4

(
1

I1 + 1

I2

)
+ I 2

2I3 + I (2I − 1)

2(1 + zz∗)2

[
(z + z∗)2

2I1 − (z − z∗)2

2I2 − 2zz∗

I3

]
,

〈 ∂

∂t
〉 = I (

•
zz∗ − z

•
z
∗
)

1 + zz∗ . (4.2.12)
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Denoting the average of HR by H, the time dependent variational equation yields:

∂H
∂z

= − 2i I
•
z
∗

(1 + zz∗)2
,

∂H
∂z∗ = 2i I

•
z

(1 + zz∗)2
. (4.2.13)

Using the polar coordinate representation of the complex variables z = ρeiϕ , the
equations of motion for the new variables are:

∂H
∂ρ

= − 4ρ I
•
ϕ

(1 + ρ2)2
,

∂H
∂ϕ

= 4Iρ
•
ρ

(1 + ρ2)2
. (4.2.14)

It is convenient to choose that pair of conjugate variables which brings the classi-
cal equations of motion in the canonical Hamilton form. This goal is touched by
changing ρ to

r = 2I

1 + ρ2 , 0 ≤ r ≤ 2I. (4.2.15)

Indeed, in the new variables the equations of motion are:

∂H
∂r

= •
ϕ,

∂H
∂ϕ

= − •
r . (4.2.16)

The sign “−” from the second line of the above equations suggests that ϕ and r play
the role of generalized coordinate and momentum respectively. In terms of the new
variables, the classical energy function acquires the expression:

H(r, ϕ) = I

4

(
1

I1 + 1

I2

)
+ I 2

2I3 + (2I − 1)r(2I − r)

4I

[
cos2 ϕ

I1 + sin2 ϕ

I2 − 1

I3

]
.

(4.2.17)

The angular momentum components can be written in an alternative form:

〈I1〉 = 2Iρ

1 + ρ2 cosϕ, 〈I2〉 = 2Iρ

1 + ρ2 sin ϕ, 〈I3〉 = I
1 − ρ2

1 + ρ2 . (4.2.18)
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We notice that the pair of coordinates:

ξ = I
1 − ρ2

1 + ρ2 = 〈I3〉, and φ = −ϕ, (4.2.19)

are canonically conjugate variables and

∂H
∂ξ

= − •
φ,

∂H
∂φ

= •
ξ . (4.2.20)

Taking the Poisson bracket defined in terms of the new conjugate coordinates one
finds:

{〈I1〉, 〈I2〉} = 〈I3〉, {〈I2〉, 〈I3〉} = 〈I1〉, {〈I3〉, 〈I1〉} = 〈I2〉 (4.2.21)

These equations assert that the averages for the angular momentum components form
a classical algebra with the inner product {, }. The correspondence

{〈Ik〉, {, }i} −→ {Ik, [, ]}, (4.2.22)

is an isomorphism of SU (2) algebras. Due to the constraint (4.2.11) among the three
averages of angular momentum components only two are independent. Sometimes
it is convenient to work with two real coordinates, say 〈I1〉 and 〈I2〉, instead of the
pair (ξ, φ).

4.2.3 Boson Representation for Angular Momentum

In general, treating the classical equations is an easier task than solving the time
dependent Schrödinger equation. For some particular cases analytical solutions are
possible to be found. Moreover, good approximation for solutions in a certain region
of the coordinate space can be achieved. The usefulness of this procedure is seen
when from the classical picture we could come back to the initial quantum mechan-
ical problem. This desire is accomplished by transcribing the above equations in
the complex variables and then quantizing the conjugate complex coordinate. A
recipe to find a pair of canonical complex variable is provided by Cartan’s theorem
[CAR22]. For the case to be treated here, we suggest four pairs of canonical complex
coordinates.

To begin with, let us consider the average of the angular momentum components,
expressed in terms of the (ϕ, r ):

J cl+ ≡ 〈 Î+〉 = √
r(2I − r) · eiϕ,

J cl− ≡ 〈 Î−〉 = √
r(2I − r) · e−iϕ,

J cl
3 ≡ 〈 Î3〉 = I − (2I − r) = r − I. (4.2.23)
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The method of associating to a model Hamiltonian, a system of classical equations
by means of a time dependent variational principle is usually called dequantization
procedure. Accordingly, the average of HR is the classical energy function, while
〈 Îk〉 the kth component of the classical angular momentum.

Let f and g be two complex functions defined on the phase space spanned by
the canonical conjugate variables (ϕ, r). The Poisson bracket associated to these
functions is defined by:

{ f, g} = ∂ f

∂ϕ

∂g

∂r
− ∂ f

∂r

∂g

∂ϕ
. (4.2.24)

With this definition Eq. (4.2.16) can be written as:

{r,H} = ṙ , {ϕ,H} = ϕ̇, {ϕ, r} = 1. (4.2.25)

The classical angular momentum components satisfy the equations:

{J cl+ , J cl− } = −2i J cl
3 , {J cl±, J cl

3 } = ±i J cl±. (4.2.26)

The functions J cl± , J cl
3 with the inner product defined by thePoisson brackets generate

a classical algebra which will be denoted by SUcl(2).

4.2.4 Holstein-Primakoff Boson Expansion

Let us consider the complex coordinate

C = √
2I − r · eiϕ, (4.2.27)

and denote by C∗ the corresponding complex conjugate variable. They obey the
equations:

{C∗, C} = i, {C,H} = Ċ, {C∗,H} = Ċ∗. (4.2.28)

These equations suggest that the complex coordinates are of canonical type. To
quantize the classical phase space means to achieve a homeomorphism between the
algebra of the C, C∗ with the multiplication operation {, } and the algebra of the
operators a, a† with the commutator as inner multiplier:

(C, C∗, {, }) −→
(

a, a†,−i[, ]
)

. (4.2.29)

A consequence of this homeomorphism is the boson character of the operators a, a†,
expressed through the relation:

[a, a†] = 1. (4.2.30)
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The quantization of an arbitrary function f (C, C∗) is performed by replacing C and
C∗ by the operators a and a†, respectively. Concerning the terms containing mixed
product of C and C∗, the product must be symmetrized first and then the complex
coordinates be replaced by the boson operators. The simplest example is the angular
momentum components which after quantization become the operators:

Ĵ+ = √
2I

(
1 − a†a

2I

) 1
2

a,

Ĵ− = √
2I a†

(
1 − a†a

2I

) 1
2

,

Ĵ3 = I − a†a. (4.2.31)

One can check that these boson operators obey the commutation relations (4.2.3)
and, consequently, generate an SU (2) algebra which hereafter will be denoted by
SUb(2). The product of the two successive homeomorphisms:

SU (2) → SUcl(2) → SUb(2) (4.2.32)

is the homeomorphism SU (2) → SUb(2) which is in fact the boson representation
of the angular momentum algebra. Equation (4.2.31) are known under the name of
boson expansion of the angular momentum components. They were found out, long
time ago, by Holstein and Primakoff [HolPr40] by a different method. We shall refer
to it as to the HP boson expansion. The interpretation of I results from the following
equation:

3∑

k=1

Î 2k = I (I + 1).

Thus, I acquires the significance of the angular momentum magnitude. Replac-
ing the angular momentum components by their boson representations, the rotor
Hamiltonian HR receives a boson realization.

HHP = B + C
[
2I

(
n̂ + 1

2

)
− n̂2

]

+ 2IA
[

a+a+
(
1 − n̂ + 1

2I

)1/2 (
1 − n̂

2I

)1/2

+ h.c.

]
, (4.2.33)

where

B = I (I + 1)

2I3 ; C = 1

4
(
1

I1 + 1

I2 − 2

I3 ); A = 1

8
(
1

I1 − 1

I2 ),
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while “h.c.” denotes the Hermitian conjugate of the preceding expression. The boson
Hamiltonian (4.2.33) can be diagonalized in the basis:

|m〉 = 1√
m! (a

+)m |0〉. (4.2.34)

The matrix elements of H R are :

HHP
n,n = B + C

[
I (2n + 1) − n2

]
,

HHP
n,n−2 = A [n(n − 1)(2I − n + 1)(2I − n + 2)]1/2 ,

HHP
n,n+2 = A [(n + 1)(n + 2)(2I − n)(2I − n − 1)]1/2 ,

I0|m〉 = (I − m)︸ ︷︷ ︸
K

|m〉; −I ≤ K ≤ I ⇒ m ≤ 2I.

The states |m〉 defined by Eq. (4.2.34) are eigenstates for Î3.

Î3|m〉 = (I − m)|m〉. (4.2.35)

From this equation it clearly results the connection between the number of bosons
m and the quantum number K :

K = I − m. (4.2.36)

Taking into account that −I ≤ K ≤ I , it results that the number of bosons of
the basis states is subject to the restriction 0 ≤ m ≤ 2I . We distinguish, in the
boson Hamiltonian, three terms: (a) a constant, which describes a spherical rotor
with the moment of inertia I3; (b) a term with the coefficient C which describes
the deviation from spherical symmetry; (c) an off-diagonal term havingA as factor,
which describes the deviation from the axial symmetry.

Let us analyze the contribution coming from each of the three terms. Remember
an important result concerning the semiclassical behavior of the rigid rotor. If this
is axially symmetric or close to that form it prefers to rotate around the axis of
maximalmoment of inertia.On the other hand a high spin state implies a semiclassical
behavior. This feature determines a certain selection of the quantum number K in a
state of high spin. IfI3 ismaximum, the shape of the system is oblate and according to
Eq. (4.2.36), only the state with a small number of bosons contributes. If by contrary
I3 is minimum the shape is prolate and the states with large number of bosons
contribute to the state of high spin. Due to the above mentioned arguments it is
obvious that the above defined basis is suitable for the description of the situation
when I3 is maximum. In this case the square root operator can be expanded in power
series of n̂

2I and the resulting series can be truncated by keeping only few terms.
This approximation is good for I large. In this case one could use the zeroth order
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expansion where besides the diagonal term the cross term a+a+ + aa shows up.
This term can be brought to a diagonal form by the Bogoliubov transformation:

a+ = Uα+ − V α,

determined such that the new operators be of boson type and moreover in the trans-
formed Hamiltonian the term α+α+ + αα has a vanishing coefficient. The final form
for HHP is:

HHP = I (I + 1)

2I3 + I

[(
1

I1 − 1

I3

)(
1

I2 − 1

I3

)]1/2 (
α+α + 1

2

)
.

The first term describes a precession motion, while the second one a wobbling
motion. This expression has been obtained by Bohr and Mottelson [BM74]. A pos-
sible improvement of the wobbling frequency was introduced by Tanabe [TT73] by
adding some anharmonic corrections to the boson Hamiltonian which describes the
wobbling motion. We note that when the quantization axis is intermediary, i.e. the
corresponding moment of inertia is neither maximum nor minimum, the wobbling
frequency obtained by Bohr and Mottelson, hereafter denoted by ωB M , becomes
imaginary which reflects, in fact, that the old vacuum state is favored with respect to
the vacuum state of the new boson operators. Also if I3 is minimum and I1 > I2,
the energy provided by HHP exceeds I (I+1)

2I3 , which actually is the upper limit for
the eigenvalues of the initial Hamiltonian.

Certainly both cases, when I3 is intermediary or minimum, could be treated
by relabeling the axes such that the final situation corresponds to the picture with
OZ of maximum moment of inertia. However, keeping the axis OZ as quantization
axis even in one of the cases with non-maximum I3 has a major importance since
such situation is common to different fields. For example for the random phase
approximation (RPA) applied to the many body motion of large amplitude, for a
critical value of the attractive two body interaction strength the ground state becomes
unstable. Like in that case where the RPA vacuum state can be stabilized by some
renormalization effects, here we ask the question whether the ground state can be
recovered if renormalization effects due to the correlations with the multi-boson
states are properly accounted for.

Concretely, HHP will not be truncated and then subject to the Bogoliubov trans-
formation; by contrary the canonical transformation will be first performed and sub-
sequently the resulting terms will be put in a normal order. This way all terms of the
power series will contribute to the ground state, due to the normal ordering. Trans-
formation coefficients are determined by minimizing the correlated ground state
energy.

According to this scheme, after performing the canonical transformation and then
the normal ordering of boson monomials, the final Hamiltonian is:

HHP = H00 + ωI α
†α + · · · (4.2.37)
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In what follows we attempt to obtain analytical expressions for H00 and ωI . To this
aim we define first the vacuum state and excited states corresponding to the new
bosons.

α|0̃〉 = 0, |m̃〉 = α†m

√
m! |0̃〉. (4.2.38)

These states are linear combinations of the states constructed by means of bosons
a, a†:

|m̃〉 =
∑

n

Amn|n〉. (4.2.39)

The expansion coefficients were analytically calculated in Ref. [RBB77].

Amn = √
m!n!U− m+n+1

2
∑

q

(−1)q−m2
( V
2

)m+n
2 −q

q! ( n−q
2

)! (m−q
2

)! ,

n − q = even, m − q = even, q ≤ min(m, n). (4.2.40)

Using the expansion (4.2.39) we obtain:

H00 = 〈0̃|HHP|0̃〉 =
∑

m

(A0m)2HHP
mm + 2

∑

m

A0m A0,m+2Hm,m+2,

H00 + ωI = 〈1̃|HHP|1̃〉 =
∑

m

(A1m)2HHP
mm + 2

∑

m

A1m A1,m+2Hm,m+2.

(4.2.41)

Inserting A0m and A1m in these equations and then using the identities:

∞∑

k=0

(2k)!
(k!)2

(
V

2U

)2k

= U,

∞∑

k=0

(2k)!2k

(k!)2
(

V

2U

)2k

= U V 2, (4.2.42)

it results:

H00 = B + C
[
2I

(
V 2 + 1

2

)
− (2U 2V 2 + V 4)

]
− 2AU V S0(U, V ),

H00 + ωI = B + C
[
2I

(
U 2 + V 2 + 1

2

)
− (U 4 + 3V 4 + 8U 2V 2)

]

−2AU V S1(U, V ). (4.2.43)
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Here the following notations were used:

S0(U, V ) =
∞∑

k=0

(2k + 1)!
(k!)2

(
V

2U

)2k 1

U 3 [(2I − 2k − 1)(2I − 2k)]1/2 ,

S1(U, V ) =
∞∑

k=0

(2k + 3)!
(k!)(k + 1)!

(
V

2U

)2k 1

2U 5
[(2I − 2k − 2)(2I − 2k − 1)]1/2 .

(4.2.44)

These sums satisfy the inequalities:

0 < S0 < 2I + 1 + 3V 2,

0 < S1 < 4I + 5 + 12V 2, (4.2.45)

which assures that the series S0 and S1 are convergent.
This formalism has been used for all three situations distinguished by the relative

values of I3, with the results: (a) When I3 is maximum the yrast state energies
obtained with H00 are almost identical with those obtained by diagonalization.

(b) When I3 is minimum, H00 exhibits a local minimum staying far from the
ground state.

(c) When I3 has an intermediary value, H00 has no minimum as a function of V .
To conclude, the canonical transformation formalism seems to be an efficient tool

to describe the yrast energies for the case when I3 is maximum.

4.2.5 The Dyson Boson Expansion

One canonical pair is:

C1 = 1√
2I

√
r(2I − r)eiϕ,

B∗
1 = √

2I

√
2I − r

r
e−iϕ. (4.2.46)

Indeed, calculating their Poisson bracket, one obtains:

{B∗
1, C1} = i. (4.2.47)

Through the quantization

(C1,B∗
1, {, }

) −→
(

b, b†,−i[, ]
)

, (4.2.48)
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one obtains the Dyson’s boson representation (D) of angular momentum [DYS56]:

Ĵ D+ = √
2I b

Ĵ D− = √
2I

(
b† − (b†)2b

2I

)
,

Ĵ D
3 = I − b†b. (4.2.49)

Note that while the HP expansion preserves the hermiticity property, the D expansion
does not have such a virtue. Indeed, the Hermitian conjugate of J D+ is not equal to
J D− , although the classical component J cl− is the complex conjugate of J cl+ . Also, the
Hermitian conjugate of the boson operator b is b†, despite the fact that their classical
counterparts are not related by a complex conjugation operation.

Consider one of the orderings for the moments of inertia:

I2 < I3 < I1, 1

I3 >
1

2

(
1

I1 + 1

I2

)
.

The D-boson expansion associated to HR is:

H D = I (I + 1)

2I3 + I

4

(
1

I1 + 1

I2 − 2

I3

)
− CH ′,where,

H ′ = −(2I − 1)b+b + b+2b2

− k

[
I b+2 +

(
I − 1

2

)
b2 +

(
1

2I
− 1

)
b+b3 + 1

4I
b+2b4

]
,

k =
1
I2 − 1

I1
2
I3 − 1

I1 − 1
I2

.

In one of the following subsection we will show that H D can be written as a sum
of one kinetic and one potential energy terms.

Expanding the potential around one minimum and neglecting the powers larger
than 2, one obtains an oscillator equation which gives the H D spectrum the following
form:

En = I (I + 1)

2I1
+
[(

1

I2 − 1

I1

)(
1

I3 − 1

I1

)
I (I + 1)

]1/2
(n + 1

2
).

The first term describes a precession around the axis OX while the second one a
wobbling for angular momentum. Notice that for both expansions, HP and D, for
high spins the system prefers to rotate around themaximalmoment of inertia. Indeed,
the dominant term for the HP expansion is I (I+1)

2I3 while for the D representation the

term I (I+1)
2I1 prevails.
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Now we want to relate the HP and D boson representation defined with the help
of the bosons a and b, respectively. To this aim, let us consider the transformation:

T a+T −1 = A+ = b+
(
1 − b+b

2I

)−1/2

,

T aT −1 = a′ =
(
1 − b+b

2I

)1/2

b (4.2.50)

One can easily prove the properties:
(a) T is not unitary since

(
A+)+ �= a′,

(b) T [a, a†]T −1 = 1 = [a′, A+] = [b, b+],
(c) T a+aT −1 = A+a′ = b+b.

Using these relations it results:
(d) T Î HP

k T −1 = Î D
k , k = ±, 3,

(e) T ĤHPT −1 = Ĥ D.

Let T ′ the transformation which diagonalizes ĤHP

(T ′)−1 ĤHPT ′ = ĤHP
diag, (4.2.51)

Then
(T T ′)−1 Ĥ D(T T ′) = ĤHP

diag. (4.2.52)

This equation shows that, although Ĥ D is not Hermitian, it has real eigenvalues. Let
us denote by |m〉D the states built with the bosons b involved in the D representation:

|m〉D = (b+)m

√
m! |0〉D. (4.2.53)

What is the relation between the two sets of states |m〉HP and |m〉D? The m.e. of the
D Hamiltonian in the above defined basis are:

H D
n,n = B + C(2I n − n2),

H D
n,n−2 = 2AI

√
n(n − 1),

H D
n,n+2 = A

2I
(2I − n)(2I − n − 1) [(n + 1)(n + 2)]1/2 . (4.2.54)

The connection with the m.e. of the HP Hamiltonian is:

H D
n,n+k = Ln,n+k HHP

n,n+k , k = 0, ±2, (4.2.55)

Ln,n+k = (2I )−k/2 [(2I − n)!/(2I − n − k)!]1/2 , if n, n + k ≤ 2I,

Ln,n+k = (2I )−k/2 [(−2I + n + k − 1)!/(−2I + n − 1)!]1/2 , if n, n + k ≥ 2I + 1,

(4.2.56)
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With the transformation T the above relation becomes:

D〈n|T ĤHPT −1|n + k〉D = Ln,n+kHP〈n|ĤHP|n + k〉HP. (4.2.57)

From here we get a possible solution for T :

T |m〉 = (2I )
m
2

{
((2I − m)!)1/2|m〉D, if m ≤ 2I,

((m − 2I − 1)!)−1/2|m〉D, if m ≥ 2I + 1.
(4.2.58)

HP〈m|T −1 = (2I )−
m
2

{
((2I − m)!)−1/2

D〈m|, ifm ≤ 2I,
((m − 2I − 1)!)1/2D〈m|, ifm ≥ 2I + 1

. (4.2.59)

Using the equality:

(A+)m = (b+)m
[(

1 − b+b + m − 1

2I

)(
1 − b+b + m − 2

2I

)
...

(
1 − b+b + 1

2I

)]−1/2

. (4.2.60)

one finds that the expression of T is consistent with Eq. (4.2.50).

4.2.6 An Exponential Boson Expansion

Consider now the complex coordinates:

C2 = 1√
2
(r − iϕ), C∗

2 = 1√
2
(r + iϕ). (4.2.61)

These coordinates are also canonically conjugate since {C∗
2 , C2} = i . The isomor-

phism (C2, C∗
2 , {, }

) −→
(

a, a†,−i[, ]
)

(4.2.62)

yields a third boson representation of angular momentum:

Ĵ R+ =
√

1√
2
(a† + a) e

1√
2
(a†−a)

√

2I − 1√
2
(a† + a),

Ĵ R− =
√

2I − 1√
2
(a† + a) e

− 1√
2
(a†−a)

√
1√
2
(a† + a),

Î R
3 = 1√

2
(a† + a) − I. (4.2.63)
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This boson expansion has been derived in Ref. [RCGP84] for the generators of the
quasispin algebra. Obviously, this expansion preserves the hermiticity.

4.2.7 A New Boson Expansion

The pair of coordinates:

C3 = r√
2I

, D∗
3 = i

√
2Iϕ. (4.2.64)

satisfy the equation

{D∗
3, C3} = i. (4.2.65)

The quantization

(C3,D∗
3, {, }

) −→
(

b, b†,−i[, ]
)

, (4.2.66)

provides a new boson representation for the angular momentum:

J+ = 2I

√
b√
2I

e
b†√
2I

√

1 − b√
2I

,

J− = 2I

√

1 − b√
2I

e
− b†√

2I

√
b√
2I

,

J3 = √
2I b − I. (4.2.67)

These boson expressions satisfy the commutation relations (4.2.3) and, therefore,
represents a new boson expansion for the angular momentum components operators.
This expansion does not preserve the hermiticity.

Each of these four boson expansions can be used to study the wobbling motion
associated to the Hamiltonian HR .

The achievements in the field of boson expansion for both phenomenological and
microscopic operators were reviewed in Ref. [KLMA91].

4.3 A Harmonic Approximation for Energy

Solving the classical equations of motion (4.2.16) one finds the classical trajectories
given by ϕ = ϕ(t), r = r(t). Due to Eq. (4.2.16), one finds that the time derivative
of H is vanishing. That means that the system energy is a constant of motion and,
therefore, the trajectory lies on the surface H = const. Another restriction for
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trajectory consists in the fact that the classical angular momentum square is equal
to I (I + 1). The intersection of the two surfaces, defined by the two constants of
motion, determines the manifold on which the trajectory characterizing the system
is placed. According to Eq. (4.2.16), the stationary points, where the time derivatives
are vanishing, can be found just by solving the equations:

∂H
∂ϕ

= 0,
∂H
∂r

= 0. (4.3.1)

These equations are satisfiedby twopoints of the phase space: (ϕ, r) = (0, I ), (π
2 , I ).

Each of these stationary points might be minimum for the constant energy surface
provided that the moments of inertia are ordered in a suitable way.

Studying the sign of the Hessian associated toH, one obtains:
(a) If I1 > I2 > I3, then (0, I ) is a minimum point for energy, while (π

2 , I ) a
maximum.

This situation is illustrated in Fig. 4.3. Expanding the energy function around
minimum and truncating the resulting series at second order, one obtains:

H = I

4

(
1

I2 + 1

I3

)
+ I 2

2I1 − 2I − 1

4I

(
1

I1 − 1

I3

)
r ′2 + I (2I − 1)

4

(
1

I2 − 1

I1

)
ϕ2,

(4.3.2)
where r ′ = r − I. This energy function describes a classical oscillator characterized
by the frequency:

ω =
(

I − 1

2

)√(
1

I3 − 1

I1

)(
1

I2 − 1

I1

)
. (4.3.3)
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Fig. 4.3 The classical energy, given in MeV, is represented as function of the phase space coordi-
nates r (dimensionless) and ϕ[rad]. The rotor is characterized by the following moments of inertia:
I1 = 125�

2 MeV−1, I2 = 42�
2 MeV−1, I3 = 31.4�

2 MeV−1 (color figure online)
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Fig. 4.4 The classical energy, given in MeV, versus the phase space coordinates r (dimensionless)
and ϕ[rad]. The energy corresponds to the following moments of inertia: I1 = 42�

2 MeV−1,
I2 = 125�

2 MeV−1, I3 = 31.4�
2 MeV−1 (color figure online)

(b) If I2 > I1 > I3, then (0, I ) is a maximum point for energy while in (π
2 , I )

the energy is minimum. Under these conditions the energy function looks as shown
in Fig. 4.4. Considering the second order expansion for the energy function around
the minimum point one obtains:

H = I

4

(
1

I1 + 1

I3

)
+ I 2

2I2 − 2I − 1

4I

(
1

I2 − 1

I3

)
r ′2 + I (2I − 1)

4

(
1

I1 − 1

I2

)
ϕ′2,

(4.3.4)

where r ′ = r − I, ϕ′ = ϕ − π
2 . Again, we got a Hamilton function for a classical

oscillator with the frequency:

ω =
(

I − 1

2

)√(
1

I3 − 1

I2

)(
1

I1 − 1

I2

)
. (4.3.5)

(c) In order to treat the situation when I3 is the maximal moment of inertia we
change the trial function to:

|�(z)〉 = N1ez ˆ̃I−|I, I ), (4.3.6)

where |I, I ) is eigenstate of Î 2 and Î1. It is obtained by applying to ψ(z) a rotation
of angle π/2 around the axis OY.

|I, I ) = e−i π
2 |I, I 〉. (4.3.7)
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The new lowering operator corresponds to the new quantization axis:

ˆ̃I± = Î2 ± i Î3. (4.3.8)

Following the same path as for the old trial function, one obtains the equations of
motion for the new classical variables. In polar coordinates the energy function is:

H̃(r, ϕ) = I

4

(
1

I2 + 1

I3

)
+ I 2

2I1 + (2I − 1)r(2I − r)

4I

[
cos2 ϕ

I2 + sin2 ϕ

I3 − 1

I1

]
.

(4.3.9)
When I3 > I2 > I1 the system has aminimal energy in (ϕ, r) = (π

2 , I ). For a set

of moments of inertia satisfying the restrictions mentioned before, H̃ is represented
in Fig. 4.5 as function of (r, ϕ).

The second order expansion for H̃(r, ϕ) yields:

H̃(r, ϕ) = I

4

(
1

I1 + 1

I2

)
+ I 2

2I3 + 2I − 1

4I

(
1

I1 − 1

I3

)
r ′2

+ (2I − 1)2I

4

(
1

I2 − 1

I3

)
ϕ′2. (4.3.10)

The oscillator frequency is:

ω =
(

I − 1

2

)√(
1

I1 − 1

I3

)(
1

I2 − 1

I3

)
. (4.3.11)

Fig. 4.5 The classical energy versus the phase space coordinates r (dimensionless) and ϕ[rad].
Energy is determined by the following moments of inertia: I1 = 42�

2 MeV−1, I2 =
31.4�

2 MeV−1, I3 = 125�
2 MeV−1. The represented energy is given in units of MeV (color

figure online)
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4.3.1 The Potential Energy

In a previous section we described four distinct boson expansions for the angular
momentum. Inserting a chosen boson representation of the angular momentum into
the starting Hamiltonian, we are faced with finding the eigenvalues of the resulting
boson operator. Alternatively, we could express first the classical Hamilton function
in terms of the canonical complex coordinates and then, in virtue of the quantization
rules, the complex coordinates are replaced with the corresponding bosons. The
two procedures yield boson Hamiltonians which differ by terms multiplied with
coefficients like 1

2I . This suggests that the two procedures coincide in the limit of
large angular momentum.

The classical energy function comprises mixed terms of coordinate and conjugate
momentum.Therefore, it is desirable to prescribe a procedure to separate the potential
andkinetic energies.As amatter of fact this is the goal of this sub-section.Weconsider
the pair of complex coordinates (C1,B∗

1). In terms of these coordinates the classical
energy function looks like:

H = I

4

(
1

I1 + 1

I2

)
+ I 2

2I3
+ 2I − 1

8I

(
1

I1 + 1

I2 − 2

I3

)[
r(2I − r) + k

4I

(
r2B∗2

1 + 4I 2C21
)]

.

(4.3.12)

where:

r = 2I − B∗
1C1, 2I − r = B∗

1C1,

k =
1
I1 − 1

I2
1
I1 + 1

I2 − 2
I3

. (4.3.13)

The components of classical angular momentum have the expressions:

〈 Î+〉 = √
2I

(
B∗
1 − B∗2

1 C1
2I

)
,

〈 Î−〉 = √
2IC1,

〈 Î3〉 = I − B∗
1C1. (4.3.14)

Herewe consider the classical rotorHamilton function as being obtained by replacing
the operators Îk by the classical components expressed in terms of the complex
coordinates B∗

1 and C1.

H = I

4

(
1

I1 + 1

I2

)
+ I 2

2I3 − 1

4

(
1

I1 + 1

I2 − 2

I3

)
H̃(B∗

1, C1). (4.3.15)



4.3 A Harmonic Approximation for Energy 103

Here H̃ denotes the term depending on the complex coordinates. Its quantization is
performed by the following correspondence:

B∗
1 → x, C1 → d

dx
. (4.3.16)

By this association, a second order differential operator corresponds to H̃, whose
eigenvalues are obtained by solving the equation:

[(
− k

4I
x4 + x2 − k I

)
d2

dx2
+ (2I − 1)

(
k

2I
x3 − x

)
d

dx
− k

(
I − 1

2

)
x2
]

G = E ′G.

(4.3.17)
Performing now the change of function and variable:

G =
(

k

4I
x4 − x2 + k I

)I/2

F,

t =
x∫

√
2I

dy√
k
4I y4 − y2 + k I

, (4.3.18)

Equation (4.3.17) is transformed into a second order differential Schrödinger
equation:

−d2F

dt2
+ V (t)F = E ′F, (4.3.19)

with

V (t) = I (I + 1)

4

( k
I x3 − 2x

)2

k
4I x4 − x2 + k I

− k(I + 1)x2 + I. (4.3.20)

We consider for the moments of inertia an ordering such that k > 1. Under this
circumstance the potential V (t) has two minima for x = ±√

2I , and a maximum for
x= 0. For a set of moments of inertia which satisfies the restrictionmentioned above,
the potential is illustrated in Fig. 4.6 for few angular momenta. A similar potential
obtained by a different method was given in Ref. [KLLI81].

The minimum value for the potential energy is:

Vmin = −k I (I + 1) − I 2. (4.3.21)

Note that the potential is symmetric in the variable x. Due to this feature the potential
behavior around the two minima are identical. To illustrate the potential behavior
around its minima we make the option for the minimum x = √

2I . To this value of
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Fig. 4.6 The potential energy involved in Eq. (4.5.1), associated to the Hamiltonian HR and deter-
mined by the moments of inertia I1 = 125�

2 MeV−1, I2 = 42�
2 MeV−1, I3 = 31.4�

2 MeV−1,
is plotted as function of the dimensionless variable x , defined in the text. The defining equation
(4.3.20) was used (color figure online)

x it corresponds t = 0. Expanding V (t) around t = 0 and truncating the expansion
at second order we obtain:

V (t) = −k I (I + 1) − I 2 + 2k(k + 1)I (I + 1)t2. (4.3.22)

Inserting this expansion in Eq. (4.3.19), one arrives at a Schrödinger equation for a
harmonic oscillator. The eigenvalues are

E ′
n = −k I (I + 1) − I 2 + [2k(k + 1)I (I + 1)]1/2 (2n + 1). (4.3.23)

The quantizedHamiltonian associated toH has an eigenvalue which is obtained from
the above expression. The final result is:

En = I (I + 1)

2I1 +
[(

1

I2 − 1

I1

)(
1

I3 − 1

I1

)
I (I + 1)

]1/2
(n + 1

2
). (4.3.24)
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4.3.2 Numerical Application

In the previous sections we provided several expressions for the wobbling frequency
corresponding to different ordering relations for the moments of inertia. Here we
attempt to prove that these results are useful for describing realistically the yrast
energies. The application refers to 158Er, where data up to very high angular momen-
tum are available [Hel04]. We consider the case where the maximum moment of
inertia corresponds to the axis OX. In our description the yrast state energies are,
therefore, given by

EI = I

4

(
1

I2 + 1

I3

)
+ I 2

2I1 + ωI

2
. (4.3.25)

The last term in the above expression is caused by the zero point energy of the
wobbling oscillation. The wobbling frequency has been derived before, with the
result:

ωI =
(

I − 1

2

)√(
1

I3 − 1

I1

)(
1

I2 − 1

I1

)
. (4.3.26)

Weapplied a least square procedure tofix themoments of inertia. Since the derivatives
of the χ2 function with respect to 1

I2 and 1
I3 respectively, are identical, the applied

procedure provides only two variables 1
I1 and

κ = 1

2

(
1

I2 + 1

I2

)
+
√(

1

I3 − 1

I1

)(
1

I2 − 1

I1

)
. (4.3.27)

The mentioned variables are the coefficients of I 2/2 and I/2 in the expression of
the yrast energies normalized to the state of vanishing angular momentum.

The results of calculations are shown in Fig. 4.7 where, for comparison, the exper-
imental data and the results obtained in Ref. [TT73] by a different method, are also
plotted. As shown in Fig. 4.7, the agreement between the calculated and the experi-
mental energies is very good. Also, the figure suggests that the description presented
above of the yrast states in the considered nucleus is better than that reported in
Ref. [TATA06].
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Fig. 4.7 The excitation energies of yrast states, calculated with Eq. (4.3.25), are compared
with the results obtained in Ref. [TT73] by a different method as well as with the experi-
mental data from Ref. [Hel04]. The moments of inertia were fixed by a least square proce-
dure with the results: I1 = 100.168�

2 MeV−1. Inserting the value of κ provided by the fit-
ting procedure one obtains the following equation relating the moments of inertia I2 and I3:
1
I2

= 0.576837 + 1
I3

± 1.519
√

1
I3

− 0.00998318 (color figure online)

4.4 The Tilted Rotor, Symmetries and Nuclear Phases

Let us consider a Hamiltonian which is a polynomial of second order in the angular
momentum components:

H = A1 J 2
1 + A2 J 2

2 + A3 J 2
3 + B1 J1 + B2 J2 + B3 J3 (4.4.1)

Since this commutes with the total angular momentum squared, we have:

J 2
1 + J 2

2 + J 2
3 = j ( j + 1)I. (4.4.2)

where I denotes the unity operator. The operator H acts in the Hilbert space V. It is
clear that the symmetry group for H is

G = SU (2). (4.4.3)

Let R be an unitary representation of SU (2) in V . For what follows it is worth
mentioning which are the invariance groups

G0 = {R(g) | g ∈ G, R(g)H = H R(g)} (4.4.4)

for a given set of parameters {Ai , Bk} with 1 ≤ i, k ≤ 3.
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It can be easily checked that theHamiltonians, characterized by distinct invariance
groups, are obtained by the following constraints on the coefficients A and B.
(a)A1 = A2 = A3 ≡ A, B1 = B2 = 0, B3 ≡ B
For this case H and G0 take the form

H = B J3 + AJ 2,

G0 =
{

R(SU (2)) i f B = 0
{exp(iϕ J3) | 0 ≤ ϕ < 2π} i f B �= 0

(4.4.5)

(b) | A1 − A3 | ≥ | A1 − A2 |, A1 �= A3, B1 = B2 = 0, B3 = B, B(A1 − A2) ≥ 0.
This implies

H = (A1 − A2)(J 2
1 + u J 2

2 + 2v0 J3) + A3J2,

u = A2 − A3

A1 − A3
, v0 = B

2(A1 − A3)
, − 1 ≤ u ≤ 1, v0 ≥ 0. (4.4.6)

Under these circumstances, one distinguishes several situations:
(b1) v0 > 0, u < 1. In this case the symmetry group is

G0 =
{{I, R3, R0R3, R0} ∼ Z4, i f 2 j = odd,

{I, R3} ∼ Z2, i f 2 j = even,
(4.4.7)

where
R0 = R(−iσ0), Rk = R(iσk), k = 1, 2, 3 (4.4.8)

and the sign ∼ stands for the isomorphism relationship. σi (0 ≤ i ≤ 3) are the Pauli
matrices.

When u = −1 one obtains for H an expression identical to that proposed bu
Glik-Lipkin-Meshkov, modulo a contraction and an additional diagonal term. For
v0 �= 0 and u = 0 the model of Bohr and Mottelson, describing the particle-core
interaction, is obtained.
(b2) If v0 = 0 and u �= 0, 1, then

G0 =
{ {I, R1, R2, R3} ∼ D2, i f 2 j = even,

{I, R0, Rk, R0Rk |k = 1, 2, 3} ∼ Q, i f 2 j = odd

}
. (4.4.9)

where D2 and Q denote the dihedral and quaternion groups, respectively. This situ-
ation corresponds to a triaxial rotor.
(b3) The case of a symmetrical prolate rotor is described by u = v0 = 0 which
corresponds to:

G0 = {exp (iϕ J1), R2 exp (iϕ J1)|0 ≤ ϕ < 2π}. (4.4.10)

(b4) The axially symmetrical rotor with an oblate deformation correspond to u =
1, v0 = 0 and has the invariance group
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G0 = {exp(iϕ J3), R2 exp(iϕ J3) | 0 ≤ ϕ < 2π} (4.4.11)

(b5) The system with axial symmetry is described by u = 1, v0 > 0 and

G0 = {exp(iϕ J3) | 0 ≤ ϕ < 2π} (4.4.12)

Any other Hamiltonian of the family (4.4.1) can be obtained from one of those
specified by the restrictions (a) and (b) through a rotation transformation.

As for the Hamiltonians of class (b) these are fully described once we know to
characterize the Hamiltonian:

h = J 2
1 + u J 2

2 + 2v0 J3. (4.4.13)

Normalizing the coordinates xi = 〈Ji 〉 with the radius of the sphere determined
by the angular momentum constraint we are faced with the problem of finding the
motion of a point (x1, x2, x3) on a sphere of a radius equal to unity:

x21 + x22 + x23 = 1 (4.4.14)

determined by the classical Hamiltonian:

h = x21 + ux22 + 2vx3, |u| ≤ 1, v ≥ 0. (4.4.15)

The two parameters u and v are functions of the weight of the SU (2) representation
( j). The explicit dependence on j is determined by the specific way the dequantiza-
tionwasperformed.Through thedequantizationprocedure the commutation relations
for the components of angular momentum become

{xi , xk} = εikl xl (4.4.16)

where {, } denotes the inner product for the classical SU (2)-Lie algebra. The equa-
tions of motion for classical variables (see Eq. 4.2.16) are:

•
xk= {xk, h}, k = 1, 2, 3. (4.4.17)

Taking into account the expression of h and the constraint (4.4.14), one obtains the
equations governing the motion of xk .

•
x1 = 2x2(ux3 − v),
•
x2 = 2x1(x3 − v),
•
x3 = 2(1 − u)x1x2. (4.4.18)
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From (4.4.15) and (4.4.18) it results

•
h= 0 (4.4.19)

Therefore h is a constant of motion which will be hereafter denoted by E . The
classical trajectory will be a curve determined by intersecting the sphere (4.4.14)
with the surface

x21 + ux22 + 2vx3 = E . (4.4.20)

It iswell known that a good signature for the time evolution of the point (x1, x2, x3)
is the set of critical points of this curve. These are determined by equations:

∂h

∂xk
= 0, k = 1, 2, 3. (4.4.21)

Some of the critical points are also satisfying the equation

det (
∂2h

∂xi∂xk
)1≤i,k≤3 = 0 (4.4.22)

if the parameters u and v take some particular values. In this case the critical points
are degenerate, otherwise they are called non-degenerate. The set of (u, v) to which
degenerate critical points correspond is given by the equation:

f (u, v) ≡ (1 − u)(1 − v)(u2 − v2) = 0 (4.4.23)

The product set

B = {(x1, x2, x3, u, v) | ∂h

∂xk
= 0, k = 1, 2, 3; f (u, v) = 0} (4.4.24)

will be conventionally called bifurcation set.
The critical points are listed in Table4.3. There, the corresponding energy (E)

values are also given. From Table4.3 one sees that E takes 4 critical values which are
denoted by E1, E2, E+ and E−, respectively. The solutions (u, v) of the Eq. (4.4.23)
are plotted in Fig. 4.8. Here we have also plotted the curve v2 = u where the crit-
ical energies E1and E2 are equal. The curves given in Fig. 4.8 are conventionally
called separatrices. The dependence of critical energies on the parameters u and v is
visualized in Fig. 4.9.

There are several sets (u, v, E) for which the solutions of equations of motion
can be expressed in terms of elementary functions. If the system energy takes one
of critical values, the equations of motion can be easily integrated. Below, we shall
give the list for final solutions, P(t) = (x1(t), x2(t), x3(t)):
1◦ E = −2v, P(t) = (0, 0,−1).
2◦ E = 2v. For this case one distinguishes several situations:
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Table 4.3 Critical energies characterizing various sets of the (u,v) parameters are presented

Energy Restrictions for (u, v) Critical points Type

E1 = 1 + v2 u < 1, v < 1 ((1 − v2)
1
1 , 0, v) M

(−(1 − v2)
1
1 , 0, v) M

u = 1, v < 1 ((1 − v2)
1
2 cosϕ, (1 − v2)

1
2 sin ϕ, v) M

ϕ ∈ (− π
2 , π

2 ) ∪ ( π
2 , 3π

2 )

E2 = v2

u + u 0 < u < 1, v <| u | (0, (1 − v2

u2
)
1
2 , v

u ) s

−(0, (1 − v2

u2
)
1
2 , v

u ) s

u < 0, v <| u | (0, (1 − v2

u2
)
1
2 , v

u ) m

−(0, (1 − v2

u2
)
1
2 , v

u ) m

u = 1, v < 1 ((1 − v2)
1
2 cosϕ, (1 − v2)

1
2 sin ϕ, v) M

ϕ ∈ (0, π) ∪ (π, 2π)

E+ = 2v v < u (0, 0, 1) m

v = u = 0 (0, 0, 1) m

0 < v = u < 1 (0, 0, 1) s

u < v < 1 (0, 0, 1) s

u ≤ 1 (0, 0, 1) M

v > 1 (0, 0, 1) M

E− = −2v u + v > 0 (0, 0,−1) m

u + v = 0 (0, 0,−1) m

u + v < 0 (0, 0,−1) s

These are the values of the energy function corresponding to critical points (x1, x2, x3). Notations
M, m, s stand for maxima, minima and saddle points, respectively

Fig. 4.8 The separatrix
described by solutions of
Eq. (4.4.23)



4.4 The Tilted Rotor, Symmetries and Nuclear Phases 111

Fig. 4.9 For a given value of
u the critical energies are
given as function of v

(a) v < u < 1, with the solution:

xk(t) = [A1δk,1 sin
2π t

T1
+ A2δk,2 cos

2π t

T1
+ δk,3(A′

3 + A3 cos
4π t

T1
)][B + C cos

4π t

T1
]−1.

(4.4.25)
The following notations were used:

T1 = π [(1 − v)(u − v)]− 1
2 ,

A1 = 4(u − v)[v(1 − v)] 12 , A2 = 4(1 − v)[v(u − v)] 12 ,
A3 = v(1 − u), A′

3 = 3uv + 3v − 2u − 4v2,

B = 2u − uv − v, C = v(1 − u). (4.4.26)

From (4.4.25), one easily obtains:

lim
t→0

P(t) = (0,
2

u
[v(u − v)] 12 , 2v

u
− 1)

lim
v→u

P(t) = (0, 0, 1). (4.4.27)

(b) If the parameters u and v satisfy one of the ordering relations 0 < u < v <

1, 0 < v < −u, 0 < −u < v, the solutions xk(t) are :

xk(t) = [δk,1A1 cosh
2π t

T1
− i A2δk,2 sinh

2π t

T1
+ δk,3(−A′

3 + A3 cosh
4π t

T1
)]

× [−B + C cosh
4π t

T1
]−1. (4.4.28)
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These orbits have the properties:

lim
t→0

P(t) = (2[v(1 − v)] 12 , 0, 2v − 1),

lim
t→∞ P(t) = (0, 0, 1),

lim
v→u

P(t) = (2[v(1 − v)] 12 , 0, 2v − 1), for 0 < u < v < 1. (4.4.29)

(c) u < 1 < v, P(t) = (0, 0, 1).
3◦ E = v2 + 1, v ≤ 1, P(t) = (±√

1 − v2, 0, v).

4◦ E = v2

u + u. Again, the solution depends on the relative magnitudes of the
parameters u and v.
(a) I f u < v, 1, then

xk(t) = [D1δk,1 + D2δk,2 sinh
2π t

T2
+ (D′

3 + D3 cosh
2π t

T2
)][F1 + F2 cosh

2π t

T2
]−1.

(4.4.30)

where the following notations were used:

T2 = πu
1
2 [(1 − u)(v2 − u2)]− 1

2 ,

D1 = (u2 − v2)(1 − u)
1
2 u− 1

2 ,

D2 = [u−1(1 − u)(u − v2)(u2 − v2)] 12 ,
D′
3 = −u(1 − u), D3 = v(α2 − v),

F1 = −v(1 − u), F2 = u(α2 − v). (4.4.31)

In the limits t → 0 and t → ∞ one obtains:

lim
t→0

P(t) = (
v − α1u√
u(1 − u)

, 0, α1),

lim
t→∞ P(t) = (0,

√
u2 − v2

u
,
v

u
). (4.4.32)

(b) For v < u < 1 the solutions are:

xk(t) = [D1δk,1 + D2δk,2 sinh
2π t

T2
+ (−D′

3 + D3 cosh
2π t

T2
)][−F1 + F2 cosh

2π t

T2
]−1.

(4.4.33)
The limits for initial and infinity times respectively, are:

lim
t→0

P(t) = (
u− 1

2 (1 − u)
1
2 (u2 − v2)

v − α1u
, 0, α2),

lim
t→∞ P(t) = (0, u−1(u2 − v2)

1
2 , u−1v) (4.4.34)
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(c) In the interval of 1 >
√

u > v > u, the solution reads:

xk(t) = [±D1δk,1 ∓ i D2δk,2 sin
2π t

T2
+ (D′

3 + D3 cos
2π t

T2
)][F1 + F2 cos

2π t

T2
]−1.

lim
t→0

P(t) = (
u− 1

2 (1 − u)
1
2 (v2 − u2)

v − α2u
, 0, α1). (4.4.35)

Notice that among the solutions corresponding to the critical points, two are periodic
functions of time.

It is also interesting to see the expressions of the solutions corresponding to some
particular values for the parameters u and v as well as for the constant of motion E .
Here is the list of them:
(A) For u = 1 the solutions are:

x3(t) = const.,

x1(t) =
√
1 − x23 cos 2(x3 − v)t,

x2(t) = −
√
1 − x23 sin 2(x3 − v)t, (4.4.36)

with initial conditions:

P(t) |t=0 ≡ (x1(t), x2(t), x3(t)) |t=0 = (

√
1 − x23 , 0, x3) (4.4.37)

(B) If u = v = 0, 0 < E < 1, then

x1(t) = ±√
E,

x2(t) = ±√
1 − E sin 2

√
Et,

x3(t) = −√
1 − E cos 2

√
Et .

P(0) = (±√
E, 0,−√

1 − E). (4.4.38)

(C) v = 0, u = −1, E = 0. In this case the solutions are:

x1(t) = ±
√
1 − p2

2
e− t

2 ,

x2(t) = x1(t),

x3(t) = [1 − (1 − p2)e−t] 12 , 1 > p > 0

P(0) =
⎛

⎝±
√
1 − p2

2
,±
√
1 − p2

2
, p

⎞

⎠ , (4.4.39)

Note that for t going to infinity the curve reaches the north pole:



114 4 Description of the Triaxial Rotor

lim
t→∞ P(t) = (0, 0, 1). (4.4.40)

(D) v = u < 1, E = 2v. For this case the solutions are:

x1(t) = ± 2
√

v(1 − v)

1 + 4v(1 − v)t2
,

x2(t) = ± 4(1 − v)t

1 + 4v(1 − v2)t2

√
v(1 − v)

1 − u
,

x3(t) = 2v − 1 + 4v(1 − v)t2

1 + 4v(1 − v)t2
,

lim
t→0

P(t) = (±√4v(1 − v), 0, 2v − 1),

lim
t→∞ P(t) = (0, 0, 1). (4.4.41)

Analyzing the trajectories from various phases one may conclude:
(a) For certain ranges of the (u, v) parameters, critical points are surrounded

by periodic trajectories. The periods exhibit discontinuities when separatrices are
approached.

(b) There are specific intervals for (u, v), where some critical points are saddle
points. Around such critical points the classical Hamiltonian is unstable against the
variation of one coordinate but stable with respect to another one. For such a situation
the linearization procedure is not a confidentway of approximating the real situations.
This assertion will become more clear at the end of this section.

(c) It is to be noticed that the periods of the exact trajectories obtained for the
energy critical values E+ = 2vwithv < u < 1 and E2 = v2

u +u withu < v,
√

u < 1
are exactly the same as the periods of trajectories given by the linearized equations
of motion (see Eqs.(4.4.25), (4.4.35) and Table4.5).

Now let us turn our attention to the exact solutions of Eqs. (4.4.18)with constraints
(4.4.14) and (4.4.20). Due to the constraint relations there is only one independent
variable. For the sake of convenience, let us take x3 as independent coordinate. The
equation of motion for x3 can be formally integrated:

t − t0 =
x3∫

x30

dx

2
√| u |[(x − α1)(x − α2)(x − α3)(x − α4)] 12

, (4.4.42)

where we denoted:

α1 = v −√
E1 − E,

α2 = v +√
E1 − E,

α3 = 1

u
[v −√

u(E2 − E)],

α4 = 1

u
[v +√

u(E2 − E)], (4.4.43)
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The limits for the integral (4.4.42) are chosen so that the integrand is a real number for
any x ∈ (x30, x3). Obviously, the integral (4.4.42) depends on the relative positions
of the poles αi (i = 1, 2, 3, 4). By means of (4.4.42) the time dependence of x3 is
expressed in terms of the elliptic function of first kind [ERD55].

t − t0 = 1√
C

F(ϕ, k). (4.4.44)

where

ϕ =
{
arcsin k1 if all αi are real

arctan k1 if two αi are C-numbers
(4.4.45)

The explicit expressions for C, k21, k2 are collected in Table4.4. Therein, k2 is given
in terms of

Table 4.4 The arguments k1 and k of the elliptic function F defining the solution of equations of
motion (4.4.44) and (4.4.45)

E and (u, v) C k21 k

u = 0, v < 1

−2v < E < 2v 2v(α2 − α1)
2v(x3−α1)

E−2vα1

√
1−ρ
2

u = 0, v < 1

2v < E < v2 + 1 E − 2vα1
x3−α1
α2−α1

√
2

1−ρ

0 < v <
√

u < 1

E2 < E < E1 4(1 − u)

√
(1 − α2

1)(1 − α2
2)

(1−α2
1 )(α2−α1−x3)

(1−α2
2 )x3

1
2 (1 + ρ√

ρ2−1
)

u > 0

−2v < E < 2v u(α4 − α3)(α2 − α1)
(α4−α3)(x3−α1)
(α3−α1)(α4−x3)

√
1−ρ
2

u < 0

−2v < E < 2v u(α4 − α3)(α2 − α1)
(α1−α2)(x3−α3)
(α1−α3)(x3−α2)

√
1−ρ
2

u = −1, 0 ≤ v < 1

−(v2 + 1) < E < −2v u(α3 − α1)(α4 − α2)
(α4−α2)(x3−α3)
(α4−α3)(x3−α2)

√
2

1−ρ

1 >
√

u > v > u > 0

2v < E < E2 u(α4 − α2)(α3 − α1)
(α2−α3)(x3−α1)
(α3−α1)(α2−x3)

√
ρ−1
ρ+1

1 > v >
√

u, u > 0

2v < E < v2 + 1 u(α4 − α2)(α3 − α1)
(α4−α1)(x3−α2)
(α2−α4)(α1−x3)

√
ρ−1
ρ+1

v < u < 1

2v < E < E2 u(α2 − α3)(α4 − α1)
(α4−α2)(x3−α1)
(α2−α1)(α4−x3)

√
2

1−ρ

u < 0

2v < E < E1 −u(α4 − α2)(α1 − α3)
(α1−α3)(x3−α2)
(α1−α2)(x3−α3)

√
2

1−ρ

Also the normalization constant C is given. The first order periods T are listed



116 4 Description of the Triaxial Rotor

ρ = 2v2 − E

v(α2 − α1)
(4.4.46)

Taking into account the properties for the elliptic functions, the solution x3(t)
described by (4.4.42) is a periodic function of time with the period:

T = π√
C

2F1(
1

2
,
1

2
, 1; k2) (4.4.47)

where 2F1 is the hypergeometric function. In Table4.5 we also give expressions of T
corresponding to an energy E lying close to a critical energy. For the sake of saving
space we did not list in Table4.4 situations where at least two poles αi are equal
and their common values belong to the interval [−1, 1]. In such cases trajectories,
satisfying the equations of motion (4.4.18) might be:

(I) a steady point if

(a) αi1 = αi2 ∈ [−1, 1], αi3 , αi4 �∈ [−1, 1] with ik ∈ 1, 2, 3, 4 and ik �= ik′ , for
k �= k′

(b) αi1 = αi2 ∈ [−1, 1] and αi3 , αi4 are complex numbers.
(c) αi1 = αi2 = αi3 = αi4 ∈ [−1, 1]

(II) two steady points if αi1 = αi2 ∈ [−1, 1], αi3 = αi4 �= αi1 and αi3 ∈ [−1, 1]
(III) one steady point and one circle if αik ∈ [−1, 1] for any k and αi1 = αi2 , αi3 =

αi4 , αi1 , αi2 �∈ [αi3, αi4 ] In Table4.4, two kinds of orbits are analyzed.
(IV) One circle when αi1 = αi2 ∈ [−1, 1], αi1 �= αi2 and αi3 , αi4 are either lying

outside the interval [-1,1] or are complex numbers.
(V) Two circles when the poles are all different and their modulus are smaller than

1. It is well understood that whenever there are two possible orbits they cor-
respond to the same energy. The system chooses one of the two possibilities
according to its initial position. One should notice that the periods we have
obtained by linearizing the equations of motion correspond to the zero order
expansion of the period for the exact solution. By contrary, the expansion of
T around a saddle point of energy function exhibits a logarithmic singular-
ity. Now it is clear why the linearization procedure is not applicable around a
saddle point. Such singularities reflect the fact that a system lying in a saddle
point is unstable against perturbation. From Fig. 4.8 one sees that the mani-
fold {(u, v)||u| ≤ 1, v ≥ 0} is divided in several regions by separatrices. On
other hand from Table4.5 it results that the period of any classical trajectory
has singularities for (u, v) belonging to one separatrix. In other words, a given
trajectory cannot be continuously deformed by varying (u, v) so that a sepa-
ratrix is crossed over. In this sense one could say that separatrix are borders
for a domain of (u, v) characterized by a specific behavior of the system under
consideration. Conventionally, we shall call these domains as phases of the
classical motion. It can be shown that two different phases correspond to two
different symmetries for the elementary classical system. Also, it is obvious
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E
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π
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E
=

−2
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ε
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=
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π
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<
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<
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+
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=
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+
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that by perturbing a trajectory of a given phase, one obtains a trajectory of
the same phase. A more rigorous definition for the classical phases pointing
to their relation to the underlying group symmetry as well as to their stability
properties against perturbations exceeds the goal of this book.

4.4.1 Quantization of Periodic Orbits

Now, once we have a full classical description of the classical system, we want to
investigate whether starting from there it is possible to get some information about
the quantal system. This can be achieved by quantizing the classical trajectories, i.e.
by enforcing the classical action to be an integer multiple of 2π . This provides an
equation for the quantized energy which is supposed to be an approximation for the
eigenvalues of the quantummechanical Hamiltonian. The restriction for the classical
action is similar to the well-known quantization rule of Bohr and Sommerfeld. The
resulting energies define the so called semiclassical spectrum of H. How good this
approximation is, can be judged only by comparing the semiclassical spectrum with
the exact one. This comparison will be made in the next section.

Let us now write down explicitly the quantization condition. To this purpose we
shall define first the classical action. For the time being we suppose that (u, v) is
fixed and moreover does not belong to a separatrix. Further we consider an extremal
point P on the sphere S2

1 to which the energy E0 corresponds. There is a continuous
family (with respect to the energy E) of trajectories surrounding P . For an arbitrary
value of E we shall define the action as the magnitude of the area of the calhote
containing P and having the trajectory of energy E as border.

L(E) =
∫

d� =
E∫

E0

T∫

0

d E ′ dt ′ =
E∫

E0

T (E ′) d E ′, (4.4.48)

where T (E ′) denotes the period of the orbit of energy E ′ and is given analytically
in Table4.5. Then the quantization rules reads:

L(E) = 2πn. (4.4.49)

Since L(E) is an increasing function of E , the Eq. (4.4.49) can be reversed:

En = f (u, v, n) (4.4.50)

By a formal derivation of L(E) one easily obtains:

∂L(E)

∂ E
= T (E) = ∂L(E)

∂n

∂n

∂ E
,

∂ E

∂n
= 2π

T (E)
. (4.4.51)
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From here it is manifest that a linear dependence of E on n is obtained when T (E)

is approximated by its zero order expansion around E0. In Table4.5 results for cases
when such expansions are not singular with respect to the deviation ε = E − Ecr

are given. Note that this happens in our case since E0 is an extremal value for the
energy function. Energies obtained in this way are identical with those obtained by
quantizing the trajectory provided by the linearized equations of motion. It is worth
mentioning that for the latter case the quantization condition is just that of Bohr
and Sommerfeld. Thus, it becomes clear that solving Eq. (4.4.49) one goes beyond
the standard result obtainable through the Bohr-Sommerfeld rule. The quantization
method presented here has several limitations, induced by the fact that T (E) has
singularities when (u, v) belongs to a separatrix as well as when the trajectory on
S2
1 lies close to a saddle point. Therefore L(E) defined by (4.4.48) is only locally

a continuous function of E and (u, v). It is an open question how to extend the
quantization condition (4.4.49) to a region which intersects two different phases.

4.5 The Quantum Hamiltonian

Here we shall study the Schrödinger equation:

H� = E�, with

H = J 2
1 + u J 2

2 + 2v0 J3 (4.5.1)

For what follows it is useful to write H in terms of the lowering (J− = J1 − i J2)
and raising angular momentum operators (J+ = J1 + i J2).

H = 1 − u

4
(J 2+ + J 2−) + 1 + u

4
(J+ J− + J− J+) + 2v0 J0 (4.5.2)

Here J0 denotes the third component of angular momentum operator. It is convenient
towrite the Schrödinger Eq. (4.5.1) in such a form that the potential energy is demixed
from the kinetic energy. To this aimwe shall write the operators J±, J0 as differential
operators with respect to a real variable q, chosen so that the commutation relations

[J+, J−] = 2J0, [J±, J0] = ∓J±, (4.5.3)

are preserved. A possible representation for the operators Jk(k = 0,±), satisfying
this condition and J 2

1 + J 2
2 + J 2

3 = j ( j + 1), is:

J± = i
c ± d

k′s
( j ∓ J0),

J0 = jcd − s
d

dq
(4.5.4)

where c,s,d denote the elliptic functions [ERD55]:
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s = sn(q, k), c = cn(q, k), d = dn(q, k) with

k = √
u, u > 0, q =

ϕ∫

0

(1 − k2 sin t2)−
1
2 dt ≡ F(ϕ, k),

k′ =
√
1 − k2 (4.5.5)

The functions s, c, d are related with the usual trigonometric functions by:

s = sin ϕ, c = cosϕ, d =
√
1 − k2 sin ϕ2, (4.5.6)

and have the periods 4K , 4K , 2K , respectively, with

K = F(
π

2
, k) = π

2
2F1(

1

2
,
1

2
, 1; k2) (4.5.7)

To check the commutation relations (4.5.3) for the boson representation (4.5.4) one
needs the derivatives of the involved elliptic functions:

d

dq
sn(q) = cn(q)dn(q),

d

dq
cn(q) = −sn(q)dn(q),

d

dq
dn(q) = −k2sn(q)cn(q). (4.5.8)

In the new representation the Hamiltonian H (14.1.1) has the form:

H = − d2

dq2 − 2v0s
d

dq
+ j ( j + 1)s2k2 + 2v0cd j (4.5.9)

Now changing the function � to the function � by

� = (d − kc)−
v
k � (4.5.10)

the Schrödinger Eq. (4.5.1) becomes:

[− d2

dq2 + V (q)]� = E� (4.5.11)

where

V (q) = ( j ( j + 1)k2 + v20)s
2 + (2 j + 1)v0cd (4.5.12)

http://dx.doi.org/10.1007/978-3-319-14642-3_14
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Let us consider first the particular case v0 = 0. In this special case V (q) has two
minima for

ϕm = 0, π (4.5.13)

The minimum values of V (q) are equal and the common value is

Vm = 0. (4.5.14)

The second order expansion of V (q) around one chosen minimum point, qm =
q(ϕm) is:

Ṽ (q) = j ( j + 1)k2q2 (4.5.15)

Approximating V (q) by Ṽ (q), the Eq. (4.5.11) describes the harmonic oscillation of
q around qm .Therefore the eigenvalues are given by

En = √
j ( j + 1)u(2n + 1) (4.5.16)

This situation corresponds to the triaxial rotor. Indeed, writing H (14.1.1) in a dif-
ferent form:

H = − j ( j + 1) + H ′ (4.5.17)

the new Hamiltonian has the form

H ′ = 2J 2
1 + (u + 1)J 2

2 + J 2
3 (4.5.18)

describes a triaxial rotor characterized by the moments of inertia Ii (i = 1, 2, 3)
given by:

2 = 1

2I1 , u + 1 = 1

2I2 , 1 = 1

2I3 . (4.5.19)

Certainly, they satisfy the ordering relation:

I3 > I2 > I1 (4.5.20)

From the Schrödinger Eq. (4.5.11) corresponding to H ′ can be derived the equation
obtained in Ref. [BR79] for arbitrary inertial momenta satisfying the ordering rela-
tions (4.5.20) if the restrictions (4.5.19) are adopted. By the same transformation the
spectrum obtained in Ref. [BR79]

E ′
n = j ( j + 1)

2I3 + [( 1

I1 − 1

I3 )(
1

I2 − 1

I3 )] 12√ j ( j + 1)(n + 1

2
), (4.5.21)

goes to the spectrum of H ′.

http://dx.doi.org/10.1007/978-3-319-14642-3_14
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Coming back to the general case, that of v0 �= 0, the absolute minimum of V (q)

is reached for ϕm = π :

Vm ≡ V (qm) = −(2 j + 1)v0,

qm ≡ q(ϕm) = 2k. (4.5.22)

The second derivative of V (q) in the minimum point is

V ′′(ϕm) = 2[ j ( j + 1)k2 + v20] + (2 j + 1)v0(1 + k2) (4.5.23)

The Schrödinger equation corresponding to the harmonic approximation for V (q) is:

{− d2

dq2 −(2 j +1)v0+ 1

4
[(2 j +1+2v0)(k

2(2 j +1)+2v0)−k2]}� = E� (4.5.24)

Therefore the eigenvalues are:

En = −(2 j + 1)v0 +√
(2 j + 1 + 2v0)(u(2 j + 1) + 2v0) − u(n + 1

2
) (4.5.25)

Taking now v = v0
j , which corresponds to a specific dequantization procedure

[GRC98], and neglecting the 1
j -order terms, one obtains:

En = j[−2v j +√
(u + v)(1 + v)(n + 1

2
)] (4.5.26)

This result coincides, up to a contraction factor, with that obtained through the semi-
classical procedure for the case u > 0,−2v < E < 2v mentioned in Table4.4. It is
worth noting that replacing the conjugate variables q and−i d

dq by the corresponding

expressions in terms of the boson operators a and a†:

q = 1√
2
(a + a†),

−i
d

dq
= i√

2
(a† − a), (4.5.27)

the equation (4.5.4) provides a new boson representation for the SU (2) algebra
generators. For practical purposes it is more convenient to use the bosons:

q = B†,
d

dq
= B. (4.5.28)

A similar result for the quantal spectrum can be obtained by using the Holstein
Primakoff representation [HolPr40] for the angular momentum operator
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J+ = √
2 ja†(1 − a†a

2 j
)
1
2 , J− = √

2 ja(1 − a†a

2 j
)
1
2 , J0 = − j + a†a, (4.5.29)

where a, a+ are boson operators

[a, a†] = 1. (4.5.30)

By this boson representation the commutation relations (4.5.3) are exactly satisfied.
Inserting the expressions (4.5.29) for the angularmomentumoperators in the equation
(4.5.2) one obtains a boson representation for the cranked Hamiltonian. Expanding
the square-root operators and ignoring the corrective terms of the order 1

j , one obtains
a quadratic expressions in boson operators:

H = [ j (u + 1) + 2v0]a†a + 1 − u

2
j (a†2 + a2) + j (1 + u)

2
− 2v0 j. (4.5.31)

Further, H is diagonalized by the canonical transformation

a† = Ub† + V b, a = Ub + V b† (4.5.32)

with

V = 1

2
[(v0 + ju

v0 + j
)
1
4 − (

v0 + j

v0 + ju
)
1
4 ],

U 2 = 1 − V 2, [b, b†] = 1. (4.5.33)

The new boson representation of H is

H = −v0(2 j + 1) +√
(v0 + j)(v0 + ju)(b†b + 1

2
). (4.5.34)

The excitation energies are:

En = −v0(2 j + 1) +√
(v0 + j)(v0 + ju)(n + 1

2
). (4.5.35)

It is worth noting that the two procedures provide the same zero point energy. More-
over, up to some corrective terms of the order 1

2 , the excitation energies coincide.
Concluding this chapter we may say that the triaxial as well as the tilted rotors

were treated semiclassically and several boson representations were derived. The
most geeral tilted rotor was considered in various phases of the parameters space,
separated by separatrices. Analytical trajectories were obtained for each phase and
in particular for the critical energies. The periods for the latter cases coincide with
those obtained by linearizing the equations of motion around a minimum point.
The periodic orbits are quantized through a restriction which generalizes the Bohr-
Sommerfeld quantization rule. The method can be applied also for large amplitude
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motion. For the Dyson boson expansion, the kinetic and potential energies of the
rotor Hamiltonian are fully separated. Further the harmonic approximation around
the minimum point of the potential yields the wobbling frequency. The symmetries
of the rotor Hamiltonian were discussed. Thus, the eigenstates are interpreted in
terms of the irreducible representation of the group D2. The corresponding energies
are also analytically given for the low spin states.



Chapter 5
Semiclassical Description of Many Body
Systems

5.1 The Coupling of Individual and Collective
Degrees of Freedom

The competition of collective and individual degrees of freedom plays an important
role in the study of nuclear systems. Chiefly, one attempts to reduce the number
of degrees of freedom to a small number of relevant ones and to understand the
nuclear spectra in terms of the competition between them. The projection of the
optimal collective coordinates is done either by a time dependent formalism using
a constrained variational principle for the classical action [Vil77, MOY77, BaVe78,
RB76, Ma77, RG78, MP82], or through a variational principle for the Schrödinger
equation [MSMUH82, KMU82]. The first case has the advantage of keeping close
contact with the classical features but brings in difficulties in re-quantizing the clas-
sical trajectories [RE80, LNP80, KGLD79, SU83]. The second method provides a
full quantum mechanical solution for projecting the maximally decoupled collective
space out of the many fermionic states but in spite of its beauty seems to be still far
from quantitative applications.

Alternatively, the semi-phenomenological models assume one phenomenological
Hamiltonian describing the motion of a collective core and another one coupling a
set of interacting particles to the core [BMR73, FA76, MV75, KS73, TF75, NVR75,
TNVF77, BHM78, HA76, GSF79, ISO73, IKMO79, IO83, I81, RCD76, RLF83,
Ma78,BM81,HMO83].On this line, effects like alignment of the angularmomentum
of the single particle motion either to the symmetry axis or to the rotation axis of
the core, and the transition from the superconducting phase to the normal one were
intensively studied.

In what follows we shall use a model Hamiltonians such that the collective part is
described by a phenomenological quadrupole boson and the rest of nucleons interact
through a pairing force. The coupling of the particle and core simulates a specific
dependence of the gap parameters on the angular momentum of a rotational non-
invariant core, described in terms of quadrupole bosons (bμ,−2 ≤ μ ≤ 2).

© Springer International Publishing Switzerland 2015
A.A. Raduta, Nuclear Structure with Coherent States,
DOI 10.1007/978-3-319-14642-3_5
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H = �N̂b +
ns∑

k=1

(εk − λ)N̂k − 1

4
G

ns∑

k,k′=1

P+
k Pk′ + Hcoup + Hc, (5.1.1)

where the following notations were used:

N̂b =
2∑

μ=−2

b+
μ bμ, N̂k =

jk∑

m=−jk

c+
kmckm,

P+
k = ĵk(c

+
k c+

k )0, ĵk = (2jk + 1)1/2,

Hcoup = η

ns∑

k=1

[
b+
0 Pk + b0P+

k

]
,

Hc = −λ1Ĵ2. (5.1.2)

Here c+
km(ckm) denotes the creation (annihilation) operator of one particle in the

spherical shell model state |km〉 = |nljm〉. The lower label k is the ordering index
for single particle energies: ε1 < ε2 < ε3 < · · · < εns . Ĵ stands for the core angular
momentum and has the expression:

Ĵ2 = 2N̂b(2N̂b + 1) − 10(b+b+)0(bb)0 − 7
√
5
[
(b+b+)2(bb)2

]
0 . (5.1.3)

Also, N̂p denotes the total number of particles operator, i.e., N̂p = ∑ns
k=1 N̂k , while

ns represents the number of states under consideration.
Instead of solving the stationary eigenvalue problemassociated to theHamiltonian

H, we seek the time dependent solution |ψ(k)
p,b(t)〉 of the variational principle equation:

δ

t∫

t0

〈ψp,b(t
′
)|i ∂

∂t′ − H|ψp,b(t
′
)〉dt

′ = 0. (5.1.4)

Obviously in the above equation the unit system where � = 1 was used. One can
prove that if the trial function spans the whole Hilbert space of the particle-core
Hilbert space then solving the variational principle equation is equivalent to solving
the time dependent Schrödinger equation. We shall restrict the particle-core space to
the set of states:

|ψp,b(t)〉 = eTb(t)eTp(t)|0〉p|0〉b,

Tb(t) = z0(t)b
+
0 − z∗

0(t)b0, Tp(t) =
ns∑

k=1

(
zk(t)P

+
k − z∗

k (t)Pk
)
, (5.1.5)
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where |0〉b, |0〉p are vacuum states for boson and particle annihilation operators
respectively, while zk(t) are smooth complex functions of time and z∗

k (t) their com-
plex conjugates.

The set M(t) = (z0, z1, . . . , zns , z∗
0, z∗

1, . . . , z∗
ns

) is interpreted as a point in the
classical phase-space coordinates associated with the ns + 1 degrees of freedom.
Solving the variational principle equations, one determines the time dependence of
the functions M(t) when the initial conditions, M(t0) = M0, are specified. The set
of points M(t) obeying the initial condition mentioned above, defines the classical
trajectory in the classical phase space.

Let us denote byM the submanifold of the particle-core space, Sp ⊗ Sc, spanned
by |ψp,b(t)〉 for (z0, z1, . . . , zns) ∈ Cns+1. Once the classical equations of motion
for the coordinates zk are solved, the function |ψp,b(t)〉 is determined and finally the
system time evolution becomes:

|ψC
p,b(t)〉 = |ψp,b(t0)〉 exp{i

t∫

t0

〈ψp,b(t
′
)|i ∂

∂t′ − H|ψp,b(t
′
)〉dt

′ } (5.1.6)

Indeed, one can show that the above function obeys the variational principle on
the manifold C ⊗M [KGLD79]. The factor multiplying ψp,b in (5.1.6) results from
a “parallel” variation of ψC

p,b, i.e., on C. This way the time evolution of the “space”

independent phase is uniquely determined. Note that the structure ofψC
p,b is similar to

that of a stationary state of the Schrödinger equation. This result actually ensures the
independence of the results of a measurement on the time observation. This property
is also valid for ψC

p,b requiring that the gauge invariant factor

|�G
p,b〉 = |ψp,b〉 exp{i

t∫

t0

〈ψp,b(t
′
)|i ∂

∂t′ |ψp,b〉dt
′ } (5.1.7)

be periodic

|ψG
pb(t + T)〉 = |ψG

pb(t)〉 (5.1.8)

and by redefining, as a result of ameasurement, the time average of the operator asso-
ciated to the physical observable in an interval much longer than T. The above restric-
tion is conventionally called the gauge invariant periodic (GIP) condition [KGLD79]
which implies that |ψp,b〉 is a periodic function and

T∫

0

〈ψp,b|i ∂

∂t′ |ψp,b〉dt
′ = 2mπ, m = 0, 1, 2, . . . (5.1.9)

This relation is similar to the Bohr-Sommerfeld quantization rule [T81, FG80]. This
condition fixes the integration constants of the classical equations of motion and
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consequently, the classical energy 〈ψp,b|H|ψp,b〉, which is a constant of motion,
becomes a discrete spectrum [P73].

Therefore, the path to be followed in studying the particle-core Hamiltonians is:
(i) dequantization of the quantal systems described by the model Hamiltonian H;
(ii) solving the classical equations of motion and depicting the periodic orbits; (iii)
quantization of the classical periodic trajectories.

It is worth noting that the variational state is a product of ns + 1 coherent states,
one ofWeyl type, describing the collective core, whereas the remaining ns are coher-
ent states for SU(2) algebras associated to the single j shells, respectively. Thus, here
we give an example about how the coherent states might be used for treating a many
body system.

5.1.1 The Classical Description of H

We shall suppose that the core is in a state of angular momentum J which is achieved
by the restriction:

〈ψp,b|Ĵ2|ψp,b〉 = J(J + 1). (5.1.10)

It is convenient to write the classical coordinates in a polar form:

zk = ρkeiϕ, 0 ≤ k ≤ ns, 0 ≤ ϕk < 2π, ρ0 > 0, 0 < ρk < π/4, k > 1
(5.1.11)

To make explicit the classical equations of motion we need the transformation
relations:

eTb bme−Tb = bm − z0δm,0,

eTp c+
kme−Tp = Ukc+

km − skmVkck,−m ≡ a+
km,

Uk = cos 2ρ, Vk = sin 2ρe−iϕk , skm = (−1)jk−m, 1 ≤ k ≤ ns.

(5.1.12)

The exponential excitation of the vacuum state is vacuum for the transformed
operators.

akmeTp |0〉p = 0, (bm − z0δm,0)e
Tb |0〉b = 0. (5.1.13)

The classical energy function has the expression:

H = 〈ψp,b|H|ψp,b〉 = (� − 6λ1)ρ
2
0 +

ns∑

k=1

2(εk − λ)�k|Vk|2

− |�|2
G

+ η

G
ρ0(�eiϕ0 + �∗e−iϕ0),

� = 1

2
G

ns∑

k=1

�k sin 4ρke−iϕ, �k = jk + 1

2
. (5.1.14)
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The constraint can be explicitly calculated:

6ρ20 = J(J + 1). (5.1.15)

In order to calculate the average of the operator i ∂
∂t it is useful to write the vacuum

states in a factorized form by using the Baker-Campbell-Hausdorff transformation:

eTb |0〉b = e−ρ20/2ez0b+
0 |0〉b,

eT
p |0〉p =

[ ns∏

k=1

U�k
k

][
exp

( ns∑

k=1

∑

m>0

V ∗
k

Uk
c+

kmc+
k,−mskm

)]
|0〉p. (5.1.16)

By a straightforward calculation one finds:

〈ψp,b|i ∂

∂t
|ψp,b〉 = −

(
ρ20

•
ϕ0 +

ns∑

k=1

�k sin
2 2ρk

•
ϕk

)
, (5.1.17)

where the “•” specifies the time derivative.
The variational principle yields the equations:

− 2ρ0
•
ϕ0 = ∂H

∂ρ0
, −2�k

•
ϕk sin(4ρk) = ∂H

∂ρk
,

2ρ0
•
ρ0 = ∂H

∂ϕ0
, 2�k

•
ρk sin(4ρk) = ∂H

∂ϕk
. (5.1.18)

Changing the variables ρk, k = 0, 1, . . . , ns by

r0 = ρ20, rk = �k sin
2 2ρk, k = 1, 2, . . . , ns, (5.1.19)

otherwise keeping the sameangles as before, the classical equations ofmotion acquire
the canonical Hamilton form:

− •
ϕk = ∂H

∂rk
,

•
rk = ∂H

∂ϕk
, k = 0, 1, . . . , ns. (5.1.20)

Due to these equations the variables rk,ϕk are called canonically conjugate variables,
namely rk are coordinates and ϕk the corresponding conjugate momenta. For any
pair of complex functions f1, f2 of (r0, r1, . . . , rns ,ϕ0,ϕ1, . . . ,ϕns), the associated
Poisson bracket is defined as:

{f1, f2} =
ns∑

i=0

(
∂f1
∂ri

∂f2
∂ϕi

− ∂f1
∂ϕi

∂f2
∂ri

)
. (5.1.21)

In particular we have:

{ri,ϕi} = 1, i = 0, 1, . . . , ns. (5.1.22)
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Inserting the expressions of the partial derivatives in Eq. (5.1.20) one obtains:

− •
ϕ = 2

(
εk − λ − G|Vk |2

)

−U2
k − |Vk|2
2Uk|Vk |

[
�eiϕk + �∗e−iϕk − 2ηρ0 cos(ϕ0 − ϕk)

]
,

•
rk = −i�kUk |Vk|

[
�eiϕk − �∗e−iϕk + iηρ0 sin(ϕ0 − ϕk)

]
, k = 1, 2, . . . , ns,

−•
ϕ0 = � − 6λ1 + η

2ρ0G

(
�eiϕ0 + �∗e−iϕ0

)
,

•
r0 = i

η

G
ρ0

(
�eiϕ0 − �∗e−iϕ0

)
. (5.1.23)

There exist two constants of motion:

R0 =
ns∑

i=0

ri, E = H(r0, . . . , rns;ϕ0, . . . ,ϕns). (5.1.24)

with r0, . . . , rns and ϕ0, . . . ,ϕns satisfying the equations of motion (5.1.23). The
first constant of motion reflects the fact that the operator N̂b + 1

2 N̂p commutes with H
while the second one is a common feature of any time dependent treatment resulting
from a variational principle. The defining relations for the two constants of motion
represent two surfaces in the phase space, whose intersection provides the support
for the classical trajectory describing the system time evolution. The constant energy
function exhibits several stationary points obtained from (5.1.23) by canceling the
time derivatives of coordinates and momenta. From the stationary points we are
interested in those which make the classical energy minimum. Moreover, we keep
only minima satisfying the constraint (5.1.15). For this analysis we consider η < 0.
Thus, we find a degenerate minimum with

r0 = 1

6
J(J + 1), ϕ0 = ϕ1 = · · · = ϕns , 6λ1 = � + η

G
|�|

(
6

J(J + 1)

)1/2

,

(5.1.25)

and rk obeying the equations:

2
[
(εk − λ) − G|Vk |2

]
Uk |Vk| − (U2

k − |Vk|2)(|�| − ηr0) = 0, k = 1, . . . , ns.

(5.1.26)

Note that the classical equations determining the energy minima satisfying the
constraint (5.1.15) represent the BCS equations to determine the occupation proba-
bilities Uk and |Vk |.

For the sake of simplicity we choose vanishing angles

ϕk = 0, k = 0, . . . , ns. (5.1.27)



5.1 The Coupling of Individual and Collective Degrees of Freedom 133

which results in obtaining real value for the energy gap �∗ = � this, actually,
characterizing the uncoupled system of η = 0. In order to make an easier compar-
ison with the case of standard BCS formalism we ignore the single particle energy
renormalization term due to the pairing correlations, i.e. G|Vk|2. Also the coor-
dinates of the minimum point will be accompanied by an superscript “◦”. Since
the gap parameter (5.1.14) depends on J it results that its value in the minimum

point will also depend on J and denoted by
◦
�J . Also, the following notation will

be used:

◦
�0 = ◦

�J − η

(
1

6
J(J + 1)

)1/2

. (5.1.28)

One can be proved that the classical energy exhibits a uniqueminimum. The solutions
of constrained BCS equations are:

| ◦
V k|2 = 1

2

[
1 − εk − λ

Ek

]
,

◦
Uk

2
= 1

2

[
1 + εk − λ

Ek

]
(5.1.29)

with Ek = [(εk − λ)2 + (
◦
�0]1/2 while the gap and the Fermi sea level satisfy the

equations:

1

2
G

ns∑

k=1

�k

Ek
= 1 + η

◦
�0

(
1

6
J(J + 1)

)1/2

,

R0 = 1

6
J(J + 1) +

ns∑

k=1

�k|Vk |2. (5.1.30)

The minimum value of H is:

E(0)
J =

ns∑

k+1

2(εk − λ)�k|
◦

V k|2 −
◦
�J

◦
�0

G
(5.1.31)

Of course, for the particular case of η = 0, the results of BCS formalism are
fully recovered. For nonvanishing η the BCS equations depend on the state angular
momentum of the core due to the coupling and the cranking terms.

We conclude by saying that based on a semiclassical approach the results of
the many body formalism called BCS (Bardeen-Cooper-Schrieffer) are recovered.
Obviously, this proves that the BCS formalism has a classical origin.

In what follows we shall study the small oscillations around the minimum point.
We shall prove that the oscillation amplitudes are described by a system of homoge-
neous linear equations of random phase approximation (RPA) type. The condition to
be fulfilled in order that the system of algebraic equations be compatible, provides a
dispersion equation for oscillation energies.
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Aiming at this goal we shall perform a Taylor expansion of the r.h.s. of (5.1.23)
around the minimum point described above and keep only the linear terms. Writing
the resulting equations in terms of the deviations:

qk = rk − ◦
rk, pk = ϕk − ◦

ϕk, (5.1.32)

one obtains:

− •
pk = Akqk − 1

2
GFk

ns∑

k=0

Fiqi,

•
qk = 2Dk

(
◦
�0pk − G

ns∑

i=0

Dipi

)
, k = 0, 1, . . . , ns. (5.1.33)

with the notations:

Ak = −
◦
�0η

2G(
◦
r0)3/2

δk,0 +
◦
�0

2�k(
◦
Uk

◦
V k)3

(1 − δk,0),

Fk = − η

G
◦
r0

1/2 δk,0 +
◦
U

2

k − ◦
V

2

k
◦
Uk

◦
V k

(1 − δk,0),

Dk = − η

G

◦
r
1/2

0 δk,0 + �k
◦
Uk

◦
V k(1 − δk,0), k = 0, 1, . . . , ns. (5.1.34)

It is worth noting that the linearization process does not alter the conservation law
for the quantity R0. Indeed, one can check that the quantity

Q0 =
ns∑

i=0

qi, (5.1.35)

is a constant of motion and on other hand Q0 and R0 are, up to a constant in time,
identical. In terms of the new coordinates and momenta the second order expansion
of energy is:

H = E(0)
J +

ns∑

i,k=0

(γikqiqk + μikpipk), (5.1.36)

where

γik = 1

4
(2Akδik − GFiFk), μik = ◦

�0 Dkδik − GDiDk . (5.1.37)
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Now we shall integrate the linear system of equations (5.1.33). To this end we shall
determine the transformation:

(
P
Q

)
=
(G F
U V

)(
p
q

)
, (5.1.38)

where G,F ,U ,V are row vectors with ns + 1 components, so that:

•
P = −ωQ,

•
Q = ωP, {Q, P} = 1. (5.1.39)

From Eq. (5.1.39) one finds a particular solution for U and V:

U = −G, V = F . (5.1.40)

We can make the option for this solution without any loss of generality. Indeed, if
there is a solution (P, Q,ω) of Eq. (5.1.39) then ω is unique, while P, Q are deter-
mined up to a canonical transformation which leaves the Poisson bracket invariant.
Eq. (5.1.39) provides a set of equations for Gk,Fk

ωGk = 2
◦
�0 DkFk − 2GDkX,

−ωFk = −AkGk + 1

2
GFk�. (5.1.41)

Here we used the notations:

X =
ns∑

k=0

FkDk, � =
ns∑

k=0

GkFk . (5.1.42)

Further, the solution of Eq. (5.1.41) is found following the algorithm: (i) Gk and Fk
are expressed in terms of X and �; (ii) Inserting the results in (5.1.42) one obtains
a linear and homogeneous system of equations for X and �; The compatibility
condition provides the equation for the frequency ω:

ω2ã

(
ω2ã + 4

◦
�

2

0a

)
= ω2b̃, (5.1.43)

where

ã = η
◦
r
1/2

0
◦
�0(η̃2 − ω2)

− a, b̃ = b + η2

G(η̃2 − ω2)
, η̃ = η

◦
�0

G
◦
r
1/2

0

a = G
ns∑

k=1

2jk + 1

4Ek(4E2
k − ω2)

, b = G
ns∑

k=1

(2jk + 1)(εk − λ)

2Ek(4E2
k − ω2)

(5.1.44)
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We notice that ω = 0 is a solution for Eq. (5.1.43). This solution deserves a special
attention and therefore will be separately treated. For ω �= 0 the dispersion equation
can be written in a more suitable form:

AJ
0

η̃2 − ω2 + G
ns∑

k=1

(2jk + 1)AJ
k

4Ek(4E2
k − ω2)

= 0, (5.1.45)

with the notation:

AJ
0 = −

◦
�J − ◦

�0
◦
�0

⎛

⎝2η̃b(η̃) + 2(η̃2 − 2
◦
�

2

0)a(η̃) +
◦
�J − ◦

�0
◦
�0

⎞

⎠ ,

AJ
j = 4

◦
�J − ◦

�0
◦
�0

1

4E2
j − η̃2

[
2E2

j − ◦
�

2

0 + η̃(εj − λ)

]

−1

2
G

ns∑

k=1

(2jk + 1)(εj − λ)

Ek(εj + εk − 2λ)
. (5.1.46)

Equation (5.1.45) admits ns solutions:

0 < ω1 < ω2 < · · · < ωns . (5.1.47)

For each frequency the homogeneous system of equations for X and � is solved
up to a multiplicative constant which is later determined from Eq. {Q, P} = 1. The
amplitudes G and F are determined from (5.1.41) (for details see Ref. [RCGP84]).
In order to save space here we don’t give their analytical expressions. One can be
proved that the matrices just determined satisfy the relations:

ns∑

k=0

Gik = 0, 1 ≤ i ≤ ns, FGT = GFT , 2FGT = I, (5.1.48)

with Ii,k = δik, 1 ≤ i ≤ ns, 0 ≤ k ≤ ns. In virtue of these relations the following
equations hold:

{Qi, Qk} = {Pi, Pk} = 0, {Qi, Pk} = δik, 1 ≤ i, k ≤ ns. (5.1.49)

The above equations assert that Qi, Pi are canonically conjugate variables and more-
over, they are mutually independent.

Now let us turn our attention to the solution ω = 0. Note that there are ns + 1
degrees of freedom but due to Eq. (5.1.35) only ns are independent. As we have
seen there are ns nonvanishing frequencies characterizing ns independent modes,
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respectively. It results that ω = 0 is a spurious solution. From (5.1.41), for ω = 0,
one obtains:

Fk = G
◦
�0

X, Gk = 0, 0 ≤ k ≤ ns. (5.1.50)

Inserting these in (5.1.38), one readily obtains:

P = Q = GX
◦
�0

Q0, (5.1.51)

where Q0 is the constant of motion defined by (5.1.35). These coordinates have the
Poisson bracket equal to zero and not unity as it must be according to the constraint
in (5.1.39). It can be shown that Q0 is an independent variable with respect to the
conjugate coordinatesQi, Pi with i = 1, 2, . . . , ns since the following equations hold:

{Q0, Qi} = {Q0, Pi} = 0, 1 ≤ i ≤ ns. (5.1.52)

Moreover, since Q0 is a constant of motion it results:

{Q0,H} = 0. (5.1.53)

However it is possible to define a new momentum

P0 =
ns∑

i=0

fipi, (5.1.54)

so that the following relations are fulfilled:

{Q0, P0} = 1, {P0,H} = −ω0Q0. (5.1.55)

The solutions for ω0 and fi are:

ω0 = 2a0G

(
b̃20 + 4a0ã0

◦
�

2

0

)−1

,

fk = ω0

⎧
⎨

⎩

⎡

⎣�k(εk − λ)

8a0η̃E3
k

⎛

⎝b0η̃ +
◦
�J − ◦

�0
◦
�0

⎞

⎠+ �k
◦
�

2

0

4E3
k

⎤

⎦ (1 − δk0)

+
⎡

⎣b0η̃ + (
◦
�J − ◦

�0)/
◦
�0

2a0η̃2G

◦
�J − ◦

�0
◦
�0

− 2G
◦
�0η

◦
r
3/2

0

⎤

⎦ δk0

⎫
⎬

⎭ . (5.1.56)
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where a0, b0, ã0, b̃0 correspond to the functions a, b, ã, b̃ values for ω = 0. By brute
calculations one finds: ns∑

k=0

Fik fk = 0, 1 ≤ i ≤ ns. (5.1.57)

From here the Poisson brackets of P0 with Qi and Pi are obtained:

{P0, Qi} = {P0, Pi} = 0, 1 ≤ i ≤ ns (5.1.58)

Then Eq. (5.1.55) yields: •
P0 = −ω0Q0. (5.1.59)

The transformation (5.1.38) can be reversed for ω = ωi with i = 1, 2, . . . , ns:

qi =
ns∑

k=1

(Pk + Qk)Gki + fiQ0, 0 ≤ i ≤ ns,

pi = =
ns∑

k=1

(Pk − Qk)Fki + P0, 0 ≤ i ≤ ns. (5.1.60)

The time evolution of the coordinates Qi and Pi can be obtained by integrating
Eqs. (5.1.39) and (5.1.59). The result is:

Qk = Ak sin(ωkt + δk), Pk = Ak cos(ωk + δk), 1 ≤ k ≤ ns,

Q0 = const., P0 = −ω0Q0t + δ0. (5.1.61)

The initial conditions determine the integration constants Q0, δ0, Ai, δi(1 ≤ i ≤ ns).
Writing the energy function in terms of the new coordinates Q, P, the equations of
motion become:

∂H
∂Pi

= ωiPi(1 − δi0),
∂H
∂Qi

= ωiQi, 0 ≤ i ≤ ns. (5.1.62)

These equations can be integrated. Taking into account the relation for the minimum
energy one obtains:

H = E(0)
J + 1

2
ω0Q2

0 +
ns∑

i=1

1

2
ωi(Q

2
i + P2

i ). (5.1.63)

Note that the energy function depends on the integration constants Q0 and Ai. These
will be determined by the quantization condition and by this the classical smooth
function becomes a discrete energy. To this end we express first the action:

〈ψp,b|i ∂

∂t
|ψp,b〉 =

ns∑

k=1

1

2
ωk(Qk + Pk)

2 + ω0Q2
0. (5.1.64)
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Since in the new representation the modes are decoupled from each other then to
fulfill the quantization condition is sufficient that this restriction is separately obeyed
by each mode:

Tk∫

0

1

2
ωk(Qk + Pk)

2dt = 2nkπ, 1 ≤ k ≤ ns, nk = 0, 1, 2, . . . ,

T0∫

0

ω0Q2
0dt = 2n0π, n0 = 0, 1, 2, . . . , (5.1.65)

where
Tk = 2π/ωk, T0 = 2π/ω0Q0. (5.1.66)

The quantization conditions yield:

Q0 = n0,
1

2
A2

k = nk, 1 ≤ k ≤ ns. (5.1.67)

Thus, one obtains the quantized form for the system energy:

E1,J = E0
1,J + 1

2
ω

(J)
0 n20 +

ns∑

k=1

nkω
(J)
k . (5.1.68)

The additional index “(J)” suggests that ω0 and ωk with k = 1, 2, . . . , ns depend on
the core’s angular momentum.

Concerning the second relation from (5.1.65), some additional comments are
necessary.We have seen thatP0 is a linear function on time. Then pi is a superposition
of periodic functions of time plus a linear function of time. The latter term implies
also a periodic time dependence for the coordinates zi since pi is nothing but the
coordinate phase. This allows us to define a pair of conjugate periodic functions:

Q̃0 = √
2Q0 sinP0, P̃0 = −√2Q0 cosP0. (5.1.69)

For the new coordinates Eq. (5.1.65) becomes just the Bohr-Sommerfeld quantiza-
tion rule for the periodic orbit of Q̃0, P̃0. Energies given by (5.1.68) represent the
semiclassical spectrum and are an approximation for the spectrum of the quantal
system described by H. The time evolution of the quantal system is given by ψp,b
with z, z∗ dependence on time as described before. We note that the collective and
individual degrees of freedom are coupled with each other in both in the stationary
solution and the state describing the system’s fluctuations around the equilibrium
state. Now it is instructive to consider two particular situations.

(a) If the strength interactions η andG are so that the sums in (5.1.33) can be ignored,
the collective and individual degrees of freedom are decoupled and through a
direct integration one obtains the frequencies:

ωcoll = |η̃|, ωi = 2Ei, i1, 2, . . . , ns. (5.1.70)
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Moreover, there is no spurious solution since the Eq. (5.1.35) is no longer valid.
Actually, this is the quasiparticle approximation. The factor 2 involved in the
expression of ωi reflects the fact that we deal with an even system.

(b) The subsystem of shell model nucleons interacting through pairing is obtained
as a particular case by considering � = λ1 = η = 0. In this case the constant
of motion is:

Q
′
0 =

ns∑

i=1

qi. (5.1.71)

Thus, the number of particles is conserved at the classical level. Consequently,
there is no need for the particle-number equation to determine the stationary
solutions. The dispersion equation for this case becomes:

ω2(ω2 − 4
◦
�0)a

2 = ω2b2. (5.1.72)

For ω �= 0 the above equation splits into two distinct equations:

ns∑

k=1

2jk + 1

4Ek(2(εk − λ) ± yk)
= 0, yk = (ω2

k − 4
◦
�

2

0)
1/2. (5.1.73)

An alternative form for the dispersion equation giving the nonvanishing frequen-
cies is obtained from (5.1.45):

ns∑

k=1

(2jk + 1)A0
k

4Ek(4E2
k − ω2)

= 0, (5.1.74)

A0
k =

ns∑

k′=1

(2jk′ + 1)(εk − λ)

Ek′(εk + εk′ − 2λ)
(5.1.75)

The frequency ω0 characterizing the spurious mode (Q
′
0, P

′
0) is:

ω0 = 2a0G

b20 − 4a20
◦
�

2

0

, (5.1.76)

while the amplitudes fk defining the momentum P
′
0 are:

fk = ω0�k

8a0E3
k

((εk − λ)b0 + a0
◦
�

2

0). (5.1.77)

To conclude, so far we have presented a time dependent formalism to treat a set of
pairing correlated particles interactingwith a phenomenological core. The variational
state is a product of coherent states for the Weyl and SU(2) groups, respectively. The
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equations for the stationary points are identical with those provided by the standard
many body approach specific to the BCS formalism. The linearized equations of
motion describe the system fluctuations around the minimum point of the energy
function. A canonical transformation for the coordinate deviations from the equi-
librium values and their conjugate momenta can be determined such that a normal
mode is defined. The compatibility condition for the matrix transformation to exist
yields a dispersion relation for the normal modes. The spurious solution is com-
mented separately. The equations for mode frequencies coincide with the standard
random phase approximation (RPA) equations. This way we proved that the many
body approaches like BCS and RPA have a classical origin.

Of course we have to ask ourselves whether the higher RPA formalisms can
be recovered through a semiclassical treatment. This feature will be treated in the
following subsection.

5.1.2 On the Classical Origin of Boson Expansions

The method of boson mapping came about in the solid-state physics and has been
applied to interacting electrons byHolstein and Primakoff (HP) [HolPr40] andDyson
[DYS56]. It consists in replacing the algebra of density and pair-of-particles operators
by an equivalent algebra of bosons, hopefully leading to a simplification of the many
fermion problem. Indeed, the problem is simpler provided the number of bosons
describing the collective features of themany fermion system is small and, moreover,
their interaction with other types of bosons is negligible.

Bosonmapping has been consistently employed for nuclear systems from the early
sixties of the last century. Several collateral subjects were opened in the field of boson
mappings such those of projecting out the physical states, which satisfy the Pauli
Principle, and the expansion convergence [MYT64, MYTT64, JDFJ71, BZ62, S67,
P68, PW70, KT71, M7174, RS77, Ho68, DO81, RCSS73, YK81, KY81]. Various
view points were presented in connection with the boson mapping. We mention
only two of them namely (a) that of Yamamura and Kuriama, and Marumori which
achieve the HP mapping for the particle-hole operators through the classical phase
space [YK81, KY81] associated to the quantal system and (b) that of Dobaczewski
whomapped a fermion sub-algebra onto the classical holomorphic functions [DO81].

The procedure described below is somewhat related to that of Yamamura and
Kuriama. Indeed, we quantize first the canonical complex coordinates and conse-
quently the classical images of the algebra elements become generators for a boson
realization of the considered algebra.

In this context we consider here the quasispin operators:

Sk
0 = 1

2
(N̂k − �k),

Sk+ = 1

2

jk∑

m=−jk

sk,mc+
k,mc+

k,−m,
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Sk− = 1

2

jk∑

m=−jk

sk,mck,−mckm, sk,m = (−)jk−m. (5.1.78)

associated to a single shell jk . These operators satisfy the commutation relations:

[Sk
0, Sk±] = ±Sk±, [Sk+, Sk−] = 2Sk

0. (5.1.79)

which are specific to the fermionic SUf (2) algebra. Let us introduce now the complex
coordinates Ck, C∗

k , related with the canonical conjugate variables rk and ϕk defined
before, by:

Ck =
√
1

2
(rk + iϕk), C∗

k =
√
1

2
(rk − iϕk), k = 0, 1, . . . , ns. (5.1.80)

The equations of motion for the complex variables Ck, C∗
k are:

{Ck,H} = •
Ck, {C∗

k ,H} = •
Ck

∗. (5.1.81)

The Poisson bracket of the two complex coordinates is:

{C∗
k , Ck′ } = iδk,k′ . (5.1.82)

The average values of the algebra elements with the trial function ψp,b are:

Sk
0 ≡ 〈ψp,b|Sk

0|ψp,b〉 = �k(Vk V ∗
k − 1

2
) =

√
1

2
(Ck + C∗

k ) − 1

2
�k,

Sk+ ≡ 〈ψp,b|Sk+|ψp,b〉 = �kUk Vk = �k

× e(Ck−C∗
k )/2

√
2
[(

1 − Ck + C∗
k√

2�k

)(
Ck + C∗

k√
2�k

)]1/2
e(Ck−C∗

k )/2
√
2,

Sk− ≡ 〈ψp,b|Sk−|ψp,b〉 = �kUk V ∗
k = �k

× e−(Ck−C∗
k )/2

√
2
[

Ck + C∗
k√

2�k

(
1 − Ck + C∗

k√
2�k

)]1/2
e−(Ck−C∗

k )/2
√
2.

(5.1.83)

The classical functions defined above satisfy the relations:

{Sk
0 ,Sk±} = ±iSk±, {Sk+,Sk−} = −2iSk

0 . (5.1.84)

In virtue of these relations, the complex functions Sk
0 ,Sk+,Sk− are the generators of

a classical SUc(2) algebra having the multiplication operation defined through the
Poisson bracket.
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To the pair of conjugate coordinates we shall associate the operators Bk and B+
k

Ck → Bk, C∗
k → B+

k , (5.1.85)

obeying the commutation relations:

[Bk, B+
k′ ] = δkk′, [Bk, Bk′ ] = [B+

k , B+
k′ ] = 0. (5.1.86)

The images of Sk
i (i = 0,±) through the above transformations are:

Sk
0,B =

√
1

2

(
B+

k + Bk
)− 1

2
�k,

Sk+,B = �ke(B+
k −Bk)/2

√
2

[(
1 − B+

k + Bk√
2�k

)
B+

k + Bk√
2�k

]1/2
e(B+

k −Bk)/2
√
2,

Sk−,B = �ke−(B+
k −Bk)/2

√
2

[
B+

k + Bk√
2�k

(
1 − B+

k + Bk√
2�k

)]1/2
e−(B+

k −Bk)/2
√
2.

(5.1.87)

Using now the commutation relation:

[B+
k + Bk, e±(B+

k −Bk)/2
√
2] = ±

√
1

2
e±(B+

k −Bk)/2
√
2, (5.1.88)

it can be proved that the operators Sk
i,B, i = 0,± obey the same commutation

relations as the initial quasi-spin components operators. Therefore, they are gen-
erators of the boson representation of the SUb(2) algebra. The homeomorphism
of the two representations of the SU(2) algebra is conventionally called the boson
expansion or representation of the fermionic SU(2) algebra. Concluding, the boson
mapping of the fermionic SU(2) algebra is achieved according to the following
diagram:

Sk
i , [Sk

i , Sk
j ]

↓ ↘
Sk

i , i{Sk
i ,Sk

j } −→ Sk
i,B, [Sk

i,B, Sk
j,B]

(5.1.89)

The above diagram shows that the mapping of the fermionic algebra onto the boson
algebra is a product of two mappings, one which links the fermionic algebra to the
classical one and another from the classical SUc(2) algebra to the boson type one.
Such property makes the diagram commutative. Note that the construction described
above depends essentially on the complex coordinates defined with the canonical
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ones, rk and ϕk . Are these coordinates unique? The answer is “no”. There are also
other coordinates determined, according to the FrobeniusDarboux theorem [CAR22]
by the equation:

ns∑

k=1

[
〈ψp,b| ∂

∂Ck
|ψp,b〉dCk + 〈ψp,b| ∂

∂C∗
k

|ψp,b〉dC∗
k

]
=

ns∑

k=1

[C∗
k dCk − CkdC∗

k ].
(5.1.90)

A solution of this equation is:

C∗
k = √

�k Vk, Ck = √
�k V ∗

k . (5.1.91)

It is worthwhile noting that these coordinates satisfy the Eqs. (5.1.81) and (5.1.82).
The averages of the fermionic algebra Sk

i , i = 0,± with the function ψp,b can be
expressed in terms of the newly introduced coordinates:

Sk
0 = C∗

k Ck − 1

2
�k,

Sk+ = √
�kC∗

k (1 − C∗
k Ck/�k)

1/2,

Sk− = √
�k(1 − C∗

k Ck/�k)
1/2Ck . (5.1.92)

The complex functionsSk
i , i = 0,± obey the commutation relations for the classical

SUc(2) algebra having the Poisson bracket as multiplication operation. Further, this
algebra is mapped onto the boson algebra by:

Ck → Bk, C∗
k → B+

k . (5.1.93)

This way one obtains the HF boson mapping of the quasispin algebra:

Sk
0,HP = B+

k Bk − 1

2
�k,

Sk+,HP = √
�kB+

k (1 − B+
k Bk/�k)

1/2,

Sk−,HP = √
�k(1 − B+

k Bk/�k)
1/2Bk . (5.1.94)

Concerning the D boson mapping of the quasispin algebra this is generated by the
complex coordinates:

C∗
k = √

�kUk Vk, C1,k = √
�k

V ∗
k

Uk
. (5.1.95)

Expressing the averages 〈ψp,b|Sk
i |ψp,b〉 with i = 0,±, in terms of the complex coor-

dinates C∗
k , C1,k and then quantizing the classical complex coordinates by

C∗
k → b+

k , C1, k → bk, (5.1.96)
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one obtains the D boson mapping:

Sk
0,D = b+

k bk − 1

2
�k,

Sk+,D = √
�kb+

k ,

Sk−,D = √
�k(1 − b+

k bk/�k)bk . (5.1.97)

The three boson representation described above exhibit two common features: (i) all
three satisfy the Eqs. (5.1.81), (5.1.82) and (5.1.84); (ii) the diagram (5.1.89) is com-
mutative. In contrast to the others, the D-representation is a “finite” expansion, which
does not preserve the hermiticity. Indeed, one could check that Sk+,D �= (Sk−,D)+. In
the classical representation it is easy to relate the coordinates generating the three
boson expansions, respectively. Further, after quantization, one obtains the relation
between the three kinds of bosons. In general, any transformation preserving their
Poisson bracket yields a new boson expansion for the quasispin operators. This prop-
erty proves the fact that the boson expansions can be determined up to a canonical
transformation.

Note that each choice of the coordinates in the phase space implies a boson map-
ping of the initial many body Hamiltonian H which, of course, deviates from the
harmonic picture. Certainly, the most suitable boson expansion for a given Hamil-
tonian H is that for which HB is closest to its harmonic approximation. To be more
specific let us consider the bosonsBi,B+

i and B̃0, B̃+
0 corresponding to the coordinate

Qi, Pi and Q̃0, P̃0 according to the procedure described above.

(H)B = E(0)
J + 1

2
ω

(J)
0 (B̃+

0 B̃0)
2 +

ns∑

i=1

ω
(J)
i (B+

i Bi + 1

2
). (5.1.98)

Denoting by Ci, C+
i the boson operators corresponding to the q and p coordinates

(5.1.32), and using the canonical transformation which defines Qi, Pi on obtains the
relations of these bosons with Bi,B+

i .

B+
j = 1

2
(1 − i)

ns∑

k=0

[
(Fjk + Gjk)C+

k + (Fjk − Gjk)Ck
]
,

B+
0 = 1

2

ns∑

k=0

[
(1 + fk)C+

k + (1 − fk)Ck
]
,

B̃+
0 =

(√
1

2
(B+

0 + B0)

)1/2

exp(B+
0 − B0)/

√
2. (5.1.99)

This way B+
j are expressed as linear combination of C+

k and Ck which are the images
of the classical coordinates rk and ϕk through the boson-mapping transformation.
We may conclude that the described procedure is equivalent to a local quasi-boson
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approximation for N̂k and its canonical conjugate φk . Alternatively, one can use the
boson mapping of H by using the transformations (5.1.80) and (5.1.85):

H → H(r,ϕ) → H(C, C∗) → HB(B, B+). (5.1.100)

It is obvious thatHB contains complicated anharmonicities. How suitable is the above
mentioned mapping to describe the eigenvalues of H is decided by the magnitude of
|H(r,ϕ) − H(q, p)|. Actually, the boson expansion convergence is determined by

the convergence of the Taylor expansionH(q, p) around theminimum point (
◦
rk,

◦
ϕk).

Concluding, some results concerning a powerful higher RPA procedure, namely
boson expansion, are derived via classical phase space coordinates. Specific features
like expansion convergence are defined by the associated Taylor expansions of the
corresponding classical functions. Finally, one could say that boson expansion is
based on classical arguments.

5.1.3 Short Numerical Application

In order to see how the classical treatment of the BCS and RPA approaches works,
we consider the case of the lowest three bands in 188Pt [FI72]. The space of the single
particle states is restricted to the major neutron shell:

2f7/2, 2h9/2, 1i13/2, 3p3/2, 2f5/2, 3p1/2. The corresponding energies εk , are deter-
mined by the spherical shell model with the strength parameters for the l · s and
l2 − 〈l2〉 taken as:

�ω0 = 41A−1/3 (MeV), C = −0.1274 (MeV), D = −0.0268 (MeV),

(5.1.101)

where A stands for the atomic mass. To the gap equation we added the condition
for the particle number conservation. The paring equations have been solved taking
for the pairing strength G = 23/A while for the particle-core interaction strength,

the values η = −0.1G. Once
◦
�0 and λ are determined one finds the quasiparticle

energies as given in Table 5.1.

Table 5.1 Quasiparticle
energies given in units of
MeV for different values of
the core-s angular momentum

Ej

j J = 0 2 4 6 8
13
2 0.973 0.995 1.012 1.029 1.046
3
2 1.197 1.215 1.229 1.243 1.256
5
2 1.486 1.501 1.512 1.524 1.535
9
2 1.508 1.522 1.533 1.544 1.555
7
2 2.090 2.101 2.109 2.117 2.125
1
2 2.389 2.398 2.405 2.412 2.419
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Table 5.2 The solutions ω
(J)
i

of the dispersion equation for
0 ≤ J ≤ 8

ω(J)
i

i J = 0 2 4 6 8

1 0.272 0.361 0.437 0.503

2 1.991 2.042 2.082 2.121 2.158

3 2.634 2.666 2.691 2.717 2.742

4 2.730 2.762 2.788 2.814 2.839

5 3.923 3.945 3.962 3.979 3.996

6 4.673 4.691 4.706 4.721 4.736

Having the quasiparticle energies determined, the dispersion equation yields the
system frequencies. The results are collected in Table5.2. In the case of J = 0 the
modes ω

(0)
i with 2 ≤ i ≤ 6 characterize exclusively the neutron system. When

J �= 0 an additional mode shows up, whose energy is smaller than the lowest two-
quasiparticle state, i.e.(νi13/2)2. This mode is the most collective one and is located

close to ωcoll in the quasiparticle approximation. All modes ω
(J)
i depend on both the

collective and individual degrees of freedom. Denoting the l.h.s. of Eqs. (5.1.45) and
(5.1.73) by fJ(ω) and f0(ω) respectively, and plotting these as functions ofω and (ω2−
4�2) respectively,weget a picture of themode energy distribution (Figs. 5.1 and5.2).

These calculations involve only one free parameter, that is �, involved in the
expression E(0)

J defining the ground band energies. This was slightly varied to yield

forE(0)
2 −E(0)

0 a value lying close to the experimental energy. Tentatively,we associate
the energies

Ē(g)

J = E(0)
J − E(0)

0 , Ē(1)
J = Ē(g)

J + ω(J)
1 , Ē(3)

J = Ē(g)

J + 3ω(J)
1 , (5.1.102)

Fig. 5.1 f0, denoting the l.h.s. of Eq. (5.1.73) is plotted as function of (ω2 − 4
◦
�

2
)1/2
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Fig. 5.2 f8, denoting the l.h.s. of Eq. (5.1.45) for J = 8 is plotted as a function of ω

to the ground, gamma and beta bands states. Thus, a state of even angular momentum
J from the gamma band is interpreted as one phonon state built on the top of the
stationary state J+

g belonging to the ground band. Similarly, the state J+
β appears

to be a three phonon state relative to the ground band state J+
g . Note that in this

picture the head state of the beta band cannot be described since there is no non-
spurious mode with vanishing angular momentum. We note the good quality of the
agreement of the predicted and experimental excitation energies. Discrepancies are
increasing functions with the core-s angular momentum. However, for high angular
momentum the anharmonicities, which are ignored here, play an important role.
Also, the experimental difference E2+

β
− E2+

g
is quite well described by 3ω(2)

1 which

is consistent with the viewpoint about the beta band in the Pt region, as a three phonon
excitation of the ground band.

This concept is different from the traditional one where the bands are constructed
in a “vertical” fashion starting with the vacuum state and the first modes of the β and
γ deformation for the ground, β and γ bands, respectively (Figs. 5.3 and 5.4).

Fig. 5.3 The theoretical
(Th) excitation energies
Ē(g)

J , Ē(1)
J , Ē(3)

J given in units
of MeV are compared with
the corresponding
experimental data
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Fig. 5.4 Excitation energies
in the horizontal bands ω(J)

1

and 3ω(2)
1 , given in units of

MeV, are compared with the
corresponding experimental
data for 188Pt [FI72], i.e.
EJ+

γ
− EJ+

γ
and E2+

β
− E2+

g
,

respectively

To conclude, the time dependent variational principle in a space spanned by the
product of two coherent states, formulated for a particle-core Hamiltonian, yields the
classical equations of motion for both the collective and individual degrees of free-
dom. The stationary points equations are identical to those given by the BCS formal-
ism. Equations for classical small oscillations around the energy minimum are spe-
cific to RPA. Even the higher order RPA many-body approaches can be recovered at
the classical level. This was shown for the boson representation of the quasispin alge-
bra. A short numerical application for 188Pt is presented for the formalism described
in detail in this section. The RPA equations were solved for a restricted single particle
space. The yrast states are given by energies in the minimum point for various core
angular momenta. Adding for each J the multiphonon excitations one develops “hor-
izontal bands” with states of equal angular momenta. Technical details necessary for
deriving some of the equations in this section may be found in Ref. [RCGP84].

5.2 Generalized Nucleon-Nucleon Pairing with Isospin
and Particle Number Projection

The pairing correlations of nucleons of the same charge have been extensively studied
in the last five decades [BEL59, BAY60, CHA63, KISO60, RISH64, FOM70]. Some
properties like the gap parameter, moments of inertia, spectroscopic factors, pairing
versus nuclear deformation and angular momentum have been nicely described by
many groups of theoreticians. Though not so extensively the Cooper pairs of one
proton and one neutron have been also investigated [GOS64, CCJ66, JM69, WFS70,
TAK71, GOO79, GOO98]. The results reported there demonstrate that the general-
ized Bogoliubov-Valatin transformation including pp, nn and pn pairing is appropri-
ate for treating the pairing correlations in a self-consistentway, in spite of some earlier
pessimistic views on this issue [LA64, FLVU63]. It turns out that the proton-neutron
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pairing interaction is an appealing subject not only because it is by itself an interesting
issue but also because by taking it into consideration various phenomena like stability
of the ground state against the particle-particle proton-neutron interaction, the struc-
ture of nuclei lying close to the proton drip-line, the structure of the N = Z nuclei,
the structure of super-dense nuclear matter, might be realistically approached.

In finite nuclei the standard way to account for pairing interaction is the BCS
approach, where several symmetries are broken. Indeed, there are many properties
which are not affected by considering the quantum numbers as average values. How-
ever, there are many features which depend strongly on the fluctuations in the ground
state and therefore the broken symmetries should be rigorously restored. In partic-
ular, in a BCS treatment of a heterogeneous system of nucleons the total number of
particles, the isospin (T) and the third isospin component (T3) are not conserved. For
homogeneous system the particle number is projected out by using, for example the
method proposed by Fomenko in Ref. [FOM70]. If the proton and neutron systems
are simultaneously considered but only alike nucleons are paired, the product of par-
ticle number projected states is a linear superposition of states |TT3〉, with T ranging
from N−Z

2 to N+Z
2 . For such situations techniques to project out components of good

isospin are available.
Herewe treat the particle number and isospin projection under the general circum-

stance when one deals not only with proton-proton (pp) and neutron-neutron (nn)
Cooper pairs but also with proton-neutron (pn) Cooper pairs. For realistic calcula-
tions the pairing Hamiltonian alone may not yield a good result and the quadrupole-
quadrupole interaction has to be included too [KISO63]. We consider only T = 1
(pn) pairs since adding the T = 0 pairs does not change the isospin of the total wave
function. Since the isospin projection operator commutes with the T = 0 pairs, the
method discussed here is also valid when T = 0 pairing is included.

5.2.1 Tensorial Properties

Since the isospin projection of the BCS ground state involves rotations in the space of
isospin, we shall define first the conventions about the tensorial properties of single
particle creation (c†τ jm) and annihilation operators (cτ jm) for a particle in the shell
model state |τ jm〉 ≡ |τ ; nljm〉with τ taking the value p for protons and n for neutrons.
In the space of isospin, the rotation transformations are generated by the operators:

τ+1 = − 1√
2

∑

jm

c†pjmcnjm,

τ−1 = 1√
2

∑

jm

c†njmcpjm,

τ0 = 1

2
(N̂p − N̂n). (5.2.1)
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An operator TI
K is conventionally called a tensor of rank I and projection K , with

respect to the rotations in the space of isospin, if the following commutation relations
are fulfilled:

[τ±1, TI
K ] = ∓[1

2
(I ∓ K)(I ± K + 1] 12 TI

K±1, [τ0, TI
K ] = KTI

K . (5.2.2)

It is easy to check the following commutation relations for the particle creation
operators:

[τ+1, c†pjm] = 0, [τ−1, c†pjm] = 1

2
c†njm, [τ0, c†pjm] = 1

2
c†pjm, (5.2.3)

[τ+1, c†njm] = −1

2
c†pjm, [τ−1, c†njm] = 0, [τ0, c†njm] = −1

2
c†njm. (5.2.4)

Consequently, the operators c†pjm, c†njm are tensors of rank 1
2 and projections 1

2 and

− 1
2 , respectively. Writing the Hermitian conjugate operation for the Eqs. (5.2.3

and 5.2.4), one obtains the commutation relations of the proton and neutron anni-
hilation operators. Thus, one obtains that cpjm and –cnjm are tensors of ranks 1

2
and projections − 1

2 and 1
2 respectively. Analogously, one proves that the oper-

ators
∑

m c†pjmc†
p̃jm

,
∑

m c†njmc†
ñjm

,
√
2
∑

m c†pjmc†
ñjm

are the components +1,−1, 0,
respectively, of a tensor of rank one.

5.2.2 pp, nn and pn Pairing

Let us consider, to begin with, a many-body Hamiltonian describing the spherical
shell model single particle motion of a system of protons and neutrons interacting
among themselves through proton-neutron pairing interaction

H1 =
∑

τ=p,n;jm
(ετ j − λτ )c

†
τ jmcτ jm − Gpn

4

∑

jm;j′m′
c†pjmc†

ñjm
c

ñj′mcpj′m. (5.2.5)

This Hamiltonian can be quasi-diagonalized by a suitable Bogoliubov-Valatin (BV)
transformation:

eT c†τ jme−T = Ujc
†
τ jm − Vjc̃τ ′jm ≡ a†τ jm,

eT cτ jme−T = Ujcτ jm − V ∗
j c†

τ̃ ′jm
≡ aτ jm,

τ = p, n; τ ′ �= τ , (5.2.6)

Here c†τ jm(cτ jm) denotes the creation (annihilation) operator for a τ -particle in the
spherical shell model state |τ ; nljm〉 ≡ |τ jm〉. The time reversed state corresponding
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to |τ jm〉 is |̃τ jm〉 = (−)j−m|τ j −m〉. The operator T defining the BV transformation
is:

T =
∑

jm

[zpn,jc
†
pjmc†

ñjm
− z∗

pn,jcñjmcpjm]. (5.2.7)

The coefficients Uj, Vj are related with the amplitudes zpn,jz∗
pn,j by the equations:

zpn,j = ρpneiφpn , Uj = cos(ρpn), Vj = e−iφpn sin(ρpn). (5.2.8)

The new operators a†τ jm, aτ jm are fermionic operators. Since the third component of
the isospin is not changed by the BV transformation, in Eq. (5.2.6), the new operators
carry the same label τ as the corresponding particle operators. The vacuum state of
the quasiparticle operator a†τ is:

|BCS〉pn = eT |0〉 ≡
∏

jm

(Uj + V ∗
j c†pjmc†

ñjm
)|0〉. (5.2.9)

where |0〉 denotes the particle vacuum state. Factorizing the BV transformation, one
obtains an equivalent form for the BCS wave function:

|BCS〉pn = Npnexp[
∑

jm

V ∗
j

Uj
c†pjmc†

ñjm
]|0〉,

Npn =
∏

j

U2�j . (5.2.10)

where �j denotes the semi-degeneracy of the state |τ jm〉. Since each pair has t3 = 0
and t = 1, the |BCS〉pn function is formed by T3 = 0, 0 ≤ T ≤ ∑

j 2�j compo-
nents. Let us now consider a more complex Hamiltonian which involves not only
the p-n pairing interaction but also the proton-proton and neutron-neutron pairing
interaction:

H = H1 −
∑

τ=p,n

Gτ

4

∑

jm,j′m′
c†τ jmc†

τ̃ jm
c
τ̃ j′m′cτ j′m′ . (5.2.11)

In this case theBV transformation defined above is not sufficient to include the pairing
two body interaction in the mean field of the single particle motion. Therefore we
have to generalize it to:

α†
1jm = Uppjc

†
pjm + Upnjc

†
njm − Vppjcp̃jm − Vpnjcñjm,

α†
2jm = Unpjc

†
pjm + Unnjc

†
njm − Vnpjcp̃jm − Vnnjcñjm,

α1̃jm = V ∗
ppjc

†
pjm + V ∗

pnjc
†
njm + U∗

ppjcp̃jm + U∗
pnjcñjm,

α2̃jm = V ∗
npjc

†
pjm + V ∗

nnjc
†
njm + U∗

npjcp̃jm + U∗
nnjcñjm, (5.2.12)
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The condition that theα operators describe independent fermions yield the following
equations for the coefficients defining the generalized BV transformation:

|Uppj|2 + |Upnj|2 + |Vppj|2 + |Vpnj|2 = 1,

|Unpj|2 + |Unnj|2 + |Vnpj|2 + |Vnnj|2 = 1,

UppjU
∗
npj + UpnjU

∗
nnj + VppjV

∗
npj + VpnjV

∗
nnj = 0,

UppjVnpj + UpnjVnnj − VppjUnpj − VpnjUnnj = 0. (5.2.13)

To keep close to the case of a Hartree-Fock transformation in the isospin space we
consider the situation where the matrix elements Uττ ′j with τ , τ ′ = p, n satisfy the
constraints:

Uppj = Unnj = real, Upnj = −U∗
npj (5.2.14)

For a given isospin, the transformation satisfying these conditions and theEq. (5.2.12)
depend on 5 independent real parameters.

According to the Bloch-Messiah theorem [BLME62], the most general BV trans-
formation can be written as a product of two Hartree-Fock transformations in the
isospin variables and a simple BV transformation. In the particular case specified
above, the transformation can be written as a product of one BV transformation and
a rotation in the space of the isospin. Indeed, let us consider a rotation defined by a
given set of Euler angles �

(j)
0 and denote by α’s the images of the a operators (see

Eq. (5.2.6)) through this rotation:
(

α†
1jm

α†
2jm

)
= R̂(�

(j)
0 )

(
a†pjm

a†njm

)
R̂(�

(j)
0 )†. (5.2.15)

Here and in what follows the superscript (j) on the Euler angles�0 is used to indicate
that the rotation acts only on the j-shell and that the Euler angles may depend on
j. Rotating first the operators a† and then expressing the result in terms of particle
creation operators one obtains:

α†
1jm = D

1
2
1
2
1
2
Ujc

†
pjm + D

1
2

− 1
2
1
2
Ujc

†
njm + D

1
2

− 1
2
1
2

Vjcp̃jm − D
1
2
1
2
1
2

Vjcñjm,

α†
2jm = D

1
2
1
2− 1

2
Ujc

†
pjm + D

1
2

− 1
2− 1

2
Ujc

†
njm − D

1
2

− 1
2− 1

2
Vjcp̃jm + D

1
2
1
2− 1

2
Vjcñjm,

α1̃jm = −D
1
2 ∗
− 1

2
1
2

Vj
∗c†pjm + D

1
2 ∗
1
2
1
2

Vj
∗c†njm + D

1
2 ∗
1
2
1
2
Ujcp̃jm + D

1
2 ∗
− 1

2
1
2
Ujcñjm,

α2̃jm = D
1
2 ∗
− 1

2− 1
2

V ∗
j c†pjm − D

1
2 ∗
1
2− 1

2
V ∗

j c†njm + D
1
2 ∗
1
2− 1

2
Ujcp̃jm + D

1
2 ∗
− 1

2− 1
2
Ujcñjm.

(5.2.16)

whereDJ
MK denotes theWigner function describing thematrix element of the rotation

transformation defined by the Euler angles �
(j)
0 . Thus, the transformation matrix
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from the operators c to the operators α depend on three Euler angles �
(j)
0 and two

independent variables specified by Uj and |Vj| coefficients. Due to this fact one could
establish a one to one correspondence between the matrices involved in Eq. (5.2.12)
satisfying the conditions (5.2.13) and (5.2.14) and the matrices of the coefficients of
the linear equations (5.2.16).

Here we restrict our consideration to this class of matrices. A particular situation
is obtained when the rotation is performed around an axes in the (X, Y) plane of the
isospin space:

eT1c†pjme−T1 = U1
j c†pjm − V 1

j c†njm,

eT1c†njme−T1 = U1
j c†njm + V 1

j
∗
c†pjm. (5.2.17)

with the Hartree Fock transformation in isospin space:

T1 =
∑

jm

[zc†pjmcnjm − z∗c†njmcpjm], z = ρeiφ,

U1
j = cos(ρ), V 1

jm = e−iφ sin(ρ). (5.2.18)

The product of the transformations given by the Eqs. (5.2.17) and (5.2.6) yield:

⎛

⎜⎜⎜⎝

α†
1jm

α†
2jm

α1̃jm
α2̃jm

⎞

⎟⎟⎟⎠ ≡ eT1eT

⎛

⎜⎜⎜⎝

c†pjm

c†njm
cp̃jm
cñjm

⎞

⎟⎟⎟⎠ e−T e−T1

=

⎛

⎜⎜⎜⎝

UjU1
j −UjV 1

j −VjV 1
j −VjU1

j

UjV 1
j

∗
UjU1

j −VjU1
j VjV 1

j

Vj
∗V 1

j
∗

Vj
∗U1

j UjU1
j −UjV 1

j
∗

Vj
∗U1

j −Vj
∗V 1

j UjV 1
j UjU1

j

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

c†pjm

c†njm
cp̃jm
cñjm

⎞

⎟⎟⎟⎠ . (5.2.19)

Supplementing this transformation with a rotation in the isospin space around the z
axis one obtains again a five parameters transformation.

The vacuum state for the operators α†
1jm,α†

2jm, defined by the Eq. (5.2.19), is:

|BCS〉 ≡
∏

jm

R̂(�
(j)
0 )(Uj + V ∗

j c†pjmc†
ñjm

)|0〉 = Npn

× exp
∑

jm

[ Vj
∗

Uj
(c†pjmc†

ñjm
D1
00(�

(j)
0 ) + 1√

2
c†pjmc†

p̃jm
D1
10(�

(j)
0 )

+ 1√
2

c†njmc†
ñjm

D1−10(�
(j)
0 ))]|0〉 (5.2.20)
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Clearly, the |BCS〉 state (5.2.20) obtained by the transformation (5.2.19) is as general
as that corresponding to the transformation (5.2.12) and has the important advantages
of providing a simpler framework for projection of particle and isospin quantum
numbers. Since this function is proportional to the exponential of a sum of tensor
components of isospin one, it has not definite values for T and T3. Moreover, the
total number of particles is also not preserved. The upper index (j) accompanying
the Euler angles �0 indicates that the rotation is to be considered on the operators
associated to the orbit j. This allows that the two distinct factors entering the wave
function (5.2.20) are parametrized by independent sets of parameters for each j. Note
that the role of R̂(�

(j)
0 ) is to add pp and nn pairs to the system, which will eventually

change the K value. If the Euler angles �
(j)
0 do not depend on angular momentum

then the rotation R̂(�
(j)
0 ) has the meaning of a collective rotation which fixes the

orientation of the intrinsic-like frame in the space of isospin. In what follows we
refer to the |BCS〉 state in Eq. (5.2.20) as the intrinsic state and to the |BCS〉pn state
in Eq. (5.2.10) as the auxiliary intrinsic state.

In the next sections we derive analytical expressions for the states which are
simultaneously eigenstates of the particle total number(N̂), isospin squared T̂2, and
isospin third component (T̂3) operators. Such a state is projected out from the state
|BCS〉 defined by the Eq. (5.2.20).

5.2.3 The Projection of the Particle Number

Here we shall project [VIL66] out the total number of particles from the generalized
BCS function. Although the method adopted here is well known we are giving few
details in order to make the reading easier. Suppose that one deals with a many body
state |�〉 which can be written as a linear combination of eigenstates of the total
number of particles

|�〉 =
∑

m

Xm|m〉, (5.2.21)

with

N̂ |m〉 = m|m〉,
N̂ = N̂p + N̂n,

N̂τ =
∑

jm

c†τ jmcτ jm, τ = p, n, (5.2.22)

The operator

PN = 1

2π

2π∫

0

ei(N̂−N)φdφ (5.2.23)
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is a projection operator for the particle number components:

PN |�〉 = XN |N〉 (5.2.24)

and therefore can be written in the alternative form:

PN = |N〉〈N | (5.2.25)

To project out the components of a definite number of particles from the function
|BCS〉 we note first that the following equations hold:

eiN̂φ|BCS〉pn = Npn exp[ei2φ
∑

jm

V ∗
j

Uj
c†pjmc†

ñjm
]|0〉,

[
N̂, τk

]
= 0, k = ±1, 0 (5.2.26)

where τ̂k are the generator operators for rotations in the space of isospin. With
these preliminaries given it is easy to project the components of good particle
number:

|N; BCS〉 ≡ NN PN |BCS〉

= NN Npn

∑

kj1+···+kjmax= N
2

[
∏

i

1

(kji)!
(V ∗

ji )
kji Uji

2�ji −kji R̂(�
(ji)
0 )

× (
∑

m

c†pjim
c†

ñjim
)kji

]
|0〉 (5.2.27)

The normalization factor is denoted by NN and has the expression

N−2
N =

∑

kj1+···+kjmax= N
2

∏

i

(
2�ji
kji

)
Vji

2kji Uji
4�ji −2kji . (5.2.28)

In practice, it is useful to relate the matrix elements between projected states to
the matrix elements between unprojected states. To this aim it is worth express-
ing the projected state as being obtained by acting with an operator on the state
|BCS〉pn.

|N; BCS〉 = NN

2π

2π∫

0

e−iNφexp[(ei2φ − 1)
∑

j

V ∗
j

Uj
R̂(�

(j)
0 )
∑

m

c†pjmc†
ñjm

]|BCS〉pn,

(5.2.29)
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Further, the particle creation operators are expressed in terms of the quasiparticle
operators which admit |BCS〉pn as a vacuum state. To have a compact form for the
final result the following notation is used:

Ṽj = V ∗
j

Uj
(e2iφ − 1), A†

j = 1√
2�j

∑

m

a†pjma†
ñjm

, A = (A†)†. (5.2.30)

The exponential can be written in a more convenient form:

exp[
∑

jm

Ṽjc
†
pjmc†

ñjm
]|BCS〉pn =

∏

j

exp[ṼjU
2
j

√
2�jA

†
j − ṼjV

2
j

√
2�jAj

+ṼjVjUj2�j(1 − N̂ (j)
qp + N̂ (j)

qn

2�j
)]

|BCS〉pn, (5.2.31)

where N̂ (j)
qτ denotes the τ -quasiparticle number operator for the orbit j. Since the

operators involved in the r.h.s. of the Eq. (5.2.31) form a closed algebra, the expo-
nential operator can be written as a product of three exponentials as shown and
Refs. [KIR67, RG00]. Furthermore, an equivalent and simpler form is obtained for
the above equation:

exp[
∑

jm

Ṽjc
†
pjmc†

ñjm
]|BCS〉pn =

∏

j

eαj(1)ajA
†
j eγj(1)cj |BCS〉pn, (5.2.32)

where the following notations were used:

aj = ṼjU
2
j

√
2�j, cj = ṼjUjVj2�j,

αj(1) = 1

1 + cj
�j

, γj(1) = 1

2
+ 1

2

�j

cj
ln

(
1 + cj

�j

)
. (5.2.33)

The functions α and γ are analytically given in Ref. [RG00]. The final form for the
projected state is:

|N; BCS〉 = NN

∑

kj1+···+kjmax = N
2

Tkj1kj2 ...kjmax

max∏

i=1

R̂(�
(ji)
0 )(A†

ji
)kji |BCS〉pn. (5.2.34)

The coefficients T have the expressions:

Tkj1kj2 ...kjmax
= 1

2π

2π∫

0

e−iNφ
max∏

i=1

1

ki! (αji(1)aji)
kji eγji (1)cji dφ. (5.2.35)
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Analytical expressions for these coefficients are given in Ref. [RG00]. For the case
of a system of nucleons of the same charge, a similar expansion was derived by
Fomenko [FOM70], with the important difference that the author of Ref. [FOM70]
considered the deformed single particle basis where the pairs are non-degenerate
while in the case considered here pairs have the degeneracy (2�j). This gives a
different result for the A† coefficients. For illustration let us consider the linear term
in A†

j . In the Fomenko case the coefficient for this operator is determined exclusively

by the linear term in the operator Ṽjc
†
pjmc†

ñjm
while in the present paper all terms

of the exponential series contribute to the final expression of the above mentioned
coefficient.

5.2.4 The Projection of the Isospin

The unprojected state |BCS〉 can be written in an equivalent form:

|BCS〉 =
∏

jm

(Uj + V ∗
j (D1

00(�
(j)
0 )c†pjmc†

ñjm
+ 1√

2
D1
10(�

(j)
0 )c†pjmc†

p̃jm

+ 1√
2

D1−10(�
(j)
0 )c†njmc†

ñjm
))|0〉. (5.2.36)

From this equation it is obvious that the state |BCS〉 has not good isospin and isospin
third component. Given T and T3 values can be projected out with the operator
[MOY86, VIL66, RCGD82]:

PT
MK = 2T + 1

8π2

∫
DT

MK
∗
(�)R̂(�)d�. (5.2.37)

Indeed, actingwith this operator on a “deformed” function, considered in the intrinsic
frame:

|�〉 =
∑

TK

CTK |TK〉, (5.2.38)

where |TK〉 are eigenstates for the T̂2 and T̂3 operators, one obtains:

PT
MK |�〉 = CTK |TM〉. (5.2.39)

For the sake of simplicity let us consider first the situation when the Euler angles
�

(j)
0 are independent of the j-value:

�
(j)
0 = �0. (5.2.40)
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The state of good isospin projected out of the state |BCS〉 is:

φTMK = NT
2T + 1

8π2

∫
DT

MK
∗
(�)R̂(�)R̂(�0)|BCS〉pnd�. (5.2.41)

If �0 is such that R̂(�0) corresponds to the unity transformation, the above equation
defines the normalized state projected from |BCS〉pn. Denoting by�′ the Euler angles
for the rotation R̂(�)R̂(�0), i.e.,

R̂(�′) = R̂(�)R̂(�0) ≡ R̂(��0) (5.2.42)

the projected state can be written as follows:

φTMK = NT
2T + 1

8π2

∑

K ′
DT

KK′(�0)

∫
DT

MK′
∗
(�′)R̂(�′)|BCS〉pnd�′. (5.2.43)

Since the state |BCS〉pn has only K = 0 components, in the sum involved in the
above expression, only the term K ′ = 0 survives. Therefore, the final expression for
the projected state is:

φTMK = NT
2T + 1

8π2 DT
K0(�0)

∫
DT

M0
∗
(�)R̂(�)|BCS〉pnd� (5.2.44)

From the above equation one derives the analytical expression for the normalization
factor:

N−2
T = |DT

K0(�0)|2 pn〈BCS|PT
00|BCS〉pn. (5.2.45)

The matrix elements of the projector PT
00 is given analytically in Ref. [RG00]. Note

that the K quantum number is associated to the projection of the isospin on the
third axis of the intrinsic frame and corresponds to the

Np−Nn
2 value of the nuclear

system. The reference frame where the wave function contains only K = 0 pairs is
conventionally called auxiliary intrinsic frame. By rotating this auxiliary systemwith
the angle �0, one obtains the actual intrinsic system. According to the calculations
shown in the present section, working in the subsidiary intermediate intrinsic frame
brings substantial technical simplifications.

One can easily prove that the general case, where �
(j)
0 may be different for each

j can be obtained from (5.2.20) by the replacement:

�0 =
⊗

j

�
(j)
0 . (5.2.46)

where the notation
⊗

stands for a shell dependent rotation of the product wave
function.
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Indeed, according to (5.2.20) the following relations hold:

R̂(�)|BCS〉 = R̂(�)
∏

jm

R̂(�
(j)
0 )(Uj + V ∗

j c†pjmc†
ñjm

)|0〉 = R̂(�
⊗

j

�
(j)
0 )|BCS〉pn.

(5.2.47)

Changing the integration variable from � to �
⊗

j �
(j)
0 and then using the addition

theorem for the functions D one arrives at an expression analogous to (5.2.43). Some
additional comments about how to calculate theD-function for the argument

⊗
j �

(j)
0

are necessary. The path described before can be followed successively for each value
of j. For example for the first value of the angular momentum j1 one obtains:

R̂(�)R̂(
⊗

j

�
(j)
0 ) = R̂(��

(j1)
0 )R̂(

⊗

j �=j1

�
(j)
0 ). (5.2.48)

Changing the integration variable to

�′ = ��
(j1)
0 , (5.2.49)

and using
DT

MK
∗
(�′�(j1)

0

−1
) =

∑

K ′
DT

KK ′(�
(j1)
0 )DT

MK′
∗
(�′), (5.2.50)

one separates the �(j1) dependence of the projected wave function. The procedure
should be repeated for j2, j3, . . . , jmax . The final result is:

φTMK = 2T + 1

8π2 NT DT
K0(
⊗

j

�
(j)
0 )

∫
DT

M0
∗
(�)R̂(�)|BCS〉pnd�, (5.2.51)

where

DT
K0(
⊗

j

�
(j)
0 ) =

∑

K1,K2,...,Kmax−1

DT
KK1

(�
(j1)
0 )DT

K1K2
(�

(j2)
0 ) . . . DT

Kmax−10(�
(jmax)
0 ),

N−2
T = |DT

K0
∗
(
⊗

j

�
(j)
0 )|2 pn〈BCS|PT

00|BCS〉pn. (5.2.52)

5.3 Projection of Particle Number and Isospin

Combining the two projection procedures described in the previous subsections one
constructs the projected state having, at a time, good particle number and good isospin
and isospin third component:

|NTMK〉 = 2T + 1

16π3 NNT

∫
DT

MK
∗
ei(N̂−N)φR̂(�)R̂(�0)|BCS〉pnd�dφ, (5.3.1)
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whereNNT denotes the normalization factor. Since the total particle number operator
N̂ commutes with the rotation operator it is convenient to act first with the number
operator on the state |BCS〉pn.

|NTMK〉 = 2T + 1

16π3 NNTNpn

2π∫

0

dφe−iNφ

×
∫

DT
MK

∗
(�)R̂(��0)e

∑
jm[ V ∗

j
Uj

e2iφc†pjmc†
ñjm

]|0〉d�. (5.3.2)

Now we change the Haar measure for rotations from � to �′ = ��0 and the
argument�0 is taken out of the integral by using the composition rule of the rotation
matrices as described before. Thus, one obtains:

|NTMK〉 = 2T + 1

16π3 NNTNpnDT
K0(�0)

2π∫

0

dφe−iNφ

×
∫

DT
MK

∗
(�′)R̂(�′)e

∑
jm[ V ∗

j
Uj

e2iφc†pjmc†
ñjm

]|0〉d�′. (5.3.3)

The norm of the state can be calculated in a way similar to that adopted in the
previous subsection where only the isospin was projected out. The result is:

N−2
NT = 1

2π
|DT

K0(�0)|2
2π∫

0

e−iNψ
pn〈BCS|PT

00eiN̂ψ|BCS〉pndψ (5.3.4)

The matrix element involved in the above equation was calculated in Ref. [RG00].
Again, we remark that the general case is obtained by considering �0 given by
(5.2.46).

If one wants to calculate the matrix elements for operators given in the quasiparti-
cle representation, the projected state should be written as a many-body quasiparticle
state. To this aim the isospin projection operator is to be applied to the particle number
projected state given by the Eq. (5.2.34):

|NTKM〉 = 2T + 1

8π2 NNTDT
K0(
⊗

ji

�
(ji)
0 )

∑

kj1+···+kjmax = N
2

Tkj1kj2 ...kjmax

×
∫

DT∗
M0(�

′)R̂(�′)
max∏

i=1

(A†
ji
)kji |BCS〉pnd�′. (5.3.5)
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The norm is given by:

N−2
NT = |DT

K0(
⊗

ji

�
(ji)
0 )|2

∑

k′
j1

,...,k′
jmax

∑

kj1+···+kjmax = N
2

T∗
k′

j1
k′

j2
...k′

jmax
Tkj1kj2 ...kjmax

× pn〈BCS|
(

max∏

l=1

(Ajl )
k′

jl

)
PT
00

(
max∏

i=1

(A†
ji
)kji

)
|BCS〉pn. (5.3.6)

The matrix element of the projector operator PT
00 is given explicitly in Ref. [RG00].

5.4 Numerical Application for a Single J Shell

In order to compare the results of the present approach with the exact result we
consider the case of a single j for which the iso-scalar Hamiltonian considered in
the previous section is exactly solvable [TAK71, FLO52]. In this case we could
also derive analytical results for the unprojected BCS formalism as well as for the
situationswhere only a partial projection, i.e. either the particle number or the isospin,
is achieved. These cases are separately treated in what follows.

5.4.1 Unprojected BCS

In order to calculate the average of the model Hamiltonian on the unprojected BCS
state , we use the inverse of the B-V transformation (5.2.16):

⎛

⎜⎜⎜⎜⎝

c†pjm

c†njm

cp̃jm

cñjm

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

sUj cos
β
2 −δUj sin

β
2 −δVj sin

β
2 sVj cos

β
2

δ∗Uj sin
β
2 s∗Uj cos

β
2 s∗Vj cos

β
2 δ∗Vj sin

β
2

δ∗V ∗
j sin β

2 −s∗V ∗
j cos β

2 s∗Uj cos
β
2 −δ∗Uj sin

β
2

−sV ∗
j cos β

2 −δV ∗
j sin β

2 δUj sin
β
2 sUj cos

β
2

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

α†
1jm

α†
2jm

α1̃jm

α2̃jm

⎞

⎟⎟⎟⎟⎠
.

(5.4.1)

where s and δ stand for the phase factors:

s = e
i
2 (α+γ), δ = e

i
2 (α−γ). (5.4.2)

Using the inverse transformation we calculate the gap parameters:

�p ≡ 〈BCS|G

2

∑

m

c†pjmc†
p̃jm

|BCS〉 = G�jUjVje
iα sin β,
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�n ≡ 〈BCS|G

2

∑

m

c†njmc†
ñjm

|BCS〉 = G�jUjVje
−iα sin β,

�pn ≡ 〈BCS|G

2

∑

m

c†pjmc†
ñjm

|BCS〉 = G�jUjVj cosβ. (5.4.3)

An effective gap parameter may be defined by:

� = G�jUjVj. (5.4.4)

This gap parameter does not depend on the Euler angles (α,β, γ) and is related to
the gaps defined in (5.4.3) by:

2|�|2 = |�p|2 + |�n|2 + 2|�pn|2. (5.4.5)

The constraint for the total number of particles

〈BCS|N̂p + N̂n|BCS〉 = N, (5.4.6)

determines the modulus of the V parameter:

|Vj|2 = N

4�j
. (5.4.7)

The average of the model Hamiltonian on the BCS state is:

E1 = 2�j(2ε|Vj|2 − G�U2
j |Vj|2 − 6G|Vj|4). (5.4.8)

As a function of V , the energy has a minimum and, moreover, the constraint (5.4.6)
is obeyed provided the parameters ε and G, defining the model Hamiltonian, are
related by:

|Vj|2 = 1

2
(1 − ε

G
�j
2

). (5.4.9)

From the above equation one extracts the expression for the quasiparticle energy

Eq = G�j

2
, (5.4.10)

which is related to the effective gap by:

Eq =
√

ε2 + �2. (5.4.11)

The ground state energy can be expressed in terms of the total number of particles:

E1 = εN − G
N

4

(
4�j − N

2
+ 3N

4�j

)
. (5.4.12)
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5.4.2 N-Projected BCS

In the case of a single j, the normalized N-projected BCS state has a simple form:

|N; BCS〉 =
(

(2�j − N
2 )!

(N
2 )!(2�j)!

) 1
2
(
∑

m

c†pjmc†
ñjm

)N
2

|0〉. (5.4.13)

By a direct calculation one finds the following expression for the expectation value
of the model Hamiltonian in the N-projected state:

E2 ≡ 〈N; BCS|H|N; BCS〉
= εN − G

N

4

[
(
N

2
− 1)

2

2�j − 1
+ 1

2
(4�j − N + 2)

]
. (5.4.14)

5.4.3 Isospin Projected BCS State

In this case the projected state |TMK; BCS〉 is given by Eq. (5.2.51). Since the model
Hamiltonian is invariant to any rotation in the isospin space it commutes with the
projection operator. Therefore, when its matrix element between projected states is
evaluated, H can be brought aside the state |BCS〉pn. Having H in this position we
write it in terms of quasiparticles accepting the above mentioned state as a vacuum.
The final expression for the desired average is:

E3 ≡ 〈TMK; BCS|H|TMK; BCS〉 = εN − G
N

4

(
4�j − N

2
+ 3N

4�j

)
. (5.4.15)

Note thatE3 is identical toE1. This happens because themodel Hamiltonian is an iso-
scalar operator and there is no projection on the number of particles. For simultaneous
number and isospin projection the analytical expression is more involved.

5.4.4 The Exact Eigenvalues of H

The isoscalar pairing interaction involved in our model Hamiltonian, T̂pair , can be
expressed in terms of the quadratic Casimir operator of the group O(5) generated by
the proton-proton, neutron-neutron andproton-neutronquasispin operators [TAK71].
Therefore, its eigenvalues have simple expressions in terms of the highest weight of
the irreducible representations of the O(5) group. These weights are determined by
the reduced isospin t [FLO52] and seniority quantum numbers v:

Tpair = −G

2

(
1

4
(N − v)(4�j − N − v + 6) + t(t + 1) − T(T + 1)

)
. (5.4.16)
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Since in our calculations both the BCS and the projected states have vanishing
seniority and reduced isospin (the isospin carried by the unpaired particles) we com-
pare our results with those of Eq. (5.4.16) for v = t = 0:

E4 = εN − G

2

(
N

4
(4�j − N + 6) − T(T + 1)

)
. (5.4.17)

5.4.5 Particle Number and Isospin Projection

In numerical calculation we consider a system with four protons and eight neu-
trons. The states occupied by protons and neutron have equal angular momenta,
j = 23

2 . We consider the projected states with K = −2 which corresponds to
the T3 value for the given system. The structure of the BCS state depends on the
Euler angle �0 (=(α,β, γ)). In our application we take β = π

3 ,α = γ = 0.
The matrix elements of H between projected states can be derived by direct cal-
culation. In order to get them in a compact form the following relations are very
useful.

Pp(P
†
p)

l(P†
n)

s(P†
pn)

m|0〉 = 4l(�j − l − m + 1)(P†
p)

l−1(P†
n)

s(P†
pn)

m|0〉

− m(m − 1)(P†
p)

l(P†
n)

s+1(P†
pn)

m−2|0〉,

〈0|(Pn)
s(Ppn)

m(P†
pn)

m(P†
n)

s|0〉 = m!(2�j − 2s)!
(2�j − 2s − m)!

4ss!�j!
(�j − s)! . (5.4.18)

where the operators P†, P are particle pair operators (To simplify, we omit here the
j-argument). The final result for energies is:

ENT ≡ 〈NTMK|H|NTMK〉 = εN − G
N

4
(2�j − N

2
+ 1)

− G

2
N 2

NT (Npn)
2|DT

K0(�0)|2
∑

p

SpZ(
N

2
; p), (5.4.19)

where

Sp =
[
4p(�j − N

2
+ p + 1)(−2)p

(
�j

p

)(
2�j − 2p

N
2 − 2p

)
(5.4.20)

+ 4(−2)p(p + 1)2
(

�j

p + 1

)(
2�j − 2(p + 1)

N
2 − 2(p + 1)

)]
(

Vj

Uj
)N .
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The function Z(N
2 , p) involved in (5.4.19) has the expression:

Z(
N

2
, p) = 2T + 1

2

π∫

0

dT
00(β)(d1

00(β))
N
2 −2p(d1

10(β)d1−10(β))p sin(β)dβ, .

=
∑

k,m,n

(−)p+k+n (2T + 1)2−T−p

m + n + N
2 − 2p + 1

(
T
k

)2 (T + p − k
m

)(
k + p

n

)

(5.4.21)

The second term in (5.4.19) is determined by the pn pairing while the third one
is due to the pp and nn pairings which have equal contributions.

The numerical results obtained for all the cases described are represented in
Fig. 5.5 for ε = 0 and G = 0.125 MeV. From there one notices several features
which are worth mentioning. The number projection alone has a small influence on
the ground state energy. Indeed, it lowers the BCS energy by an amount of about
257 KeV. According to Ref. [FDO98] this feature depends on the number of particles
considered. The isospin projection alone does not affect at all the BCS energy. This
is caused by the isoscalar character of the chosen model Hamiltonian. In both cases,
of N and T projection, the projected states are degenerate. If the model Hamiltonian
was not isospin invariant the effect coming from the T-projection alone would lift up
the corresponding degeneracy.

Fig. 5.5 Energies of a systemof eight neutrons and four protons distributed in a shellwith j = 23
2 and

interacting through pairing forces of a strength G = 0.125MeV, obtained by different approaches-
the present formalism (second column), BCS (third column), N-projected BCS (fourth column) and
T-projected BCS (last column)—are compared with the exact energies given on the first column.
Results are given in units of MeV. States from the first two columns are labeled by their isospin
quantum number
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Considering the two projections at a time, a big effect appears on the ground state
energy and moreover the degeneracy is lifted up. The values of the projected isospin,
for the case under study i.e., eight neutrons and four protons in the shell j = 23/2, are
2, 4 and 6. The selection is given by the function Z which is vanishing for odd isospin.
Remarkable the fact that the energies obtained within the present projection approach
are identical with the exact ones. This proves that the NT projected states are exact
eigenfunctions of H and, moreover, irreducible representation for the O(5) group.

5.4.6 Transition Probabilities

Since the N + T projection has an important effect on energies and moreover mod-
ifies essentially the structure of the unprojected state we may expect an important
correction to the transition probabilities. In order to get a flavor of how large such cor-
rections could be, we study here the β− and β+ Fermi transitions. The corresponding
transition operators are the raising (T+) and lowering (T−) isospin operators

T+ =
∑

m

c†pjmcnjm, T− =
∑

m

c†njmcpjm. (5.4.22)

For the unprojected BCS state such a transition may take place from the ground state
of the (N, Z) system (N = 8, Z = 4 in our case), described by |BCS〉, to one of the
three quasiparticle states:

|11〉 = 1

2
√

�j

∑

m>0

α†
1jmα†

1̃jm
|BCS〉,

|22〉 = 1

2
√

�j

∑

m>0

α†
2jmα†

2̃jm
|BCS〉,

|12〉 = 1√
2�j

∑

m

α†
1jmα†

2̃jm
|BCS〉. (5.4.23)

Keeping in mind the structure of the quasiparticle operators and the fact that the
major component of the state |BCS〉 is associated to the nucleus (N, Z) one realizes
that the two quasiparticle states have components describing the neighboring nuclei
(N, Z +2), (N −1, Z −1), (N −1, Z +1), (N +1, Z −1), (N +1, Z +1), (N, Z −2),
(N + 2, Z), (N − 2, Z). The third and fourth components mentioned above are the
daughter nuclei of the β− and β+ decay processes. Writing the transition operators
in terms of the quasiparticle operators one obtains the following expressions for the
transition amplitudes:

〈BCS|T−|11〉 = √
4�js

∗2UjVj cos
2 β

2
,

〈BCS|T−|22〉 = −√4�jδ
∗2UjVj sin

2 β

2
,

〈BCS|T−|12〉 = 0,
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〈BCS|T+|11〉 = −√4�jδ
2UjVj sin

2 β

2
,

〈BCS|T+|22〉 = √
4�js

2UjVj cos
2 β

2
,

〈BCS|T+|12〉 = 0. (5.4.24)

Squaring these amplitudes and considering the data mentioned above for a single j
case we obtain the following probabilities for the β− transitions:

|〈BCS|T−|11〉|2 = 5.06,

|〈BCS|T−|22〉|2 = 0.56,

|〈BCS|T−|12〉|2 = 0. (5.4.25)

In a similar way one calculates the probabilities for the β+ decay.

〈BCS|T+|11〉|2 = 0.56,

〈BCS|T+|22〉|2 = 5.06,

〈BCS|T+|12〉|2 = 0. (5.4.26)

The total strengths for beta minus and beta plus transitions are equal to each other:

β(−) = β(+) = 5.62 (5.4.27)

In virtue of the above equation the N − Z sum rule is drastically violated, unless
we consider the N = Z case. Indeed, in the unprojected BCS case the sum rule is
vanishing while the N − Z value is equal to 4.

Now let us focus our attention on the T andN projected states. Due to the structure
of the unprojected BCS state one could project out the isospin and the total number
of particles simultaneously for even-even and the neighboring odd-odd nuclei. The
projected states for the mother and daughter nuclei are characterized by the same
isospin and total number of particles. The K quantum number differ by one unit,
i.e. �K = ±1. Since the transition operator acts on the many body state, as defined
before, the transition amplitudes for the β− and β+ are readily obtained:

〈NTMK|T−|NTMK + 1〉 = √
(T − K)(T + K + 1),

〈NTMK|T+|NTMK − 1〉 = √
(T + K)(T − K + 1). (5.4.28)

In contrast to the unprojected state, here the mother nucleus may be in any of the
three projected states with isospin 2, 4 and 6. For each of these situations the mother
nucleus decays to only one state by a β− transition and to another single state by a
β+ transition. Therefore the strengths for the three beta minus transitions are equal
to 4, 18 and 40 respectively. The strengths for the β+ transition from the projected
states with T equal to 2, 4 and 6 are equal to 0, 14 and 36, respectively. Taking the
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square of the above equations and subtracting the result for the second from the result
for the first equation one obtains the sum rule:

β(−) − β(+) = −2K = N − Z. (5.4.29)

To conclude, the sum rule is obeyed by any of the three (T = 2, 4, 6) projected
states. Comparing the magnitudes of the probabilities for the three transitions we
remark on a strong dependence on the T quantum number. Comparing the results for
the ground state (T = 2) decay probabilities with the corresponding probabilities of
the unprojected BCS state the following conclusions may be drawn. For |BCS〉 the
β− strength is 5.62 and this is comparable to the corresponding data for the T = 2
state, which is 4. By contrary, concerning the β+ strength the discrepancy is large.
For unprojected case the strength is 5.62 while for the projected T = 2 state the β+
transition is forbidden.

Let us summarize the main results described in this section. We addressed the
problem of isospin and particle number projection from the quasiparticle ground
state of a system with isovector proton-neutron pairing, in addition to proton-proton
and neutron-neutron pairing. In this case, the resulting BCS state also breaks, in
general, the charge symmetry and does not have good T3 value. For this general case
we presented a formalism to restore gauge and isospin symmetries that is based on
a specific form of the corresponding Bogoliubov-Valatin (BV) transformation.

We show that within a given j-shell the general 5 parameter BV transformation
can be expressed as a rotation in the space of isospin performed on a simpler two-
parameter dependent BV transformation that involves only one kind of pairs in the
isovector pair multiplet. We can therefore express the vacuum of the corresponding
5-parameter dependent quasiparticles as a product of such transformations applied
on the particle vacuum. This quasiparticle BCS vacuum has neither a definite par-
ticle number nor a good isospin. For clarity, we restored the symmetries in several
steps. First we projected out the total number of particles and then from the same
“deformed” state we projected out the components of good isospin. Finally both
symmetries are restored at a time. The projected states are written alternatively in
the particle and quasiparticle representations. Therefore the results can be used for
treating operators written both in the particle and the quasiparticle representation.

The fact that the BCS state can be expressed in terms of isospin rotations of an
auxiliaryBCSstate,madeonlyof proton-neutronpairs, allows toperformanalytically
the integration over the gauge variable and Euler angles involved in the particle
number and isospin projection respectively. This fact is fully exploited to provide
analytical expressions for the norms of the projected states as well as their energy
expectation values and transition matrix elements of one body operators.

The effect of projection on energies and transition probabilities was quantitatively
studied for a single j case where the model Hamiltonian is solvable. The conclusion
is that the projection is very important for both energies and transition probabilities.
Concerning energies, the results for the projected states are identical with the exact
ones. This proves that the NT-projected state is in fact an irreducible representation
of the group O(5). In fact this is a nice example of generating a basis from a coherent
state.
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5.5 Bogoliubov Transformation for Bosons

We consider separately the case of bosons with vanishing momentum and that of
bosons carrying nonvanishing momentum.

5.5.1 Bosons with Zero Momentum

Let a† and a be the creation and annihilation operators for a particle of boson type:
[
a, a†

]
= 1. (5.5.1)

This boson has no angular momentum and no linear momentum. The Fock space,
Fa, generated by this boson is spanned by the multi-boson states::

|m〉 =
(
1/

√
m!
) (

a†
)m |0〉, (5.5.2)

where |0〉 is the vacuum state defined as:

a|0〉 = 0. (5.5.3)

The Bogoliubov (B) transformation for bosons is defined by the operator:

T = eS, S = −1

2
y
(

a†2 − a2
)

, y = real. (5.5.4)

This operator transforms linearly the boson operators a† and a:

Ta†T† = Ua† + V a ≡ b†,

TaT† = Ua + V a† ≡ b, (5.5.5)

where the following notations have been used:

U = cosh y, V = sinh y. (5.5.6)

Te new operators obey boson type commutation relations

[
b, b†

]
= 1. (5.5.7)

In virtue of this relation the B transformation is called canonical transformation.
The Fock space corresponding to the new bosons, Fb, is spanned by the states:

|m̃〉 = T |m〉 =
(
1/

√
m!
) (

b†
)m |0̃〉, b|0̃〉 = 0. (5.5.8)
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In many circumstances one needs to know the overlap matrix of states from the two
Fock spaces [RBB77]:

Gn,m(y) = 〈n|m̃〉. (5.5.9)

Aiming to this goal we define the oscillator Hamiltonian:

H = p2

2M
+ Kx2 (5.5.10)

associated to the conjugate coordinates defined with the boson operators a si a†:

x = α(a† + a), p = i

2α
(a† − a) (5.5.11)

where α = (8KM)−1/4. In terms of bosons H can be written as:

H = ω(a†a + 1

2
), ω =

(
2K

M

) 1
2

. (5.5.12)

Obviously, the states |n〉 of the spaceFa are eigenfunctions ofH corresponding to the
eigenvalues ω(n + 1/2). In the configuration space these states have the expression:

|n〉 = Nn(α) exp
(
−x2/4α2

)
Hn

(
x/

√
2α
)

,

Nn(α) =
(
2nn!α√

2π
)−1/2

, (5.5.13)

with Hn Hermite polynomial of rank n. The image of H through B is:

H ′ ≡ THT+ = ω

[(
U2 + V 2

)
a†a + UV

(
a†2 + a2

)
+
(

V 2 + 1

2

)]
. (5.5.14)

Alternatively, H can be written in terms of the new bosons:

H ′ = ω

(
b†b + 1

2

)
. (5.5.15)

On other hand the Hamiltonian H ′ can be also written in terms of the variables (x, p)
defined above:

H ′ = ωα2(U − V )2p2 +
[
ω(U + V )2/4α2

]
x2. (5.5.16)

We recognize the oscillator Hamiltonian characterized by:

M1 =
[
2ωα2(U − V )2

]−1
, K1 = ω(U + V )2/4α2,

α1 = e−yα, ω1 = ω. (5.5.17)
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From Eq. (5.5.15) it results that the state |m̃〉 is eigenfunction of H ′ corresponding
to the eigenvalue ω(m + 1

2 ) and therefore have the expressions:

|m̃〉 = Nm(α1) exp(−x2/4α2
1)Hm(x/

√
(2α1). (5.5.18)

Thus, the overlap matrix becomes:

Gn,m(x) = Nn(α)Nm(α1)α
√
2Inm, (5.5.19)

with the notation:

Inm =
∞∫

−∞
exp

[
−z2(β2 + 1)/2

]
Hn(z)Hm(βz)dz, β = ey. (5.5.20)

This way, to calculate the overlap matrix we have to perform the integrals Inm. To this
end we use the generator function method which defines the Hermite polynomial as
coefficients of a power series expansion:

exp
(
−t2 + 2tz

)
=

∞∑

n=0

tn

n!Hn(z),

exp
(
−s2 + 2sβz

)
=

∞∑

m=0

sm

m!Hm(βz). (5.5.21)

Multiplying theEq. (5.5.21), side by side, and integrating the resultwith theweighting
function exp

[−z2(β2 + 1)/2
]
, one obtains:

(π/βU)1/2 exp

(
− V

U
t2 − V

U
s2 + 2

U
ts

)
=
∑ tnsm

n!m! Inm. (5.5.22)

Expanding the l.h.s. of this relation in power series of t and s and then identifying
the coefficients of the series from the two sides we obtain Inm and then:

Gn,m(y) = √
n!m! (cosh)−(m+n+1)/2

×
∑

q

(−1)(n−q)/2

q! [(n − q)/2
]! [(m − q)/2

]!
(
1

2
sinh

)(m+n)/2−q

. (5.5.23)

Summation in Eq. (5.5.23) must obey the constraints:

n − q = even, m − q = even, q ≤ min(m, n). (5.5.24)

HavingGn,m determinedwe can express the states fromFb in terms of those fromFa:

|m̃〉 =
∑

n

Gnm(y)|n〉. (5.5.25)
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Note that the transformation T is actually a coherent state for the group SU(1, 1),
generated by:

K+ = 1

2
(a†)2, K− = 1

2
a2, K0 = 1

2

(
a†a + 1

2

)
. (5.5.26)

5.5.2 Boson with Linear Momentum

Here we consider a set of boson operators {a†β}β=±k which create a particle in a state
of momentum β �= 0. They satisfy the commutation relations:

[aβ, a†β′ ] = δβ,β′ , [aβ, aβ′ ] = [a†β, a†β′ ] = 0, β,β′ = ±k �= 0. (5.5.27)

The Fock space is spanned by:

|m, n〉 =
[
(a†k)

m(a†−k)
n/

√
m!n!

]
|0, 0〉,

aβ |0, 0〉 = 0, β = ±k. (5.5.28)

The conjugate states are defined in a standard way:

〈m, n| = (|n, m〉)† . (5.5.29)

The B transformation is generalized to:

T = eS, S = −y(a†ka†−k − a−kak), k �= 0. (5.5.30)

The images of boson operators through the B transformation are:

Ta†βT+ = Ua†β + V a−β ≡ b†β,

TaβT+ = Uaβ + V a†−β ≡ bβ, (5.5.31)

where U = cosh y, V = sinh y. Also the Fock states defined above are brought to a
new Fock space:

|̃m, n〉 = T |m, n〉 =
[
(b†k)

m(b†−k)
n/

√
m!n!

]
|0̃, 0〉,

bβ |0̃, 0〉 = 0, β = ±k. (5.5.32)

In what follows we are interested in the overlap matrix:

Gpl,mn = 〈p, l|̃m, n〉. (5.5.33)
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To this goal we introduce the Hamiltonian:

H = 1

2M

(
p2k + p2−k

)
+ η(x2k + x2k ), (5.5.34)

where x and p are conjugate variables defined with the boson operators:

xβ = α
(

a†β + aβ

)
, pβ = i

2α

(
a†β − aβ

)
,

β = ±k, α = (8Mη)−1/4 . (5.5.35)

The Hamiltonian (5.5.34) can be expressed in terms of boson operators:

H = ω
(

a†kak + a†−ka−k + 1
)

, ω = (2η/M)1/2. (5.5.36)

Using the two forms of the Hamiltonian H one obtains the eigenvalues and eigen-
functions:

H|l, p〉 = ω(p + l + 1)|l, p〉,
|l, p〉 = Nl(α)Np(α) exp

[
− 1

4α2

(
x2k + x2−k

)]
Hl

(
xk√
2α

)
Hp

(
x−k√
2α

)
.

(5.5.37)

Here Hl and Hp are Hermite polynomials and Nl, Np normalization constants.
Through the B transformation the Hamiltonian H becomes:

H′ ≡ THT† = ω
(

U2 + V 2
) (

a†kak + a†−ka−k

)
+ 2ωUV

(
a†ka†−k + a−kak

)

+ ω
(
2V 2 + 1

)
, (5.5.38)

or, alternatively:

H′ = ω
(

b†kbk + b†−kb−k + 1
)

. (5.5.39)

For what follows it is useful to introduce the operators:

Xβ = Uxβ + V x−β, Pβ = Upβ − V p−β, β = ±k. (5.5.40)

These variables are conjugate to each other.

[
Xβ, Pβ′

] = iδβ,β′ . (5.5.41)

In the new variables the Hamiltonian H′, looks as:

H′ = ωα2
(

P2
k + P2

−k

)
+ ω

4α2

(
X2

k + X2
−k

)
− 3ω(U2 + V 2). (5.5.42)
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Obviously, the eigenfunctions of H are:

H′|̃m, n〉 = ω(m + n + 1)|̃m, n〉,

|̃m, n〉 = Nm(α)Nn(α) exp

[
− 1

4α2

(
X2

k + X2
−k

)]
Hm(

Xk√
2α

)Hn(
X−k√
2α

).

(5.5.43)

Thus theoverlapmatrix to be found is aweighted integral of fourHermite polynomials:

Gpl,mn = Np(α)Nl(α)Nm(α)Nn(α)2α2Ipl,mn,

Ipl,mn =
∞∫

−∞

∞∫

−∞
exp

[
−
(

U2y2 + U2z2 + 2UV z
)]

× Hp(z)Hl(y)Hm(Uy + V z)Hn(Uz + V y)dy dz. (5.5.44)

The integration is performed in the manner described above for the simple case of
bosons without momentum. The final result is:

π

U
exp

[
2

U
(λh − V λt + tw + V wh)

]
=
∑ λptlwmhn

p!l!m!n! Ipl,mn. (5.5.45)

Expanding the l.h.s. in power series of the variables λ, t, w, h and then identifying
the coefficients of the two sides the overlap matrix is readily obtained:

Gpl,mn = √
p!l!m!n!(cosh y)−(l+n+1)

∑

q

(−1)l−m+q(sinh y)l−m+2q

q!(n − q)!(m − q)!(l − m + q)! .

(5.5.46)

Summation is to be performed according to the restrictions:

q ≤ min(m, n), q ≥ m − l. (5.5.47)

The compatibility conditions for the quantum numbers is:

m − l = n − p. (5.5.48)

In Ref. [RBB76] the overlap matrix was obtained by a different method which makes
use of the identities:

(
Ua† + V a

)n =
∑

i,m

n!
2ii!m!(n − 2i − m)!Un−i−mV i+m

(
a†
)n−2i−m

am,

[
al
β, (a†β)n

]
=
∑

s=1

l!n!
s!(n − s)!(l − s)! (a

†
β)n−sal−s

β . (5.5.49)

In conclusion, here we used the SU(1, 1) coherent states in order to describe the
space of correlated bosons.



Chapter 6
The Coherent State Model

6.1 The Coherent State Model

CSM defines [RCGD82] first a restricted collective space whose vectors are modeling
the states of ground, β and γ bands. In choosing these states we were guided by some
experimental information as well as by some previous theoretical investigations.

The original classification of collective states in terms of bands relies on the weak
coupling limit, in which the angular momentum projection on the intrinsic symmetry
axis (K) is a good quantum number. Departing from this extreme, as it happens in
realistic cases, the band mixing description is necessary.

On the basis of energy values three typical experimental situations can be dis-
tinguished: (a) The lowest member of the γ band lies above the lowest member of
the β band: E2+

γ
> E0+

β
. This is the case for the Sm region [EIGR70]. (b) States of

the β and γ bands with the same angular momentum are almost degenerate. A good
example is the nucleus 232Th [Sa76]. (c) The 2+ state of the γ-band lies below the
0+ state of β band. Such situation is met in the Pt region [FUN75]. Group theoreti-
cal interpretation of these features are based on SU(5), SU(3) and O(6) symmetries
[AI76], respectively.

Since the situation for Pt isotopes guides us in choosing the model states, two
more information are to be added, (i)The E2 transitions between members of ground
and β bands are relatively weak and the ratio B(E2; 0+

β → 2+
γ )/B(E2; 0+

β → 2+
g )

is much larger than unity; (ii) States of γ band has a doublet structure as for example
E4+

γ
− E3+

γ
< E3+

γ
− E2+

γ
.

The boson structure of the low spin states in the Pt isotopes was studied by
diagonalizing a fourth order boson Hamiltonian. One found that 2+

γ has a structure
similar to that predicted by the empirical rule of Sheline and Sakai (SS) [Sa76,
Sh60], i.e. the dominant component is a two boson state, while 0+

β is dominantly a
three boson state [JAJO76, ROUL78]. This modified SS scheme is in accord with the
experimental feature (i) and seems to be a common result for all models using a γ soft
potential energy surface. Extensive studies of ground state band performed by Lipas
and collaborators [LHH76] show that an axially symmetric coherent state is a good

© Springer International Publishing Switzerland 2015
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basis for the description of small oscillations around a deformed equilibrium shape.
States of excited bands could be constructed either by using independent coherent
states or by exciting the ground band states with low rank polynomials in quadrupole
bosons b†

m (−2 ≤ m ≤ 2).
In view of the statements (i) and (ii) as well as the modified SS scheme we chose

the deformed basis to satisfy the following conditions:
(a) In the limit of small deformation the projected states yield the highest seniority

states of the N-phonon multiplet while in the large deformation regime a rotational
behavior should be reproduced.

(b) The projected states describing the members of ground and beta bands are
only weakly coupled by the E2 transition operator.

(c) The states should be orthogonal before and after the angular momentum pro-
jection was performed.

All these conditions are fulfilled by the following set of three deformed states:

ψg = e[d(b†
0−b0)]|0〉 ≡ T |0〉, ψγ = �

†
γ,2ψg, ψβ = �

†
βψg. (6.1.1)

where the excitation operators for γ and β bands are defined by:

�
†
γ2 = (b†b†)2,2 + d

√
2

7
b†

2, �β = (b†b†b†)0 + 3d√
14

(b†b†)0 − d3

√
70

. (6.1.2)

For practical aims it is useful to list few properties of the deformed states ψi with
i = g,β, γ:

〈ψk |ψk′ 〉 = δk,k′ , �βψg = �γ2ψg = �βψγ = 0,

b−2ψβ = 3√
5
ψγ, b−1b−2ψi = (b−2)

2ψi = 0, i = g,β, γ,

Hdef ψi = εiψi , T
[
(b†b†)4(bb)4

]
0

T †ψi = 0, i = g,β, γ. (6.1.3)

The deformed Hamiltonian which admits ψi as eigenstates, is defined in terms of the
boson number operator (N̂ ), angular momentum squared ( Ĵ 2) and the z-component
of the angular momentum operator, ( Ĵz). The eigenvalues are simple expressions of
the strengths of the terms involved in Hdef:

Hdefψi = T
[
3AN̂ (N̂ − 3) + 3B(b+b+)0(bb)0 + (B − A)(b+b+b+)0(bbb)0

+ B Ĵ 2 + C Ĵz

]
T †, εg = 0, εβ = 6(B − A), εγ = 6(B − A) + 2C.

(6.1.4)

Denoting by Qh
i (i = g,β, γ) the expectation value of the harmonic quadrupole

operator
Q2μ = q0(b

†
μ + (−)μb−μ), (6.1.5)
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on the state ψi , one obtains the following ordering equation:

Qh
g < Qh

γ < Qh
β . (6.1.6)

Since Qh
g is proportional to d , this parameter will be hereafter called the deformation

parameter. From the three deformed and orthogonal functions one generates through
projection, three sets of mutually orthogonal states

φi
J M = N i

J P J
M0ψi , i = g,β, γ, (6.1.7)

where P J
M K denotes the projection operator defined as:

P J
M K = 2J + 1

8π2

∫
D J∗

M K R̂(�)d�, (6.1.8)

and N i
J the normalization factors. Deformed and projected states satisfy the required

conditions mentioned before and therefore contain the salient features of the major
collective bands. Since we attempt to set up a very simple model we relay on the
experimental feature saying that the β band is largely decoupled from the ground as
well as from the γ bands and choose a model Hamiltonian whose matrix elements
between beta states and states belonging either to the ground or to the gamma band
are all equal to zero. The simplest Hamiltonian obeying this restriction is

H̃ = A1(22N̂ + 5�
†
β′�β′) + A2 Ĵ 2 + A3�

†
β�β, with

�
†
β′ = (b†b†)0 − 1√

5
d2. (6.1.9)

Since the following relations

�βφi
J M = �2

β′φi
J M = 0, i = g, γ, (6.1.10)

hold, new terms can be added to the Hamiltonian H̃ without altering the decoupling
condition for the β band. This way, one arrived at the following model Hamiltonian:

H = A1[22N̂ + 5�
†
β′�β′ ] + A2 Ĵ 2 + A3�

†
β�β + A4(�

†
β�2

β′ + h.c.) + A5�
†2
β′ �2

β′ .

(6.1.11)

Note that the three sets of projected states corresponding to ψβ and

ψβ′ = �
†
β′ψg, ψβ′′ = (�

†
β′)2ψg, (6.1.12)

respectively, are linearly independent and possible candidates for the description of

the β band. Since in the vibrational limit (d → 0), φ
β′
J M satisfy the standard SS
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scheme we used these functions to describe the beta bands of nuclei from the Sm
region [RASA86]. The resulting formalism, called CSM2, is an alternative version
of CSM for Sm region. However, most of the specific features for this region could be
obtained in a description with φ

β
J M given by Eq. (6.1.7) as model states for the beta

band, by choosing a suitable set of structure coefficients in the model Hamiltonian.
It is worth noting that the procedure adopted to construct the restricted collective

basis and the effective Hamiltonian is to some extent similar to the Lanczos method
of generating a suitable basis for treating a given interaction [LANC90].

As a further test for the model set up in this fashion, we consider the E2 transition
rates. We take for the quadrupole operator the following structure

Q2μ = q0(b
†
μ + (−)μb−μ) + q1(b

μb)μ + q2((b
†b†)2μ + (bb)2μ). (6.1.13)

In the limit of small d, the mixing of ground and gamma band states is negligible.
The states from the ground and beta bands may be connected only through the q2
term of the quadrupole operator. Indeed, it can be proved that:

〈φβ
J M |b†

μ + (−)μb−μ|φg
J ′ M ′ 〉 = 0, 〈φβ

J M |(b†b)2μ|φg
J ′ M ′ 〉 = 0. (6.1.14)

Due to this feature, in the Pt region, which is close to the vibrational limit, we can
use a two parameter version of the quadrupole operator, with q1 = 0.

The matrix elements of any boson operator between two projected states can be
easily expressed in terms of the following overlap integrals:

I (k)
J (d2) =

1∫

0

PJ (x) [P2(x)]k exp
[
d2 P2(x)

]
dx,

I(k)
J (d2) =

π∫

0

d J
22(θ)d

k
22(θ)exp

[
d2 P2(cos θ)

]
sin θdθ, k = 2, 3, 4,

I J2
02 (d2) =

π∫

0

d J
02(θ)d

2
20(θ)exp

[
d2 P2(cos θ)

]
sin θdθ. (6.1.15)

For example the projected states norms are:

(Ng
J )−2 = (2J + 1)I (0)

J (d)e−d2
,

(Nβ
J )−2 = (2J + 1)(6 + 9

7
d2)I (0)

J + 18

5
I (1)
J ]e−d2

,

(Nγ
J )−2 = 1

49
(2J + 1)[(49 + 29d2)I(2)

J + 28d2I(3)
J + 6d2I(4)

J ]e−d2
. (6.1.16)
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In Appendix B, the last two integrals of Eq. (6.1.15) are expressed in terms of I (0)
J ,

which can be calculated by a direct integration:

I (0)
J (d2) = e− 1

2 d2
∞∑

k=0

3k(2k)!(k + 1
2 J )!

2k−J k!(k − 1
2 J )!(2k + J + 1)!d2k . (6.1.17)

The summation involved can be analytically performed with the result:

I (0)
J (d2) = (J !)2

( 1
2 J )!(2J + 1)! (6d2)J/2e−d2/2

1 F1(
1

2
(J + 1), J + 3

2
; 3

2
d2), (6.1.18)

where 1 F1 denotes the confluent hypergeometric function. Considering the expres-
sion of the angular momentum spherical component in term of the quadrupole bosons:

Jμ = √
10(b†b)1μ, μ = ±1, 0, (6.1.19)

one obtains for the angular momentum squared, the following expression:

Ĵ 2 = 2N̂b(2N̂b + 1) − 10(b+b+)0(bb)0 − 7
√

5
[
(b+b+)2(bb)2

]
0 . (6.1.20)

Averaging this equation with the projected ground band state one obtains that the
overlap integral I (0)

J satisfies the differential equation:

d2 I (0)
J

dx2 − x − 3

2x

d I (0)
J

dx
− 2x2 + J (J + 1)

4x2 I (0)
J = 0. (6.1.21)

With a suitable change of function this equation is brought to the form of the equa-
tion satisfied by a hypergeometric function and finally the form (6.1.18) is, again,
obtained.

To conclude, the CSM formalism consists in: (a) defining, through a projection
technique, three sets of mutually orthogonal states whose properties recommend
them as model states for the ground, beta and gamma bands, respectively; (b) in
the restricted space of projected states one finds an effective Hamiltonian having
vanishing matrix elements between beta band states and states from either ground
or gamma band; (c) the E2 transitions between states of the restricted space are
described by the transition operator Q2μ given by Eq. (6.1.13).

Note that the model states are generated through projection from a coherent state
and two excitations of that through simple polynomial boson operators. Since the
coherent state achieves the minimum value for the uncertainty relations for the
quadrupole collective coordinate and its conjugate momentum, it is expected that
this is an ideal state to account for the semiclassical behavior of the nuclear system
staying in a state of high spin.
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Moreover, the states are infinite series of bosons and thus highly deformed states
can be described.

The model Hamiltonian is not commuting with the boson number operator and
because of this property a basis generated from a coherent state is expected to be
most suitable.

In the reduced model space of the angular momentum projected states the eigen-
values of the model Hamiltonian (either H̃ of H ) are obtained as follows: Those
corresponding to the β band states and to states of odd angular momentum from
the γ band, are determined by averaging the model Hamiltonian with the respective
model states. Energies from ground band and gamma band states with even angular
momenta are obtained by diagonalizing a 2 × 2 matrix. Thus, energies of the three
bands, ground, β and γ, have analytical expressions in terms of the overlap integral
I (0)

J and its low order derivatives.
Before presenting several notable applications of CSM, we shall describe in more

details the vibrational and rotational limits of the CSM. Also, the description of the
wave function in the intrinsic system of reference will point out new useful features
of the model. As a result, energies are described by compact formulas depending on
J (J + 1). Also, the reduced transition probabilities acquire simple expressions.

6.2 The Vibrational and Near Vibrational Regimes

6.2.1 Energies

As already mentioned, in Refs. [RGB77, RAD83, RSS84], it was proved that the
projected states go to the first three highest seniority states respectively, when the
parameter d goes to zero. For a easier writing, let us denote:

ϕi,v
J M = lim

d→0
ϕi

J M (d),

Hv = lim
d→0

H. (6.2.1)

According to Refs. [RGB77, RAD83, RSS84], the vibrational limits for the projected
states are:

ϕ
g,v
J M = | J

2
,

J

2
, 0, J, M〉,

ϕ
γ,v
J M = |

[
J + 3

2

]
,

[
J + 3

2

]
, 0, J, M〉, [. . .] − integer part,

ϕ
β,v
J M =

[
1 − 6

7

J (2J + 3)

(J + 7)(3J + 10)

] 1
2 | J

2
+ 3,

J

2
+ 3, 1, J, M〉



6.2 The Vibrational and Near Vibrational Regimes 183

+
[

6

7

J (2J + 3)

(J + 7)(3J + 10)

] 1
2 | J

2
+ 3,

J

2
+ 1, 0, J, M〉

≡ ϕ
βv,1
J M + ϕ

βv,2
J M . (6.2.2)

where, the standard notations for the states |N , v,α, J, M〉, labeled by the number of
bosons (N ), seniority (v), missing quantum number (α), angular momentum (J ) and
its projection on z axis (M), are used. These quantum numbers, except α, are given
by the Casimir operators eigenvalues of the groups in the chain SU (5) ⊃ R(5) ⊃
R(3) ⊃ R(2). A complete description of these states may be found in Refs. [GRC78,
RCG78]. The vibrational limits are related by the following equations:

ϕ
βv,1
J M =

[
3

5
(3J + 10)

]− 1
2

(b†b†b†)0ϕ
g,v
J M ,

ϕ
βv,2
J M =

[
15

7

J (2J + 3)

(J + 7)2(3J + 10)

] 1
2

(b†b†)0ϕ
γ,v
J M . (6.2.3)

Note that due to Eq. (6.2.3), the vibrational limit of the head state of β band is a pure
three boson state. The vibrational limit for the band energies are:

Eg,v
J = 11A1 J + A2 J (J + 1),

Eγ,v = 22A1

[
J + 3

2

]
+ A2 J (J + 1),

Eβ,v
J = A1

(
11(J + 6) + 12

7

J (2J + 3)

3J + 10

)

+ A2 J (J + 1) + 3

5
(3J + 10)A3. (6.2.4)

where [..] denotes the integer part. Since the matrix elements of the model Hamil-
tonian between states of ground and gamma bands are vanishing in the vibrational
limit, it results that the vibrational states are eigenstates of H in the restricted col-
lective space. Moreover, one can prove that this is true in the whole boson space
for ground and gamma band states of any angular momentum. Concerning the beta
band states, this property holds only for the J = 0 state. However, if one ignores the
component ϕ

βv,2
J M of the vibrational beta states, the remaining component, i.e. ϕβv,1

J M ,
is an eigenstate of the vibrational Hamiltonian:

Hvϕ
βv,1
J M =

[
11A1(J + 6) + A2 J (J + 1)

+ 3

5
(3J + 10)A3

]
ϕ

βv,1
J M . (6.2.5)
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For small values of the deformation parameter, the exact energies can be expressed as
a power series in d. As a result the excitation energies of the three bands are written
as compact formulas depending on powers of J (J +1) which are easy to be handled
in numerical calculations. As we have already mentioned the matrix elements of the
model Hamiltonian between the angular momentum projected states can be written as
function of the overlap integral I (0)

J and its kth derivatives, I (k)
J . Taking into account

the composition rule as well as the recurrence relations for the Legendre polynomial
one can prove that the basic integrals satisfy the differential equation:

d2 I (0)
J

dx2 − x − 3

2x

d I (0)
J

dx
− 2x2 + J (J + 1)

4x2 I (0)
J = 0, (x = d2). (6.2.6)

The solution for this equation is:

I (0)
J (d2) = (J !)2( J

2

)!(2J + 1)! (6d2)
J
2 e− d2

2 1 F1

(
1

2
(J + 1), J + 3

2
; 3

2
d2

)
, (6.2.7)

where 1 F1(a, b, z) is the hypergeometric function of the first kind. The excitation

energies of the ground, beta and gamma bands are functions of the ratio d2 I (1)
J

I (0)
J

and

its first three derivatives with respect to d2. These quantities have the following
vibrational limits:

lim
d→0

(
d2 I (1)

J

I (0)
J

)(k)

= 1

(2J + 3)k

[
J

2
(δk,0 + δk,1) + 9

(J + 1)(J + 2)

2J + 5

×
(

δk,2 + 9
δk,3

2J + 7

) ]
, k = 0, 1, 2, 3. (6.2.8)

These relations allow us to write down the Taylor expansion of x I (1)
J /I (0)

J up to the
third order in x (= d2):

x
I (1)

J

I (0)
J

= J

2
+ J

2(2J + 3)
x + 9

2

(J + 1)(J + 2)

(2J + 3)2(2J + 5)
x2

+ 27

2

(J + 1)(J + 2)

(2J + 3)3(2J + 5)(2J + 7)
x3. (6.2.9)

Inserting the truncated power series of the x I (1)
J /I (0)

J , into the excitation energy
expressions one obtains [RS83]:

Eg
J = 22A1

3∑
k=0

A(g)
J,k xk + A2 J (J + 1) − �E J , (6.2.10)



6.2 The Vibrational and Near Vibrational Regimes 185

Eγ
J = 44A1 + A1∑3

k=0 Q(γ,0)
J,k xk

[
3∑

k=0

(
22R(γ,0)

J,k + 5U (γ,0)
J,k

)
xk

]

+ A2 J (J + 1) + �E J , J = even, (6.2.11)

Eγ
J = 44A1 + A1∑3

k=0 Q(γ,1)
J,k xk

[
3∑

k=0

(
22R(γ,1)

J,k + 5U (γ,1)
J,k

)
xk

]

+ A2 J (J + 1), J = odd, (6.2.12)

Eβ
J = 1∑3

k=0 Q(β)
J,k xk

{
A1

3∑
k=0

(
22R(β)

J,k + 5U (β)
J,k

)
xk

+
3∑

k=0

(
A3V (β)

J,k + A4d Z (β)
J,k + A5 B(β)

J,k

)
xk

}

+ A2 J (J + 1). (6.2.13)

The expansion coefficients A, Q, R, U, V, Z , B and the quantity �E are given in
Appendix C.

6.2.1.1 The Vibrational Structure of the β Band States

Here we shall prove the relation (6.2.2) which expresses the states of β band in the
spherical limit.

By means of Eqs. (6.1.17) and (6.2.9) and the expansion

(
Nβ

J

N g
J

)−2

= 3

5
(3J + 10) + 9

35

17J + 15

2J + 3
x

+ 81

5

(J + 1)(J + 2)

(2J + 3)2(2J + 5)
x2

+ 243

5

(J + 1)(J + 2)

(2J + 3)2(2J + 5)(2J + 7)
x3 + O(x4). (6.2.14)

one obtains:

lim
d→0

ϕ
(β)
J M = A(b+b+b+)0| J

2
,

J

2
, 0, J, M〉, A =

[
3

5
(3J + 10)

]−1/2

. (6.2.15)

According to Ref. [RCG78] the r.h.s. of Eq. (6.2.15) can be written as:

A(b+b+b+)0| J

2
,

J

2
, 0, J, M〉 = η| J

2
+ 3,

J

2
+ 3, 1, J, M〉

+ ε| J

2
+ 3,

J

2
+ 1, 0, J, M〉 (6.2.16)
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Indeed, the inequality satisfied by the completeness quantum number α

v − J ≤ 3α ≤ v − J

2
,α−integer (6.2.17)

has solutions only for two values of the seniority quantum number v: J
2 + 3 and

J
2 + 1. For v = J

2 + 3 the solutions for α are:

α =
{

1 for J < 6
0, 1 for J ≥ 6

(6.2.18)

As shown in Ref. [RCG78] the state | J
2 + 3, J

2 + 3, 0, J, M〉 does not appear in the
expansion:

(b+b+b+)0| J

2
,

J

2
, 0, J, M〉 =

∑
α,v≤ J

2 +3

Cv,α| J

2
+ 3, v,α, J, M〉. (6.2.19)

Now, we proceed with calculating the amplitudes η, ε. To this end we calculate the
function:

F(J ) = lim
d→0

〈ϕβ
J M |5�+

β′�β′ |ϕβ
J M 〉. (6.2.20)

By direct calculations one obtains:

F(J ) = 12

7

J (2J + 3)

3J + 10
. (6.2.21)

On the other hand

F(J ) = ε2〈 J

2
+3,

J

2
+1, 0, J M |�̂2 − N̂ (N̂ +3)| J

2
+3,

J

2
+1, 0, J M〉, (6.2.22)

where �̂2 is the Casimir operator of the group R5 while N̂ stands for the boson
number operator.

�̂2|N , v,α, J M〉 = v(v + 3)|N , v,α, J M〉,
N̂ |N , v,α, J M〉 = N |N , v,α, J M〉. (6.2.23)

Finally one obtains:
F(J ) = 2ε2(J + 7). (6.2.24)

Comparing the two results for the function F(J ) one obtains:

ε =
(

6

7

J (2J + 3)

(J + 7)(3J + 10)

) 1
2

. (6.2.25)
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Since limd→0 ϕ
(β)
J is normalized to unity, the amplitude η is:

η =
(

1 − 6

7

J (2J + 3)

(J + 7)(3J + 10)

) 1
2

. (6.2.26)

6.2.2 Reduced Probability for E2 Transitions

As already mentioned, the CSM uses for the quadrupole transition operator the
following expression:

Q2μ = qh(b†
μ + (−)μb−μ) + qanh((b†b†)2μ + (bb)2μ)

≡ Qh
2μ + Qanh

2μ . (6.2.27)

The anharmonic term is the lowest order term in bosons which brings a non-vanishing
contribution to the E2 transition between a state from the beta band and a state from
the ground band.

Analytical expressions for transition probabilities are also possible. First we list
the results for the limit d → 0 of the non-vanishing matrix elements of the terms
involved in the transition operator. The final results are [RAD83, RSS84]:

lim
d→0

〈ϕg
J ||Qh

2 ||ϕg
J ′ 〉 = (1 − δJ,J ′ )

[
2

3

(J + J ′ + 3)(J + J ′ + 1)

J + J ′

]1/2

C J 2 J ′
0 0 0 qh,

lim
d→0

〈ϕβ
J ||Qh

2 ||ϕβ
J ′ 〉 = (1 − δJ,J ′ )

[
2

3

(J + J ′ + 1)(J + J ′ + 3)(3(J + J ′) + 26)

(J + J ′)(3(J + J ′) + 14)

]1/2

× C J 2 J ′
0 0 0 qh,

lim
d→0

〈ϕγ
J ||Qh

2 ||ϕg
J 〉 = 2

[
(J + 1)(2J + 3)

3(J − 1)(J + 2)

]1/2

C J 2 J
2 −2 0qh, J = even,

lim
d→0

〈ϕγ
J ||Qh

2 ||ϕg
J+1〉 = −

[
6(J + 1)(J + 2)2(2J + 3)

J (2J + 1)(2J 2 + 5J + 11)

]1/2

C J 2 J+1
2 −2 0 qh, J = odd,

lim
d→0

〈ϕβ
J ||Qh

2 ||ϕγ
J+2〉 = 2

[
6(2J + 3)(2J + 5)(2J + 7)

7(J + 3)(J + 4)(3J + 10)

]1/2

C J 2 J+2
0 2 2 qh,

lim
d→0

〈ϕβ
J ||Qh

2 ||ϕγ
J+1〉 = −

[
108(J + 2)(J + 3)2

7(3J + 10)(2J 2 + 9J + 18)

]1/2

C J 2 J+1
0 2 2 qh,

lim
d→0

〈ϕγ
J ||Qh

2 ||ϕγ
J+2〉 =

[
(J + 1)(J + 2)(2J + 5)(2J + 7)

3(J − 1)(J + 3)(J + 4)

]1/2

C J 2 J+2
2 0 2 qh, J = even,

lim
d→0

〈ϕγ
J ||Qh

2 ||ϕγ
J+2〉 =

[
(J + 3)(2J + 3)(4J 3 + 18J 2 + 45J + 23)2

3J (2J + 1)(J + 1)(2J 2 + 13J + 29)(2J 2 + 5J + 11)

]1/2

× C J 2 J+2
2 0 2 qh, J = odd,
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lim
d→0

〈ϕγ
J ||Qh

2 ||ϕγ
J+1〉 = −

[
3(J + 1)(J + 2)2(J + 3)2

2(J − 1)(2J + 3)(2J 2 + 9J + 18)

]1/2

× C J 2 J+1
2 0 2 qh, J = even,

lim
d→0

〈ϕg
J ||Qanh

2 ||ϕβ
J−2〉 =

[
4(J − 1)J 2

(2J − 1)(2J + 1)(3J + 4)

]1/2

C J 2 J−2
0 0 0 qh . (6.2.28)

Note that in the limit of large J , the Alaga’s rule [AL57] is valid even for the
vibrational regime.

It is well known that the B(E2) values are very sensitive to the small variation in
both the wave functions and transition operator. Therefore we include in the expres-
sion of the matrix elements of the transition operator the first order Taylor expansion
in terms of the deformation parameter d . Then the B(E2) value characterizing a
certain transition is obtained, in the Rose convention [ROSE57], by squaring the
corresponding reduced matrix element. Intraband transition matrix elements are:

〈φg
J ||Q2||φg

J−2〉 =
√

J

2
(qh − qanhd) ,

〈φβ
J ||Q2||φβ

J−2〉 =
√

J (3J + 10)

2(3J + 4)

[
qh − qanhd(3J + 4)

3J + 10

]
,

〈φγ
J+2||Q2||φγ

J 〉 =
√

J (2J + 7)

2(2J + 3)

[
qh − qanhd(2J − 13)

2J + 7

√
2

7

]
, J = even,

〈φγ
J ||Q2||φγ

J−1〉 = qhd

√
2(J − 2)

J (J − 1)(2J + 3)

[
8 − J − 8

2J − 1

+ (J + 2)(2J + 3)

(J + 1)(2J + 1)
+ 2(J − 5)(J − 1)(4J + 3)

(J + 1)(2J − 1)(2J + 1)

]
, J = even,

〈φγ
J+1||Q2||φγ

J 〉 =
√

6(J + 3)

J (2J + 3)

[
qh − 5qanhd

J + 3

√
2

7

]
, J = even,

〈φγ
J+2||Q2||φγ

J 〉 =
√

(J − 1)(J + 3)(J + 4)

2(J + 1)(J + 2)

[
qh − qanhd

J + 6

J + 4

√
2

7

]
, J = odd.

(6.2.29)

The interband transition matrix elements are:

〈φg
J ||Q2||φβ

J−2〉 = qanh

√
6J

(3J + 4)

[
1 − 3(34J 2 + 34J − 29)

14(2J − 1)(2J + 3)(3J + 4)
d2

]
,

〈φg
J ||Q2||φβ

J 〉 = −2qanhd

√
3J (J + 1)

(2J − 1)(2J + 3)(3J + 10)
,

〈φg
J−2||Q2||φβ

J 〉 = qanhd2 3(J − 1)

2J − 1

√
6J

(2J − 3)(2J + 1)(3J + 10)
, (6.2.30)
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〈φγ
J ||Q2||φg

J 〉 =
√

2(J + 1)

2J − 1

×
[

qh + 2qanhd(44J 4 − 210J 3 − 533J 2 − 15J + 378)

7(J − 1)(J + 1)(2J + 3)2

√
2

7

]
,

(6.2.31)

〈φγ
J ||Q2||φg

J−2〉 = √
(2J + 3)

[
qanh

√
2

7
+ 3qhd

(2J + 3)(2J − 1)

]
,

〈φγ
J ||Q2||φg

J+2〉 = 6qhd(J − 1)

(J + 1)(2J + 3)

√
J (J + 2)(2J + 5)

(2J + 1)(2J + 3)
,

〈φγ
J−1||Q2||φg

J 〉 = −
√

(J − 2)(2J + 1)

(J − 1)(2J − 1)

[
qh + qanhd

(J + 3)(J + 4)

(2J + 1)(J + 1)

√
2

7

]
,

〈φγ
J+1||Q2||φg

J 〉 = −√
3(J + 3)

[
qanh

√
2

7
+ qhd

(2J + 3)

]
, (6.2.32)

〈φβ
J ||Q2||φγ

J+2〉 =
√

6(2J + 5)(2J + 7)

7(2J + 1)(3J + 10)

[
qh + qanhd

8J 2 + 42J + 21

(2J + 3)(2J + 7)

√
2

7

]
,

〈φβ
J ||Q2||φγ

J 〉 = 4(J + 5)

√
3(J + 1)

7(2J − 1)(3J + 10)

×
[

qanh

√
2

7
+ qhd

10J 2 + 13J − 33

2(J + 1)(J + 5)

]
,

〈φβ
J+2||Q2||φγ

J 〉 = qanhd

√
3J (J + 2)

(2J + 3)(3J + 16)

8(5J 2 + 17J − 27)

7(J + 1)(2J + 3)
. (6.2.33)

In the limit d → 0 these expressions reproduce the m.e. corresponding to vibrational
case (6.2.28), where some transitions are forbidden [RASA86, RAD83]. Taking the
next leading order of the transition m.e., the mentioned selection rules are washed
out.

6.3 Large Deformation Regime

One salient feature of CSM is the behavior of the projected states as function of
the deformation parameter especially for the extreme limits of d → 0 and large
d. While in the vibrational limit these are just multiphonon states in the rotational
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regime, i.e. for asymptotic values for deformation parameter d, the wave functions
of the ground, beta and gamma band states predicted by the liquid drop model
[BM53] in the large deformation regime are nicely simulated. Indeed, as proved in
Ref. [RCGD82], writing the projected states in the intrinsic reference frame and then
considering a large deformation d , one obtains:

ϕi
J M = CJ β−1e

−(d− kβ√
2
)2 [

δi,g D J∗
M0(�0) + δi,β

4d2

9
√

114
D J∗

M0(�0)

+ δi,γβ f J kγ(D J∗
M2(�0) + (−)J D J∗

M,−2, (�0)
]
,

(6.3.1)

where k is a constant defining the canonical transformation relating the quadrupole
bosons and the quadrupole collective conjugate coordinates:

αμ = 1

k
√

2
(b†

μ + (−)μb−μ), πμ = ik√
2
((−)μb†

−μ − bμ), (6.3.2)

while the constants CJ and f J are

CJ = 2

3
π− 1

4 k2/3(2J + 1)1/2, f J = −√
2(8 + (−)J+1)−1/2. (6.3.3)

It is worth noticing that the model Hamiltonian yields for the ground band similar
excitation energies as the effective Hamiltonian

Heff = 22A1 N̂ + A2 Ĵ 2. (6.3.4)

Averaging this Hamiltonian on a vibrational ground band state one obtains a quadratic
expression in N , the number of bosons in the considered state:

〈Heff〉 = 2N (11A1 + A2 + 2A2 N ). (6.3.5)

In the asymptotic region for d the average matrix element of Heff is [RGB77] pro-
portional to J (J + 1):

〈Hef f 〉 = J (J + 1)

(
11A1

3d2 + A2

)
. (6.3.6)

For the intermediate values of the deformation parameter d, we may use for energies
either rational functions of d with the coefficients being functions of the angular
momentum as given in the previous section, or asymptotic expansion for the matrix
elements in power of 1/x . The latter version was described in Ref. [RS83]. Here we
sketch the ideas and give the final results.
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6.3.1 Energies

The asymptotic expressions for the matrix elements are obtained by considering
the behavior of the overlap integral I (0)

J for large d. This is obtained by using the
asymptotic expression for the hypergeometric function:

1 F1(a, c; z) = �(c)

�(a)
ezza−c[1 + O(|z|−1)], (6.3.7)

One finds that the dominant term of the asymptotic form of I (0)
J is:

I (0)
J ∼ ex

3x
. (6.3.8)

This suggests as trial function for the equantity I (0)
J satisfying the differential equation

(6.2.6), the following series:

I (0)
J = ex

∑
n=1

An x−n . (6.3.9)

This series expansion together with the differential equation, offer a recurrence rela-
tion for the coefficients An :

An+1 = An

6n
(2n + J )(2n − J − 1). (6.3.10)

Using the asymptotic form (6.3.8) as the limit condition, which infers A1 = 1
3 , the

solution (6.3.9) is completely determined.
For large values of the deformation parameter, the series can be approximated by

a truncation, such that one arrives at the following expression

x
I (1)

J

I (0)
J

= x − 1 − 1

3x
− 5

9x2 − 37

27x3 +
(

1

6x
+ 5

18x2 + 13

18x3

)
J (J + 1)

− 1

54x3 J 2(J + 1)2 + O(x−4). (6.3.11)

This approximation can be substantially improved. Indeed, let us write the differ-
ential equation (6.2.6) in the form

x

(
x

I (1)
J

I (0)
J

)′
+

(
x

I (1)
J

I (0)
J

)2

− x − 1

2

(
x

I (1)
J

I (0)
J

)
− 2x2 + J (J + 1)

4
= 0 (6.3.12)
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and replace the first term by the derivative of the expression (6.3.11). Obviously, one
obtains a quadratic equation for the quantity x I (1)

J /I (0)
J whose positive solution is:

x
I (1)

J

I (0)
J

= 1

2

[
x − 2

2
+ √

G J

]
, (6.3.13)

where

G J = 9

4
x(x − 2) +

(
J + 1

2

)2

− 4

9x

(
3 + 10

x
+ 37

x2

)

+ 2

3x

(
1 + 10

3x
+ 13

x2

)
J (J + 1) − 2J 2

9x3 (J + 1)2. (6.3.14)

Note that the m.e. between ground and γ states are negligible within the approxima-
tion of large deformation.

Using the approximation (6.3.11), the energies of the β and γ bands can be written
as follows:

Eβ
J = 1

Pβ
J

[
A1Sβ

J + A3 Fβ
J

]
+ A2 J (J + 1), (6.3.15)

Eγ
J = A1

Sγ
J

Pγ
J

+ A2 J (J + 1), (6.3.16)

The polynomials P, S, F , in J (J + 1), are given in Appendix D. To these equations
we add the equations determining the excitation energies in the ground band:

Eg
J = 11A1

[
x − 2

2
+ √

G

]
+ A2 J (J + 1). (6.3.17)

In order to obtain a good agreement for β-band energies, for some cases, the use
of an additional term accompanied by the A4 or A5 parameter is necessary. For these
additional terms the following asymptotic relations are used:

〈φβ
J M |�†

β�2
β′ + h.c.|φβ

J M 〉 = 96d

5
√

70

(
x

2
− T 4,β

J

Pβ
J

)
,

〈φβ
J M |�†2

β′ �2
β′ |φβ

J M 〉 = 32

875

T 5,β

Pβ
J

, (6.3.18)

with the factors T n,β
J , with n = 4, 5, and Pβ

J defined in Appendix D.
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6.3.2 Reduced Probabilities for the E2 Transitions

Taking the asymptotic limit of the exact m.e. of the quadrupole operator, one obtains
very simple formulas for transition m.e. in the large deformation case. The asymptotic
expressions for the reduced m.e. of the harmonic quadrupole transition operator are
[RS83]:

〈φi
J ||Qh

2 ||φi
J ′ 〉 = 2dqhC J 2 J ′

Ki 0 Ki
, i = g,β, γ, Ki = −2δiγ, (6.3.19)

〈φγ
J ||Qh

2 ||φg
J ′ 〉 = √

2qhC J 2 J ′
−2 2 0, (6.3.20)

〈φβ
J ||Qh

2 ||φγ
J ′ 〉 = 2

3
√

19
qhC J 2 J ′

0 −2 −2, (6.3.21)

while the β and ground band states are connected by anharmonic part of Q2μ:

〈φβ
J ||Qanh

2 ||φg
J ′ 〉 = 2

√
7

19
qanhC J 2 J ′

0 0 0 . (6.3.22)

Note that in the asymptotic limit of the deformation parameter d, the projected
functions are similar to that of the liquid drop model in the strong coupling regime.
The Clebsch-Gordan factorization of the transition probabilities is known in literature
as Alaga’s rule [AL57]. Thus, we may say that our description of the deformed nuclei
is consistent with the Alaga’s rule.

As already mentioned before, the connection between the vibrational and rota-
tional spectra, within the CSM, is achieved according to the Sheline-Sakai scheme
[Sa76, Sh60]. This property is illustrated in Fig. 6.1 where the spectrum of N̂ , the
boson number operator, is represented as function of the deformation parameter d.
Note that in the vibrational limit the energy levels are equidistant, being multi-boson

Fig. 6.1 Excitation energies of ground, beta and gamma bands states are represented as function
of d, for the boson number operator N̂
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states, while in the rotational limit they have a J (J +1) like pattern. A special atten-
tion deserves the case of γ band. The degeneracies (3,4), (5,6), (7,8),…, etc. seen
in the limit of d → 0 transforms into a doublet structure once the deformation is
going apart from zero. This staggering order is changed into another one (2,3), (4,5),
(6,7),…, etc., in the regime of large deformation. The transition between the two
extreme nuclear phases, spherical and well deformed, crosses, unavoidably, a criti-
cal point. The specific features of this phase transition are suggested in Fig. 6.2 where
the deformation dependence of the intraband E2 transition probability is shown. It is
to be noticed that the intraband probability for the transition J → (J − 2) follows
more or less similar pattern, as a function of d , with the excitation energy functions.
The situation for the gamma band transitions (J + 1) → J is, however, different.
Indeed, the transitions between states which are degenerate in the vibrational limit
are vanishing in the beginning of interval then they split and increase with different
slopes, reach maximum values and then decrease continuously. On the ascendant
part the transitions to odd spins increase faster and therefore intersect the curves cor-
responding to the transitions to the next even spin levels. The curves crossings take
place for d about 1.5. Close to this deformation, all transitions undertake a maximal
value. The corresponding deformation may be interpreted as a critical value for the
phase transition from spherical to rotational regime. To conclude, the behavior of
the (J + 1) → J transitions in the γ band, can be considered as a signature of the
critical point characterizing the spherical-rotational phase transition.

Fig. 6.2 The normalized
B(E2) values characterizing
the intraband transitions
J → (J − 2) for ground (a),
β (b) and γ (d) bands. For γ
band the transitions
(J + 1) → J are also
considered (c)
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6.4 The Intrinsic Frame of Reference

Some virtues of the projected states, to describe certain specific properties of nuclear
systems, can be revealed by going to the intrinsic reference frame, obtained by a
rotation of Eulerian angle �0 from the laboratory frame. The intrinsic coordinates
are defined by rotating with the angle �0 the collective coordinates αμ, related to
the boson operators by Eq. (6.3.2):

aμ = R(�0)αμ R(�−1
0 ) = β

[
δμ,0 cos γ + sin γ√

2
(δμ,2 + δμ,−2)

]
,

R(�)am R(�−1) =
∑
m1

D2
m1m(�−1

0 ��0)am1 . (6.4.1)

As suggests the second equation of (6.4.1), the intrinsic coordinates are not compo-
nents of a tensor with a definite rank. Written in quadrupole coordinates, the equation
for the boson vacuum can be integrated with the result:

|0〉 = 2

(
2k5

3π1/2

)1/2

e− k2β2

2 . (6.4.2)

After elementary algebraic manipulations, the projected states (6.1.7) can be writ-
ten in terms of �0, and the dynamic quadrupole deformations β and γ:

φi
J M = N i

J

∑
K

D J∗
M K (�0)�

i
J K (d,β, γ)e− k2β2

2 , i = g,β, γ. (6.4.3)

The normalization factors are given by:

N i
J = K J N i

J (d), K J = (24)−
1
2 π− 9

4 k
5
2 (2J + 1)e−d2

, (6.4.4)

while the coefficients � have the expressions:

�
g
J K (d,β, γ) =

∫
D J∗

K 0(�)F(�, d, a)d�,

�
β
J K (d,β, γ) =

∫
D J∗

K 0(�)

[
T β

00(α) +
∑

m

D2
m0(�)T β

2,m(α)

]
F(�, d, a)d�,

�
γ
J K (d,β, γ) =

∑
m

∫
D J∗

K 2(�)D2
m2(�)T γ

2,m(α)F(�, d, a)d�,

F(�, d, a) = exp

[√
2kd

∑
m

D2
m′0(�)am′

]
. (6.4.5)
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The notations T β
0,0 and T β

2,0 stand for the scalar and second order tensor parts of the

operator �
†
β and depend only on the coordinates α. Similarly, a tensor term T γ , for

the γ band, is defined:

�
†
βψg =

[
T β

0,0(α) + T β
2,0(α)

]
exp(−d2 + √

2kdα0)|0〉,
�†

γψg = T γ
2,2(α)exp(−d2 + √

2kdα0)|0〉. (6.4.6)

The three Eulerian angles and the two deformation coordinates β and γ span the
manifold

S5 = [0, 2π] × [0,π] × [0, 2π] × [0,∞] × [0, 2π] (6.4.7)

The scalar product of two functions φi
J M and φi ′

J ′ M ′ defined on S5 is:

(φi
J M ,φi ′

J ′ M ′) = 1

24

∫

S5

φi∗
J Mφi ′

J ′ M ′d5τ ,

with d5τ = 3

4π2 | sin 3γ|β4dβdγ. (6.4.8)

In the regime of large d, the leading terms of φi
J M are those given in Eq. (6.3.1). The

ground state amplitude �
g
J K (d,β, γ) can be analytically evaluated:

�
g
J K (d, β, γ) = 4π3

[
�

( 1
2

)]2

[(J − K )!(J + K )!]1/2( J−K
2

)! ( J+K
2

)! (−)
J+K

2
∑

m,n,s

(−)s2
m+n

2 +s+13
m
2 +s(dkβ)m+n

×
(
m + s + K

2

)! (m + s − K
2

)! (m + s + J
2

)!(cos γ)n(sin γ)m

s!(n − s)! ( 2m+K
4

)! ( 2m−K
4

)! (m + s − J
2

)!(2m + 2s + J + 1)!
≡

∑
m,n

X J,K
m,n (dkβ)m+n(cos γ)m(sin γ)n, if K = even and 0 otherwise. (6.4.9)

Alternatively, this amplitude can be written as a series of d with the coefficients
depending on β and γ:

�
g
J K (d,β, γ)e− k2β2

2 =
∑

J≤J ′,J ′=even

C J
J ′K (−)

J ′−J
2 (6d2)J ′/4e

√
2dkβ cos γ f J ′K (β, γ),

(6.4.10)
where

C J
J ′K =

(
24π9/2

k5

)1/2
F(J + K )F(J − K )

F(J ′ + K )F(J ′ − K )

(
J+J ′

2

)
!

(J + J ′ + 1)!
[

(2J ′)!
(J ′/2)!

]1/2

,

F(m) = (m!)1/2

(m/2)! , m = even,
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f J K (β, γ) = π−1/4k5/22
J+3

2 3
J−2

4

[
(J − K )!(J + K )! ( J

2

)!
(2J )!

]1/2

e− k2β2

2

×(kβ)J/2
∑

v

(cos γ)
J−K

2 −2v
(

1
2
√

3
sin γ

) K
2 +2v

v! (v + K
2

)! ( J−K
2 − 2v

)! . (6.4.11)

As shown in Appendix F, the functions �
β
J K and �

γ
J K can be expressed as linear

combination of �
g
J K .

From Eqs. (6.4.3) and (6.4.10) one immediately finds:

lim
d→0

φ
g
J M = | J

2
,

J

2
, 0, J, M〉 =

∑
K

f J K (β, γ)D J∗
M K . (6.4.12)

Thus, for the highest seniority states one has been found a very compact formula, in
terms of intrinsic variables. As a matter of fact, this is a nice example showing how to
generate a basis sub-set from a coherent state. A full {|NvαJ M〉} basis was projected
in Ref. [GRC78], by using a coherent state with respect to b0 and b2 + b−2 boson
operators as generating function. In the quoted paper the corresponding coherence
parameters c0 and c2, multiplying the bosons b†

0 and b†
2 + b†

−2 respectively, are c-
numbers. In fact this feature of coherent states, to comprise any vector state of a
complete basis, is caused by their over-completeness property.

Using the analytical expression (6.4.9), one can easily prove the following sym-
metry relations for the ground band states amplitudes:

�
g
J K (d,β, γ) = �

g
J−K (d,β, γ),

�
g
J K (d,β,−γ) = (−)K/2�

g
J K (d,β, γ),

�
g
J K (−d,−β, γ) = �

g
J K (d,β, γ). (6.4.13)

From the results of Appendix F, one finds that �
β
J K satisfies the same symmetry

relations as �
g
J K . As for �

γ
J K , the only modified equation is:

�
γ
J K = (−)J �

γ
J−K . (6.4.14)

Making use of these symmetries, the projected states can be written in the form:

ϕi
J M = N i

J e− k2β2

2

∑
K≥0

�i
J K

(1 + δK 0)
(D J∗

M K + (−)J D J∗
J−K ), i = g,β, γ. (6.4.15)
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The wave functions in the intrinsic frame satisfy the following ortho-normalization
equation:

(N i
J )2

4(2J + 1)

∑
K

∫ (
�i

J K

)2
β4e−k2β2 | sin 3γ|dβdγ = 1,

∑
K

∫
�i

J K �i ′
J K β4e−k2β2 | sin 3γ|dβdγ = 0, if i �= i′. (6.4.16)

In order to use the projected states for a practical scope, one needs to know the matrix
elements of an arbitrary function of β and γ variable:

I i,i ′
J K ,J ′,K ′(a, b, c) = k5

∫
e−k2β2

�i
J K �i ′

J ′ K ′(kβ)a cosb γ sinc γ| sin 3γ|β4dβdγ, i, i ′

= g,β, γ. (6.4.17)

The analytical expression for this integral is given in Appendix F.

6.4.1 Useful Information Coming from the Intrinsic Frame

Here we present a comparison of the CSM predictions and the fully microscopic
model of Koppel et al. [KOP81]. In Ref. [KOP81], Koppel studied the Bohr-
Mottelson Hamiltonian with the potential energy and inertial parameters microscop-
ically calculated. First, one defines the single particle states by using, as a mean
field, the Woods Saxon potential with the Coulomb interaction included for pro-
tons. Then, the potential energy is calculated by including the Strutinski corrections
[STR68] due to the single particle motion. The parameters for the liquid drop model
are taken from the mass formula of Meyers-Swiatecki [MS67] amended by the cor-
rections introduced by Pauli and Ledergerber [PL71]. The gap parameter is taken
equal to 12A−1/2. The moments of inertia and the three mass parameters are deter-
mined by means of a cranking formalism which includes the pairing interaction. The
Schrodinger equation for the collective motion is solved by the procedure developed
by Kumar and Baranger [KB68]. This way one finds the energies and corresponding
eigenstates:

�αJ M (β, γ,�) =
∑

K≥0,even

AαJ K (β, γ)�J
M K (�),α = g,β, γ

�J
M K =

[
2J + 1

16π2(1 + δK ,0)

]1/2

{D J∗
M K (�) + (−)J D J∗

M−K (�)}.
(6.4.18)
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The probability for the component K to be realized is:

NK =
∫

|AαJ K |2dVβ,γ (6.4.19)

In Ref. [RKF83] one may find the amplitudes AαI K for the states 0+
g , 2+

γ , 0+
β , 10+

g ,

10+
γ , 10+

β plotted as function of the β and γ variables, respectively. For 190Pt, the
results corresponding to the first three mentioned states are given in Fig. 6.3, while
those of the last three, in Fig. 6.4. From the panel a) of Fig. 6.3, one sees that the
ground state γ probability has a flat maximum, for a non-vanishing value of β, which
practically does not depend on γ. The amplitude Aβ00 characterizing the state 0+

β ,
exhibits two maxima, one for prolate and one for oblate deformation. The same
structure has Aγ20, while Aγ22 has only one maximum at γ = 60◦. It is nice to
remark that this result is consistent with the CSM prediction for Pt region, saying
that the quadrupole moments for the states 2+

g and 2+
γ have opposite signs. The

K = 2 component for the state 2+
γ prevails, its probability being N2 = 0.652,

which is to be compared with N0 = 0.348 corresponding to the K = 0 amplitude.
In the high spin states (see Fig. 6.4), several K components are contributing with

Fig. 6.3 The K amplitudes, defined by Eq. (6.4.18) are plotted as function of the dynamic β and γ

variables for the states 0†
g(a), 0†

β (b) and 2†
γ (c) and (d)
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Fig. 6.4 The K amplitudes, defined by Eq. (6.4.19) are plotted as function of the dynamic γ variables
for the states 10†

g , K = 0 (upper left), 10†
g , K = 2 (upper right) 10†

β , K = 0 (middle left) and

K = 2 (middle right), 10†
γ , K = 0 (bottom left) and K = 2 (bottom right)

comparable weights. For example the state 10+
g consists mainly of three components

with K = 0 (N0 = 0.4847), K = 2 (N2 = 0.3714) and K = 4 (N4 = 0.104)
exhibiting maxima at γ equal to 0◦, 30◦ and 40◦.The state 10+

β has a dominant K = 0
component(N0 = 0.4818) and two small components with K = 2 (N2 = 0.1781)
and K = 4 (N4 = 0.0514). The dominant component has three maxima, one for
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γ = 0◦, which prevails over the other ones, one at 35◦ and the third one at 55◦. The
state 10+

γ has also three K-components with the weights N0 = 0.6284, N2 = 0.1178,
and N4 = 0.1279. The dominant component has two maxima at γ equal to 0◦ and
60◦. The K = 2 component has also two maxima at γ equal 15◦ and 45◦, while the
third component only one maximum at γ = 45◦.

Within the CSM, one defines the probability distributions for γ and β deformations
by the following equations:

f (i)
J (d, γ) =

∫
|φi

J M |2β4dβd�, i = g, γ,β,

g
(i)
J (kβ) = 1

32π2k5

∫
|φi

J M |2d�| sin 3γ|dγ. (6.4.20)

These functions are plotted in Fig. 6.5. In the case of gi
J (kβ), for a better presentation,

a scaling factor ki is used. In panel e) the function

Fi
J (kβ) = (kβ)4gi

J (kβ), (6.4.21)

is plotted versus kβ. If one denotes by

β2
0 = 〈ψg|β2|ψg〉, (6.4.22)

and then one evaluates the expectation value involved in the defining equation, one
arrives at:

(kβ0)
2 = 1

2
(4d2 + 5

2
). (6.4.23)

According to Ref. [RCGD82], for 190Pt d = 0.62 and consequently kβ0 = 1.5
which is, as shown in Fig. 6.5, just the value where the function Fg

J (kβ) reaches its
maximum. This feature allows us to interpret the value of beta where the functions Fi

J
achieve their maxima as the static deformation of the given nucleus, in the state φi

J .
In this respect, one may say that the deformation in ground state is smaller than that in
the state 2+

γ which at its turn, is smaller than that of 0+
β . Corroborating this result with

that earlier mentioned concerning the ordering relations of the quadrupole moments
in the unprojected states, one may say that, at least for these states, the projection
does not alter the ordering of quadrupole moments. The plot in panel a) of Fig. 6.5
shows an unstable structure for the ground state and a flat maximum at around 45◦
due to the admixture of the K �= 0 components for the state 10+

g . The state 0+
β

exhibits two equal maxima for γ = 0◦ and 60◦ respectively, which fully agrees with
what the generalized Bohr Mottelson model predicts. The plot for 10+

β shows two
lower maxima at γ = 15◦ and 50◦. This picture is similar to that for the K = 2
component of the state 10+

β . One notices that 2+
γ has a broad but not high maximum,

centered at about 30◦. This structure is specific to a triaxial rotor state. The bright of
the γ distribution function may reclaim the importance of the kinetic energy in the γ
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(a)

(d) (e)

(b) (c)

Fig. 6.5 The γ probability is plotted for low and high angular momenta in ground (a), β (b) and
γ (c) bands. The probability distribution for the β variable is presented in the panels (e). The same
function as in (e) multiplied with the factor β4 which enter the definition of the measure in the β
space, is plotted in panel (d)

vibrational state. Such a soft maximum appears also in the K = 0 amplitude of the
microscopic formalism described before, which keeps the picture close to the gamma
unstable situation. Indeed, for γ unstable model the K = 0 component is just cos 2γ
which produces a prolate maximum while the K = 2 component is proportional to
sin 2γ which has a maximum at 45◦. Within the CSM, the γ distribution function
associated to the state 10+

γ has two equal maxima, one for γ close to 0◦ and one
close to 60◦. This behavior is identical with that shown by the plot of Aγ,10,0 in Ref.
[RKF83] (Fig. 6.6).



6.4 The Intrinsic Frame of Reference 203

Fig. 6.6 The ground left,
gamma right and beta middle
band energies predicted by
CSM in 232Th are compared
with experimental data. The
structure coefficients and the
deformation parameters,
fitted as explained in the text,
are given in the figure legend

In conclusion, for low spin the model states for gamma band used by CSM have
a γ asymmetric structure. Moreover, due to the fact that the energies in the ground
and gamma bands are obtained by diagonalizing a 2/2 matrix, it is expected that
such a γ asymmetric structure is met for both eigenstates of the model Hamiltonian.
This explains why the CSM formalism is able to describe the data for the triaxial
like nuclei. According to the comparison performed before, the CSM predictions for
190Pt are in full agreement with those obtained microscopically in Ref. [KOP81].
This confirms once more that the choice for the three vector states, modeling the
ground beta and gamma bands, is the appropriate one (Figs. 6.7 and 6.8).

6.5 Some Numerical Applications

6.5.1 Energies

The CSM formalism was applied, in Refs. [RPB03, RASA86, RS83, RSS84,
MRF98], to several even-even nuclei: 188−194Pt, 188−192Os, 194,196Hg, 156,162Dy,
150−160Gd, 228,232Th, 126Xe and 130Ba. Among these, one finds nuclei satisfying one
of the three symmetries mentioned above, i.e., O(6), SU(5) and SU(3). From each of
these sets, we chose a representative which is shown graphically. Thus, in Figs. 6.6,
6.7, 6.8 and 6.9 we compare the calculated and experimental energies for ground,
beta and gamma bands for 232Th(SU(3)), 156Dy(SU(5)), 162Dy(O(6)), 192Pt(O(6)).
We also present the situation of the O(6) nuclei 126Xe and 130Ba (Figs. 6.10 and
6.11), which seem to exhibit the characteristics of a triaxial rotor. Another triaxial
rotor considered [MRF98] is 228Th (Figs. 6.12 and 6.13). The arguments supporting
this label consist in the following: The static values for the γ deformation estimated
within the triaxial rotation-vibration model (TRVM) are about 25◦ for 126Xe and
130Ba and 13◦ for 228Th [MRF98]. It is well known that the triaxial rotor predicts
that the sum of the energies for the first two states 2+ is equal to the energy of the
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Fig. 6.7 The same as in Fig. 6.6 but for 156Dy

Fig. 6.8 The same as in Fig. 6.6 but for 162Dy

first 3+ state.The differences for the two quantities, which should be equal to each
other in the rotor picture, are 2, 47 and 95 keV for 228Th, 126Xe and 130Ba, respec-
tively. The deviation from the rotor picture for the Xe and Ba isotopes, reflects an
additional interaction of ground and gamma bands. Note that in the quoted figures
for the triaxial nuclei the β states energies are not given. The reason is that only
very few beta state energies are available, one or two. Moreover the coefficient A3
was fixed such that the calculated energy of the heading state and the corresponding
experimental value are equal.

The energies for the beta band and those for the odd-J states of gamma band
are obtained as expectation values of the model Hamiltonian on the corresponding
model states. The energies of the ground band states as well as of gamma band
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Fig. 6.9 The ground left,
gamma middle and beta right
band energies predicted by
CSM in 192Pt, are compared
with experimental data. The
structure coefficients and the
deformation parameters,
fitted as explained in the text,
are given in the figure legend

Fig. 6.10 The experimental
(exp.) and the CSM predicted
excitation energies for 126Xe
are represented in units of
keV for g.s. and γ bands

states with even angular momentum, were obtained by diagonalizing, for each J, a
2 × 2 matrix. The results depend on the structure coefficients Ai (i = 1, 2, . . . , 5),
and the deformation parameter d. For most nuclei, especially for the well deformed
ones, only three structure coefficients (A1, A2 and A3) are needed to obtain a good
description of the data. These parameters were fixed in the following manner. For
a given d the parameters Ai are fixed by fitting the energies of the lowest states in
ground, beta and gamma bands. The parameter d is fixed so that an overall agreement
in the three bands is obtained. Since the parameters A3, A4, A5 affect only the beta
band energies, they were fixed by fitting some energy levels from the beta bands. As
a matter of fact, this confers the model certain flexibility in describing the detailed
features of the beta band. Due to this aspect, in Ref. [RPB03] it was attempted to
attribute the non-yrast states J+, with J ≥ 12 and even, to the beta band. As we
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Fig. 6.11 The same as in
Fig. 6.10 but for 130Ba

Fig. 6.12 The experimental
(exp.), the triaxial rotation
vibration model (TRVM) and
the CSM predicted energies
for 228Th, are represented in
keV for the ground band

shall see in the next section a better description for these states is obtained when
the coupling to the quasiparticle degrees of freedom is taken into account. In Ref.
[RS83], one reported on the case of 232Th where a least square procedure was used to
get the best fit of the available data. In the ground band, states with very high angular
momentum, up to 30+, were included and the agreement with the experimental data
was within a deviation of 20 keV in gamma band and 8 keV in ground and beta
bands.

A common feature for spherical-deformed transitional nuclei is the staggering of
some levels of gamma band: (3+, 4+), (5+, 6+), etc. In the framework of CSM these
doublets originate from the fact that in the vibrational limit the doublet components
are degenerate. The spacing of doublet levels is underestimated by CSM in Pt isotopes
and overestimated in 126Xe and 130Ba. According to the above comment, this suggests
that the chosen value for the deformation parameter d is smaller for Pt and larger
for Xe and Ba, than it should be. It is well known that the deformation status of
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Fig. 6.13 The same as in
Fig. 6.12 but for the γ band

a nuclear system depends on the extent to which the open shell is filled up. Thus,
in the isotopic chain of Gd, 4 isotopes (152−156Gd) have a gamma stable structure
while the remaining ones (150,158,160Gd) are of gamma unstable type [RF05]. One
notices that the crossing of gamma and beta bands takes place gradually, i.e. not
all the states from the two bands cross each other respectively, for the same neutron
number. Indeed, in 150Gd, E2+

β
> E2+

γ
while in 152,154Gd this is reversed and become

again valid for the heaviest two isotopes. As for the level 4+, in the two bands for
the first three isotopes 4+

β is lower than 4+
γ , while for the last three isotopes in the

chain, the ordering is opposite. Of course, these level crossings are reflected in the
inter-band transition probabilities connecting the two bands.

6.5.2 Electric Transition Probabilities

Description of intra- as well as of inter-band transition probabilities is a decisive test
for any nuclear structure model. The reason is that these quantities are very sensitive
to the detail structure of the wave functions. Therefore a viability certificate for CSM
is given by the quality of the transition probability description.

From the many applications performed on this issue we selected those for 190Pt,
192Pt, 154Gd, 126Xe, 130Ba, 228Th which are representatives for gamma unstable,
gamma stable and triaxial rotors behaving nuclei, respectively. The results for the
three sets of isotopes are collected in Tables 6.1, 6.2 and 6.3, respectively. For gamma
unstable and triaxial rotor nuclei a transition operator involving the harmonic (q0)
and the boson number non-conserving (q2) terms (see Eq. (6.1.13)) is considered,
while for Gd isotope the full three parameter formula has been used.

We note that a reasonable agreement with the experimental data is obtained by
fixing the ratio q2/q0 so that a particular branching ratio, specified in Table 6.1, is
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Table 6.1 Experimental and predicted values for some BE2 value ratios are given
B(E2;I→I ′)
B(E2;J→J ′) 102 190Pt 192Pt

Exp. Th. Exp. Th.

q2/q0 = 0.44 q2 = 0 d→0 q2/q0 = 0.44 q2 = 0 d→0

2+
γ →0+

g

2+
γ →2+

g
1.24 0.86 0.19 0 0.51 0.88 0.78 0

3+
γ →2+

g

3+
γ →2+

γ
1.8 1.8a 0.035 0 0.76 0.34 0.21 0

3+
γ →4+

g

3+
γ →2+

γ
49 36.2 30.2 40 26 25 24 40

0+
β →2+

g

0+
β →2+

γ
11 13.7 2.4 4.5 3.8 3.8a 2.2 4.5

2+
β →0+

g

2+
β →0+

β

0.2 0.05 0 0 0.022 0.0015 0 0

2+
β →4+

g

2+
β →0+

β

4.2 4.69 1.2 5.7 ≤2.8 2.5 1.04 5.7

Data are taken from Ref. [FING72]. The vibrational limit (d → 0) corresponds to the harmonic
expression of the transition operator except for the transitions between beta and ground band states
where the anharmonic component was used. The columns two and three correspond to the defor-
mation d fitted from energy analysis, i.e. 0.6 for 190Pt and 0.8 for 192Pt. The two parameters version
(q1 = 0) of the transition operator was used
a Indicates the data which are fitted by fixing the ratio q2/q0

reproduced. One notices that the ratio (2+
β → 4+

g )/(2+
β → 0+

β ) is very sensitive to
changing the strength of the anharmonic part of the transition operator. It is worth
mentioning that the “large” ratios listed in Table 6.1 are fairly well described even at
the level of vibrational limit. By comparing the results of column two and columns
three and four, one may distinguish between the contribution due to the deformation
and the anharmonic transition operator which, as a matter of fact, are forbidden within
the vibrational approach. We calculated also the in-band transitions. Thus, the ratio
B(E2; 4+

g → 2+
g )/B(E2; 2+

g → 0+
g ) for 192Pt is 1.95 in the present calculation,

while the IBA gives 10/7 for the limit of an infinite number of d- and s-bosons. This
is to be compared with the experimental value 1.7. The IBA value is reached by the
asymptotic value of this ratio expressed immediately by means of Eq. (6.2.28).

Considering only energies and B(E2) ratios the CSM is invariant to the transfor-
mation

d → −d, A4 → −A4, q2 → −q2. (6.5.1)

Due to this feature, the sign of d and hence the sign of Q(2+
g ) is not determined.

We, arbitrarily, take d to be positive which results in having a negative value for the
quadrupole moments of the 2+

g in 190,192Pt. However, the relative signs predicted by
CSM for the states 2+

g , 4+
g and 2+

γ in the two nuclei mentioned above were observed
experimentally [Bak] for the isotope 194Pt.
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Table 6.2 Branching ratios for gamma and beta bands of 154Gd, predicted by the CSM, are com-
pared with the experimental data taken from [GHK83]

154Gd 154Gd

Exp. Th. Exp. Th.

q0 = 38.337 q0 = 16.965 q0 = 38.337 q0 = 16.965

q1 = 0 q1 = 51.54 q1 = 0 q1 = 51.54

q2 = 0 q2 = 7.699 q2 = 0 q2 = 7.699

2+
γ →0+

g

2+
γ →2+

g
0.468 0.509 0.500

2+
β →0+

g

2+
β →2+

g
0.123 0.0 0.555

2+
γ →4+

g

2+
γ →2+

g
0.144 0.087 0.120

2+
β →4+

g

2+
β →2+

g
2.76 13.234 2.192

3+
γ →2+

g

3+
γ →4+

g
1.006 1.302 1.117

4+
β →2+

g

4+
β →4+

g
0.086 0.0012 0.603

4+
γ →2+

g

4+
γ →4+

g
0.148 0.159 0.154

4+
β →6+

g

4+
β →4+

g
2.63 2.561 1.934

4+
γ →6+

g

4+
γ →4+

g
0.27 0.185 0.344

6+
β →4+

g

6+
β →6+

g
0.08 0.007 0.467

5+
γ →4+

g

5+
γ →6+

g
0.744 0.66 0.503

2+
β →0+

g

2+
β →0+

β

0.008 0.0 0.0019

6+
γ →4+

g

6+
γ →6+

g
0.081 0.081 0.073

4+
β →2+

g

4+
β →2+

β

0.0026 0.0 0.0014

2+
γ →2+

β

2+
γ →0+

β

2.5 1.212 0.874
6+
β →4+

g

6+
β →4+

β

0.0024 0.0 0.0011

2+
γ →0+

β

2+
γ →0+

g
0.4 1.193 1.802

8+
β →6+

g

8+
β →6+

β

0.006 0.0 0.0008

2+
γ →2+

β

2+
γ →2+

g
1.00 0.737 0.788

10+
β →8+

g

10+
β →8+

β

0.010 0.0 0.0016

The parameters q involved in the transition operator are given in units of e. f m2

For 154Gd we considered alternatively a harmonic and a three parameter transition
operator. The three parameters were obtained by fitting the B(E2) values for the
transitions 2+

g → 0+
g , 2+

γ → 0+
g and 2+

γ → 2+
g .

As seen in Table 6.2, the branching ratios are reasonably well described. We also
calculated the in-band B(E2) values. The calculated reduced probabilities for the E2
transitions J+

i → (J − 2)+i are very close to the experimental values. Concerning
the inter-band transitions, good description is obtained for gamma to ground band
transitions and J+

β → (J − 2)+g . However, large discrepancies are obtained for the

transitions J+
β → (J + 2)+g and J+

β → J+
g although their relative values are well

described. Similar discrepancies for these transitions are obtained also with the IBA
formalism, as shown by Girit et al. [GHK83]. In this reference the reported ratios
(2+

γ → 0+
β )/(2+

γ → 0+
g ) and (2+

γ → 2+
β )/(2+

γ → 2+
g ) are unreasonably large which

in fact conflicts the band structure for the gamma band.
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Trying to correct the discrepancies mentioned above, a new version for the CSM
was formulated in Ref. [RASA86], where a two boson excitation of the coherent state
is chosen as generating function for the beta band. The new CSM, called CSM2, is
able to describe not only the branching ratios but also the absolute B(E2) values for
the inter-band beta to ground and gamma to beta transitions. It is still an open question
whether the CSM itself is able to remove the advertised discrepancy by choosing a
more appropriate anharmonic term in the expression of the transition operator.

Now let us turn our attention to the triaxial rotor like nuclei. Generally speaking,
such nuclei are not easy to be described since K is no longer a good quantum number.
However, within the CSM, K is not a good quantum number anyway, the question
is whether the superposition of the K-components is the appropriate one to simulate
the data. As seen in Table 6.3, this seems to be the case provided by CSM.

The question is why this simple model can account for such a big amount of
features. The answer to this question is readily obtained if we look carefully at the
wave function structure in the intrinsic frame of reference.

Results presented in this section were obtained by using the exact matrix elements
involved in energy and transition probability calculations. In the following section
we shall discuss the results obtained with approximate formulas for energies and
reduced transition matrix elements.

6.6 Applications of Compact Formulas

The analytical expressions for energies and transition probabilities presented in the
previous sections were applied to 42 nuclei from which 18 are considered to be
near vibrational while 24 are well deformed. The results are compared with the data
available for both energies and reduced transition probabilities. We divide this section
into two parts one devoted to energies and one to e.m. transitions. The reason is that
we aim at pointing out the change in the spectrum structure and separately in the
behavior of the transition probabilities when one passes from a near vibrational to a
deformed regime.

6.6.1 Energies

Energies for near vibrational nuclei were calculated with Eqs. (6.2.10–6.2.13). The
parameters involved were calculated by a least square procedure. The results are
listed in Table 6.4. Therein we also give the root mean square for the deviations of
the calculated excitation energies from the corresponding experimental data, denoted
by χ, the total number of states in the three bands, the ratio E4+

1
/E2+

1
and the nuclear

deformation β2. The said ratio indicates how far we are from the vibrational limit
which is 2. Another measure of this departure is of course the deformation parameter
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d. For nuclei close to a spherical shape, d is under-unity, while for a transitional
nucleus d may become larger than unity. Since the energies are power series of
x(=d2) it is necessary to comment on the convergence of such series. A detailed
study of this issue was presented in Ref. [RBF10], where it was shown that the
convergence radius of the series associated to the overlap integral I (0)

J is larger than
unity. As a matter of fact this property allows us to consider the nuclei in Table 6.4 with
d larger than unity but smaller than the convergence radius found in Ref. [RBF10]
as belonging to the class of near vibrational isotopes (Figs. 6.6, 6.10, 6.11, 6.12 and
6.13).

Excitation energies in ground, beta and gamma bands are presented in Figs. 6.14,
6.15 and 6.16 as function of angular momentum. The case of 152Gd is included in
Fig. 6.15 where the other even isotopes of Gd are presented. In Fig. 6.14 we notice
that for 188,190,192Os, 190,194,196Pt and 186Hg the three bands are well separated and
evolve almost parallel with each other. All the said nuclei are gamma unstable since
the band gamma is less excited than the band beta. In 102Pd and 126Xe the excited
bands cross each other and they become gamma stable after the crossing point. In
182Pt and 186Pt the excited bands are close to each other, this feature being associated
with the SU (3) symmetry. We notice that in 154Dy the excited bands and ground
band are close to each other, which reflects the existence of a very flat potential in
the β and the γ variables. A peculiar structure of the three bands is seen for 186Hg
where the beta band crosses the ground band becoming yrast state from J = 4. As
shown in Fig. 6.15, 152Gd is a gamma stable nucleus. The results concerning the
fitted parameters for the well deformed nuclei are given in Tables 6.4, 6.5 and 6.6.
Results for Gd isotopes are given separately in Table 6.5 and Fig. 6.15. Except for
154Gd, which seems to be the critical nucleus in the phase transition from SU(5)
to SU(3) symmetry [RF05], all isotopes from Table 6.5 are characterized by values
of d close to the rotational limit which is 3.3. In Fig. 6.15 one sees that the first
three isotopes exhibit the features of a gamma stable nucleus, while the heaviest two
isotopes are gamma unstable nuclei. In 158Gd, the excited bands have the states of
even angular momentum degenerate, which results in exhibiting a SU(3) symmetry.
For high odd angular momenta in gamma band of 154Gd and 156Gd the moment of
inertia becomes different from that of even angular momentum states. This is caused
by the series truncation, which does not assures the expansion convergence in this
particular region of J .

Fitted parameters for some transuranic nuclei are given in Table 6.6, while the
calculated energies are compared with the available corresponding data in Fig. 6.16.
Except for 228,230Th, which exhibit a triaxial shape [RBUG11], the listed nuclei have
a ratio E4+

1
/E2+

1
close to the rotational limit. In Table 6.6 one noticess the accuracy for

the theoretical description. Except for 128Th,232U and 240Pu, where the two excited
bands are only slightly split apart, for other nuclei the excited bands relative position
reclaim on ideal SU(3) symmetry.

In Table 6.7 the fitted parameters for some deformed rare earth nuclei are pre-
sented. The energy ratios of the ground band states 4+ and 2+ ranges from 2.9 to
3.3. The lowest values 2.929, 3.009, 3.022 suggest that the nuclei to which they are
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Fig. 6.14 Energy spectra of ground, γ and β bands described by means of vibrational formulas
for nuclei belonging to different nuclear phases. Open symbols denote uncertain or with possible
band assignment experimental points, which were not taken into account in the fitting procedure.
Experimental data are taken from [FJ98, KK02, RH98, S02, S03, BAG98, SiFi95, BAG03, BS96,
CGT88]

assigned 150Nd, 152Sm and 178Os, satisfy the X(5) symmetry. Four nuclei, 176Hf,
182,186W and 186Os, have the signature of triaxial nuclei. The remaining nuclei have
the above mentioned ratio close to 3.3, i.e. they belong to the rotational behaving
nuclei. The plots in Fig. 6.17 show that for some nuclei like 152Sm, 172Yb and 186W,
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Fig. 6.15 The isotopic chain of Gd. First nucleus is treated like a near vibrational one, later ones
are deformed nuclei described by means of asymptotic regime formulas with 4 parameters. Open
symbols denote uncertain or with possible band assignment experimental points, which were not
taken into account in the fitting procedure. Experimental data are taken from [Art96, RH98, Rei03,
Hel04, Rei96, HR99]

the excited bands do not intersect each other. In 162Dy the intersection is associated
to the transition from the gamma unstable to the gamma stable behavior, while in
150Nd the transition is, by contrary, from gamma stable to gamma unstable regime.
For describing the complex structure of the three bands the five parameters formulas
are used. Exception is for 164Dy where the set of three parameters formulas is used.
The reduced number of the necessary parameters is explained by the fact that here
the beta band is missing (Table 6.7).

In Fig. 6.18, where the parameter d is plotted vs the quadrupole deformation, we
see that results corresponding to the three classes of nuclei distinguished by the ratio
E4+/E2+ , are grouped around three straight lines, respectively.

6.6.2 E2 Transition Probabilities

For each considered nucleus the two parameters defining the quadrupole transition
operator were determined by a least square fit of the experimental available data. As
mentioned before, for the near vibrational limit the matrix elements of the transition
operator Q2μ were expanded as a power series of d from which we kept the terms
non-depending on d and the next leading order terms which are in most cases linear
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Fig. 6.16 Energy spectra of ground, γ and β bands described by means of asymptotic formulas with
4 parameters for SU (3) nuclei from transuranic region. 228Th and 230Th are possible candidates
for triaxial nuclei. Open symbols denote uncertain or with possible band assignment experimental
points, which were not taken into account in the fitting procedure. Experimental data are taken form
[ART97, GRO98, AKO93, Schm91, AKO94, Sch91, CH02, ChSi04, Akov02, Akov99]
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Table 6.5 The same as in Table 6.4 but for the Gd isotopic chain

Nucleus E4+/E2+ d A1 (keV) A2 (keV) A3 (keV) χ (keV) Number
of states

154Gd [RH98] 3.015 2.72583 18.68743 5.43251 −18.89754 38.51726 25
156Gd [Rei03] 3.239 3.08725 22.03879 3.84937 −15.81253 31.48198 35
158Gd [HR99] 3.288 3.30765 21.45168 4.67653 −10.95906 10.07559 15
160Gd [Rei96] 3.302 3.31382 17.40521 5.69801 −1.72684 7.01074 19
162Gd [Hel04] 3.291 3.28976 15.19002 5.83600 2.43502 1.04853 11

in d . All matrix elements needed for describing the experimental situation were ana-
lytically expressed. The B(E2) values are obtained by squaring the reduced matrix
elements obtained as explained before. For near vibrational nuclei the results are
collected in Tables 6.8, 6.9, 6.10 and 6.11 where, for comparison, the corresponding
experimental data are listed. We note that the limit d → 0 provides similar results
as the linear expansion in d for the transition operator. However, there are transi-
tions which are forbidden in the vibrational limit but are described quantitatively
well by the linear expansion of Q2μ. We notice that, for the branching ratios given
in Table 6.11, the results provided by the vibrational limit are in better agreement
with the experimental data than those corresponding to a linear expansion of the
transition operator. Moreover, some of the theoretical branching ratios are parameter
independent. The agreement between the vibrational limit results and experimental
data is especially good for 190Pt which is considered to satisfy the O(6) symmetry.

The B(E2) values for the well deformed nuclei considered here, have been calcu-
lated using the asymptotic expressions for the matrix elements given by Eqs. (6.3.21)
and (6.3.22). The results are listed in Tables 6.12, 6.13, 6.14 and 6.15. As seen in
these tables, a very good agreement between the results of calculations and the cor-
responding experimental data is obtained. A special mention is deserved by 156Gd,
158Gd, 152Sm and 232Th where 25, 23, 22 and 20 B(E2) values are available respec-
tively, and an excellent agreement is obtained. Also for 172Yb, 182W and 186Os, 17,
18 and 17 transitions respectively, are known and all of them are nicely described by
the CSM formalism.

It is worth mentioning that the list of nuclei considered here includes isotopes
of various “nuclear phases” with specific symmetries like gamma stable, gamma
unstable, triaxial shape, deformed axial symmetric nuclei showing a SU(3) symmetry,
and the critical nuclei satisfying the symmetries E(5) (102Pd) and X (5) (152Sm,
154Gd) respectively. In the isotopic chain of 152−162Gd, two phase transitions take
place namely from SU(5) to SU(3) with the critical nucleus 154Gd and from SU(3)
to O(6), i.e. to a gamma unstable shape, the critical nucleus being 160Gd [RF05].
The properties of all these nuclei can be described fairly well by CSM. Since the
analytical formulas employed in this section are easy to handle and moreover they
are positively tested, the results presented above recommend the CSM as a powerful
and realistic nuclear model.
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Fig. 6.17 Energy spectra of ground, γ and β bands described by means of asymptotic formulas
with 5 parameters for strongly deformed nuclei from the rare earth region. Open symbols denote
uncertain experimental points or probable band assignment, and were not taken into account in
the fitting procedure. Experimental data are taken from [SiFi95, BAG03, MATU95, Art96, HR99,
SI01, SHU92, SI95, BRJU99, BRJU98, BR94]
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Table 6.12 B(E2) transition probabilities in the asymptotic limit for deformed Gd nuclei

B(E2) tr. prob 154Gd 156Gd 158Gd 160Gd

Jπ
i → Jπ

f Exp. Th. Exp. Th. Exp. Th. Exp. Th.

2+
g → 0+

g 157 161.4021 187 181.9295 198 200.4643 201.2 200.5707

4+
g → 2+

g 245 230.5744 263 259.8993 289 286.3776

6+
g → 4+

g 285 253.9543 295 286.2527

8+
g → 6+

g [312] 265.8387 320 299.6486 [330] 330.1765

10+
g → 8+

g 314 307.7755 340 339.1314

12+
g → 10+

g 300 313.2351 [310] 345.1473

2+
β → 0+

β 97 161.4021 [52] 181.9295

4+
β → 2+

β 280 259.8993 [455] 286.3776

4+
γ → 2+

γ [113] 119.3240

5+
γ → 3+

γ 100+3
−1 173.6600

0+
β → 2+

g 52 46.2919 8 7.4675 1.1652 2.2242

2+
β → 0+

g 0.86 9.2584 0.63 1.4935 0.31 0.4448

2+
β → 2+

g 6.7 13.2263 3.3 2.1336 0.079 0.6355

2+
β → 4+

g 19.6 23.8073 4.1 3.8404 1.39 1.1439

4+
β → 2+

g 1.3 2.1336 1.32 0.6355

4+
β → 4+

g 0.37 0.5777

4+
β → 6+

g 2.1 3.3943 3.16 1.0110

2+
γ → 0+

g 5.7 10.8613 4.68 9.5440 3.4 9.1615 3.80 9.1323

2+
γ → 2+

g 12.3 15.5162 7.24 13.6343 6.0 13.0879 7.1 13.0461

2+
γ → 4+

g 1.72 0.7758 0.77 0.6817 (0.27) 0.6544 0.72 0.6523

3+
γ → 2+

g 7.3 17.0428 3.5 16.3599

3+
γ → 4+

g 5.1 6.8171 1.77 6.5439

4+
γ → 2+

g 1.8 5.6809 1.13 5.4533

4+
γ → 4+

g 10 16.7329 7.31 16.0624

4+
γ → 6+

g [0.949] 1.3881

5+
γ → 4+

g 8+16
−8 15.1836

5+
γ → 6+

g 11+23
−11 8.6763

2+
γ → 0+

β [1.21] 0.1270

4+
γ → 2+

β [4.3] 0.0664

4+
β → 2+

γ [12.8] 0.0043

d 2.72583 3.08725 3.30765 3.31382

qh [(W.u.)
1
2 ] 5.21088 4.88466 4.78579 4.77815

qanh [(W.u.)
1
2 ] 5.60468 2.25107 1.22853 0

Values in square brackets were not taken into account for the fitting procedure. Experimental data
are taken from [Art96, RH98, Rei03, Hel04, Rei96, HR99]
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Fig. 6.18 The deformation parameter d as function of the nuclear deformation β2 taken from Ref.
[LRR99]

6.6.3 Conclusions

In Sect. 6.6 we considered the CSM approach for two extremes of small and large
deformations, respectively. Thus, the matrix elements of the model Hamiltonian
as well as of the E2 transition operator between the angular momentum projected
states modeling the members of the ground, beta and gamma bands, are alternatively
expanded in power series of x(=d2) and 1/x . As a result the excitation energies
in the three bands are expressed analytically as ratios of polynomials in x and 1/x
respectively, with the coefficients depending on angular momentum. Concerning the
matrix elements of the E2 transition operator, for small deformation they are, with
a few exceptions, linear functions in d , the expansion coefficients being rational
functions of the angular momentum. In the large deformation regime the whole
angular dependence of the mentioned matrix elements is contained by a Clebsch
Gordan coefficient which is accompanied by a factor depending on d for intraband
and independent of deformation for interband transitions.

This simple description was used to describe the available data for 42 nuclei
exhibiting various symmetries like SU(5), O(6), SU(3), triaxial shapes. The results
are in good agreement with the corresponding experimental data for both excita-
tion energies for the three bands and the transition probabilities. Note that for all
symmetries mentioned above we use a sole Hamiltonian and a sole set of projected
states. The distinct features of each symmetry are obtained by a specific deformation
parameter and structure coefficients. Changing the nucleus under consideration, the
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Table 6.13 B(E2) transition probabilities in the asymptotic limit for few deformed transuranic
nuclei which have absolute experimental values also for inter-band transitions

B(E2) tr. prob 230Th 238U 238Pu

Jπ
i → Jπ

f Exp. Th. Exp. Th. Exp. Th. Exp. Th.

2+
g → 0+

g 192 185.3438 198 223.2176 281 280.2843 285 285

4+
g → 2+

g 261 264.7768 286 318.8822

6+
g → 4+

g 327 351.2164

8+
g → 6+

g 343 367.6524 [404+67
−47] 400.4061

10+
g → 8+

g 361 377.6237 [480+61
−48] 474.1651

12+
g → 10+

g 370 384.3224 [500] 482.5765

14+
g → 12+

g 390 389.1341 [491] 488.6182

16+
g → 14+

g 390 392.7582

18+
g → 16+

g 440 395.5863 [480] 496.7200

20+
g → 18+

g 360 397.8550 [460] 499.5687

22+
g → 20+

g 420 399.7152 [490] 501.9044

24+
g → 22+

g 240 401.2682

26+
g → 24+

g 350 402.5844

28+
g → 26+

g 705 403.7141

2+
β → 0+

g [1.1] 1.1223 2.3 1.0374 [0.38] 0.7 [3.9] 1.5595

2+
β → 2+

g ≈0 1.4820 1.0 1.0

2+
β → 4+

g [3.8] 2.8859 [≈3.] 2.6676 [3.3] 1.8 [3.1] 4.0102

2+
γ → 0+

g 3.0 8.9506 3.0 9.8088 3.04 10.0168

2+
γ → 2+

g 5.4 12.7866 7.1 14.0126 5.3 14.3097

2+
γ → 4+

g [0.35] 0.6393 ≈0 0.7006 0.33 0.7155

d 3.21904 3.37319 3.74042 3.96825

qh [(W.u.)
1
2 ] 4.73039 4.95197 5.00419 4.75640

qanh [(W.u.)
1
2 ] 1.95136 2.25107 1.54111 2.30027

Values in square brackets were not taken into account for the fitting procedure. Only for 230Th and
238Pu the uncertain β-ground transition probabilities were used in order to fix the qanh parameter.
Experimental data are taken from [AKO93, Schm91, CH02]

coefficients are not changing chaotically but they obey a certain rule expressed by
their dependence on A + (N − Z)/2 (see Ref. [RB14]). In fact this is a measure of
the predictability power of the CSM approach. As shown for the Gd isotopes, CSM
describes not only the nuclei corresponding to a certain symmetry but also those
corresponding to the transition between them including the critical nucleus.

Comparing CSM with the Liquid Drop Model (LDM), one may say that CSM
is a highly anharmonic model while LDM has a harmonic structure. However, as
mentioned before, in the large deformation situation the CSM wave functions are
similar to those characterizing LDM in the strong coupling limit. Another successful
anharmonic model was proposed by Gneus and Greiner but that uses a large number
of parameters and moreover the quadrupole conjugate momenta contribute to the
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Hamiltonian only through the quadratic terms. Moreover, energies are obtained by
diagonalization procedure in a spherical basis which may encounter convergence
difficulties for large deformations. By contrast, the CSM projects states of good
angular momentum from a coherent state and two orthogonal polynomial excitations
and consequently it is especially realistic for the well deformed nuclei. This feature
is actually confirmed by the application shown in the last two sections were the
transuranic nuclei spectra are obtained with high accuracy.

CSM accounts for features which are complementary to those described by IBA.
Indeed, CSM’s Hamiltonian is not a boson number conserving Hamiltonian. More-
over, while IBA uses a space of states with limited number of bosons, CSM states
covers the whole boson space since they are projected from infinite series of bosons.
Due to this feature the IBA approach is concerned with the description of low lying
states with angular momentum not exceeding 12+ and with a moderate deformation.
By contrast, CSM works quite well for high spin states (in Figs. 6.14 and 6.16 ener-
gies for states with J ≤ 32 are shown). CSM was applied for the description of the
triaxial nuclei [MRF98] and the results were compared with those obtained within
the Vibration Rotation Model [FaGr62]. Recently, a more extensive study of triaxial
nuclei with CSM has been performed [RBUG11] and the results were compared with
those produced by a solvable model.



Chapter 7
Pear Shaped Nuclei

7.1 CSM Extension for Pear Shaped Nuclei

The field of negative parity states is of about the same age as the one dealing with
the positive parity states. The pioneering papers in this domain appeared already
in the beginning of the fifties [ASP53, SAP55] of the last century and were based
on high resolution alpha spectroscopy measurements. The states were identified as
1−, 3−, 5− through angular correlations and conversion coefficients analysis, as well
as by measuring the E1 branching ratio for the first state to 0+ and 2+.

The interest in the field of negative parity states increased considerably when first
suggestions for octupole deformed nuclei appeared. Indeed, in Refs. [CH79, CH80]
Chassman predicted parity doublets for several odd mass isotopes of Ac, Th and
Pa. About the same time Moller and Nix [MN81] suggested that some even-even
isotopes of Ra might have an octupole deformed ground band. Their calculations
showed that the binding energy of these nuclei gains about 2MeV, when an octupole
deformation term is included in the mean field.

The nuclear surface exhibiting both quadrupole and octupole static deformation
has the equation

R(�) = R0(1 + β2Y20 + β3Y30), (7.1.1)

and looks as shown in Fig. 7.1.
The difficulty in the experimental study of pear shaped nuclei, is amissing observ-

able whichmight be interpreted as ameasure for the octupole deformation. Therefore
some indirect information about this variable should be found. Along the time, sev-
eral signatures were assigned to the octupole deformation: (a) The low position of the
state 1− heading the band 0− is an indication that, as function of the octupole defor-
mation, the potential energy has a flat minimum; (b) The parity alternating structure
in ground and the low 0− bands suggests that the two bands may be viewed as being
projected from a sole deformed intrinsic state, exhibiting both quadrupole and octu-
pole deformations; (c) A nuclear surface with quadrupole and octupole deformations

© Springer International Publishing Switzerland 2015
A.A. Raduta, Nuclear Structure with Coherent States,
DOI 10.1007/978-3-319-14642-3_7
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02 =β 2.02 =β 6.02 =β

2.03 =β

6.03 =β

Fig. 7.1 Nuclear surfaces corresponding to different static quadrupole and octupole deformations

might have the center of charge in a different position than the center of mass, which
results in having a dipole moment which, in interaction with an external electromag-
netic field, may excite the state 1− from the ground state, with a large probability.

It is clear that a nuclear surface with a static octupole deformation does not have a
space reflection symmetry. On the other hand one knows that whenever a symmetry
is spontaneously broken, a new phase is set up for the considered system. In this
respect a pear shaped nucleus means a new nuclear phase, with specific properties.
Therefore, any theory addressing this issue has to point out the new properties which
are specific to the new nuclear phase. If the intrinsic ground state does not have
a good reflection symmetry it sounds reasonable to assume that intrinsic gamma
and beta bands also have this property. Then, instead of using ψγ and ψβ as model
states of the two bands, as shown in Eq. (6.1.1), we propose now to choose the
functions �γ and �β respectively, which involves both the quadrupole and octupole
deformations.

Thus, in this chapter the CSM is extended by assuming for the intrinsic states
associated to the ground, beta and gamma bands also an octupole deformation. The
new formalism is conventionally called the ExtendedCoherent StateModel (ECSM).
Fromeach such a state, oneprojects simultaneously the parity and angularmomentum
and consequently two bands of opposite parities are obtained.Wewant to seewhether
there are any fingerprints of octupole deformation in the excited bands, β±, γ±.

The octupole deformation is described bymeans of an axially symmetric coherent
state for the octupole bosons b†30. Thus, the intrinsic states for the ground, beta and
gamma bands are:

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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�g = e f (b†30−b30)ed(b†20−b20)|0〉(3)|0〉(2), �β = �
†
β�g, �γ = �†

γ�g. (7.1.2)

The notation |0〉(k) stands for the vacuum state of the 2k-pole boson operators. Note
that any of these states is a mixture of positive and negative parity components.
Therefore, they don’t have good reflection symmetry. Due to this feature, the new
extension of the CSM formalism has to project out not only the angular momentum
but also the parity from each intrinsic state. The double projection is performed in two
steps. First, one projects the components of good parity from which the component
of good angular momentum are determined:

�(±)
g = e− y3+y2

2

(
cosh( f b+

30)

sinh( f b+
30)

)
edb+

20 |0〉3|0〉2

�
(±)
i = �+

i �(±)
g , i = β, γ, y2 = d2, y3 = f 2,

ϕ
(i,k)
JM = N (i,k)

J P J
MKi

�
(k)
i , Ki = 2δi,γ, k = ±; i = g,β, γ,

J = (δi,g + δi,β)(evenδk,+ + oddδk,−) + δi,γ J (1 − δJ,0 − δJ,1). (7.1.3)

The normalization factors have the expressions:

(
N (g,k)

J

)−2 = e− 1
2 (2y3+3y2)(2J + 1)I(k)

(g,J )(y2, y3), y2 = d2, y3 = f 2,

where the overlap integrals defined by:

I(±)
J =

∫ 1

0
PJ (x)

(
cosh( f 2P2(x))

sinh( f 2P2(x))

)
dx, (7.1.4)

with PJ (x) denoting the Legendre Polynomial of rank J, can be analytically calcu-
lated:

I(k)
(g,J ) = (3y3)

J
∞∑

p=pmin

lMax∑

l=0

(
y23
4

)p−l

(9)p
(

5

27

)l

(−)l+J

× (p + J )!(2p + J )!F(−l, 2p − 3l + J + 1; 9
10y2)

l!p!(2p − 3l + J )!(2p + 2J + 1)! , k = ±.

Here F(a, b; x) denotes the degenerate hypergeometric function. The summation
indices are defined by:
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pmin = δJ,1, lmax =
[
2p + J

3

]
, if J �= 1,

lmax = min

{
p − 1,

[
2p + 1

3

]}
, if J = 1.

Alternatively, the projected states can be written in a tensorial form as:

ϕ
(i,k)
JM = N (g,k)

J

∑

J2,J3

(N (k)
J3

N (g)
J2

)−1C J3 J2 J
0 0 0[�(k)

J3
φ

(i)
J2

]JM; k = ±, i = g,β, γ.

where
�

(k)
J3

= N (k)
J3

P J
M0e f (b†30−b30)|0〉3, (7.1.5)

while φ
(i)
J2

is the i-band projected state (i = g,β, γ) (of positive parity) defined in
the previous chapter within the CSM.

Using this factorization and the results of the previous chapter it becomes obvious
thatmatrix elements for any functionof quadrupole bosons canbe expressed as simple
functions of overlap integrals:

I (0)
J =

1∫

0

PJ (x)ed2P2(x)dx, (7.1.6)

and I (1)
J , which is the first derivative of I (0)

J with respect to y2(=d2).

Since for large values of the deformation parameter d, the projected states φ
(i)
JM ,

with i = g,β, γ behave like a Wigner function, with a definite quantum number
“K ”, they describe rotational bands with K = 0, 0, 2, respectively. Analogously, the
octupole states �

(±)
JM describe rotational bands having K = 0. Consequently, four of

the six bands defined above have K = 0,while the remaining two are K = 2 bands. In
order to stress on the parity partnership, we use the suggestive notations g±,β±, γ±
for the six bands. Each pair of bands is expected to give rise to an alternating parity
sequence as it happens in the case of ground and K π = 0− bands, i.e. the g± pair.
The set {ϕ(i,k)

JM }i,k;J,M , with i = g,β, γ and k = ± is orthogonal. Note that for f = 0

only the positive parity states ϕ
(+)
J3M3

are well defined. However, the limits for “f”
going to zero exist both for k = + and k = −, and the following relation holds:

lim
f →0

ϕ(i,+)
JM = ϕ(i)

JM .

Thus, the formalism proposed yields the CSM in the limit of f → 0.
Keeping the spirit of the CSM, an effective boson Hamiltonian is studied in the

restricted collective space generated by the six sets of projected states. Note that
from each of the three intrinsic states, one generates by projection two sets of states,
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one of positive and one of negative parity. When the octupole deformation goes to
zero, the resulting states are just those characterizing the CSM model. We know
already the effective quadrupole boson Hamiltonian in this limit. When the quadru-
pole deformation is going to zero the system exhibits vibrations around an octupole
deformed equilibrium shape. We consider for the octupole Hamiltonian a harmonic
structure, since the non-harmonic octupole terms can be simulated by the quadrupole
anharmonicities. As for the coupling between quadrupole and octupole bosons, we
suppose that this can be described by a product between the octupole boson number
operator, N̂3, and the quadrupole boson anharmonic terms which are involved in
the CSM Hamiltonian. Also, two scalar terms depending on the angular momenta
carried by the quadrupole (J2) and octupole bosons (J3) respectively, are included.
Thus, the model Hamiltonian has the expression:

H = H ′
2 + B1 N̂3(22N̂2 + 5�†

β′�β′) + B2 N̂3�
†
β�β

+ B3 N̂3 + A(J23)J2J3 + AJJ2. (7.1.7)

Here H ′
2 denotes the CSM Hamiltonian for quadrupole bosons from which one

ignores the A4, A5 and A2 terms. The reason is that for quadrupole well deformed
nuclei the first two terms mentioned above, which affect only the beta band energies,
are not necessary in order to obtain a good description of energy levels in the beta

band. Concerning the third one, this is contained in the Ĵ
2
term, the angular momen-

tum carried by the composite system of quadrupole and octupole bosons. As shown
in Ref. [RRF97], the term J2.J3 is necessary in order to explain the low position
of the state 1− in the even-even Ra isotopes. Indeed, this term is attractive in the
state 1−, while for higher angular momenta is repulsive. It is noteworthy that all
terms involved in Eq. (7.1.7), have a microscopic interpretation. Indeed, they can be
obtained in a boson expansion formalism from a microscopic Hamiltonian involving
quadrupole-quadrupole plus octupole-octupole two body interaction [RCSS73]. In
the quoted reference, the fermion operators are written as polynomial expansions of
quadrupole and octupole quasiparticle-random phase approximation (QRPA) boson
operators.

The Hamiltonian given by Eq. (7.1.7) has vanishing matrix elements between any
beta band state and a state belonging either to ground or to gamma bands. Therefore,
the energies in the six bands are obtained as: (a) Expectation values if the state Jπ

belongs to the βπ band. The same is valid for the odd J states from the γ+ band and
even J states for the γ− band. (b) Eigenvalues of a 2 × 2 matrix associated to each
even (odd) value of J+ (J−) if this state belongs to one of the bands g+ and γ+ (g−
and γ−) . The eigenstates of the model Hamiltonian in the restricted collective space
of mixed quadrupole and octupole boson product states were used to calculate the
intra-band E2 transition probabilities as well as the B(E1) and B(E3) values for the
transitions connecting the negative parity and positive parity bands. Special emphasis
was put on the E1 transitions between states belonging to the parity partner bands.
The Eλ transition operators are considered in the lowest order in the quadrupole and
octupole bosons:
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Qλμ = qλ(b†λμ + (−)μbλ,−μ), λ = 2, 3.

T (h)
1μ = q1

∑

μ2,μ3

C3 2 1
μ3 μ2 μ(b†3μ3

+ (−)μb3,−μ3)(b
†
2μ2

+ (−)μb2,−μ2) (7.1.8)

The dipole transition operator is accompanied by an upper index “(h)” which sug-
gests that both the quadrupole and octupole factor operators are linear in bosons,
and therefore only the harmonic contribution of the respective degrees of freedom
are considered. However, in order to describe the B(E1) values for the transitions
connecting the g− and g+ bands , especially for states lying in the region where the
static octupole deformation is settled, the harmonic dipole transition operator is to
be amended with anharmonic terms. Thus, one can alternatively use the following
expressions:

T (I )
1μ = T (h)

1μ + qI

{[
b†3(J J )2

]

1μ
+ [

(J J )2b3̃
]
1μ

}
,

T (I I )
1μ = T (h)

1μ + qII

{[
b†3(J3 J2)2

]

1μ
+ [

(J2 J3)2b3̃
]
1μ

}
. (7.1.9)

The formalism described above has been applied to seven even-even nuclei for which
there are available data concerning the bands under consideration [RIF02]. These
nuclei are: 158Gd, 172Yb, 218Ra, 226Ra, 232Th, 238U, 238Pu. Among these nuclei,
there are two, 218Ra and 226Ra, which are known to have octupole deformation. The
negative parity states in the remaining nuclei have a vibrational character. Including
them in this study, had the goal to prove the capacity of this model to describe
the octupole deformation in the vanishing limit which results in providing an unified
picture for spherical and octupole deformed nuclei. Inwhat follows,we shall describe
separately the results for energies and e.m. transition probabilities.

7.1.1 Energies

The energies in the six bands depend on two deformation parameters, d and f and
six structure coefficients involved in the model Hamiltonian (7.1.7), A1, A2, AJ ,
A(J23), B1, B3. In order to preserve the notations used in the publications devoted
to this issue, we re-denoted the coefficients A1, A3 from Chap.6 (see Eq. (6.1.9)),
by A1,A2 respectively. Note that the parameter B2 is missing from the list. The
accompanying term affects only the β− energies. Therefore, the B2 coefficient may
be determined by fitting one experimental energy from this band. However, for the
nuclei considered here, there are no data for the negative parity beta band. This is the
reasonwe omittedB2 from our calculations. The remaining parameters were fixed by
a least square fit of the available data. The parameters yielded by the fitting procedure
vary smoothly from one nucleus to another. In this respect one could say that they
are not independent parameters. Indeed, the quadrupole deformation parameter is

http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
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Fig. 7.2 The quadrupole
deformation parameter d,
yielded by the fitting
procedure, versus the
experimental value for the
deformation β

depending linearly on the nuclear deformation β (see Eq. (6.4.23)). This is confirmed
in Fig. 7.2, where the parameter d shows a linear dependence on the experimental
deformation, β. In Ref. [RI03], one showed that the octupole deformation parameter
f exhibits also a linear dependence on the static octupole deformation:

k3β
(0)
3 = f

√
2

(
1 + 12AJ

B3 + 22d2B1

)
. (7.1.10)

However, as we already mentioned, there is no measurable observable that could
conferβ(0)

3 an experimental value. In otherwords, there is no operatorwhose expected
value is proportional to f . This equation can however be used to define, theoretically,
a static octupole deformation β

(0)
3 . In Fig. 7.3 one gives the structure coefficients A

and B as a function of A-0.5(N-Z). In order to have a better presentation for the
isotopes of the same atomic mass number, A, we introduced an isospin asymmetry
in the abscissa variable.

Thus, if one wants to study a nucleus not included in these plots, with a given
(A,Z) and quadrupole deformation β0, Figs. 7.2 and 7.3 allow us to determine all
structure coefficients and the quadrupole deformation parameter d. As concerns the
octupole deformation parameter f, this remains, still, a free parameter.

To save the space in Fig. 7.4 we give only the results of energy levels for the
bands g(±) in three isotopes. Excitation energies of the three pairs of bands in 226Ra
are presented in a different form in Fig. 7.5. To have an idea about the volume of
experimental data which are explained by the present model, we mention the case of

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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(a) (b)

(c) (d)

(e) (f)

Fig. 7.3 The structure coefficients defining the model Hamiltonian by Eq. (7.1.7) are interpolated
by a fourth order polynomial in A-(N-Z)/2 (panel c–f). Exception is for −A2 where a second order
polynomial is used (panel b). The parameter A1 is interpreted in panel (a). Indeed, there we give
the vibrational (full square) and rotational limits for the energy of the state 2+

g . The experimental
value is represented by open circles



7.1 CSM Extension for Pear Shaped Nuclei 243

Fig. 7.4 Experimental and calculated energies for the g± bands in 218,220,226Ra (see Ref. [RRF97])
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Fig. 7.5 Experimental and calculated energies for the bands g±,β±, γ± for 226Ra

232Th, where there are 55 experimental excitation energies which are described by
the theoretical results with a very good accuracy.

In order to judge the quality of the agreement between the calculated energies
and the corresponding experimental data, the dynamic moment of inertia (J (2)

J ) was
represented as function of the rotational frequency (ω) [RIF02] in several nuclei:

�ωI = dE

dI
≈ 1

2
(EI − EI−2), J (2)/�

2 =
(

dω

dI

)−1

≈ 2/(ωI − ωI−2). (7.1.11)

For all considered nuclei, the agreement is very good.When the points for two parity
partner bands are on the same curve in the above mentioned plot, one says that the
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static octupole deformation is installed for the angular momenta where such a pic-
ture is valid. Concrete calculations show that this is the case for 226Ra and 158Gd.
It is worth mentioning that the coordinates (ω,J (2)) are not suitable for the 218Ra
case, since in the low part of the ground band, the energy spacing is almost constant
which results in having very large values for the dynamic moment of inertia. This is
consistent with the fact that the quadrupole deformation parameter for this isotope,
is small. Under these circumstances, for this case we plotted the angular momentum
versus the rotational frequency. This is shown in Fig. 7.6, for the three pairs of parity
partner bands. Note that the plot referring to the two ground bands in 218Ra, exhibits
a back-bending at Jπ = 16+. Moreover, the positive parity band has also a forward
bending at Jπ = 22+. The experimental energy plot indicates that an earlier back
bending is taking place at J = 10+, although there is only one point to support two
successive sharp changes in the slope of the angular momentum function. According
to the microscopic formalisms, the non-regular angular momentum dependence of
the yrast state energies is due to a successive crossing of several bands of different
nature, i.e., 0,2,4 quasiparticle bands. Moreover, since the alignment of the quasi-
particle angular momentum is made to an almost spherical core, the intra-band E2
transitions are quite weak and therefore the set of states seen in 218Ra can, only by an
abuse of language, be organized in rotational bands. Since our predictions interpolate
quite well the experimental curve we can state that the effects mentioned above are
simulated by the competition between various terms of the model Hamiltonian.

The presence of octupole deformation is usually judged from the plot of the energy
displacement function:

δE(J−) = E(J−) − (J + 1)E((J − 1)+) + J E((J + 1)+)

2J + 1
, (7.1.12)

where E(Jπ) is the energy of the state of angular momentum J and parity π. If the
partner bands, in a certain interval of angular momentum, have a J (J + 1) behavior
and moreover they have similar moments of inertia, the displacement function van-
ishes in the chosen interval. It can be checked that this expression is proportional to
the difference of the discrete first order derivatives of energy in the union of the parity
partner bands, i.e. the common band, and in the positive parity band, with respect
to J(J + 1). Therefore, the zeros of the displacement function are customarily con-
sidered as angular momenta for the states with static octupole deformation. Plotting
this function for the nuclei listed in the beginning of this section, we identified the
places where these nuclei might have octupole deformation.

In the ground band this might be a sequence of several states or just one state.
Several nuclei show no zero for the displacement function. Concerning the excited
partner bands, one observes that they have octupole deformation at different angular
momenta than the ground band. For example, for 232Th the displacement function of
beta band cancels earlier (at 13−) than that associated to gamma band (23−) which at
its turn vanishes before the ground band displacement energy function does. In this
case, which is common to several nuclei from the list, the mentioned zeros are not
degenerate. In our opinion these states are suspected to be fed with large probabilities
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. . . . . . . . ..

Fig. 7.6 The angular momentum is plotted versus the rotational frequency for the ground, 0−
(left panel),β±, andγ± (middle and right panels) bands of 218Ra. The experimental data for positive
and negative parity states are represented by up and down open triangles, respectively

due to the E1 inter-band transition. As for gamma bands of 226Ra, they form a single
band starting with 9− and the two bands of definite parity separate from each others,
at 13−. On the common curve, the states J± form a parity doublet. This is an excellent
example supporting the statement that parity doublets may exist also in even-even
nuclei.

The arguments given for the displacement function work for the case when energy
exhibits a linear J (J + 1) dependence. However, in all cases considered in our
analysis, energies in the three pairs of parity partner bands deviate largely from the
J(J + 1) rule. Therefore, a more appropriate displacement function is:

�E1,γ(I ) = 1

16

[
6E1,γ(I ) − 4E1,γ(I − 1) − 4E1,γ(I + 1)

+ E1,γ(I − 2) + E1,γ(I + 2)
]
, with E1,γ = E(I + 1) − E(I ).

(7.1.13)

This function is proportional to the difference of the fourth order discrete deriva-
tives of the parity partner bands energies, with respect to the angular momentum.
Therefore, this function is vanishing if energies in the partner bands are quartic poly-
nomials of J and moreover the highest rank terms of the two polynomials have the
same coefficients. The parities associated to the angular momentum involved in the
above equation are as follows: The states with angular momentum (I ± 2) have the
same parity while the states (I ±1) are of opposite parity as compared with the state
I . This is true for the ground and beta bands. As for the gamma bands, this rule also
holds but we have two chains depending whether the first state (I −2), in Eq. (7.1.13)
is 2+ or 2−. In order to save the space, we give here only one figure, namely the one
referring to 226Ra (Fig. 7.7). It is worth noticing that the new displacement energy
function has a beat pattern as a function of J, which might be due to a periodical
dependence on J, of the energy fourth order derivatives. The results for other nuclei
may be summarized as follows: For gamma bands, we found a node in the new dis-
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J JJ

(a) (b) (c)

Fig. 7.7 The new displacement function given by Eq. (7.1.13) for ground (a), beta (b) and gamma
(c) bands is represented as function of angularmomentum. For gamma bands the label I is usedwhen
the state 2†γ is the lowest angular momentum state involved in Eq. (7.1.13) while II corresponds to
the calculations using 2−

γ as the first in the chain. Experimental data were taken from Refs. [CO99,
HJW93, AKO93]

placement energy function for all isotopes excepting 218Ra. There are cases where
the static octupole deformations appear in all three pairs of bands. Such examples are
226Ra and 228Th. The plot for 238Pu shows nodes in the ground and gamma bands
but not in beta band, while 232Th has octupole deformation for a certain angular
momentum in beta band and a different J in the gamma band, but is unstable against
octupole deformation for any J ≤ 30, in the ground band. In U isotopes, the only
band where the octupole deformation may set on is the gamma band.

7.1.2 Electric Transition Probabilities

Using the transition operators given by Eqs. (7.1.8) and (7.1.9) we calculated the E1,
E2 and E3 values in the six rotational bands and the results were compared with the
corresponding experimental data. Here we comment on the results for the electric
dipole transitions from states belonging to the 0− band to the positive parity states
of the ground band. We chose, for illustration the case of 226Ra, where relevant data
exist. Thus, in Table7.1 we list the branching ratios

RJ = B(E1; J− → (J + 1)+)

B(E1; J− → (J − 1)+)
. (7.1.14)

We note the good quality of the agreement with the experimental data, especially for
the results obtained with the transition operator T (II). As we have alreadymentioned,
due to the rod effect concerning the charge distribution, the pear shaped nuclei are
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Table 7.1 The branching ratios for the E1 transition probabilities between the states of g− and
those of g+, as defined by Eq. (7.1.14), obtained with three transition operators, T (h) (second
column), T (I ) (third column) and T (h) (fourth column), defined by Eq. (7.1.9) are compared with
the corresponding experimental data (first column) [CO99, SM95, CO97, HJW93, AKO93] for
226Ra

Jπ Exp. Th., h Th., I Th., II

1− 1.85 ± 1.20 1.84 1.98 1.85

3− 0.87 ± 0.35 1.12 1.31 0.95

7− 1.79 ± 1.59 0.86 1.12 0.99

9− 1.27 ± 0.68 0.83 1.10 1.13

11− 1.12 ± 0.79 0.83 1.10 1.26

13− 1.06 ± 0.68 0.85 1.11 1.35

The results shown in the third and fourth columns, are obtained with qI /q1 = −0.16, and qII/q1 =
−1.4, respectively. Both cases use q1 = 10−2 e fm

expected to be excited with a large probability, by a dipole E1 operator. Therefore,
in the case of 226Ra where, according to Fig. 7.7, the octupole static deformation is
set on at 13−, one expects a jump of the reduced matrix elements for this value of
the angular momentum.

These matrix elements are plotted in Fig. 7.8 as a function of angular momentum
and compared with the experimental data from Refs. [CO99, HJW93, AKO93]. One
sees that T (II)

1μ yields results which agree with the data except for the fact that the

transitions 14† → 13−, 13− → 12† are underestimated. The oscillating behavior
shown by the experimental data in the range of 1 ≤ J ≤ 7 is nicely reproduced by
these calculations. Note that data for I = 13, 14 and I = 11, 12 are equal to each
other, respectively. In the calculations with T (II), the degeneracy appears at I = 9,
10 and a quasi-degeneracy at I = 7,8 and I = 11,12. By contrast, T (I )

1μ produces such
doublet structure for 3 ≤ I ≤ 13, the consecutive doublets being separated by gaps
which are increasing with J.

Before closing this subsection, we would like to make a short comment about
the structure of the anharmonic dipole operators T (I )

1μ and T (II)
1μ . It is well known

that the magnetic dipole transition is determined by the current and spin distribution,
while the electric one, by the charge distribution in the finite nuclei. This confers
the M1 operator a linear dependence on the orbital angular momentum and spin
operators. As for the electric transitions one cannot construct a dipole operator as
linear superposition of angular momenta carried by the quadrupole and octupole
bosons alone, since the resulting operator would be of positive parity. In order to
have a negative parity operator, as a E1 operator should be, one has to multiply the
angular momentum with one octupole boson. Moreover, in order to get the required
multipolarities, one should consider a quadratic monomial of angular momentum.

The angular momentum dependence of the reduced matrix elements of dipole
transition operators were studied also within the IBA [ZK01] and some microscopic
formalisms [HHZ89, SS91, GER98]. The IBA paper uses for the transition operator
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Fig. 7.8 The reduced matrix
elements for three distinct
transition operators: T h(up
triangle), T (I )(open circles),
T (I I )(full square) and
experimental values (black
circles). The units are
q1 = 10−2 efm. Strengths
are as in Table 7.1

a three parameter expression. Despite this, the results for 2 ≤ I ≤ 7 are largely
overestimated, while those for I = 13, 14 are largely underestimated. In order to
improve the agreement with the data, the microscopic formalisms supplemented the
dipole operator with a corrective term of octupole type. The improvement refers
however to the low J values but the discrepancy in the regions of the m.e. jump still
persists. To complete the information about octupole states in nuclei, I advise the
reader to consult the comprehensive review papers on this issue [SGR88, BN96,
FRA01].

To conclude this section, onemay say that the present extension ofCSM is describ-
ing in a realistic fashion the spectra and the electric transitions of nuclei exhibiting
static octupole deformation.

7.1.3 The Dipole Bands

As already mentioned the formalism described above is known under the name of
extended coherent state model (ECSM). Here, the ECSM will be further extended
by considering the dipole parity partner bands [RRF09]. The difficulty encountered
when the restricted collective space is enlarged consists in finding an intrinsic state
which is orthogonal on the previously defined model states, before as well as after
angular momentum projection. The second step is to correct the model Hamiltonian
by a term so that the resulting Hamiltonian is effective in the extended space of
projected states. A possible solution for the intrinsic state generating the dipole
bands is:
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�(1,±) = �
†
3b†31�

(±)
g , �

†
3 = [b†3b†3]0 + f 2√

7
. (7.1.15)

From these states, two sets of angularmomentumprojected states are obtained,which
are hereafter denoted byϕ

(1,±)
JM . These states are weakly coupled to the states of other

bands by the B1 and B3 terms. Moreover, these terms give large contribution to the
diagonal matrix elements involving the projected dipole states. Aiming at describing
quantitatively the properties of the dipole states, two terms are added to the model
Hamiltonian:

�H = C1�†
3�3 + C2�†

3 N̂2�3. (7.1.16)

The new terms affect only the diagonal m.e. of the dipole states. C2 is determined
so that the corresponding contribution to a particular state (say 2−) cancels the one
coming from the B1 term. C1 is determined so that the measured excitation energy of
the state 1− is reproduced. The contribution of theB1 andB3 terms to the off-diagonal
matrix elements characterizing the dipole states amounts to few keV.

Thus, the final Hamiltonian to be used for describing simultaneously four positive
and four negative bands, is:

H = A1(22N̂2 + 5�†
β′�β′) + A2�

†
β�β + AJ J2

+ B3 N̂3 + B1 N̂3(22N̂2 + 5�†
β′�β′) + A(J23)J2J3

+ C1�†
3�3 + C2�†

3 N̂2�3. (7.1.17)

The items which were of interest for the three pairs of parity partner bands are also
considered for the dipole bands. A special feature related to the dipole bands consists
of: (a) Whether for these bands the magnetic or electric properties are prevailing; (b)
Note that the two sets of bosons, of quadrupole and octupole type, carry separately
an angular momentum. The question is what the angle between the two angular
momenta is and how this is affected by rotation. The angle between the angular
momenta J2 and J3 has the expression (7.1.18); (c) Of course, it would be nice if
some signatures for a static octupole deformation were found in the dipole bands.

cosϕ = 〈φ(k)
JM |J2.J3|φ(k)

JM〉
√

〈φ(k)
JM | Ĵ 2

2 |φ(k)
JM〉〈φ(k)

JM | Ĵ 2
3 |φ(k)

JM〉
, k = 1,±. (7.1.18)

Due to the rod effect saying that the charge density is maximum in the region where
the surface curvature ismaximum, a systemhaving octupole deformationmay exhibit
a non-vanishing dipole moment. Consequently, interacting with an electromagnetic
field such system can be driven in a state characterized by large E1 rates. In this
context one expects that the B(E1) value exhibits a jump at the angular momentum
where the octupole deformation is set on. This feature is illustrated in Fig. 7.8 where
the reduced matrix element for the transition I → (I − 1) is represented as function
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of angular momentum. One notes a fairly good agreement between theoretical and
experimental data.

The results for the K π = 1− band energies are presented in Fig. 7.9 for 172Yb,
where relevant data are available [HJW93]. In Fig. 7.9 the dynamicmoment of inertia
is plotted versus the angular momentum. In this figure one notices that the results
corresponding to even and those corresponding to odd angular momenta are lying
on separate smooth curves as if these sets of states belonged to two distinct bands.
The remark is valid for both the positive and negative parity bands.

In order to see whether there are signatures of octupole deformation in the dipole
bands, we show in Fig. 7.10 the energy displacement functions for the two dipole
bands with K π = 1±. According to Fig. 7.10 , the states of angular momentum equal
to 18, 19 may have static octupole deformation. To obtain a definite conclusion about
the static octupole deformation we have analyzed the E1 and M1 properties of these
bands. The relative magnitude of branching ratios for the bands with K π = 1+ and
K π = 1− indicate that the magnetic transitions are stronger for the positive parity
states while the E1 transitions prevail for negative parity states. Due to this fact
we call the band K π = 1+ as the magnetic band, while the negative parity band

Fig. 7.9 The dynamic
moment of inertia for the
dipole bands of positive and
negative parity
corresponding to the
calculated and experimental
energies, respectively, is
plotted as function of the
angular momentum

Fig. 7.10 The energy
displacement functions δE
(left panel) and �E (right
panel), given in the text, are
plotted as functions of J
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Fig. 7.11 The branching ratios characterizing the transitions of K π = 1− states to the ground band
states (triangle) are compared with the corresponding experimental data (square). The transition
operator used is T1μ = T h

1μ + T anh
1μ , with the harmonic term defined in the text and T anh

1μ =
qanh

{ [
b†3

(
Ĵ3 Ĵ2

)

2

]

1μ
+

[(
Ĵ3 Ĵ2

)

2
b3̃

]

1μ

}
. All ratios correspond to the relative effective charge

qanh/q1 = −1.722, where q1 denotes the strength of the harmonic term

as the electric band. The branching ratios of the dipole states calculated within the
formalism presented above are compared with the corresponding data in Fig. 7.11. In
contrast to the case of K π = 0− band, for the K π = 1− band there is no jump in the
behavior of the B(E1) value. However, the M1 branching ratio from the K π = 1+
to K π = 0+ get a jump for J = 18, 19, which are in fact the angular momenta
where the energy displacement functions vanish. Due to this feature we consider
the big value of the mentioned M1 branching ratio as a signature for the octupole
deformation in the dipole bands.

Within ECSM, one can calculate the angle between the angular momenta carried
by the quadrupole (J2) and octupole (J3) bosons respectively, for a state of total
angular momentum J. This angle is shown in Fig. 7.12 as function of the angular
momentum for the states belonging to the four pairs of bands under study. Apart
from small details, the features shown in Fig. 7.12 for 226Ra are common to all
other nuclei suspected to have octupole static deformation. For the dipole bands
the angle has a saw-tooth structure. Here the angle characterizing the even and odd
angular momenta stay on separate smooth curves suggesting once again that the
two sets of states might form different bands. For the bands g±,β±, γ± the angle is
decreasing up to a critical value after which is slightly increasing reaching a plateau
at ϕ = π/2. The interpretation of this result is as follows. If the quadrupole bosons
describe an ellipsoidal shape having the axis OZ as symmetry axis, the angular
momentum J2 is oriented along an axis in the plane XOY, say OX, to which the
maximummoment of inertia is associated. The octupole bosons describe a shape for
which the moment of inertia corresponding to the axis OZ is maximum. Suppose
now that a term describing the motion of a set of particles and a term describing
their interaction with a phenomenological quadrupole-octupole core, are added to
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Fig. 7.12 The angle between the angular momenta carried by the quadrupole and octupole bosons
respectively, in the states of g± (upper left), β± (upper right), γ± (bottom left) and dipole (bottom
right) bands, versus angular momentum. Note that for g+ and g− one used the same symbol. How-
ever the angular momenta corresponding to the two sets of symbols are even and odd respectively

the model Hamiltonian (7.1.16). Depending on the strength of the interaction, the
eigenstates of the resulting Hamiltonian may be characterized by a right or left
trihedral (jF, J2, J3)with jF denoting the angular momentum of the nucleonsmoving
out the core. In case the two frames, right and left, define states of equal energies
one says that the composite system exhibits a chiral symmetry. In this context we
may say that the nuclear system excited in a high angular momentum state belonging
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to either of the six bands g±,β±, γ±, constitutes a precursor of a chiral symmetry
system. Such a system will be studied in Chap.10.

We raise the question whether the magnetic states described so far are related with
the scissors mode [LOPA78]. The scissors mode describes the angular oscillations
of the symmetry axes of proton and neutron systems. Here, we do not make any
distinction between protons and neutrons, but we could say that we deal with two
distinct entities, one described by the quadrupole and other by octupole bosons. The
two systems rotate around axes which make an angle which was just described. By
contrast to the scissors mode, where the angle between the symmetry axes is small,
here the angle is large. Therefore, we could name the magnetic states described here
as sheare states.

The final conclusion is that the CSM and its extension is able to describe in a
realistic fashion eight rotational bands, four of positive and four of negative parity.

http://dx.doi.org/10.1007/978-3-319-14642-3_10


Chapter 8
Coupling of One, Two and Three
Quasiparticles to a CSM Core

8.1 Coupling Quasiparticles to a CSM Core

8.1.1 Even-Even Systems

In Chap.6, for some even-even isotopes of Pt, we attempted to interpret the high spin
states of non-yrast type beyond 10+, as beta like states. However, we saw that the
position of the second 12+ state is not well reproduced if we fit the energies from the
upper part of the spectra. In fact this is a sign that the individual degrees of freedom
play an important role there.

Here we present the results of Ref. [RLF83], where these states belong to a two
quasiparticle-core band (2qp). The states of this band have a specific structure deter-
mined by the fact that one Cooper neutron-pair from the shell i13/2 is broken and the
resulting quasiparticles align their angular momentum, yielding a maximum J2 value
(Jπ

2 = 12+) and moreover, the resulting angular momentum is aligned to the angular
momentum of the core. Therefore, we consider a set of interacting spherical shell
model particles coupled to a phenomenological core described in terms of quadru-
pole bosons by the CSM Hamiltonian. Outer particles interact among themselves
through pairing and surface delta interactions. Hence, the Hamiltonian associated to
the composite system of particles and core is:

H = Hsp + Hpair + HSDI + Hcoup + Hcoll. (8.1.1)

The first three terms describe the interacting particles and have the expressions:

Hsp =
∑

(εj − λ)c†jmcjm,

Hpair = −G

4

∑

j,j′
PjP

†
j′ , Pj = ĵ(c†j c†j )0, ĵ = √

2j + 1, (8.1.2)

HSDI = −4πG1

∑ 1

2
〈jimi|Yλμ|jkmk〉〈jlml|Y∗

λμ|jsms〉c†jimi
c†jlml

cjsms cjkmk .
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The collective core is described by Hcoll which is just the Hamiltonian used by the
CSM formalism. Here we don’t use the strength A5 (see Eq.6.1.11) in the fitting
procedure of the data for the core. The coupling of particle system and the core is
due to the term:

Hcoup = Mω2
∑

J=0,2,4

〈j||r2YJ ||j′〉ĵ
[
(c†j cj′)JTJ

]

0
,with

TJμ = χδJ,2α2μ + XJ(α2α2)Jμ. (8.1.3)

In Ref. [RLF83], analytical formulas are obtained for the matrix elements of this
Hamiltonian in the strong coupling as well as in the weak coupling regimes. Since
here we deal with the Pt isotopes, which are only weakly deformed, we present only
the latter version.

First, one treats the pairing Hamiltonian through the standard BCS formalism
which defines the quasiparticle operators

d†
jm = ujc

†
jm − vjcj̃m,with cj̃m = (−)1+j−mcj,−m, u2j + v2j = 1. (8.1.4)

In the quasiparticle representation, the model Hamiltonian becomes:

Hlab = Hcoll +
∑

ejd
†
jmdjm + hlab

coup + hlab
SDI . (8.1.5)

Here we used the label “lab”, an abbreviation from laboratory, in order to distinguish
between the present approach and the strong coupling formalismwhere the deformed
single particle orbits requires a treatment in the intrinsic frame. In hlab

SDI we did not
include the quasiparticle number non-conserving terms.Also,we neglected the renor-
malization of Hcoll due to the normal ordering of quasiparticles in the coupling term.

The quasiparticle-core Hamiltonian (8.1.5) was diagonalized in the basis
{|C〉, |S, τ 〉int} with:

|C〉 = φi
JM ⊗ |BCS〉, i = g,β, γ, J ≤ 12,

|S, τ 〉 ≡ |iτ ; J1J2IM〉 = 1√
2

[
φi

J1 ⊗
[
d†

jτ
d†

jτ

]

J2
|BCS〉

]

I,M
, τ = p, n; jn = 13

2
,

jp = 11

2
, J1 ≤

⎧
⎨

⎩

10, i = g
6, i = γ
4, i = β.

⎫
⎬

⎭ . (8.1.6)

This way, one finds the amplitudes f (i) of the eigenstate:

|i, IM〉 =
∑

C

f (i)
(C)|C〉 +

∑

S,τ

, f (i)
S,τ |S, τ 〉 (8.1.7)

which correspond to the eigenvalues εi,I ordered as:

ε1,I < ε2,I < ε3,I < . . . (8.1.8)

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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Calculating the gyromagnetic factor of the states yielded by the diagonalization
procedure, one gets information about whether the state is dominantly collective or
a 2qp state. Denoting by gτ

F and gC the gyromagnetic factors for the 2-τ nucleons
and the core systems respectively, the gyromagnetic factor for the composite system
carrying an angular momentum I is defined by:

gI I = gτ
FJ2 + gCJ1 (8.1.9)

The result for the gyromagnetic factor of the state |i, IM〉 (8.1.9) is:
g(k)

I = gC

∑

i,J1

(f (k)
i,J1

)2 +
∑

i,τ ,J1,J2

gτ
I;J1,J2(f

(k)
(τ i;J1J2I))

2,with

gτ
I;J1,J2 = 1

2

[
gτ

F + gC + (gτ
F − gC)

J2(J2 + 1) − J1(J1 + 1)

I(I + 1)

]
. (8.1.10)

The reduced E2 transition probabilities are calculated with the transition operator:

Q2μ = Qcoll
2μ + Qsp

2μ,

Qcoll
2μ = q0α2μ + q2(αα)2μ,

Qsp
2μ =

∑

τ

eτ
eff

∑

i,k

ĵτi
2̂

〈jτi ||r2Y2||jτk 〉
[
(vivk − uiuk)(d

†
i dk)2μ

+uivk(−)lk ((d†
l d†

k )2μ + (−)ji+jk (dkdi)2μ)
]
. (8.1.11)

The effective charge for protons and neutrons is taken equal to 1.5 and 0.5 , respec-
tively. Using the Rose’s convention [ROSE57], the B(E2) values for the transition
Ii → If is defined by:

B(E2; I+
i → I ′+

i′ ) = (〈i, I||Q2||i′, I ′〉)2. (8.1.12)

The formalism presented above was applied to 188,190,192,194Pt. Energies for 192Pt
are illustrated in Fig. 8.1.

Let us now analyze the effect of various terms involved in the model Hamiltonian
on the energy spectrum. If in the coupling term the collective factor is restricted to the
linear one, then the state 12+ would be lower in energy than 10+. This happens since
the fully aligned 2qp state [(ν13/2)2]12 is favored with respect to the partially aligned
configuration [(ν13/2)2]10. The interactionwhich restores the natural order for the two
energies is the hexadecapole particle-core term. Indeed, this term affects mainly the
states around 10+ and leaves the states beyond 14+, almost unchanged. The surface
delta interaction affects in principal the diagonal matrix elements, decreasing them if
G1 > 0. This depression is large for small values of J2 and small for large J2. Since
the major components of the yrast states beyond 10+ have J2 = 12, it is expected
that all states are shifted down by more or less the same amount.
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Fig. 8.1 The ground left,
gamma middle and beta right
energies predicted by the
extended CSM in 192Pt, are
compared with experimental
data. The structure
coefficients and the
deformation parameters,
determined as explained in
the text, are given in the
figure legend. Experimental
data are taken from Refs.
[FING72, RBWW79,
JNH77]

The BCS treatment was performed for the whole major shells of i13/2 for neutrons
and h11/2 for protons. The resulting quasiparticle energies, in 192Pt, are 1.485 and
1.305 MeV for neutrons and protons, respectively.

The CSM parameters d, A1, A2 for 192Pt are kept the same as if the CSM was
used alone to describe the low spin spectrum. Since the terms A3 and A4 are influ-
encing only the beta state energies and moreover these states are also affected by
the quasiparticle-core coupling, we modified them a bit and the actual values, which
reproduces the first two energy levels in the beta band, are: A3 = −88.139 keV,
A4 = −108.906 keV. The strengths for the coupling interaction have been fixed in
the followingway. The parameterχ/k

√
2 is varied slightly around the value predicted

by the liquid drop model. The coefficients X0 and X2 are taken equal to each other.
Their common value and X4 are chosen so that the energy difference E12+ −E10+ lies
close to the corresponding experimental data. Another point which is worth mention-
ing is the quenching of the 0 and 2 qp interaction due to the coupling term, by a factor
of 0.2. By this quenching one prevents an over-counting of the collective effects of
the 2qp operator, these being already included via the phenomenological quadrupole
bosons. The parameters obtained for 192Pt are listed in Fig. 8.1. The states beyond
10+, have the aligned states

[
(2ν)J2 |J+

1 〉]J2+J1
as a dominant component, where J+

1
is a state from the CSM ground band. However, they have also components involving
states of beta and gamma bands as collective factor states and the 2qp of proton types
aligned to the angular momentum 10+. The structure of wave functions in that region
is reflected in the transition probabilities.
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Table 8.1 Branching ratios for some low lying states

102 B(E2;J→J ′)
B(E2;I→I ′)

188Pt 190Pt 192Pt 194Pt
Exp. Th. Exp. Th. Exp. Th. Exp. Th.

2+
γ →0+

g

2+
γ →2g

3.44 3.44 1.24 1.27 0.51 0.51 0.38 0.35

3+
γ →2+

g

3+
γ →2γ

4.5 5.24 1.8 1.67 0.76 0.44 0.5 0.35

3+
γ →4+

g

3+
γ →2γ

0.039 49 33.8 26 29.3 0.0013

0+
β →2+

g

0+
β →2β

≥11 12.23 11 5.06 3.8 3.7 7.9 3.7

2+
β →0+

g

2+
β →0β

0.83 0.014 0.02 0.002 0.022 6.5 × 10−4 4.0 × 10−4

2+
β →4+

g

2+
β →0β

19.0 7.4 4.2 4.4 ≤2.8 0.83 1.68

q2/q0k
√
2 0.114 0.064 0.008 0.012

Experimental data (Exp.) are taken from Ref. [FING72]. The parameter q0/k
√
2 was fixed so that

the experimental value of B(E2; 2† → 0†) [RBWW79] is reproduced

The results for transition probabilities are presented in Tables8.1 and 8.2. The
effective charge of the collective terms involved in the quadrupole transition operator,
q0/k

√
2 and q2/2k2, were adjusted as to reproduce the experimental data for the ratio

B(E2; 2+
γ → 2+

g ) and B(E2; 2+
g → 0+

g ). The deformation parameter d for the four
isotopes 188−194Pt is 0.9, 0.8, 0.8, 0.7, respectively. One should note that the big
discrepancy between the experimental data and the CSM prediction for the ratio in
the last row of Table8.1 for 188Pt, does not show up in 190Pt. This discrepancy and
differences appearing in the second last row are caused by the fact that the parameter
d as well as the anharmonic term of the transition operator should be larger than
they are.

The results for the gyromagnetic factor of the yrast states canbe summarized as fol-
lows: It has a constant value equal to the gC = Z/A for I ≤ 8which reflects the fact the
state have a pure collective nature.Adiscontinuity appears for I = 10where gI has the
value−0.2 for 192Pt and 0 for 190Pt. For the second mentioned isotope the minimum
value,−0.2, is reached for I = 12. For this angularmomentum the gyromagnetic fac-
tor of 192Pt keeps still equal to−0.2. Beyond 12+, gI is slowly increasing and at 18+
vanishes. The negative values for gI suggests that the leading component of the given
state consists of two neutron quasiparticles aligned to the low lying collective states of
the core. The higher states of the same angularmomentumhave also competitive com-
ponents of 2 proton quasiparticles coupled to the states of the core. This is reflected
in the value of the corresponding gyromagnetic factor, since the proton factor has a
positive value. To give an examplewemention the case of 192Pt where the predictions
for g

(i)
I for the second and third 10+ (i.e., I = 10, i = 2, 3) are 1.36 and −0.19μN ,

while the values for the second and third 12+ are −0.19 and 1.11 μN , respectively.
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8.1.2 Even-Odd Systems

The quasiparticle-core coupling Hamiltonian introduced in the previous subsection
to study the states for an even-even system lying in the backbending region may also
be used for studying the even-odd isotopes. Here we describe the results obtained by
ignoring the SDI interaction. Its influence on the diagonalmatrix elements is however
simulated by a correction of the quasiparticle energies. In Ref. [RS87], this Hamil-
tonian was treated in both the intrinsic and laboratory reference frames. Numerical
results are obtained, however, in the laboratory frame, where the diagonalization
basis is defined by a subspace of the quasiparticle core-states due to the restrictions:
(a) one considers only the one and three quasiparticle states; (b) the states of the core
are the projected states used by the CSM to describe the ground, β and γ bands:

|i, J1j; IM〉 =
[
φi

J1 ⊗ d†
j |BCS〉

]

IM
≡ |C, 1, IM〉,

|i, J1; j, j2(J2)J3; IM〉 =
[
φi

J1 ⊗ |j, j2(J2)J3〉
]

IM
≡ |C, 3, IM〉,

i = g,β, γ. (8.1.13)

The diagonalization procedure provides the eigenvalues

ε1,I < ε2,I < ε3,I < ... (8.1.14)

and the corresponding eigenstates:

|i, IM〉 =
∑

C,1

Ci,I
C,1|C, 1, IM〉 +

∑

C,3

Ci,I
C,3|C, 3, IM〉 (8.1.15)

The electric quadrupole and magnetic dipole transition operators connecting the
eigenstates of the model Hamiltonian, have the same expressions as in the previous
subsection. Therefore, the B(E2) and B(M1) values are defined as:

B(E2; kI → k′I ′) = |〈kI||Q2||k′I ′〉|2,
B(M1; kI → k′I ′) = |〈kI||M1||k′I ′〉|2. (8.1.16)

Results for the E2 and M1 strengths are given in Table8.3. With these quantities one
may calculate the mixing ratios for the E2 and M1 transitions:

δ = 8.78 × 10−4(EkI − Ek′I ′)
〈kI||Q2||k′I ′〉
〈kI||M1||k′I ′〉 . (8.1.17)

Calculations were performed for 189Pt, 191Pt and 193Pt. Results for energies in the
heaviest isotope are shown in Fig. 8.2, where the experimental data available, taken
fromRefs. [PI75, BR78,ROT80, SAH77], are also given. For a better presentationwe
organized the data in�I =2 bands based on j = 13

2 , 11
2 , 9

2 , respectively. In all consid-
ered isotopes a back-bending appears in the yrast band for I= 33

2 . As results from our
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Table 8.3 The B(E2) and B(M1) values for the transitions I → I − 2 and I → I + 1 respectively,
predicted for some even-odd isotopes of Pt

I B(E2; I → I − 2)(e2b2) I B(M1; I → I + 1)(e2fm2 × 10−2)
189Pt 191Pt 193Pt 189Pt 191Pt 193Pt

17/2 0.101 0.135 0.075 9/2 0.126 0.159 0.133

21/2 0.041 0.162 0.058 11/2 0.204 0.298 0.233

25/2 0.628 0.530 0.475 13/2 0.001 0.001 0.001

29/2 2.464 1.597 1.469 15/2 0.122 0.144 0.118

15/2 0.087 0.071 0.045 17/2 0.140 0.103 0.109

19/2 0.143 0.175 0.085 19/2 0.073 0.166 0.135

23/2 1.152 0.821 0.754

27/2 2.097 1.525 1.285

31/2 2.248 1.801 1.379

Fig. 8.2 The calculated
energies (Th.) for the
particle-core coupling
Hamiltonian are compared
with the corresponding
experimental data (Exp.) for
193Pt. Data are from Refs.
[PI75, ROT80, SAH77,
BR78]

calculations, the maximum component of this state is φ
g
0|j333/2〉. Of course, to this

state the particle-core component φg
0((πh211/2)10νi13/2)33/2 could also contribute, but

it was ignored since according to our estimation this is, indeed, small. On the other
hand if one νqp would be coupled to the state 12†, where the back-bending in the
neighboring even-even isotope is taking place, one would expect that the state 37/2+
is the right place for the back-bending to show up. This proves that the back-bending
in the even-odd system is caused by the intersection of 1 and three quasiparticle
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bands. Indeed, the maximum angular momentum which one could meet in a three
quasiparticle system is 33/2+. The first 2 bands headed by 11/2+ are bending at
I = 31/2+ while the bands which start with 9/2+ and (13/2)+2 respectively, have
the back-bending at 29/2+. One notices the fact that the states where the intersection
of 1qp and 3qp bands takes place, are almost degenerate. This degeneracy would
not persist if the states (2πh11/21νi13/2) are included in the diagonalization basis.
However, a staggering of the states mentioned above would still persist.

The strengths determining the electric and magnetic transitions operators respec-
tively, are the same as for the even-even case. In order to account for the polarization
effects which are not included here, the free gyromagnetic factor for neutron quasi-
particles was quenched by a factor of 0.6. In Table 8.4 one sees that the quadrupole
moment changes the sign at 11/2+ and again in the high spin region. Taking into
account the structure of the core states in the intrinsic frame of reference, the change
of sign for the quadrupole moment in a high spin state is determined by the oblate
shape of the collective core in a state of a high angular momentum as we have seen
in one previous chapter. The negative sign of the 11/2+ state is due the dominance
character of the component having as collective factor state, the state 2+

γ which, as
we have shown earlier, has a quadrupole moment whose sign is different from the
sign characterizing the quadrupole moments of the low lying states in the ground
band. We note the large value of the mixing ratios for I = 13/2+, which is caused
by a small value for the corresponding B(M1) value.

Concerning the band structure, few additional words are necessary. Indeed, until
nowweartificially organized the energy levels in�I = 2 bands startingwith I = 9/2,
11/2, 13/2, respectively. The question is whether these sets of states are indeed bands
in the traditional sense, i.e. the consecutive states of a given band are linked by strong
E2 transitions.

Table 8.4 The electric quadrupole (QI ) and magnetic dipole moments (μI ) as well as the mixing
ratios (δ) predicted for the states of some even-odd isotopes of Pt, are listed

I QI (eb) μI (efm) δ
189Pt 191Pt 193Pt 189Pt 191Pt 193Pt 189Pt 191Pt 193Pt

9/2 1.06 1.12 0.89 −0.165 −0.169 −0.168 −0.036 −0.030 −0.028

11/2 −0.24 −0.09 −0.06 −0.112 −0.117 −0.115 0.017 0.001 0.009

13/2 0.74 0.75 0.63 −0.107 −0.111 −0.110 −2.909 0.447 −18.12

15/2 1.64 1.28 1.26 −0.043 −0.048 −0.046 0.128 0.128 0.125

17/2 1.82 1.75 1.35 −0.008 −0.017 −0.014 0.171 0.278 0.228

19/2 0.71 0.75 0.61 0.045 0.038 0.037 −0.158 −0.089 −0.120

21/2 1.21 0.68 0.51 0.081 0.061 0.062

23/2 0.43 0.24 −0.08 0.141 0.132 0.134

25/2 0.15 −0.05 −0.32 0.149 0.142 0.142

27/2 −1.17 −1.34 −2.15 0.276 0.260 0.280

29/2 −0.82 −1.12 −1.64 0.252 0.241 0.247

31/2 −1.73 −2.18 0.021 0.386 0.369 0.215
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According to the results listed in Table8.3, this is true for the yrast bands headed
by I = 13/2 and I = 11/2, respectively. However, the statement is not valid for other
sets included in Fig. 8.2, due to the strong admixture of the excited band states which
enhances the decay probability to the yrast line. We don’t exclude the possibility
of a finite band structure due to some band crossings below the angular momentum
where the 1qp and 3qp bands intersect each other. Indeed, within the 1qp band one
may distinguish three bands having as major collective state factor a state of the CSM
bands, i.e. φg

JM φ
β
JM or φ

γ
JM .

In Ref. [RS87], results for the gyromagnetic factor are also presented. They vary
with angular momentum, in the following manner. It starts from a negative value
(≈−0.4) which corresponds to a neutron 1qp coupled to a collective state of low
spin and therefore the contribution coming from gF , which is negative, is dominant.
The curve increases and reaches positive values for I = 19/2 from where high spins
from the core are involved and therefore the effect due to the collective magnetic
moments prevails. The gyromagnetic factor continues to increase up to I = 31/2
when a big fall down takes place for I = 33/2 where the values are−0.4 for 191,193Pt
and −0.8 for 189Pt. Actually, for this spin the 1qp and 3qp bands cross each other.
From this angular momentum the gyromagnetic factor is increasing again, which in
fact reflects that the high spin collective states participate.

As afinal conclusion, onemay say that the present extensionof theCSMformalism
provides a consistent description of the spectroscopic properties of both the even-
even and the even-odd nuclei.

8.1.3 Parity Partner Bands in Even-Odd Nuclei

We suppose that the rotational bands in even-odd nuclei may be described by a
particle-core Hamiltonian:

H = Hsp + Hcore + Hpc, (8.1.18)

whereHsp is a spherical shellmodelHamiltonian associated to the odd nucleon,while
Hcore is a phenomenological Hamiltonian which describes the collective motion of
the core in terms of quadrupole and octupole bosons. This term is identical to that
used [RRR06] in the previous chapter to describe eight rotational bands in even-even
nuclei. The two subsystems interact with each other by Hpc, which has the following
expression:

Hpc = −X2

∑

μ

r2Y2,−μ(−)μ
(

b†2μ + (−)μb2,−μ

)

− X3

∑

μ

r3Y3,−μ(−)μ
(

b†3μ + (−)μb3,−μ

)
+ XjJ jJ + XI2 I2. (8.1.19)
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The term jJ is similar to the spin-orbit interaction from the shell model and expresses
the interaction between the angularmomenta of the odd-particle and the core. In other
words this term accounts for the interaction of the magnetic moments associated to
the mentioned angular momenta. The last term is due to the rotational motion of the
whole system, I denoting the total angular momentum of the particle-core system.
The core states are described by eight sets of mutually orthogonal functions, obtained
by projecting out the angular momentum and the parity from four quadrupole and
octupole deformed functions: one is a product of two coherent states:

�g = ef (b+
30−b30)ed(b+

20−b20)|0〉2|0〉3 ≡ �o�q|0〉2|0〉3, (8.1.20)

while the remaining three are polynomial boson excitations of �g . The parameters
d and f are real numbers and simulate the quadrupole and octupole deformations,
respectively. The vacuum state for the k-pole boson, k = 2, 3, is denoted by |0〉k .

The particle-core interaction generates a deformation for the single particle tra-
jectories. Indeed, averaging the model Hamiltonian with�g , one obtains a deformed
single particle Hamiltonian, Hmf which plays the role of the mean field for the single
particle motion:

Hmf = C + Hsp − 2dX2r2Y20 − 2fX3r3Y30, (8.1.21)

where C is a constant determined by the average of Hcore. The Hamiltonian Hmf
represents an extension of the Nilsson Hamiltonian by adding the octupole deforma-
tion term. In Ref. [RRR99] it was shown that in order to get the right deformation
dependence of the single particle energies Hmf must be amended with a monopole-
monopole interaction, Mω2r2α00Y00, where the monopole coordinate α00 is to be
determined from the volume conservation restriction. This term has a constant con-
tribution within a band. The constant value is, however, band dependent.

In order to find the eigenvalues of the model Hamiltonian we follow several steps:

(1) In principle the single particle basis could be determined by diagonalizing Hmf
amended with the monopole interaction. The product basis for particle and core
may be further used to find the eigenvalues of H. Due to some technical difficul-
ties in restoring the rotation and space reversal symmetries for the composite
system wave function, this procedure is however tedious and therefore one
prefers a simpler method. Thus, the single particle space consists of three spher-
ical shell model states with angular momenta j1, j2, j3. We suppose that j1 and
j2 have the parity π = +, while j3 has a negative parity π = −. Due to the
quadrupole-quadrupole interaction the odd particle from the state j1 can be pro-
moted to j2 and vice-verso. The octupole-octupole interaction connects the states
j1 and j2 with j3. Due to the above mentioned effects the spherical and space
reversal symmetries of the single particle motion are broken. To be more spe-
cific, by diagonalizingH (8.1.18) in a projected spherical particle-core basis with
the spherical single particle state factors mentioned above, the eigenstates could
be written as a projected spherical particle-core state having as single particle
state factor a function without rotation and parity good symmetries. Therefore,
one could start with a coupled basis where the single particle state is a linear
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combination of the spherical states, where themixing coefficients are to be deter-
mined by a least square fitting procedure as to obtain an optimal description of
the experimental excitation energies. Thus, instead of dealing with a spherical
shell model state coupled to a deformed core without reflection symmetry, as the
traditional particle-core approaches proceed, here the single particle orbits are
lacking the spherical and space reversal symmetries and by this, their symmetry
properties are consistent with those of the phenomenological core.

(2) We notice that �g is a sum of two states of different parities. This happens due
to the specific structure of the octupole coherent state:

�o = �(+)
o + �(−)

o . (8.1.22)

The states of a given angular momentum and positive parity can be obtained
through projection from the intrinsic states:

|n1l1j1K〉�(+)
o �q, |n2l2j2K〉�(+)

o �q, |n3l3j3K〉�(−)
o �q. (8.1.23)

The projected states of negative parity are obtained from the states:

|n1l1j1K〉�(−)
o �q, |n2l2j2K〉�(−)

o �q, |n3l3j3K〉�(+)
o �q. (8.1.24)

The angular momentum and parity projected states are denoted by:

ϕ
(+)
IM (jiK; d, f ) = N(+)

i;IK PI
MK |nilijiK〉�(+)

o �q ≡ N(+)
i;IKψ

(+)
IM (jiK; d, f ), i = 1, 2

ϕ
(+)
IM (j3K; d, f ) = N(+)

3;IK PI
MK |n3l3j3K〉�(−)

o �q ≡ N(+)
3;IKψ

(+)
IM (j3K; d, f ),

ϕ
(−)
IM (jiK; d, f ) = N(−)

i;IK PI
MK |nilijiK〉�(−)

o �q ≡ N(−)
i;IKψ

(−)
IM (jiK; d, f ), i = 1, 2

ϕ
(−)
IM (j3K; d, f ) = N(−)

3;IK PI
MK |n3l3j3K〉�(+)

o �q ≡ N(−)
3;IKψ

(−)
IM (j3K; d, f ).

(8.1.25)

The factors N (±)
i,IK assure that the projected states ϕ(±) are normalized to unity.

Obviously, the unnormalized projected states are denoted by ψ(±). For the quan-
tum number K we consider the lowest three values, i.e. K = 1/2, 3/2, 5/2.
Note that the earlier particle-core approaches [RCD76, LEA82] restrict the sin-
gle particle space to a single j, which results in eliminating the contribution of
the octupole-octupole interaction.

(3) Note that for a given ji, the projected states with different K are not orthogonal.
Indeed, the overlap matrices:
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A(+)

K,K ′(Ijl; d, f ) = 〈ψ(+)
IM (jlK; d, f )|ψ(+)

IM (jlK
′; d, f )〉,

l = 1, 2, 3; K, K ′ = 1/2, 3/2, 5/2,

A(−)

K,K ′(Ijl; d, f ) = 〈ψ(−)
IM (jlK; d, f )|ψ(−)

IM (jlK
′; d, f )〉,

l = 1, 2, 3; K, K ′ = 1/2, 3/2, 5/2, (8.1.26)

are not diagonal. By diagonalizing the overlap matrices, one obtains the eigen-
values a(±)

Ip (jl) and the corresponding eigenvectors V (±)
IK (jl, p), with K = 1/2,

3/2, 5/2 and p = 1, 2, 3. Then, the functions:

�
(+)
IM (jl, p; d, f ) = N (+)

l;Ip
∑

K

V (+)
IK (jl, p)ψ

(+)
IM (jlK; d, f ),

�
(−)
IM (jl, p; d, f ) = N (−)

l;Ip
∑

K

V (−)
IK (jl, p)ψ

(−)
IM (jlK; d, f ), (8.1.27)

are mutually orthogonal. The norms are given by:

(
N (±)

l;Ip
)−1 =

√
a(±)

Ip (jl). (8.1.28)

For each state, there is a term in the sum (8.1.27), which has a maximal weight.
The corresponding quantum number K is conventionally assigned to the mixed
state.

(4) In order to simulate the core deformation effect on the single particle motion, in
some cases the projected states corresponding to different j must be mixed up.

�
(+)
IM (p; d, f ) =

∑

l=1,2,3

A(+)
pl �

(+)
IM (jlp; d, f ),

�
(−)
IM (p; d, f ) =

∑

l=1,2,3

A(−)
pl �

(−)
IM (jlp; d, f ). (8.1.29)

The amplitudes A(±)
pl can be obtained either by diagonalizing Hmf or, as we

mentioned before, by a least square fitting procedure applied to the excitation
energies.

The energies of the odd system are approximated by the average values of the
model Hamiltonian corresponding to the projected states:

E(+)
I (p; d, f ) = 〈�(+)

IM (p; d, f )|H|�(+)
IM (p; d, f )〉,

E(−)
I (p; d, f ) = 〈�(−)

IM (p; d, f )|H|�(−)
IM (p; d, f )〉. (8.1.30)

Note that due to the structure of the particle-core projected states, the energies for the
odd system are determined by the coupling of the odd particle to the excited states
of the core. This approach was applied for the description of the Kπ = 1/2± bands.

However this procedure can be extended by including the K = 0 states in the
space describing the deformed core.
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8.1.4 The Description of the Kπ = 3
2
±
, 5

2
±

Bands

In principle the method presented in the previous subsection may work for the
description of bandswith the quantum number larger than 1/2. However, the intrinsic
reference frame for the odd system is determined by the deformed core and therefore
one expects that this brings an important contribution to the quantum number K . To
be more specific, we cannot expect that projecting out the good angular momentum
from |j5/2〉⊗�g a realistic description of the K = 5/2 bands is obtained. Therefore,

we assume that the Kπ = 3
2
±
, 5
2
±
bands are described by projecting out the angular

momentum from a product state of a low K single particle state and the intrinsic
gamma band state.

We recall that withinCSM the states of the gamma band are obtained by projection
from the intrinsic state:

�
(γ;±)
2 = �†

γ�(±)
o �q (8.1.31)

where the excitation operator for the gamma intrinsic state was defined before. The
low index of� in Eq. (8.1.31) is theK quantum number for the γ intrinsic state. Thus,
a simultaneous description of the bandswithK = 1/2, 3/2, 5/2 can be achievedwith
the projected states:

ϕ
(±)
IM;1/2 = N (±)

I,1/2

∑

J

(
N (g,±)

J

)−1
Cj1 J I
1/2 0 1/2

[
|n1l1j1〉 ⊗ ϕ

(g;±)
J

]

IM
,

ϕ
(±)
IM;3/2 = N (±)

I,3/2

∑

J

(
N (γ,±)

J

)−1
C j1 J I

−1/2 2 3/2

[
|n2l2j2〉 ⊗ ϕ

(γ;±)
J

]

IM
,

ϕ
(±)
IM;5/2 = N (±)

I,5/2

∑

J

(
N (γ,±)

J

)−1
Cj1 J I
1/2 2 5/2

[
|n3l3j3〉 ⊗ ϕ

(γ,±)
J

]

IM
. (8.1.32)

In the above expressions the notation N (i,±)
J , with i = g, γ is used for the normal-

ization factors of the projected states describing the ground and the gamma bands
respectively, of the even-even core. Note that for each angular momentum I the
above set of three projected states is orthogonal. The energies for the six bands with
Kπ = 1/2±, 3/2±, 5/2± are obtained by averaging the model Hamiltonian (8.1.18)
with the projected states defined above.

E(±)
I,K = 〈ϕ(±)

IM;K |H|ϕ(±)
IM;K 〉, K = 1/2, 3/2, 5/2. (8.1.33)

The matrix elements of the particle core-interaction can be analytically calculated
[RRF09].
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8.1.5 Transition Probabilities

For some K = 1/2 bands data for the reduced E1 and E2 transition probabilities are
available. They are given in terms of the branching ratios:

RIπ = B(E1; Iπ → (I − 1)π
′
)

B(E2; Iπ → (I − 2)π)
,π

′ = π (8.1.34)

The dipole and quadrupole transition operators are:

Q1μ = eq1
(
(b†2b†3)1μ + (b3b2)1̃μ

)
,

Q2μ = eQ2

(
b†2μ + (−)μb2,−μ + ar2Y2μ

)
. (8.1.35)

8.1.6 Numerical Results

Excitation energies for one positive and one negative parity bands with K = 1
2 , in

three odd isotopes, 219Ra, 237U and 239Pu, were calculated. The parameters defining
Hcore, as well as the deformation parameters d and f , are the same as for the eight
rotational bands in the even-even neighboring isotopes. The single particle states are
spherical shell model states with the appropriate parameters for the (N, Z) region
of the considered isotopes [RiSh80]. Calculations correspond to the single parti-
cle states: (j1, j2, j3) = (2g7/2, 2g9/2, 1h9/2). In order to obtain the best agreement
between the calculated excitation energies and the corresponding experimental data,
in the expansion (8.1.29) a small admixture of the states (j1; j3) and (j2; j3) was
considered: |A(+)

i,3 |2 and |A(−)
i,3 |2, are both equal to 0.001 for 219Ra, while for 237U

and 239Pu the amplitudes take the common values: |A(+)
i,3 |2 = |A(−)

i,3 |2 = 0.04. The
mixing amplitude of the states (j1, j2) is negligible small. Energies (8.1.30) depend
on the interaction strengths X2, X3, XjJ and XI2 . They were determined by fitting

four particular energies in the two bands of different parities, i.e. Kπ = 1
2
±
. The

results of the fitting procedure are given in Table8.5. Inserting them in Eq. (8.1.30),

Table 8.5 Parameters involved in the particle-core Hamiltonian obtained by fitting four excitation
energies

Parameters 219Ra 227Ra 237U 239Pu

X2b2[keV] 22.714 −1.992 1.080 −2.515

X3b3[keV] −8.823 169.511 2.227 4.937

XjJ [keV] −0.230 8.553 −5.817 −3.985

XI2 [keV] 3.778 4.390 4.634 5.050

Here b denotes the oscillator length: b = ( �

Mω )1/2; �ω = 41A−1/3. The usual notations for nucleon
mass (M) and atomic number (A) were used
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the energies in the two bands with K = 1/2 are readily obtained.

E(I±) = E(±)
I (1; d, f ) − E(+)

1
2

(1; d, f ). (8.1.36)

The theoretical results for excitation energies, given in Table8.6 for 219Ra, 237U
and 239Pu and in Fig. 8.3 for 219Ra, agree quite well with the corresponding experi-
mental data. Our results suggest that the dominant K component is K = 1/2, while
the dominant j component is g9/2. Results of r.m.s. values for 219Ra, 237U and 239Pu
are 66.24 keV, 48.97 keV and 31.8 keV, respectively. In calculating the r.m.s. value
for 219Ra we ignored the data for the states 53/2± since the spin assignment is
uncertain. It is interesting to mention that the spectra of 219Ra were measured by
two groups [COT87, Wi92] by the same reaction, 208Pb(14C, 3n)219Ra. However,
they assign for the ground state different angular momenta, 9/2+ [COT87] and 7/2+
[Wi92]. In our approach both assignments yield good description of the data. How-
ever, we made the option for 9/2+ since the corresponding results agree better with
the experimental data than those obtained with the other ground state.

The case of 227Ra was treated with the formalism presented in Sect. 8.1.4. The
single particle basis is: 2g7/2, 2g9/2, 2f5/2. The first state coupled to the coherent
state describing the unprojected ground state generates the parity partner bands

Fig. 8.3 Calculated (Th.) and experimental (Exp.) excitation energies for the Kπ = 1
2

±
bands in

219Ra. The data were taken from Ref. [Wi92]
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Fig. 8.4 Calculated right column and experimental left column excitation energies for the

bands with Kπ = 1
2

±
, 3
2

±
, 5
2

±
in 227Ra. The experimental data were taken from Refs. [LEA92,

DZ95, Wi92]

Kπ = 1/2±. The bands Kπ = 3/2± are obtained through projection from the
product state (2g9/2)�

(γ;±)
2 , while the bands Kπ = 5/2± originate from the intrinsic

state (2f5/2)�
(γ;∓)
2 . Concerning the bands characterized by Kπ = 1/2± one could

consider also the mixing of components with different K in the manner discussed
in Sect. 8.1.3. However, numerical application suggests that such a mixing is not
really necessary in order to obtain a realistic description of the available data. The
calculated energies of the three bands in 227Ra are compared with the corresponding
experimental data in Fig. 8.4. In Fig. 8.4 we note that the present approach reproduces
the experimental energies ordering in the band Kπ = 1/2− band. The energy split of
the states 3/2−, 1/2− is nicely described although the doublet is shifted down by an
amount of about 50 keV. In the band 5/2+ there exist an energy level which is ten-
tatively assigned with 11/2+. Calculations suggest that this level could be assigned
as 13/2+. No experimental data are available for the band 5/2−. In Fig. 8.4 we gave
however the results also for this band. Note that the ordering for the lowest levels is
not the natural one. However, starting with 13/2− the normal ordering is restored.

Nowwewould like to comment on the parameters yielded by the fitting procedure,
for the considered isotopes. Except for 237U, where both quadrupole-quadrupole
and octupole-octupole interactions are attractive, the two interactions have different
characters for the rest of nuclei. In the first situation the λ (= 2, 3)-pole moments
of the odd nucleon and of the collective core have different signs. In the remaining
cases the two moments are of similar sign. We also remark the large strength for
the q3.Q3 interaction in 227Ra which is consistent with the fact the neighboring
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even-even isotope exhibits a relatively large octupole deformation. Indeed, accord-
ing toRefs. [RRF97,RIUF03] for this nucleuswe have f = 0.8. The large value of the
strength X3 determines a large mixing amplitudes of the states [g9/2�(+)

g ; f5/2�
(−)
g ]

as well as of the states [g9/2�(−)
g ; f5/2�

(+)
g ]. Indeed, the value obtained for this

amplitude is: |A(+)
i,3 |2 = |A(−)

i,3 |2 = 0.07425, i = 1, 2. Another distinctive feature for
227Ra consists in the fact that the jJ interaction strength has a sign which is different
from that associated to other nuclei. In fact the repulsive character of this interaction
in 227Ra is necessary in order to compensate the large attractive contribution of the
q3Q3 interaction.

Further, we raised the question whether one could identify signatures for static
octupole deformation in the two bands. To this goal, in Fig. 8.5, we plotted the energy
displacement functions [RIUF03, RIO3, BON00] δE(I),�E1,γ(I), defined in the
previous chapter, for 239Pu. We choose this nucleus, since more data are available.
The plot suggests that a static octupole deformation is possible for the states with
angular momenta I ≥ 51

2 , belonging to the two parity partner bands.

Fig. 8.5 The theoretical and experimental energy displacement functions δE(I) and �E1,γ(I)
given by Eqs. (7.1.11) and (7.1.12) respectively, characterizing the isotope 239Pu, are plotted as
a function of the angular momentum I . Experimental data are taken from Ref. [ZH05]. In the
lower panel, the theoretical and experimental�E1,γ(I) corresponding to the states Iπ = ( 1

2 + 2k
)+

with k = 1, 2, 3, . . . , are represented by the symbols Th. I and Exp. I respectively, while those
associated with the negative parity states Iπ = ( 1

2 + 2k
)−

with k = 1, 2, 3, . . . bear the labels
Th. II and Exp. II , respectively

http://dx.doi.org/10.1007/978-3-319-14642-3_7
http://dx.doi.org/10.1007/978-3-319-14642-3_7
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Table 8.7 Experimental (Exp.) and calculated values of the ratio B(E1)/B(E2) for the initial state
Jπ running from 19/2− to 51/2−

B(E1;J→(J−1))
B(E2;J→(J−2)) (10

−6 fm−2)

Jπ − Jg.s. Exp. Set I Set II Ref. [ZD93]

5− 2.52(18) 2.52 2.52 1.195

6+ 1.12(08) 1.09 0.677 0.314

7− 1.49(10) 3.97 3.284 1.318

8+ 1.23(16) 1.23 0.704 0.313

9− 1.16(08) 4.56 3.194 1.442

10+ 2.77(64) 1.44 0.775 0.312

11− 1.41(9) 4.59 2.829 1.567

12+ 3.68(26) 1.69 0.868 0.313

13− 2.14(30) 4.39 2.448 1.691

14+ 1.96(14) 1.96 0.967 0.314

15− 1.76(18) 4.11 2.131 1.814

16+ 1.06(17) 2.22 1.060 0.315

17− 2.08(28) 3.84 1.887 1.936

18+ 3.34(48) 2.45 1.137 0.317

19− 1.34(42) 3.62 1.704 2.057

20+ 2.38(44) 2.63 1.195 0.318

21− 4.01(94) 3.44 1.568 2.177

Average 2.09(9) 2.97 1.7 1.072

For an easier writing the angular momenta are normalized to Jg.s. = 9/2. Experimental data are
from Ref. [COT87]. Results are given in units of 10−6 fm−2. For comparison purposes we give the
results of Ref. [ZD93] in the last column

Finally, we calculated the branching ratio RJ defined by Eq. (8.1.34), for 219Ra.
There are two parameters involved which were fixed so that two particular exper-
imental data are reproduced. Choosing two distinct sets of data, one obtains the
following parameters, respectively:

set I : q1
q2

= 18.377 × 10−3fm−1, ab2 = −0.63616 fm2,

set II : q1
q2

= 11.310 × 10−3fm−1, ab2 = −0.34422 fm2, (8.1.37)

where b denotes the oscillator strength characterizing the spherical shell model states
for the odd nucleon, while a is the strength of the particle like transition operator
(8.1.35). As shown in Table8.7, the theoretical results agree reasonable well with the
corresponding experimental data. Results show an oscillating behavior with maxima
for the negative parity states. Note that some of the data are well described while
others deviate from the data by a factor ranging from 2 to 3. In the fourth column of
Table8.7 we listed the results obtained in Ref. [ZD93] by a different model.
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Comparison between the present formalism for even-odd nuclei and that of
Ref. [BONA04], reveals the following features: (i) Having in mind the asymptotic
behavior of the coherent states written in the intrinsic frame of reference [RKF83],
one may anticipate that the wave function describing the odd system from Ref.
[BONA04], might be recovered in the asymptotic limit of the present approach. Due
to the fact that this formalism is associated to the laboratory reference frame, the
Coriolis interaction does not show up explicitly. The split of the states of different
parities is determined by the matrix elements of Hpc; (ii) Since the coherent states are
axially symmetric functions, we don’t account for the motion of the γ-like deforma-
tion. Again the two formalisms are on a par with each other; (iii) The approach of Ref.
[BONA04] is of a strong coupling type and therefore K is a good quantum number,
which is not the case in this approach. Indeed, we use the laboratory frame and the
meaning of the quantum number K is given by the fact that the K-component of the
projected function prevails over the components with K ′ = K ; (iv) The Hamiltonian
describing the odd system (8.1.18) involves a termHcore which describes in a realistic
fashion the neighboring even-even system. By contrast, in Ref. [BONA04] the terms
associated to the core are not appropriate for describing the complex structure of the
even-even sub-system.

Before closing,wewould like to add a few remarks about the possible development
of the present formalism. Choosing for the core unprojected states, the generating
states for the parity partner bands with Kπ = 0±

β , 2±
γ , 1± states, otherwise keeping

the same single particle basis for the odd nucleon, the present formalism can be
extended to another four bands, two of positive and two of negative parity. Another
noteworthy remark refers to the chiral symmetry [FRA01] for the composite particle
and core system. Indeed, in Chap.7 we showed that starting from a certain total
angular momentum of the core, the angular momenta carried by the quadrupole (J2)
and octupole (J3) bosons respectively, are perpendicular on each other. Naturally, we
may ask ourselves whether there is a strength for the particle-core interaction such
that the angular momentum of the odd particle becomes perpendicular to the plane
(J2, J3). This would be a signature that the three component system exhibits a chiral
symmetry.

As a final conclusion, one may say that the present CSM extension to odd nuclei
can describe quite well the excitation energies in the parity partner bands with Kπ =
1
2
±
, 3
2
±
, 5
2
±
.

http://dx.doi.org/10.1007/978-3-319-14642-3_7


Chapter 9
The Generalized Coherent State Model

9.1 CSM Extension to p-n Systems

The description of magnetic properties in nuclei has always been a central issue. The
reason is that the two systems of protons and neutrons respond differently when they
interact with an external electromagnetic field. Differences are due to the fact that by
contrast to neutrons, protons are charged particles, the proton and neutron magnetic
moments are different from each other and finally the protons and neutron numbers
are also different. It was in 1965 that Greiner and his collaborators advanced the idea
about different moments of inertia for proton and neutron systems [GR64] which
should be reflected both in energies and magnetic transitions. This idea was further
elaborated under the name of the two liquid drops model which has been used to
describe the isovector 2+ state [FA66] as well as the M1 properties [MGM75] of the
rotational bands. Few years later a microscopic description of the magnetic dipole
states was proposed by Gabrakov, Kuliev and Pyatov [GKP70], by using a deformed
Woods Saxonmeanfield for the single particlemotion. Shortly after, the same authors
succeeded to eliminate the isoscalar spurious contributions to the magnetic mode
[KP74]. Such dipole excitation was also studied by Rowe [SR77] within the potential
vibrating method. The group which brought something essentially new in this field is
that of Lo Iudice and Palumbo [IPF84]. They developed a phenomenological model,
called TwoRotorModel (TRM),which assigns to the proton and neutron systems two
rigid rotors, which are axially symmetric with different symmetry axes. The mode
appears to be a vibrational mode of the angle between the two symmetry axes. This
picture inspired the naming as “scissors mode”. An essential property of the mode,
predicted by TRM, is that it is excited due to the interaction of the nuclear convection
current with the electromagnetic field. Although the predictions of the TRM for both
energy and M1 probability to be excited, are much larger than the experimental
data, obtained few years later, the big merit of this model s to predict a pure orbital
mode, which is of collective nature, without involving the spin degrees of freedom.
As a matter of fact, this feature was confirmed by all microscopic calculations. The
field of collective M1 states was enormously stimulated by the group of Richter,

© Springer International Publishing Switzerland 2015
A.A. Raduta, Nuclear Structure with Coherent States,
DOI 10.1007/978-3-319-14642-3_9

277



278 9 The Generalized Coherent State Model

which identified the M1 state, for 156Gd, in a high resolution (e, e′) experiment
at backward angles [BRS83]. The results for the excitation energy and the B(M1)
valuewere confirmed by a nuclear resonance fluorescent experiment [BBD84]. Since
then, many experiments have been performed and the number of nuclei known to
exhibit a scissors mode was enlarged by many rear earth and actinides nuclei but
also by somemedium isotopes from the Ti region. Another phenomenological model
aimed at describing the measured properties of 1+ is the interacting boson model
(IBA2). In this model, the M1 state is caused by breaking the F spin symmetry by
a Majorana interaction of the proton-like and neutron-like bosons. The state energy
is obtained by a suitable fixing of the interaction strength. Therefore IBA2 is not
making predictions for the state energy but only for the M1 excitation probability
from the ground state [IA81].

To obtainmore detailed information about the literature devoted to this subject, we
advise the reader to consult the review papers on this issue [RI90, IUD95, ZAW98].

Here we briefly describe how to extend the CSM so as to be able to account for
the collective properties of the scissors mode [RFC87]. This extension is conven-
tionally called “The generalized Coherent State Model” (GCSM). In contrast to the
CSM, which uses only one boson for the composite system of protons and neutrons,
within the GCSM the protons are described by proton-like bosons while the neu-
trons by neutron-like bosons. Since one has two quadrupole bosons instead of one,
one expects from the beginning to have a more flexible model and to find a simpler
solution satisfying the restrictions required by the CSM. The restricted collective
space is defined for the three major bands, ground, beta and gamma, as well as for a
band which is based on the isovector state 1+. Orthogonality conditions are satisfied
by the following six functions which generate by angular momentum projection, 6
rotational bands.

φ
(g)
J M = N (g)

J P J
M0ψg, ψg = exp[d(b†p0 + b†n0) − d(bp0 + bn0)]|0〉,

φ
(β)
J M = N (β)

J P J
M0�βψg,

φ
(γ)
J M = N (γ)

J P J
M2(b

†
n2 − b†p2)ψg,

φ̃
(γ)
J M = Ñ (γ)

J P J
M2(�

†
γ,p,2 + �

†
γ,n,2)ψg,

φ
(1)
J M = N (1)

J P J
M1(b

†
nb†p)11ψg,

φ̃
(1)
J M = Ñ (1)

J P J
M1(b

†
n1 − b†p1)�

†
βψg. (9.1.1)

Here, the following notations were used:

�
†
γ,k,2 = (b†k b†k )2,2 + d

√
2

7
b†k,2, k = p, n,

�
†
β = �†

p + �†
n − 2�†

pn,

�
†
k = (b†k b†k )0 −

√
1

5
d2, k = p, n,
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�†
pn = (b†pb†n)0 −

√
1

5
d2. (9.1.2)

Note that a priori we cannot select one of the two sets of states φ
γ
J M and φ̃

γ
J M

for the gamma band, although one is symmetric and the other asymmetric against
proton neutron permutation. The same is true for the two isovector candidates for
the dipole states. The projected state norms have simple expressions in terms of the
overlap integrals (6.1.15), after changing the variable d2 by ρ2 = 2d2.

We seek now an effective Hamiltonian for which the projected states (9.1.1) are,
at least in a good approximation, eigenstates in the restricted collective space. The
simplest Hamiltonian fulfilling this condition is:

H = A1(N̂p + N̂n) + A2(N̂pn + N̂np) +
√
5

2
(A1 + A2)(�

†
pn + �np)

+ A3(�
†
p�n + �†

n�p − 2�†
pn�np) + A4 Ĵ 2. (9.1.3)

where the following new notations are introduced:

N̂τ =
∑

m

b†τmbτm, τ = p, n

N̂pn =
∑

m

b†pmbnm, N̂np = N̂ †
pn . (9.1.4)

The Hamiltonian given by Eq. (9.1.3), has only one off-diagonal matrix element in
the basis (9.1.1). That is 〈φβ

J M |H |φ̃(γ)
J M 〉. However, our concrete calculations show

that this affects the energies of β and γ̃ bands by an amount of few keV. Therefore,
the excitation energies of the six bands are in a very good approximation, given by
the diagonal element:

E (k)
J = 〈φ(k)

J M |H |φ(k)
J M 〉 − 〈φ(g)

00 |H |φ(g)
00 〉, k = g,β, γ, 1, γ̃, 1̃. (9.1.5)

It can be easily checked that the model Hamiltonian does not commute with the
components of the F spin operator:

F0 = 1

2
(N̂p − N̂n), F+ = N̂pn, F− = N̂np. (9.1.6)

Hence, the eigenstates of H are F0 mixed states. However, the expectation values of
the F0 operator on the projected model states are equal to zero. This is caused by the
fact that the proton and neutron deformations are considered to be equal. In this case
the states are of definite parity, with respect to the proton neutron permutation, which
is consistent with the structure of the model Hamiltonian, this being invariant with
respect to such a symmetry transformation. To conclude, by contrast to the IBA2

http://dx.doi.org/10.1007/978-3-319-14642-3_6


280 9 The Generalized Coherent State Model

Hamiltonian, the GCSM Hamiltonian is not F spin invariant. Another difference to
the IBA2, the most essential one, is that the GCSM Hamiltonian does not commute
with the boson number operators. Due to this feature the coherent state approach
proves to be the most adequate one to treat it.

Very useful information about the physics which can be touched by using the
states φ

(1)
J M and φ̃

(1)
J M to describe the magnetic dipole mode, can be obtained from the

asymptotic behavior of these states. Following the procedure in Chap.6, one arrives
at [RFC87]:

φk
J M = N (k)

J F (k)(βp, βn, d; θ)θG(βp, βn; θ)

×
[
β̃pe−iφp,3 + β̃ne−iφn,3)D J∗

M1(�int)

+ (β̃peiφp,3 +β̃neiφn,3)(−)J+1D J∗
M,−1(�int)

]
k = 1, 1̃

G(βp, βn, d; θ) = 1

β
e−[(d−β̃p)2+(d−β̃n)2] e−3dβθ2

2 − 3θ2
,

F (1)(βp, βn, d; θ) = 1, F (1̃)(βp, βn, d; θ) = 1√
10

[
(β̃p − β̃n)2 + 12β̃pβ̃nθ2 − 7

]
,

β̃τ = kτ βτ , τ = p, n; β = β̃p + β̃n√
2

. (9.1.7)

A few comments on the asymptotic expressions are necessary. First, one notes that
the expression for the states 1+ and 1̃+ differ from each other by the factor F (k)

which indicates that the state 1̃+ is higher in energy than 1+, for large quadrupole
deformation. Moreover, the function φ̃

(1)
J M is providing too small B(M1) values for

the excitation of the mode from the ground state. This is the reason why from now
on we consider φ

(1)
J M the privileged candidate for the low orbital collective M1 state.

The angles φτ ,3 with τ = p, n are related to the Eulerian angles associated to the
proton and neutron systems �τ through the transformation

(φτ ,1,σθ,φτ ,3) ≡ �−1
τ �int, σ = δτ ,p − δτ ,n . (9.1.8)

This equation allows us to pass from the six Eulerian angles �p,�n to another six
angles φ′, θ,φ′′,�int where �int is associated to the intrinsic frame, while φ′,φ′′ are
the two independent angles among φτ ,1,φτ ,3, which are nothing else but the first and
the third angles of �τ . If we set the azimuthal angles φτ ,3 equal to zero and β̃p = β̃n

then, the resulting asymptotic function for 1+ is just the wave function describing the
scissors mode within the TRM. Due to this feature it becomes manifest that since the
model function accounts for the motion of two more degrees of freedom, the GCSM
is more flexible than the TRM in describing more complex situations.

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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9.1.1 The M1 and E2 Transitions

One weak point of the phenomenological models is that they use an expression for
the transition operators which does not take care of the structure of the model Hamil-
tonian. Thus, the transition probabilities are influenced by the chosen Hamiltonian
only by means of the wave functions. Here we attempt to relate the two operators,
the transition operator and the Hamiltonian, by quantizing the classical counterpart
of the dipole and quadrupole transition operators [RUD87, RD89].

T1M = 1

c

∫
j1(qr)Y1M

l1 Jpdr,

Q2μ = 5
√
6

cq2

∫
Jp.A2μdr. (9.1.9)

where q denotes the length of thewave vector of the e.m. field. The convection current
of protons is denoted by Jp, and can be expressed in terms of nuclear matter density
ρ and velocity v by:

Jp = ρp(r)v. (9.1.10)

The vector potential of the e.m. field is denoted by A2μ, while Y1M
l1 stands for the

vectorial spherical function. This expression reflects the interaction of the charged
particles with the transversal electromagnetic field generated by the colliding elec-
tron. Also, the plane wave Born approximation has been adopted. The integrals
involved are to be performed on the volume bordered by the nuclear surface:

R = R0

[
1 +

∑

μ

α∗
2μY2μ

]
. (9.1.11)

The results are series of quadrupole coordinates, which after truncation at the second
order for T1 and third order for Q2, look like:

T1M = e

√
10

2c
C2 2 1

μμ1M (
•
αpμαpμ1 + αpμ

•
αpμ) j1(q R0)A

≡ eF1M (α,
•
α) j1(q R0), A =

√
3

8π

3Z R0

8πc�k2p
,

Q2μ = 3ZeR2
0

4πqc

[
•
αpμ −

√
35

8π
(

•
αpαp)2μ + 5

2π
(

•
αp(αpαp)2)2μ

]
. (9.1.12)

Here the symbol “•” stands for the time derivative, R0 for the nuclear radius, taken
equal to 1.2A1/3, and j1 is the Bessel function of rank 1. These expressions are
further quantized by replacing the coordinates by the corresponding bosons and the
time derivatives by:
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•
αpμ = 1

i�

[
H,αpk

]
. (9.1.13)

The boson expression for the dipole operator T̂ is:

T̂1k(q) = eF1,k j1(q R0) ≡ eF̂mg
1k , (9.1.14)

where we denoted by “e” the electron charge and by F1,k , the following expression:

F1,k = −A i

�ck2p

[
(A1 + 6A4) Ĵpk + A3

5
Ĵnk

+
√
10

4
(A2 − A1)

(
(b†nb†p)1k + (b†nbp)1k + (b†pbn)1k − (bnbp)1k

)

+ √
2A3

[
− 1√

10
(�†

n Ĵpk + Ĵpk�n) − �†
pn(−(b†pbn)1k + (bnbp)1k)

+ ((b†nb†p)1k + (b†nbp)1k)�np

]]
. (9.1.15)

In the above equation, the angular momenta for protons and neutrons are denoted
by:

Ĵτk = √
10(b†τ bτ )1k, τ = p, n, k = 0,±1. (9.1.16)

The dipole magnetic form-factor is defined as:

F (1)
mg (q) = |〈0+

g ||F̂mg
1 ||1+〉|2, (9.1.17)

while the B(M1) value for the transition 0+
g → 1+, has the expression:

B(M1; 0+
g → 1+) = 2

(
Mpc

�

)2

R2
0μ

2
N |〈0+

g ||F1||1+〉|2. (9.1.18)

It can be checked that the B(M1) value is related with the dipole form-factor con-
sidered in the photon point value of the transferred momentum , q f = E1+/�c, by
a very simple equation:

F (1)
mg (q f ) = 2

9
q2

f B(M1; 0+
g → 1+). (9.1.19)

It is to be noticed that, although themagnetization effect coming from the intrinsic
magnetic moments is neglected, the equations of motion of the charged particles
coordinates determine a contribution due to the neutron system. If one identifies the
gyromagnetic factor for the τ system, as the coefficient of the corresponding angular
momentum, one obtains:
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(
gp

gn

)
= 3Z R2

0

8πk2p

Mc2

(�c)2

(
A1 + 6A4

1
5 A3

)
. (9.1.20)

Then their ratio acquires a very simple expression:

gp

gn
= 5(A1 + 6A4)

A3
. (9.1.21)

This is, indeed, an important result of the GCSM. Numerical calculations predict
for this ratio values close to 5 which is similar to the modulus of the ad-hoc value
used by IBA2. In the present model, the gyromagnetic values of proton and neutron
systems are determined exclusively by the proton-neutron interaction terms and do
not account for the magnetic moments of constituents.We note that theM1 transition
operator comprises not only a linear combination of the proton and neutron systems
angular momenta but also proton-neutron interaction terms. Calculations indicate
that the contribution of the latter terms to the M1 transition probability is negligible.
Due to this reason,we considered only the termswhich are linear in angularmomenta.

Another specific feature for GCSM refers to the collective gyromagnetic factor
gc defined as:

gp Ĵp,μ + gn Ĵn,μ = gc Ĵμ (9.1.22)

where Ĵμ denotes the total angular momentum components:

Ĵμ = Ĵp,μ + Ĵn,μ (9.1.23)

Since the projected ground band states are symmetric with respect to the proton-
neutron permutation, it results immediately that:

gc = 1

2
(gp + gn). (9.1.24)

Using the quantization procedure mentioned before, in connection with the electric
quadrupole moment from Eq. (9.1.12), one obtains:

Q̂2μ = 1

i�cq

{
Qs

[
b†pμ + b†nμ − (−)μbp,−μ − (−)μbp,−μ

]

+ Qas

[
− b†nμ + b†pμ + (−)μbn,−μ − (−)μbp,−μ

+ C((b†nbp)2μ − (b†pbn)2μ)

+ 15

2πk2p
((b†pb†pb†p)2μ − (bpbpbp)2μ)

]}
, where

Qs = (A1 + A2 + 12A4)B, Qas = (3A1 − A2 + 12A4)B,
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C = 1

2kp

√
35

π

A2 − A1

3A1 − A2 + 12A4
, B = 3ZeR2

0

16π
√
2kp

. (9.1.25)

9.1.2 Numerical Results

Here we present few numerical applications of the GCSM. Energies of the states in
the six bands are obtained, as we mentioned already before, as expectation values of
the model Hamiltonian on the projected states. They are functions of the structure
coefficients Ai , with i = 1, 2, 3, 4, and the deformation parameter ρ = d

√
2. These

are fixed as follows. For a given value of ρ the parameters Ai are determined by fitting
the excitation energies of the states 2†g, 10

†
g, 2

†
γ, 0†β . Since the excitation energies in

the beta band aremost sensitive to changing ρ, we fixed ρ so that an overall agreement
for the beta band is obtained. In fitting the energy of 2†γ , we assigned to the gamma
band the proton-neutron asymmetric projected state. The agreement between the
calculated energies and the experimental values for ground, beta, gamma bands as
well as for the M1 state 1† is very good. In order to save space we don’t give here
the results for energies.

Once the deformation parameter is fixed, theM1 transition operator is determined
providedweknow the parameter kp relating the quadrupole coordinatewith the boson
operator. This parameter can be fixed in the following manner. In the asymptotic
region of deformation, the energies of the ground band are given by:

Eg
J =

[
A1 + A2

6ρ2
+ A4

]
J (J + 1). (9.1.26)

On the other hand, for large deformation, the liquid drop model provides for ground
band energies the expression:

Erot
J = �

2 J (J + 1)

6Bβ2
0

, B = 3

8π
MAR2

0. (9.1.27)

Identifying the two energies, one finds:

β2
0 = π

3.24

�
2

M
A−5/3

[
A1 + A2

6ρ2
+ A4

]−1

. (9.1.28)

On the other hand, the common value of the proton and neutron systems deformation
may be defined as the expectation value of the second order invariant inα coordinates,
on the unprojected ground state:

β̄2
0 = 〈ψg|

∑

μ

α∗
pμαpμ|ψg〉. (9.1.29)
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Table 9.1 The theoretical values for B(M1;0†g → 1†) (μ2
N ) (second column) are compared with

the experimental data (first column) taken from Refs. [BO86, BKR84, BBD84, BBD84] (here the
summed M1 is considered), [PA86, RICH85]

B(M1;0†g → 1†)(μ2
N )

Exp. Th. k2p = ρ2

β2
0

154Gd 0.9 ± 0.2a 1.102 16.252
156Gd 1.3 ± 0.2b 2.101 14.339

1.5 ± 0.2c

158Gd 2.3 ± 0.5b 2.314 17.369

1.4 ±0.3d

160Gd 2.3 ± 0.67d 2.101 19.218
154Sm 0.8 ± 0.2b 2.581 13.874
164Dy 3.65e

2.9 ± 0.5e 2.045 19.666

1.5 ± 0.3b

168Er 0.9 ± 0.2b 1.802 23.887
174Yb 0.8 ± 0.2b 2.605 24.815
232Th 1.3 ± 0.2a 2.338 19.6
238U 1.5f 4.501 17.842

2.7 ± 0.6a

In the third column the scaling factor kp , calculated with Eq. (9.1.31), is given
a [BO86]
b [BKR84]
c [BBD84]
d [BBD84]
e [PA86]
f [RICH85]

Ignoring the spurious contribution due to the zero point motion one obtains:

kpβ̄0 = ρ. (9.1.30)

Equating the two β deformations obtained so far, one arrives at a simple expression
for kp:

kp = ρ

β0
. (9.1.31)

By this, the M1 transition operator is completely determined, which results in
having a free parameter description for the M1 properties. In Table9.1 we compare
the predictions of the GCSM for the B(M1) values, with the corresponding data, in
several nuclei. Using Eq. (9.1.17) and the same scale factor kp as in Table9.1, we
plotted the M1 form-factor as a function of the effective momentum transfer
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qeff = q + 3Zα

R0
sin

1

2
φ, (9.1.32)

and compared it with the existent data for 156Gd, 232Th and 238U, which are deter-
mined by the normalized differential cross section for the (e, e′) process, through the
equation:

|F (1)
mg |2exp = Z2

4π
(
1

2
+ tg2

1

2
φ)−1

(
dσ

d�

)/(
dσ

d�

)

Mott
. (9.1.33)

The effective transfer momentum takes care of the screening effect due to the
electron cloud of the target. The correction added to the actual momentum q depends
on the nuclear charge Z and nuclear radius. α stands for the fine structure constant,
while φ is the scattering angle in the (e, e′) process. The curves are determined
by the Bessel function j1(q R0) squared and have the following common features.
They have a maximum at about qeff = 0.5(fm−1). They have however different
heights and widths. Although the form-factor is evaluated in the plane wave Born
approximation, the agreement with the experimental data is good for 156Gd and 238U
and satisfactory for 232Th in the region of qeff ≥ 0.5. However, large deviations are
noticed for smaller transferred momenta which reclaims that a distorted plane wave
approximation is necessary, in this interval (Fig. 9.1).

Let us now focus our attention on the B(E2) values. They were calculated by
means of the transition operator defined by Eq. (9.1.25). Although the factor Qs and
Qas have explicit expressions in terms of the structure coefficients entering themodel
Hamiltonian, they were considered as fitting parameters. Thus, they were fixed by
fitting the experimental B(E2) values for the transitions 2†g → 0†g and 4†β → 2†g ,

respectively. Here we present the results obtained for 154Gd, for which the fitting
procedure yields:

Fig. 9.1 TheM1 form-factor for the (e, e′) scattering in 156Gd, 232Th and 238U is calculated within
the plane wave Born approximation and plotted as function of the effective transferred momentum.
Calculating the form-factor we considered only the matrix element 〈0g || Ĵp||1+〉. The experimental
data are taken fromRef. [Rich87]. The parameters ρ and Ai are those obtained by fitting the energies
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Qs = 40.219e.fm2 MeV, Qas = 22.82e.fm2 MeV (9.1.34)

With the transition operator Q2μ determined in this manner, we calculated some
in-band transitions for ground and beta bands and the branching ratios for the lowest
states in ground, beta and gamma bands. The theoretical results are compared with
the corresponding data aswell aswith the predictions of the IBA2model, in Table9.2.

Inspecting Tables9.1 and 9.2, onemay conclude that theGCSM is able to describe
realistically both the electric and magnetic properties of nuclei. It is also noteworthy
that the GCSM, in contrast to other phenomenological models, is free of any fitting
parameters when one calculates the energy and excitation probability of the scissors
mode. Indeed, the parameters Ai are all fixed by fitting some selected energies in
the ground, beta and gamma bands, while the deformation parameter ρ is chosen
so that an overall agreement in beta band, which is the most sensitive band of ρ, is
obtained. A detailed comparison of the GCSM with the TRM, IBA2, and proton-
neutron deformation (NPD) model can be found in Ref. [IRD93].

9.2 Deformation Properties of the M1 Mode

A decisive light was shed on the question whether the scissors mode is a collective
phenomenon or not, when Richter and his collaborators [RRW91] showed that the
summed M1 strength for even isotopes of Sm depends quadratically on the quadru-
pole nuclear deformation. Later on it was found out that this holds also forNd isotopic
chain. This finding suggests moreover that there must be a linear interdependence of
the B(M1) and B(E2) values [CBH87], i.e. the ratio of the two quantities is a constant
in an isotopic chain. Since then, many theoretical works have been devoted to this
issue trying to get a deeper insight for the scissors mode [GMU91, HM91, ZZ91].

Here we give the basic arguments showing that the GCSM is able to account
also for the deformation properties of the mode [IRD93]. Indeed, let us consider the
analytical expressions for B(M1) as well as for B(E2) value.

B(M1; 0† → 1†) = 9

40π
(gp − gn)2ρ4

⎡

⎣1 + 1

10

(
N (g)
0

N (g)
2

)2
⎤

⎦
2 (

N (1)
1

N (g)
0

)2

μ2
N ,

B(E2; 0† → 2†) =
(

3

4π

)2

e2Z2R4
0β(ρ)2, where

β(ρ) ≡ 〈φ(g)
0 ||αp||φ(g)

2 〉 =
√
5

2

ρ

kp

(
N (g)
2

N (g)
0

+ 1

5

N (g)
0

N (g)
2

)
≡ F(ρ)

kp
. (9.2.1)

The quantities N (g)
J and N (1)

J were previously defined, they are the normalization
factors for the projected state J from the ground and dipole bands, respectively.
They are functions of the overlap integral I (0)

J (ρ2), defined by Eq. (6.1.18), and
its derivatives. To evaluate the expressions of the M1 and E2 transition reduced

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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Table 9.2 Theoretical B(E2) values and branching ratios (second column) are compared with the
corresponding experimental data (column 1) and the IBA2 predictions (third column), for 154Gd

Ik − Ik′ B(E2; Ik → Ik′ )(102e2fm4) Ik − Ik′ B(E2; Ik → Ik′ )(102e2fm4)

2g − 0g 77.3 77.3 77.3 4β − 2g 0.35 0.3 0.3

4g − 2g 117.8 117.7 108.8 4β − 4g 3.8 0.42 1.62

6g − 4g 138.2 141.5 116.4 4β − 6g 12 3.19 0.2

8g − 6g 152.6 163.3 116.4 6β − 4g 0.27 0.33 0.5

10g − 8g 173.1 185.4 112.1 2β − 0β 49a 110.9 55.3

82b

0β − 2g 25.8 1.7 2.6 4β − 2β 122 168.4 78.9

2β − 2g 4.0 0.4 0.6 6β − 4β 111 201.6 85.4

2β − 4g 11.9 1.47 1.65

Ik−Ik′
I1m−I ′

1m′
B(E2;Ik→I ′

k′ )
B(E2;I1m→I ′

1m′ )
Ik−Ik′

I1m−I ′
1m′

B(E2;Ik→I ′
k′ )

B(E2;I1m→I ′
1m′ )

4g−2g

2g−0g
1.52 1.52 1.41 4γ−2g

4γ−4g
0.148 0.267 0.29

6g−4g

4g−2g
1.17 1.20 1.07 4γ−6g

4γ−4g
0.27 0.176 0.36

8g−6g

6g−4g
1.1 1,154 1.0 5γ−4g

5γ−6g
0.744 1.079 1.0

10g−8g

8g−6g
1.13 1.135 0.96 6γ−4g

6γ−6g
0.081 0.117 0.2

2β−0g

2β−2g
0.123 0.572 0.52

2γ−2β

2γ−0β
2.5c,15.87d 4.529 3.6

2β−4g

2β−2g
2.76 3.664 2.85

2γ−0β

2γ−0g
0.14d, 0.4c 2.214 8.1

4β−2g

4β−4g
0.086 0.722 0.17

2γ−2β

2γ−2g
1.00 2.801 18.5

4β−6g

4β−4g
2.63 7.668 3.12

2β−0g

2β−0β
0.008 0.0021 0.005

6β−4g

6β−6g
0.08 0.66 0.35

4β−2g

4β−2β
0.0025 0.0018 0.003

2γ−0g

2γ−2g
0.468 0.618 0.64

6β−4g

6β−4β
0.0024 0.0017 0.002

2γ−4g

2γ−2g
0.144 0.075 0.143

8β−6g

8β−6β
0.006 0.0016 0.001

3γ−2g

3γ−4g
1.006 1.810 1.0

10β−8g

10β−8β
0.010 0.017 0.0

The GCSM predictions are due to Eq. (9.1.25) with Qs and Qas fixed as explained in the text.
Experimental data are from Refs.
a [DI83, GHK83]
b [RNW71]
c [VBT69]
d [ZFL71]

probabilities for large deformation, we need the asymptotic expression of the norms
ratios involved in Eq. (9.2.1). These can be derived with the help of the asymptotic
expressions given in Chap.6.

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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N (g)
0

N (g)
2

≈ √
5

(
1 − 1

2ρ2

)
,

(
N (1)
1

N (g)
0

)2

≈ 20

9ρ2

(
1 − 2

ρ2

)
. (9.2.2)

Using these results in connection to Eq. (9.2.1), one finds:

β(ρ) ≈ ρ

kp
. (9.2.3)

Keeping only the leading term, the reduced transition probabilities are then readily
obtained:

Brot(M1; 0† → 1†) = 9

8π
(gp − gn)2ρ2μ2

N ,

Brot(E2; 0† → 2†) =
(

3

4π

)2

e2Z2R4
0
ρ2

k2p
. (9.2.4)

From these equations it results that both transition probabilities depend quadratically
on ρ which results in having a proportionality relationship between them:

Brot(M1; 0† → 1†) = 2π
k2p

Z2R4
0

(gp − gn)2

e2
Brot(E2; 0† → 2†)μ2

N . (9.2.5)

In the near vibrational limit, i.e. ρ-small, the norms ratios and the reduced matrix
element of alpha have, in the leading order the expressions:

N (g)
0

N (g)
2

≈ ρ;
(

N (1)
1

N (g)
0

)2

≈ 1 − 7

100
ρ2,

β(ρ) ≈
√
5

2kp
(1 + 1

5
ρ2). (9.2.6)

Hence, in the regime of small deformation the M1 and E2 strengths are:

Bvib(M1; 0† → 1†) ≈ 9

40π
(gp − gn)2ρ4μ2

N ,

Bvib(E2; 0† → 2†) ≈
(

3

4π

)2

e2Z2R4
0

5

4k2p

(
1 + 1

5
ρ2

)2

. (9.2.7)

It is noteworthy that the two transitions strengths are not proportional to each other
in the vibrational regime. Indeed, the M1 strength is vanishing in the limit ρ → 0
while the E2 strength tends to a non-zero value which is caused by the zero point
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shape fluctuations around the equilibrium configuration which are dominant when
the nuclear shape approaches the spherical shape.

In order to obtain the explicit dependence of the M1 strength on deformation,
we need to know how to relate the parameter ρ on the nuclear deformation β. The
experimental value of β is defined by the equation:

Bexp(E2; 0† → 2†) =
(

3

4π

)2

e2Z2R4
0β

2. (9.2.8)

Comparing this relation with (9.2.1), one finds that

β(ρ) = β. (9.2.9)

In virtue of (9.2.3), in the rotational regime we have:

ρ ≈ kpβ. (9.2.10)

In the vibrational limit, the function β(ρ) consists of two terms

β(ρ) = β0 + β, (9.2.11)

one is ρ independent while the other one is depending quadratically on ρ. The
experimental β will be identified with the latter term:

β0 =
√
5

2kp
, β = β(ρ) − β0 ≈ 1

2
√
5kp

ρ2. (9.2.12)

Having the relations between the β and ρ deformations, one can express the M1
strength characterizing the two extreme regimes as function of β:

Brot(M1) ↑≈ 9

8π
k2pβ

2(gp − gn)
2μ2

N ,

Bvib(M1) ↑≈ 9

2π
k2pβ

2(gp − gn)2μ2
N , (9.2.13)

The M1 strength is therefore linear in β2 in both rotational and vibrational limits.
The slopes, however, are different in the two cases.

To conclude, one may say that the GCSM is able to account also for the defor-
mation properties of the scissors mode. It is worth mentioning that the microscopic
formalisms devoted to the interpretation of the scissors mode are using deformed
single particle basis and inherently they are confronted to the elimination of spuri-
ous components of isoscalar nature. Since the GCSM uses states of definite angular
momentum, such difficulties due to the spurious states contamination are not met.



Chapter 10
Two Applications of GCSM

10.1 Chiral Symmetry in Even-Even Nuclei

10.1.1 Introduction

The rotational spectra appear to be a reflection of a spontaneous rotational
symmetry breaking when the nuclear system acquires a static nuclear deformation.
The fundamental nuclear properties like nuclear shape, the nuclear mass and charge
distribution inside the nucleus, electric and magnetic moments, collective spectra
may be evidenced through the system interaction with an electromagnetic field. The
two components of the field, electric and magnetic, are used to explore the properties
of electric and magnetic nature, respectively. At the end of last century, the scissors
like states [LOPA78, FPI84] aswell as the spin-flip excitations [ZAW98]werewidely
treated by various groups. Some of them were based on phenomenological assump-
tions, while the other ones on microscopic considerations. The scissors like excita-
tions are excited in (e, e′) experiments at backward angles and expected at an energy
of about 2–3MeV, while the spin-flip excitations are seen in (p, p′) experiments at
forward angles and are located at about 5–10MeV. The scissors mode describes the
angular oscillation of proton against neutron system and the total strength is propor-
tional to the nuclear deformation squared which reflects the collective character of
the excitation. The subject has been reviewed by several authors [IUD95, ZAW98].

Since the total M1 strength of the M1 mode is proportional to the nuclear defor-
mation squared, it was believed that the magnetic collective properties are in general
associated with deformed systems. This is not true due to the magnetic dipole bands,
where the ratio between the moment of inertia and the B(E2) value for exciting the
first 2+ from the ground state 0+, I(2)/B(E2), takes large values, of the order of
100 (eb)−2MeV−1. These large values can be justified by a large transverse magnetic
dipole moment (perpendicular to the total angular momentum) which induces dipole
magnetic transitions, but almost no charge quadrupole moment [FRA01]. Indeed,
there are several experimental data showing that the dipole bands have large values

© Springer International Publishing Switzerland 2015
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for B(M1) ∼ 3−6µ2
N and very small values of B(E2) ∼ 0.1 (eb)2 (see for example

Ref. [JEN99]). The states are different from the scissors mode, they being rather of
a shears character. A system with a large transverse magnetic dipole moment which
was studied in many publications, may consist of a triaxial core to which a proton
prolate and a neutron oblate hole orbital are coupled. The interaction of particle and
hole like orbitals is repulsive, which keeps the two orbits apart from each other. In
this way the orthogonal angular momenta carried by the proton particles and neu-
tron holes are favored. The maximal transverse dipole momentum is achieved, for
example, when jp is oriented along the small axis of the core, jn along the long
axis and the core rotates around the intermediate axis. Suppose the three orthog-
onal angular momenta form a right trihedral frame. If the Hamiltonian describing
the interacting system of protons, neutrons and the triaxial core is invariant to the
transformation which changes the orientation of one of the three angular momenta,
i.e. the right trihedral frame is transformed to a left type, one says that the system
exhibits a chiral symmetry. As always, such symmetry is identified when it is broken
and consequently to the two trihedrals correspond distinct energies, otherwise close
to each other. Thus, a signature for a chiral symmetry characterizing a triaxial system
is the existence of two �I = 1 bands which are close in energies. Increasing the
total angular momentum the gradual alignment of jp and jn to the total J takes place
and a magnetic band is developed.

The question which may arise is whether the picture of the three angular momenta
system, carried by a phenomenological core, a prolate and an oblate single particle
orbitals, with respect to which the chiral symmetry is defined, is unique for determin-
ing states connected with large M1 transitions. Note that the nuclear system which
accommodates the chiral frame is odd-odd.

Here we attempt another chiral system consisting of one phenomenological core
with two components, one for protons and one for neutrons, and two quasiparticles
whose total angular momentum is oriented along the symmetry axis of the core
due to the particle-core interaction. We investigate whether states of total angular
momentum I, where the three components mentioned above carry angular momenta,
Jp, Jn, JF ,which aremutually orthogonal,mayexist. If such configuration exists, it is
optimal for defining large transversemagneticmoment inducing largeM1 transitions.

Since this scenario is basedon theGCSM, a fewuseful features areworth recalling.
The GCSM seems to be the only phenomenological model which treats simultane-
ously the M1 and E2 properties. Indeed, in Refs. [RUD87, RD89] the ground, beta
and gamma bands are considered together with a K π = 1+ band built on the top
of the scissor mode 1+. By contrast to other phenomenological and microscopic
models, which treat the scissors mode in the intrinsic reference frame, here one
deals with states of good angular momentum and, therefore, there is no need to
restore the rotational symmetry. As shown in Ref. [IRD93] the GCSM provides for
the total M1 strength an expression which is proportional to the nuclear deformation
squared (see Chap.9). Consequently, the M1 strength of 1+ and the B(E2) value for
2+ are proportional to each other, although the first quantity is determined by the
convection current while the second one by the static charge distribution. One weak

http://dx.doi.org/10.1007/978-3-319-14642-3_9
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point of most phenomenological models is that they use expressions for transition
operators which are not consistent with the structure of themodel Hamiltonian. Thus,
the transition probabilities are influenced by the chosen Hamiltonian only through
the wave functions. By contradistinction, in Refs. [RUD87, RD89] the E2 transition
operator, as well as the M1 form-factor, are derived analytically, by using the equa-
tion of motion of the collective coordinates determined by the model Hamiltonian.
This way a consistent description of electric and magnetic properties of many nuclei
was attained.

10.1.2 Proton and Neutron Bosons Angular Momenta

Note that �g , the wave function describing the ground state of the p-n system in the
intrinsic frame of references, can be written in a factorized form:

�g ≡ �p�n, (10.1.1)

where the factor functions are:

�p = exp[dpb†p0 − dpbp0]|0〉p, �n = exp[dnb†n0 − dnbn0]|0〉n . (10.1.2)

The τ functions, with τ = p, n, are eigenstates of the z projection of the angular
momentumand therefore canbe expanded in thebasis |Jτ0〉definedby the eigenstates
of J2τ , Jτ0:

�τ =
∑

Jτ

CJτ |Jτ0〉, τ = p, n. (10.1.3)

Denoting by
ϕ

(g)
Jτ Mτ

= N (g)
Jτ

P Jτ
Mτ 0

�τ , (10.1.4)

the angularmomentum projected state associated to�τ and then inserting the expres-
sion (10.1.3) in the right hand side of (10.1.4), onefinds that the expansion coefficients
CJτ are related with the projected state norms, by:

CJτ =
(

N (g)
Jτ

)−1
. (10.1.5)

Here N (g)
Jp

and N (g)
Jn

denote the norms of the angular momentum projected states
associated to �p and �n , respectively. These have been analytically expressed in
Ref. [CR74].

The above analysis can be easily extended to the intrinsic ground state describing
the composite proton-neutron system:
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�g = �p�n =
∑

Jp,Jn=even

CJp |Jp0〉CJn |Jn0〉 =
∑

Jp,Jn ,J

CJp CJn C
Jp Jn J
0 0 0 |J, 0〉.

(10.1.6)
The angular momentum projected state is defined by:

φ
(g)
JM = N (g)

J P J
M0�g = N (g)

J

∑

Jp Jn

CJp CJn C
Jp Jn J
0 0 0 |J, M〉

= N (g)
J

∑

Jp Jn

(
N (g)

Jp

)−1 (
N (g)

Jn

)−1
C

Jp Jn J
0 0 0

[
ϕ

(g)
Jp

ϕ
(g)
Jn

]

JM
, (10.1.7)

with the norm:

(
N (g)

J

)−2 =
∑

Jp,Jn

(
N (g)

Jp

)−2 (
N (g)

Jn

)−2 (
C

Jp Jn J
0 0 0

)2
. (10.1.8)

In the above equations the standard notation for the Clebsch-Gordan coefficients has
been used.

The average value of the angular momentum carried by the proton bosons is given
by:

〈φ(g)
JM |Ĵ2p|φ(g)

JM〉 =
(

N (g)
J

)2 ∑

Jp,Jn

(
N (g)

Jp

)−2 (
N (g)

Jn

)−2
Jp(Jp + 1)

(
C

Jp Jn J
0 0 0

)2

≡ J̃ (g)
pJ ( J̃ (g)

pJ + 1). (10.1.9)

Similarly, one calculates the average angular momentum carried by the neutron
bosons, J̃ (g)

n J . The two angular momenta, J̃ (g)
pJ , J̃ (g)

n J , define the relative angle obeying
the equation:

cos(Jp, Jn)
(g)
J = J (J + 1) − J̃ (g)

pJ ( J̃ (g)
pJ + 1) − J̃ (g)

n J ( J̃ (g)
n J + 1)

2
√

J̃ (g)
pJ ( J̃ (g)

pJ + 1) J̃ (g)
n J ( J̃ (g)

n J + 1)
. (10.1.10)

Let us now consider the angular momentum projection of following dipole exci-
tation of the intrinsic ground state

φ
(1)
JM = N (1)

J P J
M1(b

†
nb†p)11�g

= N (1)
J

∑

J ′=even

(
N (g)

J ′
)−1

C J ′ 1 J
0 1 1

[(
b†nb†p

)

1
ϕ

(g)

J ′
]

JM
, (10.1.11)
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with the norm having the expression:

(
N (1)

J

)−2 =
∑

J ′=even

(
N (g)

J ′
)−2 (

C J ′ 1 J
0 1 1

)2
. (10.1.12)

It is worth calculating the separate contributions of proton and neutron bosons
to building up the total angular momentum of a chosen magnetic dipole state. The
effective angular momentum J̃ (1)

p,J is defined as:

J̃ (1)
p;J ( J̃ (1)

p;J + 1) = 〈φ(1)
JM |Ĵ2p|φ(1)

JM〉
= 6 +

(
N (1)

J

)2 ∑

Jp,Jn ,J ′

(
N (g)

Jp

)−2 (
N (g)

Jn

)−2

× Jp(Jp + 1)
(

C
Jp Jn J ′
0 0 0

)2 (
C J ′ 1 J
0 1 1

)2
. (10.1.13)

Since the ground state is symmetric with respect to the p-n permutation, one expects
that the effective neutron angular momentum defined by averaging the operator Ĵ 2

n;J
with the ground state projected function is equal to the effective proton angular
momentum, i.e.

J̃ (1)
n;J = J̃ (1)

p;J . (10.1.14)

Denoting the ground state angular momentum by

Jpn = Jp + Jn, (10.1.15)

then for the average value one obtains:

J̃ (1)
pn;J ( J̃ (1)

pn;J + 1) ≡ 〈φ(1)
JM |Ĵ2pn|φ(1)

JM〉
=

(
N (1)

J

)2 ∑

J ′′

(
N (g)

J ′′
)−2 (

C J ′′ 1 J
0 1 1

)2 (
J ′′(J ′′ + 1) + 12

)
.

(10.1.16)

Squaring Eq. (10.1.15) and averaging the result with the dipole projected state J , one
can calculate the angle between the angular momenta Jp and Jn :

cos(Jp, Jn)
(1)
J = J̃ (1)

pn;J ( J̃ (1)
pn;J + 1) − J̃ (1)

p;J ( J̃ (1)
p;J + 1) − J̃ (1)

n;J ( J̃ (1)
n;J + 1)

2
√

J̃ (1)
p;J ( J̃ (1)

p;J + 1) J̃ (1)
n;J ( J̃ (1)

n;J + 1)
.

(10.1.17)
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10.1.3 A Possible Extension of the GCSM

Here we shall consider a particle-core interacting system described by the
Hamiltonian:

H = HGCSM +
∑

α

εac†αcα − G

4
P†P

−
∑

τ=p,n

X (τ )
pc

∑

m

q2m

(
b†τ ,−m + (−)mbτm

)
(−)m − XsSJF · Jc, (10.1.18)

with the notation for the particle quadrupole operator:

q2m =
∑

a,b

Qa,b

(
c†ja c jb

)

2m
, Qa,b = ĵa

2̂
〈 ja ||r2Y2|| jb〉. (10.1.19)

Here HGCSM denotes the phenomenological Hamiltonian described in previous
chapter, associated to a proton and neutron bosonic core. The next two terms stand
for a set of particles moving in a spherical shell model mean-field and interact-
ing among themselves through pairing interaction. The low indices α denote the
set of quantum numbers labeling the spherical single particle shell model states, i.e.
|α〉 = |nljm〉 = |a, m〉. The last two terms denoted hereafter as Hpc express the inter-
action between the satellite particles and the core through a quadrupole-quadrupole
and a spin-spin force, respectively. The angular momenta carried by the core and par-
ticles are denoted by Jc(=Jpn) and JF , respectively. The mean field plus the pairing
term is quasi-diagonalized by means of the Bogoliubov-Valatin transformation:

a†
α = Uac†α − Vasαc−α, sα = (−) jα−mα ,

aα = Uacα − Vasαc†−α, (−α) = (a,−mα). (10.1.20)

The free quasiparticle term is
∑

α Eaa†
αaα, while the qQ interaction preserves the

above mentioned form, with the factor q2m changed to:

q2m = η(−)
ab

(
a†

ja
a jb

)

2m
+ ξ(+)

ab

(
(a†

ja
a†

jb
)2m − (a ja a jb )2m

)
, where

η
(−)
ab = 1

2
Qab (UaUb − Va Vb) , ξ

(+)
ab = 1

2
Qab (Ua Vb + VaUb) . (10.1.21)

We restrict the single particle space to a single-j state where two particles are placed.
In the space of the particle-core states we, therefore, consider the basis defined by:
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|BCS〉 ⊗ φ
(1)
JM ,

�
(2qp;J1)
JI;M = N (2qp;J1)

JI

∑

J ′
C J J ′ I

J 1 J+1

(
N (1)

J ′
)−1 [

(a†
j a

†
j )J |BCS〉 ⊗ φ(1)

J ′
]

I M
,

(10.1.22)

where |BCS〉 denotes the quasiparticle vacuum, while N (2qp;J1)
JI is the norm given

by (
N (2qp;J1)

JI

)−2 =
∑

J ′
2

(
N (1)

J ′
)−2 (

C J J ′ I
J 1 J+1

)2
. (10.1.23)

Now, let us analyze the proton and neutron angular momentum composition for
the two quasiparticle components of the particle-core basis. The effective angular
momenta can be easily calculated:

J̃ (1)
τ ;JI ( J̃ (1)

τ ;JI + 1) = 〈�(2qp;J1)
JI | Ĵ 2

τ |�(2qp;J1)
JI 〉

=
(

N (2qp;J1)
JI

)2 ∑

J ′
2

(
C J J ′ I

J 1 J+1

)2 (
N (1)

J ′
)−2

J̃ (1)
τ ;J ′ ( J̃ (1)

τ ;J ′ + 1), τ = p, n,

J̃ (1)
pn;JI ( J̃ (1)

pn;JI + 1) = 〈�(2qp;J1)
JI |( Ĵp + Ĵn)2|�(2qp;J1)

JI 〉
=

(
N (2qp;J1)

JI

)2 ∑

J ′
2

(
C J J ′ I

J 1 J+1

)2 (
N (1)

J ′
)−2

J̃ (1)
pn;J ′ ( J̃ (1)

pn;J ′ + 1).

(10.1.24)

The angle between proton and neutron angular momenta can be obtained from the
equation:

cos(Jp, Jn)
(1)
JI = J̃ (1)

pn;JI ( J̃ (1)
pn;JI + 1) − J̃ (1)

p;JI ( J̃ (1)
p;JI + 1) − J̃ (1)

n;JI( J̃ (1)
n;JI + 1)

2
√

J̃ (1)
p;JI ( J̃ (1)

p;JI + 1) J̃ (1)
n;JI ( J̃ (1)

n;JI + 1)
.

(10.1.25)

10.1.4 About the Chiral Symmetry

For the three bands considered above, ground, dipole and two quasiparticles-dipole
core, the angular momentum composition is illustrated in Fig. 10.1. Therein, the
notations 〈Jτ 〉 stay for J̃ (g)

τ J , J̃ (1)
τ ;J and J̃ (1)

τ ;JI , respectively. Note that for ground band
states, when the proton and the neutron deformations are equal and large, the two
angular momenta are aligned to each other in states of high angular momentum.
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Fig. 10.1 Proton and
neutron angular momentum
composition of the states
from the ground band (upper
panel), the pure
phenomenological dipole
band (middle panel) and the
two quasiparticle-dipole
band (bottom panel). The
curves with the symbols of
full circles and triangle up
respectively, in the upper
and middle panels,
correspond to dp = 0.2 and
dn = 2.4, respectively

Indeed, as seen from the upper panel for large J we have J ≈ 2〈Jp〉. If the two
deformations are very different then, by far, the largest contribution is brought by
the most deformed system, the weakly deformed subsystem bringing an almost van-
ishing average angular momentum. As for the pure phenomenological dipole band,
represented in the middle panel of Fig. 10.1, we note an even-odd staggering for
small and moderate deformation. Such a structure is washed out for large deforma-
tion. These features are met also for the case of two quasiparticle-core dipole states
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when the two quasiparticles total angular momentum is equal to zero. Due to the
large K quantum number of the two quasiparticle components, when the angular
momentum carried by the two quasiparticles is equal to 12, the dipole band starts
with the angular momentum 13.

The two quasiparticle-core dipole state components of the particle-core basis
involve three angular momenta, Jp, Jn , and the quasiparticles total angular momen-
tum denoted by JF , which, in certain states, could be mutually orthogonal. Under
this circumstance, suppose that the vectors set Jp, Jn, JF form a right trihedral.

The transformation which changes the orientation of one component of the set, i.e.
the right trihedral goes to a left one, is conventionally called chiral. Obviously, any
such a transformation may be written as a product of a rotation of angle π around the
chosen trihedral axis and a space reversal transformation. Excepting the spin-spin
term, the Hamiltonian introduced above is invariant to any chiral transformation. In
fact, the chiral symmetry breaking mentioned above is generating the so called chiral
bands characterized, first of all, by a large intra-band M1 transition probability. The
goal of this section is to identify states �

(2qp;J1)
JI;M characterized by an orthogonal

trihedral (Jp, Jn, JF ).
The angle between the angular momenta carried by protons and neutrons in a

ground band projected state is represented as function of the angular momentum J
for different sets of proton and neutron deformations, in Fig. 10.2. Irrespective of
the deformations magnitude, for J = 0, the angular momenta Jp and Jn are anti-
aligned. For J = 2 the angle jumps down to 90◦ and 98◦ when both deformations
are small or one is small while the other one only moderately small, respectively.
Increasing the angular momentum, the angle characterizing the system of small
deformations is smoothly decreasing, approaching the aligned picture for very large
angular momentum. By contrast, when the proton and neutron deformations are very
different, the angle is smoothly but slowly decreasing keeping close to 90◦. In the
case of equal and large proton and neutron deformations, the angle is continuously
decreasing, the rotation gradually aligning the two angular momenta, Jp and Jn .

Fig. 10.2 The angle
between Jp and Jn within

the ground-band states φ
(g)
JM

for three sets of deformations
(dp, dn)

0
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Fig. 10.3 The angle
between Jp and Jn within

the boson dipole state φ
(1)
JM .

d = 0.2

The relative angle of the proton and neutron angular momenta in the pure boson
dipole state ϕ(1)

JM is presented in Fig. 10.3. One notices that the angle is 90◦ in the
first three dipole states of angular momenta 1, 2 and 3. Increasing the total spin,
the corresponding angles decrease monotonically. A step structure for the states J
and J + 1 with J-even shows up. We recall that in the previous applications of
the GCSM [RFC87], the unprojected state �g was considered for equal deformation
parameters for the proton and neutron systems. However, since the number of protons
and neutrons are different and, moreover, the two kinds of nucleons occupy different
shells, it is reasonable to suppose different deformation parameters for protons and
neutrons, respectively. The corresponding projected dipole states are denoted by
�

(1)
JM(dp, dn). For this situation, the dependence of the (Jp, Jn) angle on the total

angular momentum is presented in Fig. 10.4.
When the deformation for protons is different from that of neutrons, the step

structure is washed out and the total angular momenta, where the relative angle is

Fig. 10.4 The angle
between Jp and Jn within
the boson dipole state
φ

(1)
JM (dp, dn). The

deformation parameters are
dp = 0.2 and dn = 2.4
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about 90◦, are shifted to 5, 6 and 7. The angle decreases with angular momentum
but with a much lower slope. Indeed, in the considered angular momentum interval
the angle varies between 91.5◦ and 87◦.

It is to be noticed that the angle of the proton and neutron angular momenta in
the dipole states given in Figs. 10.3 and 10.4 is different from that characterizing the
ground band states and shown in Fig. 10.2 for three sets of the proton and neutron
deformation parameters, (dp, dn). Note that for the state 0+, heading the ground
band, the two angular momenta, Jp, Jn , are equal in magnitude, have the same
direction but different orientation. This property holds irrespective of the deformation
parameters dp, dn . From the value of 180◦, the angle is decreasing when the total
angular momentum is increased. When the proton and neutron deformations are
equal, the angle tends to zero for J very large. The alignment is reached faster for
small deformations than for large ones. If the deformations are different, namely
one is small and the other moderately large, the angle is very slowly decreasing for
J ≥ 2, otherwise keeping close to 90◦, reflecting the fact that for small deformation
the rotational axis is almost indefinite. As for the dipole band, to build up the dipole
state 1+ one gets contribution not only from the ground band state 0+, but also
from the state 2+ which results, for small deformations, an angle between proton
and neutron angular momenta close to 90◦ (see Fig. 10.3). By contrast, when the
deformation is large the above mentioned angle should be between 180◦ and 160◦
and, moreover, closer to one or another extreme depending on the rate of the mixture
of the states 0+

g and 2+
g in the structure of the dipole state 1+. According to this

picture, the state 1+ is not a typical scissors state, where the angle between the
proton and neutron symmetry axes is very small, but rather a shears mode.

Let us see now how this picture modifies when we add to the boson dipole states
the two quasiparticle state factor. As shown in Fig. 10.5, the case of common small
deformation for protons and neutrons is similar to that in Fig. 10.3 where the two qua-
siparticle factor ismissing.Bycontrast, herewehave seven sets of states distinguished
by the angular momentum J carried by the quasiparticle component. Otherwise, the

Fig. 10.5 The angle
between Jp and Jn within
the boson dipole state
�

(2qp;J1)
JI;M (d). The

deformation parameter d (see
Eq. (10.1.22)) is equal to 0.2
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Fig. 10.6 The angle
between Jp and Jn within
the boson dipole state
�

(2qp;J1)
JI;M (dp, dn). The

deformation parameters are
dp = 0.2 and dn = 2.4

step function structure aswell as the decreasing behavior as function of the total angu-
larmomentum, I , are preserved by any of the seven sets. The seven curves differ from
each other by the angular moment I, where the protons and neutron angular momenta
are orthogonal. Thus, for a given J (=0, 2, 4, . . . , 12) the total angular momenta for
which the proton-neutron angle is 90◦ are I = J + 1, J + 2, J + 3. The same remark
holds also for Fig. 10.6, when compared with the situation in Fig. 10.4. Indeed, it
seems that the larger the difference between proton and neutron deformations, the
smaller the departure of the (Jp, Jn) angle from 90◦ and the less pronounced the step
structure of the angle I-dependence.

From Fig. 10.5 it is clear that for each value of the two quasiparticle angular
momentum there are three states, the lowest angular momentum states being charac-
terized by an orthogonal configuration (Jp, Jn). Since the K quantum numbers for
proton and neutron systems included in the core are small and, moreover, the total K
being equal to unity, it is reasonable to suppose that Jp and Jn are both perpendicular
to the intrinsic symmetry axis, that is OZ. The symmetry axis of the particle motion is
determined by the mean field caused by the particle-core interaction of the q Q type.
On the other hand, the quasiparticle angular momentum projection on the symme-
try axis is, by construction, maximal. Therefore, JF is oriented along the axis O Z ,
which results in having an orthogonal trihedral (Jp, Jn, JF ). Invoking the arguments
of Ref. [FRA01], for such states a large transverse dipole moment is expected, which
may induce a large M1 transition rate.

Finally, a short comment on the structure of the state with the quasiparticle factor
state with angular momentum and projection (J, 0):

�
(2qp;01)
JI;M = N (2qp;01)

JI

∑

J ′
C J J ′ I
0 1 1

[
(a†

j a
†
j )J ϕ

(1)
J ′

]

I M

(
N (1)

J ′
)−1

. (10.1.26)

In such a state, the three angular momenta, Jp, Jn, JF are in the same plane. Hence,
one expects that the magnetic properties are different from those characterizing the
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Fig. 10.7 The angle
between Jp and Jn within
the boson dipole state
�

(2qp;01)
JI;M (d). The

deformation parameter for
protons is equal to that for
neutrons and d = 0.2 (see
Eq. (10.1.26))

Fig. 10.8 The angle
between Jp and Jn within
the boson dipole state
�

(2qp;01)
JI;M (dp, dn). The

deformation parameters are
dp = 0.2 and dn = 2.4

state where the mentioned vectors are mutually orthogonal. For comparison, these
states are also considered in Figs. 10.7 and 10.8.

10.1.5 Magnetic Dipole Transitions

The magnetic moment of the phenomenological core is defined by:

µc = gpJp + gnJn ≡ gcJpn, (10.1.27)

where gp, gn and gc denote the gyromagnetic factors for protons, neutrons and the
core. Multiplying this with Jc = Jpn , and averaging the result with the function

�
(2qp;J1)
JI;M , one obtains an equation determining gc:
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gc;JI = gp + gn

2
+ gp − gn

2

J̃ (1)
p;JI ( J̃ (1)

p;JI + 1) − J̃ (1)
n;JI( J̃ (1)

n;JI + 1)

J̃ (1)
pn;JI ( J̃ (1)

pn;JI + 1)
. (10.1.28)

Note that since the deformation parameters for proton and neutron are equal with
each other, the average values of proton and neutron angular momenta are the same,
J̃ (1)

p = J̃ (1)
n , which results in having a simple expression for the core gyromagnetic

factor:

gc = gp + gn

2
. (10.1.29)

The expression (10.1.28) can be easily derived by writing first the core magnetic
moment as a linear combination of the sum and the difference of proton and neutron
angular momenta:

µc = gp + gn

2

(
Jp + Jn

) + gp − gn

2

(
Jp − Jn

)
. (10.1.30)

Since the scissors state, 1+, is antisymmetric with respect to the proton-neutron
permutation, while the ground state, 0+, is symmetric, only the second term from the
above equation contributes to the transition 0+ → 1+. This feature is not preserved
when we treat the intra-band transitions of the chiral band, the states participating to
the transition behaving similarly against the proton-neutron permutation.

Denoting by gF the gyromagnetic factor for the two quasiparticle factor state and
following a similar procedure as above we get for the whole system the following
gyromagnetic factor:

gJI = gF + gc

2
+ gc − gF

2

J̃ (1)
pn;JI ( J̃ (1)

pn;JI + 1) − J (J + 1)

I (I + 1)
. (10.1.31)

We note that both gyromagnetic factors for the core and for the whole system depend
on the angular momenta J and I .

In order to calculate the M1 transition probability we need the following reduced
matrix elements:

〈�(2qp;J1)
JI ||JF ||�(2qp;J1)

JI ′ 〉 = 2 Î ′ Ĵ
√

J (J + 1)N (2qp;J1)
JI N (2qp;J1)

JI ′

×
∑

J1

(
N (1)

J1

)−2 (
C J J1 I

J 1 J+1

)2
W (I ′J11J ; JI),

(10.1.32)
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〈�(2qp;J1)
JI ||gp Jp + gn Jn ||�(2qp;J1)

JI ′ 〉 = N (2qp;J1)
JI N (2qp;J1)

JI ′ Î ′1̂

×
∑

J1

C J J1 I
J 1 J+1C J J1 I ′

J 1 J+1

(
N (1)

J1

)−2
W (J J1 I1; I ′ J1)

×
(

gp

√
J̃p;J1 ( J̃p;J1 + 1) + gn

√
J̃n;J1 ( J̃n;J1 + 1)

)
.

Using the previous results regarding the average value of Ĵ 2
τ , the last expression of

the above equations, considered for the case I ′ = I , simplifies to:

〈�(2qp;J1)
JI ||gp Jp + gn Jn ||�(2qp;J1)

JI 〉 = gp

√
J̃p;JI ( J̃p;JI + 1) + gn

√
J̃n;JI ( J̃n;JI + 1).

(10.1.33)
The M1 transition operator is defined by:

M1,m =
√

3

4π
μ1,m . (10.1.34)

As shown in the previous chapter, the transition operator can be derived using the
equations of motion for the quadrupole coordinates. This way some higher order
boson corrective terms may be included.

From the above mentioned equations describing the magnetic moment, one notes
that even in the second order in bosons, the gyromagnetic factors have components
which multiply the proton-neutron dipole operators in addition to those accompany-
ing the angular momenta Ĵp and Ĵn . Although the present formalism is purely phe-
nomenological and therefore the magnetic moments of neutrons are not included,
due to the proton-neutron coupling terms involved in the model Hamiltonian, the
neutron gyromagnetic factor is not vanishing.

Actually, restricting the expression for the transition operator to the angular
momenta, the above equation provides analytical expressions for the proton and neu-
tron system gyromagnetic factors. For illustration, in Table10.1 we give the results
for the reduced magnetic dipole transitions between two adjacent states from a two
quasiparticle (i13/2)2 band, for two sets of the deformation parameters. They are
chosen such that to correspond to a near vibrational regime. We recall that a rota-
tional picture is reached for a deformation parameter larger than 3 [CR74]. We note
that for J ≥ 6, where J denotes the quasiparticle total angular momentum, and
system angular momentum I larger than 10, the transitions might be considered of
collective nature. Although we truncated the angular momentum I to 20, from Table
I it is conspicuous that the larger is I, the larger is the M1 strength.
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10.1.6 Numerical Results and Discussions

The formalism described above was applied for 188,190Os and 192Pt. Unfortunately,
there are no available data concerning the magnetic bands for even-even-nuclei. In
choosing these nuclei we had in mind the fact that nuclei around A= 190 are gamma
soft and a phase transition from prolate to oblate through a triaxial shape is expected
to occur. Indeed, the signature for a triaxial rotor

E2+
g

+ E2+
γ

= E3+
γ
, (10.1.35)

is satisfied with good accuracy by the chosen nuclei. Discrepancies for 188Os, 190Os
and 192Pt are 2, 11 and 8keV, respectively.

We calculated first the excitation energies for the bands described by the angular
momentum projected functions

φ
(g)
JM |BCS〉,φ(β)

JM |BCS〉,φ(γ)
JM |BCS〉,φ(1)

JM |BCS〉, φ̃(1)
JM |BCS〉, �(2qp;J1)

JI;M .

(10.1.36)

and the particle-core Hamiltonian H (10.1.18). The single particle space was
restricted to the single proton shell h11/2. Several parameters like the structure coef-
ficients defining the model Hamiltonian and the deformation parameters are to be
fixed. Since in the present application the proton and neutron deformations are equal,
we need only one “global” deformation, ρ = √

2d. For a given ρ we determine the
parameters involved in HGCSM by fitting the excitation energies in the ground, β
and γ bands, through a least square procedure. ρ was then varied and fixed to that
value which provides the minimal root mean square of the results deviations from
the corresponding experimental data. Excitation energies of the phenomenological
magnetic bands described by φ

(1)
JM and φ̃

(1)
JM respectively, are free of any adjustable

parameters. The strengths of the pairing and Q.Q interaction for j = 11/2 were
taken close to the values used in Ref. [RLF83], where spectra of some Pt even-even
isotopes were interpreted with a particle-core Hamiltonian, the core being described
by the Coherent State Model (CSM). Thus, the quasiparticle energy for 192Pt is
1.25MeVwhile for 188,190Os this is 0.915 which is about the value yielded by a BCS
treatment in the extended space of single particle states. Concerning the particle-core
qQ interaction strength we fixed first the strength X ′

pc defined by:

X ′
pc = 6.5η(−)

11
2

11
2

X (p)
pc , (10.1.37)

Since the considered outer particles are protons, the neutron particle-core coupling
term is ineffective. Therefore we put X (n)

pc = 0. The parameters mentioned above
have the values listed in Table10.2.
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Fig. 10.9 Experimental
(Exp.) and calculated (Th.)
excitation energies in
ground, β and γ bands of
188Os. Data are taken from
[S02]

Fig. 10.10 The same as in
Fig. 10.9 but for 190Os with
data from Ref. [S03]

Fig. 10.11 Experimental
and calculated excitation
energies in ground, β and γ
bands for 192Pt. They
correspond to the fitted
parameters listed in
Table10.2. The r.m.s. value
of the deviation of the
theoretical results and the
corresponding experimental
data is equal to 67keV

Excitation energies calculated with these parameters are compared with the cor-
responding experimental data, in Figs. 10.9, 10.10, and 10.11. One notes a good
agreement of results with the corresponding experimental data.

Unfortunately, there is no available data concerning themagnetic states. However,
in Refs. [S02, S03] the states of 1304.82 and 1115.5keV in 188Os and 190Os respec-
tively (Figs. 10.12 and 10.13), perform a M1 decay to the ground band states. These
states could tentatively be associated to the heading states of the two dipole bands
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Fig. 10.12 The same as in Fig. 10.13 but for 190Os. Here the dipole bands from the lower columns
are described by |1; JM〉 and |1̄; JM〉.

Fig. 10.13 Excitation energies for the yrast (lower-left) and non-yrast (lower-right) boson dipole
states of 188Os. The twin bands T1 and T2 are also shown

which are located at 1400 and 1538keV, respectively. For 188Os, the states |1; JM〉
are not in a natural order from J ≥ 6. Indeed, the yrast states belong to the 1+ band
except the states with J = 6, 8, 10 which are of 1̄+ type. Similarly, non-yrast states
have a 1̄+ character except the states of J = 6, 8, 10, which are of 1+ type.

The results for the magnetic dipole bands of 192Pt are plotted in Fig. 10.14. Exci-
tation energies shown there are those from Table10.3. The lower bands exhibit
a pronounced doublet structure. Indeed, in the band 1+ we notice the staggering
4+, 5+; 6+, 7+; 8+, 9+; etc., while in the band 1̄+ the states are grouped in a differ-
ent manner: 1+, 2+; 3+, 4+; 5+, 6+; 7+, 8+;etc. The first three states of the 1+ band
are close in energy, while in the band 1̄+ the first two doublets have an unnatural spin
ordering. The experimental data [BAG12] show two states of uncertain spin assign-
ment which decay by M1 to 2+

g , 2
+
γ and 0+

g and lie close to the band heads of the two
dipole bands having the energies of 1.874 and 2.033MeV respectively. According
to the present calculations these states might have the spin 1 and 2 respectively, the
mentioned energies being comparable with those associated to the first two states of
the band 1+. The lowest dipole states of magnetic nature are identified as having the
energies 2.149 and 2.319MeV respectively, which are not too far from the calculated
energies of the states 1+. In order to decide to which of the two experimental sets of
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Fig. 10.14 The excitation energies for the dipole bands described by φ
(1)
JM (left lower column)

and φ̃
(1)
JM (right lower column), respectively. The bands T1 (upper left column) and T2 (upper right

column), conventionally called twin bands, are also shown. The T1 and T2 bands were obtained
with X ′

pc = −0.023MeV and XsS = 0.001MeV for the left column and XsS = −0.001MeV for
the right column

Table 10.3 Excitation energies, given in MeV, for the four magnetic bands denoted by 1+, 1̄+,T1
and T2 respectively, in 192Pt

J+ 1+-band 1̄+-band T1-band T2-band

1+ 1.874 2.010

2+ 2.033 1.983

3+ 2.183 2.291

4+ 2.519 2.289

5+ 2.676 2.763

6+ 3.127 2.783

7+ 3.287 3.364

8+ 3.832 3.413

9+ 3.994 4.065

10+ 4.623 4.147

11+ 4.785 4.852 4.757 4.765

12+ 5.492 4.969 5.201 5.218

13+ 5.651 5.718 5.638 5.662

14+ 6.436 5.868 6.073 6.106

15+ 6.589 6.655 6.512 6.553

16+ 7.450 6.840 6.957 7.008

17+ 7.596 7.661 7.409 7.469

18+ 8.535 7.881 7.868 7.938

19+ 8.670 8.735 8.330 8.410

20+ 9.689 8.989 8.788 8.878

The twin bands T1 and T2 have K = 11

data the results of these calculations could be associated, additional investigations
are necessary from both theoretical and experimental sides.
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The weak feature of the present formalism is that does not reproduce the right
staggering in the γ band of 192Pt. Actually, the experimental energy spacings in
this band is almost constant up to the state 5+, increases for 6+ and then a smaller
spacing for the pair of states 6+, 7+ is recorded. Since one has only one staggering
situation, one cannot conclude upon a staggering (J+, (J + 1)+) with J -even. It
may happen that the state 6+ does not really belong to the γ band. Thus, to draw a
definite conclusion one needs data for excitation energies of the higher spin states.
On the other hand the GCSM formalism [RFC87] predicts for small deformation a
staggering (3+, 4+); (5+, 6+); (7+, 8+), etc. while for large deformation the dou-
blet structure is changed to (2+, 3+); (4+, 5+); (6+, 7+), etc. The results shown in
Fig. 10.11 are compatible with the first level clustering, which reflects the regime of
a small deformation. Indeed, the energy spacings, given in keV, are: 224; 230; 289;
278; 349; 315; 402; 346. As seen in the list, except for the spacing (3+, 4+) which
is almost the same as (2+, 3+), the rule for the doublet structure (J+, (J + 1)+)

with J odd is obeyed. The bands T1 and T2, tentatively called twin bands, have some
distinctive properties. First of all, both are K = 11 bands. The meaning of this state-
ment will be commented in detail for 192Pt. Since the unprojected state, generating
the bands T1 and T2 through angular momentum projection, has K = 11, after pro-
jection the wave function is a superposition of different K components among which
the one having K = 11 prevails over the others [CR74]. The magnetic nature of
the bands T1 and T2 is confirmed by the large intraband M1 transitions, as shown in
Figs. 10.15, 10.16 and 10.17. The energies of states of the same angular momentum
are close to each other. Indeed, their difference ranges from 8 to 90keV. It is worth

Fig. 10.15 The BM1 values associated with the dipole magnetic transitions between two consec-
utive levels in the T1 band of 188Os. The results are interpolated with a second rank polynomial
(full curve). The gyromagnetic factors employed are gp = 0.828µN, gn = −0.028µN and gF =
1.289µN
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Fig. 10.16 The B(M1) values associated with the dipole magnetic transitions between two consec-
utive energy levels of the T1 band, in 192Pt. The gyromagnetic factors employed in our calculations
are: μp = 0.666µN, μn = 0.133µN and μF = 1.289µN. As usual the spin gyromagnetic factor
was quenched by a factor 0.75 in order to account for the influence of the proton excited states on
the magnetic moment

Fig. 10.17 The magnetic
dipole reduced probabilities
within the two
quasiparticle-core bands
corresponding to the
quasiparticle total angular
momentum J. The
gyromagnetic factors are the
same as those used in
Fig. 10.15

noting that energy spacing varies very little in the two twin bands. Indeed, in T1 it
goes from 435keV reached for 13+, to 462keV met at 19+. As for the T2 band the
minimum energy spacing is of 444keV met for three states, 12+, 13+, 14+, while
the maximum spacing is 472keV for 19+. These spacings were plotted in Fig. 10.18
as function of angular momentum. The curves for the two twin bands are almost
parallel to each other and behave as a polynomial in J, of rank three. These spacings
are used to calculate the so called signature energy staggering, defined by:

S(J ) = E(J ) − E(J − 1)

2J
. (10.1.38)
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Fig. 10.18 Energy spacings
in the two twin bands T1 and
T2 in192Pt

Fig. 10.19 The signature
energy staggering S(J ),
defined by Eq. (10.1.38), is
represented as function of
the angular momentum J, in
the bands T1 and T2

This function, plotted inFig. 10.19, exhibits no staggering and is decreasingmonoton-
ically and very slowly with J. Indeed, the e-cart of maximum and minimum value
is only of about 7keV. For an ideal chiral band this parameter should be indepen-
dent of J . Both twin bands intersect the lower dipole bands at the energy level 11+.
Due to this feature we would expect that a backbending takes place at this angular
momentum. However, due to the doublet structure in the lower dipole bands it is
difficult to define consistently the moment of inertia for the �J = 1 states. Despite
the mentioned encountered difficulties, the plot of the moment of inertia vs. the
rotational frequency squared starts with a backbending, continues with a forward
bending, from 14+, and again a backbending from 19+. This picture is common
for both twin bands. For illustration, in Fig. 10.20 we present the situation of the T1
band. Denoting by J , E(J ) and ω the double moment of inertia, the energy of the
state J+ belonging to the T1 band and the rotational frequency respectively, for the
chosen �J = 1 band one gets:
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Fig. 10.20 The double
moment of inertia calculated
for the angular momenta
12+−20+ with Eq. (10.1.39)
are represented as function of
the corresponding rotational
frequency given by (10.1.40)

J = 2(J + 1)

E(J + 1) − E(J )
, (10.1.39)

�ω = E(J + 1) − E(J ). (10.1.40)

In Fig. 10.20we see that, indeed, themoment of inertia exhibits a double backbending
when is represented as function of the rotational frequency squared. If we consider
also the energy levels of the band 1+ before its crossing with the band T1 the graph
of Fig. 10.20 would be continued to the left side by a saw teeth like curve.

For 188,190Os the gyromagnetic factor were calculated in the following manner.
Considering for the core’s magnetic moment the classical definition, one obtains an
analytical expression involving the quadrupole coordinates and their first order time
derivatives, which can be further calculated by means of the Heisenberg equation.
Finally, writing the result in terms of quadrupole boson operators and identifying the
factors multiplying the proton and neutron angular momenta with the gyromagnetic
factors of proton and neutrons, one obtains:

(
gp

gn

)
= 3Z R2

0

8πk2p

Mc2

(�c)2

(
A1 + 6A4

1
5 A3

)
, (10.1.41)

where Z and R0 denote the nuclear charge and radius, while M and c are the proton
mass and the light velocity. kp is a parameter defining the canonical transformation
relating the coordinate and conjugate momenta with the quadrupole bosons, while
A1, A3, A4 are the structure coefficients involved in HGCSM . Since within the GCSM
the core gyromagnetic factor is

gc = 1

2
(gp + gn), (10.1.42)
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we may identify it with the liquid drop value, Z/A, and consequently the canonicity
coefficient acquires the expression:

k2p = 3

16π
AR2

0
Mc2

(�c)2

(
A1 + 6A4 + 1

5
A3

)
. (10.1.43)

Inserting this in Eq. (10.1.41), the gyromagnetic factors are readily obtained. This
procedure was used for 188,190Os with the results from Table10.2.

With the expression for the transition operator just determined, the B(M1) value
for the transitions 1+ → 0+

g and 1+ → 2+
g can be calculated. The results are

0.2772µ2
N, 0.0139µ

2
N for 188Os and 0.1752µ2

N, 0.0085µ
2
N for 190 Os. As a matter

of fact, this proves that the chiral bands T1 and T2 are of different nature than the
low lying scissors mode. Indeed, the first are essentially determined by the moment
of inertia dependence on the angular momentum, while the second by the nuclear
deformation.

The gyromagnetic factors for the collective core of 192Pt, denoted by gp and gn ,
were determined from equations predicted by the GCSM model,

gc = gp + gn

2
, gn = 1

5
gp, (10.1.44)

and taking gc = Z
A .

Finally, the M1 transition probabilities were calculated with the Eqs. (10.1.32)
and (10.1.33). The results are represented in Fig. 10.15 for 188Os and Fig. 10.16
for 192Pt as a function of J . The J dependence seems to be quadratic, the B(M1)
value increasing from 0.847µ2

N (J = 12) to 7.204µ2
N (J = 20). Note that in the

present calculations one considered the term of the model Hamiltonian breaking the
chiral symmetry only for energies and not for the corresponding wave functions.
This feature leads to the fact that the two partner bands are described by identical
functions which results in having the same B(M1) values for both.

Note that the bands T1 and T2 correspond to two reference frames of the three
angular momenta JF , Jp, Jn which are related by a chiral transformation which
changes the sign of JF . The matrix elements of the XsS term in the two reference
frames differ fromeachother by sign. Therefore, for one band, T1, the interaction sS is
attractivewhile for the other band,T2, repulsive.However, there are another twochiral
transformationswhich change the signs of Jp and Jn , respectively, of the right handed
frameassociated to the bandT1. Eachof the correspondingbands is therefore a partner
band for T1. The additional bands will be denoted hereafter by T3 and T4 respectively.
They are also partner bands for T2 since their frames, are obtainable from that defining
T2, by rotations around the axes Jn and Jp respectively with an angle equal to π.
However, the sS interaction is not invariant to the mentioned transformation which
results that the bands T2 and T3,4 are different from each other. Note that each of the π
rotations, mentioned above, is a product of two chiral transformations and therefore
a chiral transformation. It is worth noting that the T3 and T4 transformations break
not only the chiral symmetry but also the p-n permutation symmetry of the core.
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Indeed, the transformed spin-spin interaction is of negative parity with respect to
the p-n permutation. This is the reason why the average of this interaction with the
two quasiparticle-core dipole state is vanishing. Therefore the bands corresponding
to the frames T3 and T4 are degenerate, the common energy split being exclusively
determined by the sS interaction which is nonvanishing for the T1 and T2 bands. If
we enlarge the space by adding the states of two quasiparticles-core ground band
type, these states are linked with the two quasiparticle-core dipole states by means of
the T3 (or T4) transformed spin-spin interaction. By diagonalization, one obtains two
bands each member state being a linear combination of the two states from the basis.
The band of states whose dominant component is a two quasiparticle-core dipole
state, is of magnetic nature. Concluding, there are four chiral bands among which
two are degenerate, which have a negative parity with respect to the p-n permutation
of the core. In addition there are two bands of mixed parity from which only one
exhibits magnetic properties.

The chiral symmetry has been intensively studied for odd-odd and odd-even nuclei
around A = 130 [PET96, SI05] and A = 100[VFK04]. Recently, the investigation
has been extended also to some heavy nuclei with A ≈ 190 [BAL04]. The first
interpretation of the twin bands in terms of a spontaneous chiral symmetry breaking
was given by Frauendorf [FRA97], while the first measurement was reported in
Ref. [PET96]. Several approaches devoted to the chiral bands description have been
proposed. Among these, the particle-asymmetric rotor (PAR) model is the most
popular. It is interesting to mention that PAR was much earlier developed, both
analytically and numerically, in Refs. [TF75, TF76, TOF76, TYF77].

The experimental systematics established the criteria uponwhich one could decide
whether a pair of bands might be considered of a chiral nature. Briefly, these are:
(1) The partner bands are almost degenerate; (2) The energy staggering parameter
must be angular momentum independent; (3) The staggering behavior of the ratio
B(M1)/B(E2) and B(M1)in/B(M1)out , where B(M1)in and B(M1)out denote the
intra-band and inter-band reduced M1 transition probabilities for the partner bands.
In Ref. [PET06] it was shown that these criteria are necessary but sometimes not
sufficient, the partner bands corresponding to nuclear shapes which are not close to
each other.

Note that this procedure is based on angular momentum projection from proton-
neutron boson coherent states. In general, the used boson Hamiltonians are invariant
to the rotation transformation and therefore treated with basis states of good angular
momentum. This procedure has the advantage, over the other boson formalisms, of
not having redundant components caused by using different sets of Euler angles for
proton and neutron bosons, respectively.

The present description exhibits some specific features. While the previous for-
malisms were focused mainly on the odd-odd nuclei, only few publications refering
also to even-odd [MUK07] and even-even isotopes [LU09], the presented approach
concerns the even-even systems and is based on a new concept. While within the
other approaches there are only two magnetic bands related by a chiral transforma-
tion, here one found four magnetic bands with definite p-n symmetry of the core
and one with mixed symmetry having this property. Two of the bands with unique
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Fig. 10.21 The four frames
are related by a chiral
transformation. The
spin-spin interaction
corresponding to each
thriedral is also mentioned.
They generate the bands Ti
with i = 1, 2, 3, 4,
respectively

T1

T4T3

T2JF

JF JF

JF

Jp

Jp

Jp

Jp

Jn

Jn

JnJn

XsS JF JC

XsS JF Jp Jn XsS JF Jp Jn

XsS JF JC

symmetry are degenerated. Note that there are two symmetries broken, that of p-n
permutation and the chiral one. These distinct frames defined by a certain relative
orientation of the three angular momenta are suggestively presented in Fig. 10.21.

10.2 Monopole Charge Properties Within the GCSM

10.2.1 Introduction

One body transition density operators play an important role in the microscopic
description of various properties showing up in nuclear systems. For example, the
charge density operator matrix elements corresponding to the ground state of a spher-
ical system can be determined, with high precision, in elastic electron scattering,
which results in having precious information about the spatial charge distribution.
Similarly, the matrix elements between the ground state and excited states within the
ground band might provide information about the nuclear shape [CO76]. Indeed, in
an electron scattering experiment at large momentum transfer the radial dependence
of the charge distribution can be directly measured. Combining this result with other
information on electromagnetic interaction in the considered nuclei, in the reference
quoted above more refined statements on the deformed shapes could be made.

The structure of the spectra in deformed nuclei requires the use of a deformed
mean field. The final state describing an interacting many body system is a deformed
state and therefore its use for the description of the transition probabilities requires
the projection of the components with good angular momentum. In particular, in
order to account for the contribution of the tensorial components of the charge den-
sity, the many body ground state built up with deformed single particle states must be
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projected over the angularmomentum [ZANE77]. There is no doubt that projection is
of paramount importance for transitional and deformed nuclei. However, the correc-
tion brought by projection to the results obtained in the intrinsic frame depends on the
observable under consideration [VIL66, MOY86]. For example, averaging a model
Hamiltonian on an intrinsic ground state yields the system energy while averaging
it on angular momentum projected states, a whole band of energy levels is obtained.
For instance, describing the collective magnetic dipole state with a deformed single
particle basis one obtains K = 1 states which are abusively called 1+ states. To
our knowledge there is no rigorous proof that the admixture with the components of
angular momentum 2 is negligible. Another example we want to comment upon is
that of the rotational bands which are considered to be a set of states characterized
by the same quantum number K . However, in the laboratory frame of reference, K
is not a good quantum number and the meaning of a K -state is actually a state with
a dominant K -component. The effect of projection is felt by the operator matrix
elements. There are cases of operators whose matrix elements are affected very little
by the the angular momentum projection of the intrinsic states. The simplest case
is the one when the operator is just a C-number constant. Its matrix elements in the
unprojected and projected states are equal to each other. At first glance, that would
suggest that other operators insensitive to projecting the angular momentum from
the intrinsic wave function, would be scalar operators. Of course, that is not true and
an example is the boson number operator in a phenomenological picture.

One issue of the present section is to study the scalar part of the charge density
operator within the generalized coherent state model (GCSM). Thus, we shall con-
sider the matrix element of the charge density operator, truncated at its scalar term,
on the unprojected ground state and alternatively on the projected Jπ = 0+ state.
We also raise the question of how different are these matrix elements from those cor-
responding to a high angular momentum projected state. All matrix elements quoted
above are studied as function of nuclear deformation.

Another scalar operator which is considered here is the E0 transition operator. The
monopole transition is often used to characterize various states of angularmomentum
equal to zero. Thus, in Ref. [SGEC98] the monopole transition 0+

β → 0+
g strength

was expressed in terms of the mixing coefficient of the two states characterized by
different deformations but lying close to each other in energy. In this way the transi-
tion strength may provide the mixing coefficient for the two states. In 158Gd several
0+ states were seen in a (p,t) experiment [LES02]. These states have been micro-
scopically interpreted within a projected shell model and, alternatively, within the
quasiparticle-phonon model [ISS04]. The authors of Ref. [ISS04] calculated the E2
strength for the transition from the ground state to the first 2+ state, the E0 strength
for the transition from the excited 0+ states to the ground state, and the two-nucleon
spectroscopic amplitudes. The experimental strengths for E0 and E2 transitions are
concentrated in one and two states respectively, while the theoretical results [ISS04]
show a large fragmentation of the two transition strengths. The experimental spec-
troscopic amplitudes indicate that two states are mainly populated which contrasts
the theoretical result where the amplitude is fragmented among several states. From
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the analysis of Ref. [ISS04] it seems that the E0 strength is a signature only for one
excited 0+ state, as it was in fact considered in Ref. [SGEC98].

10.2.2 The Charge Density

Suppose that the nuclear charge is distributed uniformly inside the nuclear surface:

R(θ,ϕ) = R0

⎛

⎝1 +
∑

λ=0,2;μ
α∗

λμYλμ

⎞

⎠ ≡ R0 + �R. (10.2.1)

with αλμ denoting the quadrupole collective coordinates. The charge density has the
expression:

ρ(r, θ,ϕ) = ρ0H [R(θ,ϕ) − r ] , (10.2.2)

where H denotes theHeaviside function, while ρ0 is the constant density correspond-
ing to a sphere of radius R0 = 1.2A1/3 f m. Expanding the charge density around
the surface corresponding to vanishing quadrupole coordinates, one obtains:

ρ(r, θ,ϕ) = ρ0

[
H(R0 − r) + �Rδ(R0 − r) − 1

2
(�R)2 δ′(R0 − r) + · · ·

]
(10.2.3)

In momentum space the charge density can be written as a sum of tensor operators
of various ranks. For example the term of rank λ and projection μ reads:

ρλμ(q) = C
∫

r2 jλ(qr)

(∫
ρ(r, θ,ϕ)Yλμd�

)
dr. (10.2.4)

Here jλ is the spherical Bessel function of first kind. The transfer momentum, during
the scattering process with a charged particle, is denoted by q. C is a normalization
factor which might be chosen such that for q = 0 the density ρ0 is obtained. Here we
choose C = 1, which means that in momentum space we deal with the total charge
instead of charge density.

Let us consider first the scalar term involved in the expression of the charge
density. The volume conservation restriction yields a relation between the monopole
and quadrupole coordinates:

α00 = − 1√
4π

∑

μ

|α2μ|2, (10.2.5)

As for the scalar charge density, one obtains:

ρ00(q) = 3Ze

qR0
j1(qR0) − 3

8π
ZeqR0 j1(qR0)

∑

μ

|α2μ|2, (10.2.6)
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Quantizing the quadrupole collective coordinate, we can define the transition mono-
pole operator, ρ̂00. The elastic monopole form-factor is obtained as the expectation
value of ρ̂00 on the ground state wave function in the collective space. Here we con-
sider alternatively the unprojected ground state and the projected states describing
the J -members of the ground band. In order to calculate the expectation values of the
monopole charge density operator in the states mentioned above we have to express
the coordinates in terms of boson operators through the canonical transformation:

α̂2μ = 1

kp
√
2

(
b†pμ + (−)μbp−μ

)
, π̂2μ = ikp√

2

(
(−)μb†p−μ − bpμ

)
. (10.2.7)

The transformation relating the coordinates and conjugate momenta with the boson
operators b†pμ, bpμ, is determined up to a multiplicative constant, kp. This is at our
disposal and will be fixed in several alternative ways described along this section.
The results for the average values, corresponding to the unprojected ground state and
J-projected states within the GCSM, are:

〈ψg|
∑

μ

|α̂2μ|2|ψg〉 = 1

k2p

(
d2 + 5

2

)
,

〈φg
JM |

∑

μ

|α̂2μ|2|φg
JM〉 = 1

k2p

(
d2

2
+ 5

2

)
+ d2

2k2p

I (1)
J (d2)

I (0)
J (d2)

, (10.2.8)

with

I (0)
J (y) =

1∫

0

PJ (x)eyP2(x)dx, I (1)
J (y) = ∂ I (0)

J (y)

∂y
, y = d2, d = √

2dp.

(10.2.9)

In the above expressions PJ (x) denotes the Legendre polynomial of rank J . Denoting
by:

A(q) = 3Ze

qR0
j1(qR0), C(q) = − 3

8π
ZeqR0 j1(qR0), (10.2.10)

the matrix elements of the charge operator read:

〈ψg|ρ̂00(q)|ψg〉 = A(q) + 1

k2p

(
d2 + 5

2

)
C(q), (10.2.11)

〈φ(g)
JM |ρ̂00(q)|φ(g)

JM〉 = A(q) + C(q)

[
1

2k2p

(
d2 + 5

)
+ d2

2k2p

I (1)
J (d2)

I (0)
J (d2)

]
. (10.2.12)
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These expressions correspond to Ze times the elastic form factor in the intrinsic and
laboratory frame, respectively. In what follows we refer to them as total charge Q.
In a previous chapter, simple expressions for the extreme regimes of near spherical
and rotational behaviors have been obtained for the overlap integrals involved in the
above equation. The results for the case of J = 0 state are:

〈φ(g)
00 |

∑

μ

|α̂2μ|2|φ(g)
00 〉 = 1

2k2p

[
d4

5
+ d2 + 5

]
, d = small (d ≤ 1),

〈φ(g)
00 |

∑

μ

|α̂2μ|2|φ(g)
00 〉 = 1

k2p

[
d2 + 2 − 2

9

1

d2

]
, d = large (d ≥ 3). (10.2.13)

We recall that for well deformed nuclei, d is typically greater than three. In the low
momentum regime (qR0 � 1), the expression (10.2.6) is much simplified:

ρ00(q) = Ze

[
1 − 1

10

(
qR0

)2 − 1

8π

(
qR0

)2 ∑

μ

|α2μ|2
]

. (10.2.14)

Let us turnour attention to the quadrupole component of the chargedensity. Following
the same procedure as in the case of the monopole component, we obtain:

ρ2μ =
∫

r2 j2(qr)

[∫
ρ(r, θ,ϕ)Y2μd�

]
dr = ρ0R3

0 j2(qR0)α2μ. (10.2.15)

Under the restriction qR0 � 1, the result is:

ρ2μ = 3Ze

40π

(
qR0

)2
α2μ. (10.2.16)

To conclude, in the second order expansion in the surface coordinates, the charge
density is:

ρμ(q) = 3Ze

qR0
j1(qR0) − 3

8π
Ze(qR0) j1(qR0)

∑

μ

|α2μ|2

+ 3Ze

4π
j2(qR0)α2μ. (10.2.17)

Thus, ρ is expressed as a second order polynomial in α:

ρμ(q) = A(q) + B(q)α2μ + C(q)
∑

μ

|α2μ|2, (10.2.18)

with the coefficients depending on the transferred momentum, defined by Eq.
(10.2.10) and:
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B(q) = 3Ze

4π
j2(qR0). (10.2.19)

In the intrinsic reference frame the expression becomes:

ρμ(q) = A(q) + B(q)

(
δμ,0β cos γ + (δμ,2 + δμ,−2)

β sin γ√
2

)
+ C(q)β2.

(10.2.20)
We notice that the surface of constant charge density is of an ellipsoidal form which
is consistent with the liquid drop shape. Coupling a particle to such a core, the single
particle motion would be determined by a quadrupole deformed mean field. In the
boson representation, defined above, one obtains:

ρ̂μ(q) = A(q) + 5C(q)

2k2p
+ B(q)

kp
√
2

(
b†pμ + (−)μbp,−μ

)

+ C(q)

k2p
N̂p + C(q)

2k2p

(
b†pμb†p,−μ + bp,−μbpμ

)
(−)μ, (10.2.21)

where N̂p denotes the proton boson number operator. The boson term(
b†pμb†p−μ + bp−μbpμ

)
(−)μ has diagonal matrix elements in ground and beta bands

much larger than the off-diagonal one. Moreover, the matrix elements do not depend
on the angular momenta of the states involved. For this reason we shall replace it
by its average value, which is equal to 2d2

p. Under these circumstances the zero
component of the charge density operator becomes:

ρ̂0(q) = T + B

kp
√
2

(
b†p0 + bp0

)
+ C

k2p
N̂p. (10.2.22)

where

T = A + C

2k2p
(d2 + 5). (10.2.23)

Acting with this boson operator on the unprojected ground state, one obtains:

ρ̂0(q)ψg =
[(

T + B√
2kp

dp

)
+

(
B√
2kp

+ Cdp

k2p

)
b†p0

]
ψg. (10.2.24)

We recall the fact that the canonical transformation relating the quadrupole coordinate
and conjugate momenta with the boson operators is determined up to a multiplicative
constant which was denoted by kp. Taking for this constant the value

kp = −C

B
d, (10.2.25)
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the unprojected ground state becomes eigenfunction for the boson operator ρ̂:

ρ̂0(q)ψg =
(

A + B2

2C

5

d2

)
ψg. (10.2.26)

Considering the low momentum expansion for the coefficients A, B and C this
equation becomes:

ρ̂0(q)ψg = Ze

[
1 −

(
qR0

)2

10

(
1 + 1

2πd2

)]
ψg. (10.2.27)

Thus, the parameter kp has a very simple expression:

kp = 5

2
d (10.2.28)

Alternatively, the canonicity parameter could bedetermined in the followingway.The
stability condition for the average value of ρ̂ on the unprojected ground state, against
the variation of d provides the following equation for the deformation parameter d.

2Cd + kp B = 0. (10.2.29)

However, in our previous investigations d was fixed by fitting some energies in the
ground band. We could keep those values for d and use Eq. (10.2.29) to determine
kp. We notice that the value of kp obtained this way is twice as much as the one
given by Eq. (10.2.25). In this case, the low momentum regime provides kp = 5d.

At this stage it is worth recalling the way the canonicity parameter kp was fixed
within the GCSM model when the M1 and E2 properties were investigated. In
the asymptotic regime, i.e. d large, the ground band energies can be expressed as
[RUD87]:

Eg
J =

[
A1 + A2

6d2 + A4

]
J (J + 1). (10.2.30)

Equating this expression with that given by the liquid drop model, one finds an
equation relating the nuclear deformation with the parameter ρ:

β2
0 = π

3.24

�
2

MN
A−5/3

[
A1 + A2

6d2 + A4

]−1

. (10.2.31)

Identifying this deformation with the average value of the second order invariant in
α’s coordinates and subtracting the zero point motion contribution one finds:

kp = d

β0
. (10.2.32)
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Table 10.4 The values for the kp/d ratio calculated in two alternative ways: (a) according to
Eq. (10.2.31), as in Ref. [RUD87]

152Gd 154Gd 156Gd 158Gd 160Gd 154Sm 164Dy 168Er 174Yb 232Th 238U

β−1
0 1.471 1.320 1.176 1.158 1.146 1.129 1.140 1.242 1.261 1.247 1.142

kp/d 1.406 1.393 1.381 1.368 1.355 1.394 1.329 1.303 1.264 0.864 0.820

In this case the ratio is equal to β−1
0 , given by Eq. (10.2.31), and the resulting values are given in

the first row; (b) the ratio is given by Eq. (10.2.25) for a transfer momentum q = 0.54 fm−1. The
corresponding values are listed in the second row

In Table10.4, the values of β−1
0 are compared with those of kp/d given by

Eq. (10.2.25). We notice that the two sets of data are quite close to each other.

10.2.3 Electric Monopole Transition

The scattering process where the colliding particle may be inside the target nucleus
involves longitudinal momenta associated to the Coulomb field [BOH98]:

M(Cλ,μ) =
∫

ρ(r) fλYλμ(θ,ϕ)dτ , (10.2.33)

where fλ is a function depending on the radial motion of the particle inside nucleus.
If the monopole Coulomb momentum is expanded in powers of r , then the lowest
order term giving rise to an intrinsic transition is proportional to r2. Therefore, the
monopole operator responsible for the transition with λπ = 0+ is:

m(E0) =
∫

ρ(r)r2dτ . (10.2.34)

where ρ denotes the electric charge density. Expanding ρ in terms of the liquid drop
coordinates α2μ, we obtain:

m(E0) = ρ0R5
0

(
4π

5
+ √

4πα00 + 2
∑

μ

|α2μ|2
)

. (10.2.35)

Using the volume conservation condition for the monopole coordinate α00, the final
result for the monopole moment is:

m(E0) = 3

5
ZeR2

0

[
1 + 5

4π

∑

μ

|α2μ|2
]

. (10.2.36)
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The matrix element of this operator gives the amplitude for the transition probability
between the involved state. In particular for the transition J+

β → J+
g we obtain:

ρ(E0) ≡ 〈φ(β)
JM |m(E0)|φ(g)

JM〉 = 3
√
5ZeR2

0

8
√
2πk2p

. (10.2.37)

Note that the amplitude for the monopole transition is not depending on the state
angular momentum.Moreover, the same expression is obtained if the projected states
are replaced by the unprojected ground and beta states, respectively.

In nuclei which exhibit shape coexistence, calculations of E0 transitions could
provide a test for themixing amplitudes of stateswith different deformations, defining
the ground state [SGEC98]. For these cases, ρ(E0) can be expressed in terms of the
mixing coefficient λ and the difference between the r.m.s. associated to the states
involved in the E0 transition, i.e. the beta state 0+

β and the ground state 0+
g .

In what follows we shall show how the shape coexistence may be investigated
within the GCSM approach. First we show that the monopole transition can be
expressed in termsof r.m.s. radii of beta andgroundbands. Indeed, usingEq. (10.2.36)
for m(E0) the r.m.s radii of the states from ground and beta bands are defined as:

〈r2〉gJ = 3

5
ZeR2

0

[
1 + 5

4π
〈φ(g)

JM |
∑

μ

|α2μ|2|φ(g)
JM〉

]
,

〈r2〉βJ = 3

5
ZeR2

0

[
1 + 5

4π
〈φ(β)

JM |
∑

μ

|α2μ|2|φ(β)
JM 〉

]
, (10.2.38)

Note that dividing the above expressions by Z, one obtains the charge radii in the
states of angular momentum J . Both matrix elements involved in Eq. (10.2.38) can
be expressed by the expectation value of the boson number operator N̂ , in the state
J+ from the ground band:

〈r2〉gJ = 3

5
ZeR2

0

[
1 + 5

8πk2p

(
d2 + 5 + 2〈φ(g)

JM |N̂ |φ(g)
JM〉

)]
,

〈r2〉βJ = 3

5
ZeR2

0

[
1 + 5

4πk2p

(
d2 + 7 + 2〈φ(g)

JM |N̂ |φ(g)
JM〉

)]
, (10.2.39)

From these relations we obtain that the difference of the beta and the ground band
r.m.s. does not depend on the angular momentum J. Moreover, the said difference is
related to ρ(E0) by a very simple equation:

ρ(E0) =
√
5

8

(
〈r2〉β0 − 〈r2〉g0

)
. (10.2.40)
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In a previous chapter we saw that each projected state is a superposition of com-
ponents with different quantum numbers K. However, the prevailing component has
K = 0 for ground and beta bands and K = 2 for gamma band. Thus, the model is
quite flexible for studying the band mixing. The question is whether the present for-
malism can be extended for studying the interaction between states of the same
angular momenta and K. Indeed, GCSM can be used to describe the collective
properties of both gamma stable, where E0+

β
< E2+

γ
, and gamma unstable nuclei

when the ordering of the head states of beta and gamma bands is opposite to the one
mentioned above. For the gamma stable nuclei there are cases where the state 0+

β
is low in energy. An attempting interpretation for such a situation assumes that this
state belongs to the second well of the potential energy in the β variable, while the
ground state is located in the well with a less deformed minimum. In what follows
we shall show that our model is able to account for this kind of shape coexistence.
Indeed, if the potential barrier is not high one can expect that the system is tunneling
from one well to another and therefore is reasonable to assume that the real ground
state is in fact a linear combination of the states 0+

g and 0+
β . To simplify the notations,

the projected states with angular momentum zero from the ground and beta bands are
hereafter denoted by |0+

g 〉 and |0+
β 〉, respectively. Adding to the model Hamiltonian a

term which couples the states from ground and beta bands than the new Hamiltonian
yields new eigenstates with angular momentum equal to zero:

|0〉I = √
λ|0+

g 〉 + √
1 − λ|0+

β 〉,
|0〉I I = −√

1 − λ|0+
g 〉 + √

λ|0+
β 〉. (10.2.41)

Using the above results, one can calculate the amplitude of the E0 transition, relating
the new states, i.e. 0I I → 0I . The final results is:

ρI,I I (E0) =
[
√

λ(1 − λ) + (2λ − 1)

√
5

8

](
〈r2〉β0 − 〈r2〉g0

)
. (10.2.42)

Replacing ρI I,I (E0) by the corresponding experimental value, the relation (10.2.41)
becomes an equation for the mixing coefficient λ. In conclusion, due to Eq. (10.2.41)
the GCSM can provide information about the shape coexistence.

10.2.4 Numerical Results

Our numerical studies refer to the scalar term of the charge density as well as to the
monopole transition from 0+

β → 0+
g . In both cases one intends to draw a definite

conclusion about the effect of projection on these quantities. Also, one investigates
how the projection effect depends on the nuclear deformation.
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Fig. 10.22 The total charges
of 154Gd in the ground band
states with J = 0, 2, 4, 20,
respectively, are plotted as
function of the nuclear
deformation for qR0 = 0.2
(panel a) and qR0 = 1.2
(panel b). The results for
unprojected ground state are
almost the same as for the
projected J = 0 state and
therefore is not plotted here.
These calculations
correspond to kp given by
Eq. (10.2.25)

(a)

(b)

The matrix elements of the scalar part of the charge operator in the intrinsic and
laboratory frame are given by Eqs. (10.2.11) and (10.2.12), respectively. The latter
gives the q dependent charge of the system in the state J+ of the ground band
given by angular momentum projected state φ

(g)
JM , while the former expresses the q

dependent charge of the intrinsic ground state. In Fig. 10.22, the charge is represented
as function of the deformation parameter d for qR0 = 0.2 and qR0 = 1.2 respectively.
Calculations were made with R0 corresponding to 154Gd. For both qR0 values, the
charge of the system in the projected J = 0 state and in the unprojected ground
state are indistinguishable. As one increases the angular momentum, the effect of
projection is larger, particularly at smaller d values. The projection effect is vanishing
for d ≥ 2. In the limit of d → 0, the matrix elements (10.2.12) exhibits the behavior
given by:

〈φ(g)
JM |ρ̂|φ(g)

JM〉 = A(q) − C(q) − J

4d2 B(q). (10.2.43)

Due to this feature, for small deformations a large fall down of the curves corre-
sponding to J = 20 in Fig. 10.22, is obtained. For d > 2 the charges corresponding
to the unprojected and the J = 0, 2, 4, 20 projected states, are about the same.
The common value of Q is very close to the value 64, which is the nuclear charge
of 154Gd. Also, the deformation parameter of 154Gd, determined in Ref. [RUD87]
to be 3.0545, lies on the saturation plateau. Actually, this feature confirms that for
deformed systems the strong coupling limit holds. The fact that for qR0 = 0.2 the
charge is close to the value 64 corresponds to the well-known fact that the form
factor is close to one when q � 1/R0, and that is consistent with the assumption of
fast convergence of the expansion of the charge density in terms of the quadrupole
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Fig. 10.23 The total charge
of 156Gd is plotted as
function of the nuclear
deformation for qR0 = 0.2
(panel a) and qR0 = 1.2
(panel b). The results for
unprojected ground state
cannot be distinguished from
those corresponding to the
projected J = 0 state

(a)

(b)

collective coordinates. A screening of charge for small deformation and large angular
momentum is noticed. According to Fig. 10.22b, for large qR0 the screening shows
up also for unprojected as well as for projected ground state. Moreover, for small
deformation the deviation of the charge in the state with J = 20 is substantially
different from that corresponding to the ground state.

Similar features are seen in Fig. 10.23 where the charge is calculated for R0
corresponding to 156Gd with, according to Ref. [RUD87], the deformation parameter
equal to 3.2195. Here only the results for J = 0 and J = 20 as well as for the
unprojected ground state are shown although the latter are practically the same as
for the projected 0+ state. The screening effect for high transferred momentum,
mentioned for 154Gd, is less pronounced for 156Gd, as indicated by Fig. 10.23b.

In conclusion, the projection operation does not affect the scalar q dependent
charge of deformed systems in the ground state.

We note from Eqs. (10.2.11) and (10.2.12) that the total charge is determined by
summing two distinct terms, one depending exclusively on the transferred momen-
tum, that is denoted by A(q), and a term which is a product of two factors depending
on q and d, respectively. One may ask oneself what is the relative contribution of
these terms to the total charge for non-vanishing q values.We answered this question
by studying the ratios Q/A(q) as function of qR0 for two values of the deformation
parameter d. Thus, in Fig. 10.24 we see that the term depending on deformation may
affect the charge of the ground state at most by 15% for qR0 = 2. In the state with
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Fig. 10.24 The ratio
between the total charge Q
and the term A(q) in
Eqs. (10.2.11) and (10.2.12)
is plotted as a function of
qR0 for d = 0.8. In the upper
panel the cases of
unprojected ground state and
of J = 0 projected states are
considered. In the bottom
panel the case of projected
J = 20 state is presented. In
both panels the parameter kp
is calculated by means of
Eq. (10.2.25). The nuclear
radius R0 corresponds to
156Gd

J = 20 and the quoted value of qR0 the deformation relative contribution is of 40%.
For large nuclear deformation, d=3.2195, the relative contribution of the deforma-
tion is ranging from zero to 5% when qR0 is increased from 0 to 2 (Fig. 10.25).

As already shown in the previous sections, the matrix elements of the charge
density andmonopole transition operator depend on the parameterkp . This parameter
is proportional to the deformation parameter d. In Fig. 10.26 we represent kp/d as a
function of the product qR0, where R0 stands for the nuclear radius. In the interval
(0, 2) for qR0, the ratio is slowly decreasing from 2.5 to 2.2. Therefore, the value 2.5
obtained for kp/d in the low momentum regime could be considered as a reasonable
approximation for the whole interval considered in Fig. 10.22.

Now let us focus our attention on themonopole transition 0+
β → 0+

g . The transition
amplitude was calculated with Eq. (10.2.37). We notice that the monopole transition
operator m(E0) has an expression identical with that supplied by the liquid drop
model. However, the wave functions are specific to the GCSM and theymay describe
the spherical and deformed nuclei in a unified fashion. Another feature which is
specific to our description is the canonicity parameter kp defining the equations
which relate the coordinates and conjugate momenta to the boson operators. Within
the liquid dropmodel in its original form the canonicity parameter is chosen such that

the boson Hamiltonian does not contain a term like
∑

μ(−)μ
(

b†2μb†2−μ + b2−μb2μ
)
.

This idea is not applicable to GCSM, since the starting Hamiltonian is anharmonic
and, moreover, is already considered in the boson picture. Here we present the results
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Fig. 10.25 The same as in
Fig. 10.24 but for d = 3.2195

Fig. 10.26 The ratio kp/d
with kp given by
Eq. (10.2.25), is plotted as
function of qR0. The curve
corresponds to a deformation
parameter d = 3.2195

obtained by fixing kp in three different ways: (a) From the minimum condition
for the charge density and the low momentum transfer restriction. This provides a
simple expression for kp(=5d); (b) Requiring that the unprojected ground state is
an eigenstate of the scalar part of the charge density operator. Note the fact that
this condition is fulfilled automatically in microscopic models where a many body
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Table 10.5 The monopole transition amplitudes predicted by Eq. (10.2.37) are compared with the
experimental data taken fromRefs. [LKH82, ISS04,WZCH99, GAR01, GAC01, KISP05,WIM08]

ρ(E0)[e. fm2]
Th., kp = 5

2d Exp. Th., kp = 5d Th., kp from

Ref. [RUD87]
152Gd 9.105 10.23 ± 1.15a 2.276 26.284
154Gd 8.574 11.749 ± 0.101a 2.143 30.765
156Gd 7.784 7.469 ± 0.071a 1.946 35.170
158Gd 6.286 5.487 ± 0.465b 1.571 29.282
160Gd 5.606 1.401 26.688
154Sm 7.116 12.818 ± 2.551e 1.779 34.912
164Dy 5.804 1.451 27.341
168Er 5.820 1.24 ± 0.51b,f 1.455 23.567
174Yb 6.083 <1.85 e 1.521 23.906
232Th 11.731 13.646 ± 4.88b 2.933 47.142
238U 11.228 5.502 ± 0.05c 2.807 53.847

23.2 ± 2.262c

Equation (10.2.37) have been used alternatively for kp for which the charge density operator admits
the unprojected ground state as eigenfunction (first column) and for kp which were used in Ref. [?]
to describe the M1 and E2 properties of the nuclei listed in this Table
a [LKH82]
b [ISS04, WZCH99]
c [GAC01]
d [KISP05]
e [WIM08]
f [GAR01]

Slater determinant is eigenstate of the charge density operator. For a low momentum
regime, the mentioned condition provides kp = 5

2d; (c) As in Ref. [RUD87] i.e.,
kp = d

β0
, with β0 fixed by equating the expressions of the asymptotic energies in

the ground band and that of the liquid drop model in the large deformation regime.
The results of our calculations obtained with the three versions of fixing kp are given
in Table10.5. The predictions are compared with the available experimental data
for ten nuclei. Notice that the data from the quoted references were transformed by
multiplying them with the factor R2

0.
By inspection of Table10.5, we notice that except for the cases of 168Er and 174Yb

all the other data are reasonably well described by choosing kp = 5
2d. For 168Er and

174Yb, it seems that the versionwhichprovideskp = 5d yields a good agreementwith
the corresponding experimental data. Using the parameter kp from Ref. [RUD87],
which corresponds to a consistent description of the E2 and M1 properties, one
obtains ρ(E0) values which exceed the experimental data by a factor ranging from
2.6 to 5.

These discrepancies could be attributed to the fact that the collective coordinates
respond differently to the interaction with longitudinal and transverse components of
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the electromagnetic external field, respectively. The former components may deter-
mine a E0 excitation while the latter one, can excite the nuclei through, for example,
a E2 transition. The fact that different kp are needed to reproduce E2 and E0 prop-
erties suggests that these are independent features. In other words the E0 properties
are not determined by the E2 ones and this perhaps expresses the need to introduce
the monopole bosons.

According to Table10.4, the values of kp provided by the procedure labeled by
(c) infer a large transfer momentum, while those defined by (a) and (b) are obtained
under the low momentum restriction. We would like to mention that the model
Hamiltonian used by GCSM is a fourth order boson Hamiltonian, while the charge
density expansion in collective quadrupole coordinates is truncated at second order.
This lack of consistency might be another source for the discrepancy between the
values of kp obtained here and those given in Ref. [RUD87].

Note that the set of nuclei considered involves a chain of even isotopes of Gd.
Along this chain the shape undertakes a transition from a spherical to a deformed
one. The critical point of this transition is met in 154Gd [CLCR04]. In the group
theory language the transition takes place between nuclei with SU(5) symmetry and
nuclei having SU(3) symmetry. It was suggested that the critical point corresponds to
an unknown symmetry called X(5) symmetry [IA01]. This shape transition was also
studied within the GCSM formalism in Ref. [RF05]. Here we raised the question
whether this shape transition is reflected in a specific manner by the behavior of
the E0 transition amplitude. To explore this feature we plotted the predicted as well
as the experimental ρ(E0) values as function of A2/3, in Fig. 10.27. Note that the
experimental results exhibit, indeed, a maximum for A= 154. The theoretical results
were interpolated by a fourth order polynomial which presents an inflexion point for
the critical value of A. Thus, we may say that the shape transition is reflected by the
fact that an inflexion point shows up in the behavior of the transition amplitude.

Fig. 10.27 The predicted
values of ρ(E0) for some
even isotopes of Gd, are
represented as function of
A2/3. For comparison the
experimental results are also
given
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Summarizing, the GCSM is used to study the ground state band charge density
as well as the E0 transitions from 0+

β to 0+
g . The influence of the nuclear deforma-

tion and of angular momentum projection on the charge density is investigated. The
monopole transition amplitude was calculated for ten nuclei. The results are com-
pared with some previous theoretical studies and with the available experimental
data. Our results concerning angular momentum projection are consistent with those
of previous microscopic calculations for the ground state density. The calculations
for the E0 transitions agree quite well with the experimental data. Issues like how the
shape transitions or shape coexistence are reflected in the ρ(E0) behavior are also
addressed.



Chapter 11
Boson States Basis

11.1 Eigenstates for a Harmonic Hamiltonian

Let us consider the Hamiltonian associated to a harmonic liquid drop:

H = 1

2

2∑

m=−2

(−1)m (
πmπ−m + αmα−m

)
, (11.1.1)

The chosen units system is that where the mass parameter, oscillator strength and
the Plank constant � are equal to 1. The quadrupole coordinate and momenta obey
the conditions:

α∗
m = (−1)mα−m, πm = −i

∂

∂αm
, −2 ≤ m ≤ 2. (11.1.2)

Let V be the linear manifold of quintuplets, α = (α−2,α−1,α0,α1,α2) with
components satisfying the above mentioned conditions. These conditions together
with the one asserting that α is a tensor of rank 2 are assured by the fact the nuclear
radius is a real quantity.

The orthogonal group R5 is defined as the set of linear transformations on V
which leaves the following quadratic form invariant:

I2(α) =
2∑

m=−2

(−1)mαmα−m = β2, β ≥ 0. (11.1.3)

Note that R5 is a symmetry group for H . Let us denote by R′
3 the subgroup of

R5 formed of all transformations given by the matrices D2(�) for the irreducible
representations (IR) of the ternary orthogonal group R3, with the angular momentum
equal to 2. Transformations from R′

3 leave invariant not only I2 but also:
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I3(α) = α3
0 − 3α−1α0α1 − 6α−2α0α2

+ 3

2

√
6

(
α2−1α2 + α2

1α−2

)
= β3 cos 3γ. (11.1.4)

The tensor α can be expressed in terms of intrinsic coordinates and the Euler angles
as:

αm = β

{
cos γD2∗

m0(�) +
√
1

2
sin γ

[
D2∗

m2(�) + D2∗
m−2(�)

]}
, (11.1.5)

where� stands for the Euler angles defining the rotation which brings the laboratory
reference frame to the body fixed (intrinsic) frame whose axes are oriented along the
principal axes of the inertial ellipsoid.

It is worth mentioning that the transformation (β, γ,�) → α is not biunivoc.
Indeed, for a given α of V there is a set of points (β, γ,�) which satisfy Eq.11.1.5,
which define an orbit of the octahedral symmetry group of the nuclear surface.

Consider the Fock space S where the eigenfunctions of H is complete. Vectors
from S are complex functions defined on V , quadratic integrable with respect to the
measure on V , defined as:

d5α = 3

2π2 dα0�
2
m=1(d �αmd 	αm) = 3

4π2 β4|sin3γ|dβdγd�, (11.1.6)

where d� is the Haar measure on the group R3. Note that if the scalar product in
S is defined in terms of intrinsic variables β, γ,� in the intervals [0,∞); [0, 2π];
[0, 2π] × [0,π] × [0, 2π], then the result should be divided by 24, the order of the
octahedral group. In building up the eigenfunctions one uses the tensors of rank 2
and 3, defined by:

Y2(α) = 2
√
2α2α0 − √

3α2
1,

Y3(α) = 2α−1α
2
2 − √

6α0α1α2 + α3
1. (11.1.7)

In the intrinsic frame, the Hamiltonian H looks like:

H = 1

2

(
−β−4 ∂

∂β
β4 ∂

∂β
+ β−2�2 + β2

)
, (11.1.8)

where

�̂2 = −(sin 3γ)−1 ∂

∂γ
sin 3γ

∂

∂γ
+

3∑

k=1

[
4 sin2(γ − 2

3
πk)

]−1

L2
k . (11.1.9)

is the square of the Casimir operator of the group R5. We denoted by Lk the angular
momentum components in the intrinsic frame.
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The coordinate α and its conjugate momentum can be expressed in terms of the
boson operators:

b†m = 1√
2

(
αm − (−1)m ∂

∂α−m

)
,

bm = 1√
2

(
(−1)mα−m + ∂

∂αm

)
. (11.1.10)

The spectrum of H is n + 5
2 with n denoting the number of bosons in the eigen-

function, while that of�2 has also a simple form as function of the seniority quantum
number λ, i.e. λ(λ + 3). This defines the number of bosons which are not paired to
an angular momentum equal to zero.

The above statements result from the relations which connect the boson number
operator N̂ to the Hamiltonian and the Casimir operator �2:

N̂ =
2∑

m=−2

b†mbm = H − 5

2
,

�̂2 = N̂ (N̂ + 3) − 5(b†b†)0(bb)0. (11.1.11)

HamiltonianH is invariant to the rotations R3 generated by the angularmomentum
components in the laboratory reference frame:

Ĵ0 =
2∑

m=−2

mα
∂

∂αm
,

Ĵ+ = 2

(
α2

∂

∂α1
+ α−1

∂

∂α−2

)
+ √

6

(
α1

∂

∂α0
+ α0

∂

∂α−1

)
,

Ĵ− = 2

(
α1

∂

∂α2
+ α−2

∂

∂α−1

)
+ √

6

(
α0

∂

∂α1
+ α−1

∂

∂α0

)
(11.1.12)

In conclusion, H commuteswith the operators N̂ and �̂2, Ĵ 2, Ĵ0 and consequently
its eigenfunction can be indexed by the quantum numbers which are eigenvalues
of the mentioned operators. On the other hand the above operators are Casimir
operators for the groups SU (5), R5, R3 and R2, respectively. This fact suggests that
the eigenfunctions of H can be classified according to the reduction chain of the
symmetry group U (5): U (5) ⊃ SU (5) ⊃ R5 ⊃ R3 ⊃ R2. Having in mind that there
might be several irreducible representations (IR) for R3 which correspond to the
same IR of R5, an additional index, p, is necessary to distinguish the IR of R3. This
is called as degeneracy quantum number. We mention that there is no intermediary
group between R5 and R3 whose Casimir operator may distinguish the degenerate
states of R3. This is the reasonwhy the quantumnumber p is referred to as the missing
quantum number. Therefore the eigenfunctions of H classified according to the
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above mentioned scheme are denoted by:|nλpI M〉. In Refs. [GRC78, RCG78] these
functions were analytically expressed alternatively as function of the coordinates α,
the intrinsic frame coordinates β, γ,� and the quadrupole bosons b†m . Moreover, the
matrix elements of any interaction expressed as polynomial of the alpha coordinates
are also analytically given.

In what follows we shall sketch the procedure used in the mentioned references,
for deriving the analytical expressions for the eigenfunctions of H .

Aiming at this goal we consider the form (11.1.8) and the associated eigenvalue
equation. Using the variable separationmethod one obtains thatβ is separated and the
corresponding differential operator has analytical solution. Since there is no Casimir
operator for the missing quantum number the separation of γ and � is not possible.

Therefore the variable separation method leads to the following form of the wave
function:

|nλpI M〉 = Fnλ(β)
∑

0≤K≤I
K=even

GλpI K

[
DI∗

M K (�) + (−1)I DI∗
M−K (�)

]
. (11.1.13)

where

Fnλ =
[
2(

1

2
(n − λ))!

] 1
2
[
�(

1

2
(n + λ + 5))

]− 1
2

βλL
λ+ 3

2
1
2 (n−λ)

(β2)exp(−1

2
β2).

(11.1.14)

L
λ+ 3

2
1
2 (n−λ)

(β2)denotes theLaguerre polynomials. Functions Fnλ are orthonormal in the

interval [0,∞) with the measure β4dβ. Also the functions {[(2I + 1)/8π2] 12 DI
M K }

are orthonormal on R3 with the measure d�.
For what follows it is useful to introduce the notations:

Fnλ = (−1)
1
2 (n−λ)βλ�nλ(β),

QλpI M (α) = βλ
∑

0≤K≤I
K=even

GλpI K (γ)[DI∗
M K (�) + (−1)I DI∗

M−K (�)]. (11.1.15)

One can show that the new functions QλpI M obey the equations:

N̂ ′QλpI M = λQλpI M , �QλpI M = 0, (11.1.16)

where N ′ is the Euler operator and � the Laplace operator in 5D.

N̂ ′ =
2∑

m=−2

αm
∂

∂αm
, �̂ =

2∑

m=−2

(−1)m ∂2

∂αm∂α−m
. (11.1.17)
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Equation (11.1.16) asserts that Q’s are harmonic and homogeneous polynomials of
degreeλ. TheCasimir operator�2 can be expressed in terms of the Euler andLaplace
operators:

�̂2 = N̂ ′(N̂ ′ + 3) − β2�̂. (11.1.18)

In Ref. [VIL68] it was proved that the solutions for the harmonic and homogeneous
polynomials are:

QλpI I = E

{
α

−λ+I+3p
2

∂q

∂α
q
−2

[Qr,p+q(α)]
}

(11.1.19)

where the polynomials Qr,p+q are defined by:

Qr,p+q(α) = 2−p−q−r [2(p + q + r)]!
(p + q)!(p + q + r)! E

{[Y3(α)]r [I3(α)]p+q}
. (11.1.20)

The operator E is the projection operator of homogeneous polynomials onto the
harmonic and homogeneous polynomials. Several restrictions and definitions have
been used:

q = λ − 1

2
(I + 3r) − 3p, r = 1

2
[1 − (−1)I ],

λ − I ≤ 3p ≤ λ − 1

2
(I + 3r). (11.1.21)

The eigenfunctions of H , |nλpI M〉, defined above as homogeneous and harmonic
polynomials, form a complete set of functions. Using the recipe of projecting the
homogeneous polynomials [VIL68], the polynomials Q may be written as linear
combination of tensors of rank I with coefficients expressed as functions of the
invariants I2 and I3.

QλpI I (α) =
1
2 (I−3r)∑

h=0

PλI ph(I2(α), I3(α))RI h(α). (11.1.22)

The factors involved in the sum have the expressions:

PλI ph(I2(α), I3(α)) =
∑

s
3F2(λ − I − 3p, q + 1, q − h − 3s I ;−λ − 1

2
, q − h + I ; 1)

× (−1)s2−p−3− 1
2 h(−3)hq!(3s)![2(p + q + r − s)]!

h!(q − h)!s!(p + q + r − s)!(p + q − h − 2s)!(−q + h + 3s)!
× [I2(α)]−q+h+3s [I3(α)]p+q−h−2s ,

RI h(α) = α
1
2 (I−3r)−h
2 [Y2(α)]h[Y3(α)]r (11.1.23)
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The symbol 3F2 represents the generalized hypergeometric function. Further,
Eq. (11.1.15) is used to identify the coefficients Gλ pI K (γ). The final result is:

GλpI K (γ) =
1
2 (I−3r)∑

h=0

(1 + δK0)
−1TI K h(γ)PλpI h(1, cos3γ), (11.1.24)

where PλpI h(1, cos3γ) is obtained from Eq. (11.1.23) by replacing I2(α) = 1,
I3(α) = cos 3γ, while the factor T has the expression:

TI K h(γ) =
[

(I + K )!(I − K )!
(2I )!

] 1
2

2
1
4 (I+3r+6h)3

1
4 (I−r)K r h!

h∑

u=0

[ 14 (I−K−r−2u)]∑

v=0

× ( 12 (I − 3r) − u)!(− 1
12

√
3 sin 3γ)r+u(cos γ)

1
2 (I−K−r)+h−2u−2v)( 16

√
3 sin γ)

1
2 K−r−u+2v

u!v!(h − u)!(v + 1
2 K )!( 12 (I − K − r) − u − 2v)! .

(11.1.25)

Here the simbol [x] was used for the integer part of x . Denoting by μλpI the norm
of function |nλpI M〉 we have:

μ−2
λpI = 〈nλpI M |nλpI M〉

= [2(2I + 1)]−1
∑

0≤K≤I
K=even

(1 + δK0)

2π∫

0

| sin 3γ||GλpI K (γ)|2dγ. (11.1.26)

In what follows we shall use the function of γ defined as:

�λpI K (γ) = μλpI GλpI K . (11.1.27)

Having already the general expression for the function of γ, we shall give few results
which are useful in concrete applications.

(A) A yrast state is characterized by the following relations: n = λ = 1
2 (I +

3r), p = 0. In this case the function depending on γ has a simple expression:

� 1
2 (I+3r),0,I,K (γ) = 2

1
2 (I−r)+13

1
4 (I−3r−2)π− 1

4 (1 + δK0)
−1

{
(I + K )!(I − K )!�( 12 (I + 5 + 3r))

[(I + 1)(I + 2)]r (2I )!( 12 (I − 3r))

} 1
2

× (−K sin 3γ)r
[ 14 (I−K−r)]∑

v=0

(cos γ)
1
2 (I−K−3)−2v( 16

√
3 sin γ)

1
2 K−3+2v

v!(v + 1
2 K )!( 12 (I − K − r) − 2v)! .

(11.1.28)
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(B) In the case of states with low angular momentum it is advantageous to express
the functions PλpI h in terms of Gegenbauer polynomials Cν

t , defined by means of
the generating function:

(1 − 2x cos 3γ + x2)−ν =
∞∑

t=0

Cν
t (cos 3γ)xt . (11.1.29)

The final result of expanding the functions P in terms of Gegenbauer polynomials is:

PλpI h(1, cos 3γ) =
∑

s

2q− 1
2 h( 12 (I − 3r) − q)!�( 12 + r + s)

h!�(λ + 3
2 )�( 12 + r)

C
1
2+r+s
p+q+h−2s(cos(3γ))

×
⎡

⎣
∑

k,u

(−1)s+k3s−u(q + k)!�(λ − k + 3
2 )

k!u!( 12 (I − 3r) − q − k)!(q − s + k − 2u)!(2s − q − h + u − k)!

⎤

⎦ .

(11.1.30)

Using this expression one obtains for the wave functions with the angular momentum
I = 0, 2, 3, 5 compact expressions:

�3(p+r),p,3r,2r (γ) = ν3r,p(− sin 3γ)r C
1
2+r
p (cos 3γ), (11.1.31)

�3p+3r+ρ,p,2+3r,2r (γ) = 2
1
2 (r−1)(−1)ρ−1ν2+3r,p(− sin 3γ)r

×
[

C
3
2+r
p−ρ+1(cos 3γ) cos γ − C

3
2+r
p+ρ−2(cos 3γ) cos 2γ

]

�3p+3r+ρ,p,2+3r,2+2r (γ) = (−1)ρ−1ν2+3r,p(− sin 3γ)r

×
[

C
3
2+r
p−ρ+1(cos 3γ) sin γ + C

3
2+r
p+ρ−2(cos 3γ) sin 2γ

]
.

The newly introduced indices take the values: r = 0, 1, ρ = 1, 2. The factors ν are:

ν0p = 1

2
(2p + 1)

1
2 , ν3p =

[
7(2p + 3)

2(p + 1)(p + 2)

] 1
2

,

ν2p =
[
2

5
(p + 1)

]− 1
2

, ν5p = 3

[
2

11
(p + 1)(p + 2)(p + 3)

]− 1
2

. (11.1.32)

(C) These equations are very useful when one intends to calculate the reduced transi-
tion probabilities within the liquid drop model. Note that for such cases one needs to
calculate two types of matrix elements: (a) m.e. of powers of cos γ and sin γ between
functions � with the expressions from above; (b) m.e. for the powers βl . Such m.e.
have also analytical expressions:
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∞∫

0

�n′λ′(β)�nλ(β)βλ+λ′+l+4e−β2
dβ = (−1)

1
2 (n−λ)+ 1

2 (n′−λ′)

×
[

( 12 (n
′ − λ′))!�( 12 (n

′ + λ′ + 5))

( 12 (n − λ))!�( 12 (n + λ + 5)

] 1
2

×
∑

m

(−1)m�
(
m + 1

2 (λ + λ′ + l + 3) + 1
)
�

( 1
2 (n − λ′) − m − 1

4 l
)

m!( 12 (n′ − λ′) − m)!�
(
λ′ + m + 5

2

)
�

( 1
2 (λ − λ′) − m − 1

2 l
) .

(11.1.33)

With these, the necessary information to perform calculations with Hamiltonians
derived from that of the liquid drop is complete. Readers who want to have some
intermediate steps in deriving the above mentioned results are advised to consult
Refs. [GRC78, RCG78]. Alternative solutions for the eigenfunctions of the liquid
drop Hamiltonian may be also found in Refs.[CHMO76, CMW76]. The advantage
of the formalism given here consists of that it provides m.e of compact and simple
form. Indeed, as shown in [RCG78] they can be written as ratios of products, each
factor being linear combination of the quantum numbers n,λ, p, I .

11.2 The Degeneracy of the Boson Basis

Quadrupole collective properties of nuclei can be described by diagonalizing a
quadrupole boson Hamiltonian in the basis |N2v2α2 I2M2〉 associated to the irre-
ducible representation corresponding to the group reduction chain SU (5) ⊃ R5 ⊃
R3 ⊃ R2. The quantum numbers N2 (the number of quadrupole bosons), v2 (senior-
ity) and I2 (angular momentum) are determined by the eigenvalues of the Casimir
operators of the groups SU (5), R5 and R3, respectively. The angular momentum
projection on the axis z is denoted by M2. Here, α2 denotes the missing quantum
number and labels the R3 irreducible representations which are characterized by the
same angular momentum I and belong to the same irreducible representation of R5.
The name suggests the absence of an intermediate group between R5 and R3 having
a Casimir operator whose eigenvalues could distinguish the states of the same I2
belonging to the same irreducible representation of R5, v2.

It is desirable to have an analytical solution for the number of distinct values
acquired by α2 for a fixed pair of v2 and I2, denoted by dv2(I2). Of course for each
(v2, I2) one knows to calculate dv2(I2) numerically, as the number of solutions (p2)
for the double inequality:

v2 − I2 ≤ 3p2 ≤ v2 − 1

2
(I2 + 3r2), r2 = 1

2

[
1 − (−)I2

]
. (11.2.1)
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Algorithms for calculating themultiplicity of the irreducible representations in the
chain SU (5) ⊃ R5 ⊃ R3 ⊃ R2, different from the one described here are presented
in Refs. [KT71, SHI76, RGG82].

The character of an R5 irreducible representation has the expression [WE26,
WE46]

χv(ϕ1,ϕ2) = det(e(iϕm Kn) − e−(iϕm Kn))m,n=1,2

det(e(iϕm Rn) − e−(iϕm Rn))m,n=1,2
, (11.2.2)

where det(xm,n)m,n=1,2 denotes the determinant associated to the matrix
(xm,n)m,n=1,2. Let (R1, R2) be the sum of all positive roots for the group R5, i.e.
(R1, R2) = (3/2, 1/2). The vector (K1, K2) is obtained by adding to (R1, R2) the
highest weight (L1, L2) vector, which for the group R5 is equal to (v, 0). (ϕ1,ϕ2)

is an arbitrary vector. The restriction of R5 to R3 can be achieved by setting:

ϕ1

2
= ϕ2 ≡ ϕ. (11.2.3)

On the other hand the irreducible representation I of the group R3 is characterized
by the character:

χI (ϕ) = sin (I + 1
2 )ϕ

sin 1
2ϕ

. (11.2.4)

Let us consider the set C of conjugated elements of R3. The complex functions
defined on C can be organized as a Hilbert space S with the scalar product defined
by:

( f, g) =
2π∫

0

f ∗(ϕ)g(ϕ)ρ(ϕ)dϕ, (11.2.5)

where f and g are two elements of S and ρ denotes the Haar measure for R3 [VIL68]
whose expression is:

ρ(ϕ) = 1

π
sin2

ϕ

2
. (11.2.6)

The set of functions (χI )I is complete in S and therefore any function χv(ϕ) can be
expanded as:

χv(ϕ) =
∑

I

dv(I )χI (ϕ) (11.2.7)

The expansion coefficient dv(I ) is just the multiplicity of the representation (I ) char-
acterizing the (v) representation splitting.Taking into account thatχI are orthonormal
functions one obtains:
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dv(I ) =
2π∫

0

χ∗
I (ϕ)χv(ϕ)ρ(ϕ)dϕ. (11.2.8)

The final expression for χv can be written as a ratio of two determinants:

χv(ϕ) = �(v)

�(0)
,where

�(v) = det

(
eiϕ(2v+3) − e−iϕ(2v+3) eiϕ − e−iϕ

eiϕ(v+ 3
2 ) − e−iϕ(v+ 3

2 ) ei 12ϕ − e−i 12ϕ

)
. (11.2.9)

Changing the variable z = eiϕ, dv(I ) is expressed as a contour integral:

dv(I ) = i

4π

∫

|z|=1

1

z2v+I+2

(
zv+1 − 1

) (
zv+2 − 1

) (
z2v+3 − 1

)
(z2I+1 − 1)

(
z2 − 1

) (
z3 − 1

) dz.

(11.2.10)
Further we perform the expansion

Fk1k2(z) ≡ 1

(1 − zk1)(1 − zk2)
=

∞∑

n=0

Nk1k2(n)zn . (11.2.11)

The needed expansion coefficients were calculated in Ref. [GR04]:

N23(n) =
[n

2

]
−

[n

3

]
+ χ

(n

3

)
,

N13(n) =
[n

3

]
+ 1. (11.2.12)

where [x] denotes the integer part of x.
The singular part of the integrand of Eq. (11.2.10) is:

G(z) = 1
z

(
θ(I−2v−5)

z I−2v−5 + θ(2v−I )
z2v−I − θ(2v+I+1)

z2v+I+1

)
F13(z)

+ 1
z

(
θ(v+I )

zv+I − θ(v−I−1)
zv−I−1 − θ(I−v−3)

zv−I−3

)
F23(z). (11.2.13)

With these details the residuum for the function G is readily calculated and the final
result for multiplicity is:

dv(I ) = P(I − 2v − 5) + P(2v − I ) − P(2v + I + 1)

+ Q(v + I ) − Q(v − I − 1) − Q(I − v − 3). (11.2.14)
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where the Q and P denote:

Q(n) = 1

2
θ(n)N13(n), P(n) = 1

2
θ(n)N23(n). (11.2.15)

θ(x) denotes the step function defined as: θ(x) = 1, for x ≥ 0 and θ(x) = 0, for
x < 0. The procedure can be extended to the degeneracy of the group R2l+1 caused
by the reduction to R3.

Since inmany places along this bookwe deal alsowith octupole bosonswe need to
know the multiplicity for the reduction R2l+1 ⊃ R3, with l = 3. The final expression
of this degeneracy in the integral form can be written in unified fashion:

d(l)
v (I ) = i

4π

∫

|z|=1

(
z2I+1 − 1

) (
z2v+2l−1 − 1

) ∏2l−2
k=1

(
zv+k − 1

)

zlv+I+2
2l−2∏
k=1

(
zk+1 − 1

) dz, (11.2.16)

with l = 2 for R5 and l = 3 for R7. The integral was analytically expressed in Ref.
[GR04] also for the octupole case.

It can be proved that the above expression, for an arbitrary l, gives the multiplicity
for the reduction R2l+1 ⊃ R3. Moreover, even for the general case an analytical
solution is possible [GR04].



Chapter 12
Unified Single Particle Basis

12.1 Projected Spherical Single Particle Basis

In the previous sections we used, in several contexts, the over-completeness property
of a coherent state. This allowed us to project out a basis suitable to treat phenom-
enological boson Hamiltonians. Here we further exploit the salient feature of the
coherent states to be a convenient source of generating a complete set of indepen-
dent states. The inspiring paper for this project was that of Nilsson [NIL55] which
defines a deformed single particle state as eigenstate of a mean field Hamiltonian
which has a deformed shape similar to a deformed phenomenological core. This
basis has been extensively used by very many authors to describe some microscopic
properties of deformed nuclei. However, whenever one wants to describe a phys-
ical observable which is sensitive to changing the angular momentum, one has to
project out the good angular momentum from the BCS or RPA many body ground
state. This operation is not simple at all, and concerning the latter ground-state, only
approximate solutions have been obtained so far.

Due to this feature we believe that any positive attempt aiming at avoiding such
difficulties is welcome. We present here a single particle basis which might constitute
an attempt of this type [RDI93, RGG01, REG02, REF04]. We start with a particle-
core Hamiltonian:

H̃ = Hsm + Hcore − Mω2
0r2

∑

λ=0,2

∑

−λ≤μ≤λ

α∗
λμYλμ. (12.1.1)

Here Hsm denotes a spherical shell model Hamiltonian, while Hcore is a harmonic
quadrupole boson Hamiltonian associated to a phenomenological core. The interac-
tion of the two subsystems is accounted for by the third term of the above equation,
written in terms of the shape coordinates α00,α2μ. The quadrupole shape coordi-
nates are related to the quadrupole boson operators by the canonical transformation
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from Eq. (6.3.2). The monopole shape coordinate α00 is to be determined from the
volume conservation condition. In a quantized form, the result is:

α00 = − 1

2k2
√

π

[
5 +

∑

μ

(
2b†

μbμ + (b†
μb†

−μ + b−μbμ)(−)μ
)]

. (12.1.2)

Averaging H̃ on the eigenstates of Hsm , hereafter denoted by |nl jm〉, one obtains
a deformed boson Hamiltonian whose ground state is described, in the harmonic
limit, by a coherent state similar to ψg defined by Eq. (6.1.1). On the other hand, the
average of H̃ on ψg is similar to the Nilsson Hamiltonian [NIL55].

Hmf = 〈ψg|Hpc|ψg〉 = ωbd2 + Hsm − �ω0r ′2
[√

2d

k
Y20 − 1

8πk2 (5 + 4d2)

]
,

(12.1.3)

where the stretched coordinates are used, i.e., r ′ = mω
h r . Further, extracting from

the above Hamiltonian the zero point deformation energy

lim
d→0

(Hmf − Hsm) = 5�ω0r ′2

8πk2 , (12.1.4)

One arrives at a more recognizable form:

Hmf = ωbd2 + Hsm − �ω0r ′2
(√

2d

k
Y20 − 1

2πk2 d2

)
. (12.1.5)

We note that the deformed terms involved in the Nilsson model Hamiltonian and the
mean field Hm f are identical provided the following equation holds:

d

k
= β√

2
. (12.1.6)

One recovers the original Nilsson Hamiltonian [NIL55]:

HNilsson(β) = Hsm − �ω0r ′2βY20. (12.1.7)

if in (12.1.5) one ignores the constant terms i.e., those which are independent of the
particle coordinates.

Due to these properties, it is expected that the best trial functions to be used to
generate, through projection, a spherical basis are:

�
pc
nljm = |nl jm〉ψg. (12.1.8)

http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
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The upper index appearing in the l.h. side of the above equation, suggests that the
product function is associated to the particle-core system. The projected states are
obtained in the usual manner, by acting on these deformed states with the projection
operator defined by Eq. (6.1.8). In general, the projected states corresponding to
different m quantum numbers are not orthogonal. A certain subset of projected states
is however, orthogonal:

�IM
nlj (d) = N I

nlj(d)P I
MI[|nl j I 〉ψg]. (12.1.9)

These states can be written in a tensorial form as:

�IM
nlj (d) = N I

nlj(d)
∑

J

C j J I
I 0 I (N g

J )−1 [|nl j〉φg
J

]
IM , (12.1.10)

with the normalization factor given by:

(N I
nlj(d))−2 =

∑

J

(
C j J I

I 0 I

)2 (
N g

J

)−2
. (12.1.11)

The projected states φ
g
J and their norms N g

J are the same as in Eq. (6.1.7). Hence,
they describe members of the ground band in the CSM.

The main properties of these projected spherical states (12.1.10) are: (a) They are
orthogonal with respect to I and M quantum numbers. (b) Although the projected
states are associated to the particle-core system, they can be used as a single par-
ticle basis. Indeed, when a matrix element of a particle-like operator is calculated,
the integration on the core collective coordinates is performed first, which results in
obtaining a final factorized expression: one factor carries the dependence on defor-
mation and one is a spherical shell model matrix element. To be more specific, let us
consider a one-body operator T k

μ . Its reduced matrix element can be calculated and
written in a factorized form:

〈�I
nlj||T k ||�I ′

n′l ′ j ′ 〉 = f n′l ′ j ′ I ′
nljI (d)〈nl j ||T k ||n′l ′ j ′〉, with (12.1.12)

f n′l ′ j ′ I ′
nljI (d) = N I

nlj(d)N I ′
n′l ′ j ′(d) ĵ Î ′ ∑

J

C j J I
I 0 I C j ′ J I ′

I ′ 0 I ′ W ( jk J I ′; j ′ I )
(
Ng

J

)−2 ;

(c) The connection between the nuclear deformation and the parameter d entering
the definition of the coherent state ψg is readily obtained by requiring that the strength
of the particle-core quadrupole-quadrupole interaction be identical to the Nilsson
deformed term of the mean field:

d

k
=

√
2π

45
(�2⊥ − �2

z ). (12.1.13)

http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
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Here �⊥ and �z denote the frequencies of Nilsson’s mean field related to the defor-
mation δ = √

45/16πβ by:

�⊥ =
(

2 + δ

2 − δ

)1/3

, �z =
(

2 + δ

2 − δ

)−2/3

. (12.1.14)

Actually, expanding �⊥ and �z in terms of δ and keeping only the first order, the
Eq. (12.1.13) yields (12.1.6). The average of the particle-core Hamiltonian H ′ = H̃−
Hcore on the projected spherical states, defined by Eq. (12.1.10), has the expression

εI
nlj = 〈�IM

nlj (d)|H ′|�IM
nlj (d)〉 = εnlj − �ω0(N + 3

2
)C j2 j

I 0I C j2 j
1/201/2

(�2⊥ − �2
z )

3

+ �ω0(N + 3

2
)

[
1 + 5

2d2 +
∑

J (CjIJ
I−I 0)

2 I (1)
J∑

J (C j I J
I−I 0)

2 I (0)
J

]
(�2⊥ − �2

z )

90
. (12.1.15)

Here we used the standard notation for the Clebsch Gordan coefficients C j1 j1 j
m1m2m . I (k)

J
are the overlap integrals defined in Eqs. (6.1.15 and 6.1.18).

Since the core contribution does not depend on the quantum numbers of the single
particle energy level, it produces a shift for all energies and therefore is omitted in
Eq. (12.1.15). The first term from (12.1.15) is, of course, the single particle energy
for the spherical shell model state |nl jm〉. Given the fact that the basis (12.1.8)
recovers the spherical shell model basis in the vibrational limit, the corresponding
single-particle energies (12.1.15) also have to reproduce the spherical shell model
energy in the limit of d → 0. However the limit

lim
d→0

εI
nlj = εnlj + �ω0

(
N + 3

2

) [
5

2
+ 1

2

(
j − I + 1

2

(
1 − (−) j−I

))]
1

4πk2 , j 
= I,

(12.1.16)

is different from εnl j by the 1/k2 term in the above equation which is actually a
measure of the so called zero point energy. The deviation is very small due to the
constant k whose usual value varies around 10. However, at high j orbitals the cor-
rection becomes sizable and a split of the energy correction over the quantum number
I , shows up at vanishing deformation. In order to avoid this, one must normalize the
single-particle energies (12.1.15) by extracting the zero point deformation energy
given by the corrective term from (12.1.16). Thus, the normalized single-particle
energies are expressed as

εI
nlj = εnlj − �ω0(N + 3

2
)C j2 j

I 0I C j2 j
1/201/2

(�2⊥ − �2
z )

3

+ �ω0(N + 3

2
)

[
1 +

∑
J (CjIJ

I−I 0)
2 I (1)

J∑
J (CjIJ

I−I 0)
2 I (0)

J

]
(�2⊥ − �2

z )

90

− �ω0

(
N + 3

2

) [
j − I + 1

2

(
1 − (−) j−I

)]
1

8πk2 . (12.1.17)

http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
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According to our remark concerning the use of the projected spherical states
for describing the single particle motion, the average values εI

nl j may be viewed as
approximate expressions for the single particle energies in deformed Nilsson orbits.
We may account for the deviations from the exact eigenvalues by considering, at
a latter stage, the exact matrix elements of the two body interaction when a spe-
cific treatment of the many body system is applied. It is worth mentioning that the
dependence of the new single particle energies on deformation is similar to that
shown by the Nilsson model. This is clearly seen in Fig. 12.1, where the proton and
neutron single particle energies are plotted as function of the deformation parameter
d. Although the energy levels are similar to those of the Nilsson model, the quantum
numbers in the two schemes are different. Indeed, here we generate from each j a
multiplet of (2 j + 1) states as I, which plays the role of the Nilsson quantum num-
ber �, runs from 1/2 to j and moreover the energies corresponding to the quantum
numbers K and −K are equal to each other. On the other hand, for a given I there are
2I +1 degenerate sub-states while the Nilsson states are only double degenerate. As
explained in Ref. [RDI93], the redundancy problem can be solved by changing the
normalization of the model functions:

〈�IM
α |�IM

α 〉 = 1 =⇒
∑

M

〈�IM
α |�IM

α 〉 = 2. (12.1.18)
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Fig. 12.1 Proton and neutron single-particle energies in the region of N = 5 and N = 6 shells
respectively, given by Eq. (12.1.17) where the shell model parameters κ = 0.0637 and μ = 0.60
for protons and μ = 0.42 for neutrons were used. The canonical transformation constant is fixed to
k = 10
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Due to this weighting factor, the particle density function is providing the consistency
result that the number of particles which can be distributed on the (2I + 1) sub-states
is at most 2, which agrees with the Nilsson model. Here α stands for a set of shell
model quantum numbers nl j . Due to this normalization, the states �αI M , used to
calculate the matrix elements of a given operator, should be multiplied with the
weighting factor

√
2/(2I + 1).

The role of the core component is to induce a quadrupole deformation for the
matrix elements of the operators acting on particle degrees of freedom, as shown
by Eq. (12.1.12). Indeed, the factor f carries the dependence on the deformation
parameter d, while the other factor is just the reduced matrix elements corresponding
to the spherical shell model states. Thus, Eq. (12.1.12) can be viewed as a deformation
transformation of the matrix elements in the spherical basis. In conclusion, due to
the properties mentioned above, although these states are associated to a particle-
core system, they can be used as a single particle basis. Therefore, one may think
of a set of single particle states � I M

α which are eigenstates of an effective rotational
invariant fermionic one-body Hamiltonian Hef f , with the corresponding energies
given by Eq. (12.1.17).

Hef f �
IM
α = εI

α(d)�IM
α . (12.1.19)

This definition should be supplemented by the request that the matrix elements of any
operator between states � I M

α and � I ′ M ′
α′ are equal to the matrix elements of the same

operator between the corresponding shell model states multiplied with a deformation
factor, given by Eq. (12.1.12). Due to these features, these states can be used as single
particle basis to treat many body Hamiltonians which involve one-body operators
which is actually the case when one deals with a many body Hamiltonian with a two
body separable interaction. Thus, in a second quantization language, an arbitrary one
body operator V̂1 can be written as:

V̂1 =
∑

α,I,M;α′,I ′ M ′

√
2

2I + 1
〈�I M

α (d)|V |�I ′ M ′
α′ (d)〉

√
2

2I ′ + 1
c†
αIMcα′ I ′ M ′ ,

with α = (nlj), α′ = (n′l′j′). (12.1.20)

Let us analyze the procedure mentioned before from a different angle. As we
stated already, averaging the particle-core Hamiltonian on the coherent state ψg , the
Nilsson Hamiltonian for the single particle motion is obtained. Mathematically, the
effect of this operation consists of projecting the particle-core space, Sp ⊗ Sb, into
the particle space Sp,

Sp ⊗ Sb → Sp. (12.1.21)

Rotational symmetry is thereby broken. Our idea was to go back to Sp ⊗ Sb and
restore the symmetry in that space and embed the elements specific to Sp into the
particle-core space:
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Sp → Sp ⊗ Sb,

T k
μ → T k

μ ⊗ Ib,

〈 j ||T k || j ′〉 → 〈I ||T k ⊗ 1b||I ′〉 = f n′l ′ j ′ I ′
nljI (d)〈 j ||T k || j ′〉. (12.1.22)

where Ib stands for the unity operator in the boson space. The last equality shows
that the net result of embedding the single particle space into the particle-core space
is to quench the particle matrix elements through a deformation multiplicative factor.

To complete our arguments concerning the use of particle-core states in many
body calculations, we have to clarify whether an equation similar to (12.1.12) is
also valid for a two body interaction. The formal difficulty in understanding the use
of the basis (12.1.9) for a many body system stems in the fact that according to
the definition (12.1.9), to a n particle system one associates a product of n single
particle spherical shell model states and a product of n core wave functions. Indeed,
at a superficial glance that would overestimate the core contribution and the picture
would be different from a more realistic situation when the given system is described
by a product of n-spherical shell model states and a single core state which should
be common to all particles moving around. In Appendix F, we prove that due to
the specific properties of the coherent states, the two many body wave functions,
one with several cores and one with a sole core, describe two equivalent physical
systems. As a matter of fact with this proof, our arguments pleading for the use of
the projected states from Eq. (12.1.9) as a single particle basis for deformed nuclei,
are complete. It is clear now that the difficulties, mentioned at the beginning of this
section, concerning the many body description of deformed nuclear systems are no
longer standing up.

The single particle basis must satisfy a few tests required by the experimen-
tal information on the single particle features of the nuclei: (a) The nucleon
density function should reflect the deformation dependence of the mean field; (b) The
projected spherical single particle states must predict for the quadrupole moment of
the first state 2+ the sign suggested by experiment; (c) Using the basis states to
calculate the binding energies, the right place of the magic numbers are to be found;
(d) The right order of the shell filling may indicate which is the spin of the ground
state in the odd nuclei; (e) The model should fix the algorithm of fixing the free
parameters involved. In what follows such issues will be separately treated.

12.1.1 Nucleon Density Function

Another property of the spherical projected single-particle basis is the distribution of
the nucleons on the states associated to the energies (12.1.17). The density operator
corresponding to the projected spherical states can be written as:

ρ̂ =
∑

nljIM

2

2I + 1

∣∣∣�IM
nlj (d)

∣∣∣
2
. (12.1.23)
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Using the tensorial form of the projected particle-core state (12.1.10), and replacing
the product of the projected core states and their corresponding complex conjugates
by their scalar product, one obtains:

〈ρ̂〉coll = 2
∑

nljm>0

||nl jm〉|2 , (12.1.24)

which is exactly the spherical shell model nucleon density. This result is also consis-
tent with the nucleon density calculated with projected Nilsson single particle states.
According to this expression the deformation depends on the degree of feeling the
last shell under consideration. The question which might be raised is whether an
explicit deformation dependence for nucleon density is possible.

Inspired by the fact that the deformation dependence of the mean field is obtained
by averaging the particle-core Hamiltonian with the quadrupole boson coherent state
(6.1.1), we extend the procedure to the nucleon density (12.1.23) with the result:

〈ψg|ρ̂|ψg〉 =
∑

nljIM

2

2I + 1

∣∣∣〈ψg|�IM
nlj (d)〉

∣∣∣
2
. (12.1.25)

Similarly, the wave function associated to the deformed single particle mean field
might be viewed as the overlap of the projected spherical state with the core’s coherent
state:

〈ψg|�IM
nlj (d)〉 = N I

j

∑

J

FjI
JM(d)|nl j M〉, (12.1.26)

where

FjI
JM(d) = C j J I

I 0 I C j J I
M 0 M (NJ )−2 . (12.1.27)

A direct connection between the k-pole transition densities defined by the pro-
jected spherical single particle and the spherical shell model bases, can be obtained
by using the second quantization form of a one body operator, which is a tensor of
rank k and projection m with respect to the rotation transformations:

T̂km =
∑ √

2

2I + 1
〈�IM

nl j |T̂km |�I ′ M ′
n′l ′ j ′ 〉

√
2

2I ′ + 1
c†
αI M cα′ I ′ M ′

=
∑ 2

Î Î ′ 〈�
I
nl j ||T̂k ||�I ′

n′l ′ j ′ 〉C I ′k I
M ′m M c†

αI M cα′ I ′ M ′

=
∑

αI ;α′ I ′

2

Î Î ′ 〈αI ||T̂k ||α′ I ′〉ρ̂ps
km(αI ;α′ I ′). (12.1.28)

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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For the sake of simplicity we used the abbreviations and notations:

|αIM〉 = |�IM
nl j 〉, α = (nl j), Î = √

2I + 1,

ρ̂
ps
km(αI ;α′ I ′) = − Î

k̂

(
c†
αI c

α̃′ I ′
)

km
, c

α̃I M
= (−1)I−M cαI,−M . (12.1.29)

The upper index “ps” accompanying the density matrix indicate that it is associated
to the “projected spherical” single particle basis. Changing the single particle basis
to that of spherical shell model and following the same procedure one finds:

T̂km =
∑

〈nl j ||T̂k ||n′l ′ j ′〉ρ̂sm
km(nl j; n′l ′ j ′), with

ρ̂sm
km(nl j; n′l ′ j ′) = − ĵ

k̂

(
c†

nl j cñ′l ′ j ′
)

km
. (12.1.30)

Using the equation relating the matrix elements within the projected spherical and
the spherical shell model basis one obtains:

ρ̂sm
km(nl j; n′l ′ j ′) =

∑

I,I ′

2

Î Î ′ f j ′ I ′
j I ;k(d)ρ̂

ps
km(nl j I ; n′l ′ j ′ I ′). (12.1.31)

Taking into account the explicit expression of the norms N I
j and the analytical form

of the Racah coefficient with one vanishing index, it can be proved that for k = 0
the factor f is equal to unity:

f j ′ I ′
j I ;0(d) = δI,I ′δ j, j ′ . (12.1.32)

Consequently, we have:

ρ̂sm
00 (nl j; nl j) =

∑

I

2

2I + 1
ρ̂

ps
00 (nl j I ; nl j I ). (12.1.33)

Going back to the definition of ρ̂ in the two basis (12.1.29) and (12.1.30), by a direct
and simple calculation one finds that Eqs. (12.1.33) and (12.1.24) are identical. For
illustration, in Figs. 12.2 and 12.3 we represent the nucleon density as given by
Eqs.(12.1.24), (12.1.25), respectively.

12.1.2 The Quadrupole Moment for the First 2+

For what follows it is useful to study the quadrupole moment of the ground band state
2+ within the projected spherical single particle basis. Let us derive the expression
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Fig. 12.2 Total nuclear density given by Eq. (12.1.24) is represented as function of x = r ′ sin θ

and z = r ′ cos θ in units of α
3
2 in 3D plots (up) and contour plots (down) for 150Gd (left) and 156Gd

(right). In both cases the densities corresponding to two adjacent curves differ from each other by
0.21α3/2

of the quadrupole moment within the GCSM. The liquid drop model (LDM) predicts
for the quadrupole moment the expression:

Q2μ = 3ZeR2
0

4π

(
α2μ − 10√

70π
(α2α2)2μ

)
, R0 = 1.2A1/3fm. (12.1.34)

Within LDM the state 2+ is a one phonon state, b†
2μ|0〉, which yields for the quadru-

pole moment, with the standard definition, the expression:

〈22|Q20|22〉 = −3ZeR2
0

√
5

7πk2
√

π
. (12.1.35)



12.1 Projected Spherical Single Particle Basis 357

Fig. 12.3 Total nuclear density projected on the quadrupole boson coherent state defined by
Eq. (12.1.25) and normalized to its maximum value is represented as function of x = r ′ sin θ
and z = r ′ cos θ in 3D plots (up) and contour plots (down) for 150Gd (left) and 156Gd (right).
Contour plots are made with a step of 0.062/ρmax

From here it results that for spherical nuclei the quadrupole moment is always neg-
ative. The GCSM defines the state 2+ by the angular momentum projected state
φ

g
J M (dn, dp) (see Eq. (9.1.1)) while the quadrupole moment, in the boson represen-

tation, is:

Q20 = 3ZeR2
0

4π

[
1

k p
√

2

(
b†

b0 + bp0

)
− 5

k2
p
√

70π

(
(b†

pb†
p)20 + (bpbp)20 + (b†

pbp)20

)]
.

(12.1.36)

http://dx.doi.org/10.1007/978-3-319-14642-3_9


358 12 Unified Single Particle Basis

Averaging this operator with the projected state mentioned above one obtains:

〈φg
22(dn, dp)|Q20|φg

22(dn, dp)〉 = −3ZeR2
0

7π

[
1√
2

dp

k p
+ 1

7

√
5

π

(
dp

k p

)2
(

1 + I (1)
2 (ρ)

I (0)
2 (ρ)

)]
.

(12.1.37)

As we shall see, this equation may be used for determining the ratio dp/kp and
then the other parameters of the model, i.e. dn and kn .

12.1.3 Shell Filling Order: Magic Numbers and the Spin
of Odd System Ground State

Another issue addressed in this section regards the ability of the model proposed to
describe the shell filling and how that compares with what we know from the Nilsson
model. To this goal we calculated the second order binding energy difference

�ETot = − 3

16
[2E(N ) − E(N + 2) − E(N − 2)] , (12.1.38)

with E(N ) denoting the total sum of proton and neutron single particle energies for
a nucleus with N neutrons. This quantity is plotted for the isotopic chains of Cd and
Te in Fig. 12.4. We notice that both models show two major peaks corresponding to
the magic number 82 and the shell filling at N = 68 for Cd and N = 70 for Te. The
distributions of peaks for Te isotopes obtained with the projected spherical single
particle basis (PSSPB) and Nilsson model respectively, are similar. Some differences
appear in the case of Cd’s. In the case of Nilsson plot there is a peak for N = 76
which is missing in the case of PSSPB. On the other hand the plot with PSSPB
exhibits a peak for N = 56 which is missing in the case of the plot made with the
Nilsson model. The major peak at N = 70 for Nilsson model is shifted to N = 68
for our method.

The order of the shell filling is, of course, depending on the quadrupole defor-
mation. A test for this feature is to identify the levels around the last occupied one
and compare their spin with the experimental value for the ground state spin, in an
even-odd nucleus. The results are compared with the data for a few odd nuclei in
Table 12.1. Among the identified angular momenta for the last and the second last
occupied as well as for the first unoccupied levels one finds the angular momenta
characterizing the ground state according to the experimental data. The reason we
listed all three spins is that in the region of the Fermi sea, the level density is high and
a small uncertainty in determining the deformation may change the position of the
level crossing and thus the filling order. Moreover, our estimation does not take into
consideration the effect of the residual interaction which may also shift the position
of the Fermi level. We note that the agreement is reasonably good suggesting that
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Fig. 12.4 The binding energy second order difference, �ET ot for the isotopes of Cd (left panel)
and Te (right panel) is represented as function of the number of neutrons, N . For Nilsson model
calculations, we included also the �N = 2 matrix elements with Ncutof f = 10

the ground state has the spin of the first unoccupied level for 155Gd, 167Er, 177Hf,
179Hf and that of the second last occupied state for 187Os, 189Os, 157Gd.

12.1.4 The Model Parameters

Besides the nuclear shell model parameters, the projected single particle basis
involves another two, namely the deformation parameter d and the constant k enter-
ing the canonical transformation relating the quadrupole coordinates with the boson
operator. When some tuning properties which are isospin dependent are concerned,
the single particle projected basis for protons and neutrons should be different and
consequently different parameters d and k are to be used. The isospin dependence of
these parameters is underlined by using different notations for them, when they are
involved in the equation for protons, dp and kp, and neutrons, dn and kn , respectively.
The algorithm of fixing these parameters is defined by several steps: (a) By equating
the theoretical result for the ratio of excitation energies of the ground band levels 2+
and 4+, denoted by R4/2, to the experimental value, one obtains a relation determin-
ing the global deformation ρ(=d

√
2) (see the chapter about the GCSM); (b) Inserting

d in Eq. (12.1.6) the parameter k is readily obtained; (c) From the expression of the
B(E2) value associated to the transition 0+ → 2+ the parameter kp is obtained;
(d) Using again Eq. (12.1.6) corresponding to the proton system, the deformation
parameter dp is calculated; (e) From the equation defining ρ = (d2

p + d2
n )1/2, one

determines dn ; (f) The Eq. (12.1.6) for neutrons finally determines kn .
This procedure was applied to 194 isotopes and the resulting parameters were

collected in several tables. For 186 isotopes, the quadrupole deformation involved
in Eq. (12.1.6) is taken from Ref. [MNMS95]. For the remaining eight isotopes
the quadrupole deformation from Ref. [MNMS95] provides a wrong sign for the
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quadrupole moment of the lowest state 2+. In order to correct this drawback, one
slightly changed the procedure of fixing the involved parameters. Indeed, for three
isotopes, 74Ge, 74Se and 76Se, one inserted for β the corresponding experimental
values from Refs.[TAM82, SF06, MOO93], otherwise kept the same algorithm as
before. As for the last five nuclides, 72Ge, 116Cd,122,124,126Te, for which the nuclear
deformations are also not experimentally known, the fitting procedure is as follows:
(a) Inserting ρ, fixed by fitting the ratio R4/2, in the defining equation of Q2 (12.1.37),
this becomes an equation for dp/kp; (b) Considering Eq. (12.1.6) for protons with
the ratio dp/kp just determined, one obtains an equation for β; (c) Knowing ρ, one
calculates d and from (12.1.6), k; (d) With d and dp, the deformation dn is readily
obtained; (e) Again, the Eq. (12.1.6) for neutrons determines kn . This way the signs
of 50 experimental values for Q2 [ST05] are reproduced.

The results concerning the canonicity parameters k, kp and kn for the 194 isotopes
can be interpolated by linear functions of the atomic mass number A.

k = 0.0513471 · A + 4.28957, rms = 2.59477, (12.1.39)

kp = 0.0488292 · A + 4.61187, rms = 2.71376, (12.1.40)

kn = 0.0538922 · A + 3.80843, rms = 3.17185. (12.1.41)

The projected spherical basis, presented here, was successfully used to describe
some deformed atomic clusters [RGG01], the M1 scissors-like mode for even Sm
isotopes [REG02] and the Gamow-Teller amplitude for single and double beta decay
processes [REF04]. For the sake of saving space, these applications will not be
presented here.

To conclude, the coherent state approach is very useful not only for accounting
for some phenomenological properties of complex nuclei, but also for providing
an unified description of spherical and deformed nuclei by means of a projected
spherical single particle basis.



Chapter 13
Boson Hamiltonians

13.1 Semiclassical Study of Some Fourth Order Boson
Hamiltonians

13.1.1 TDVP for a Fourth Order Boson Hamiltonian

We consider a fourth order quadrupole boson Hamiltonian

H = A11(b
+b)0 + {A30(b

+b+b+)0 + A21(b
+b+b)0

+
∑

J=0,2,4

A(J )
31 [(b+b+)J (b+b)J ]0

+
∑

J=0,2,4

A(J )
40 [(b+b+)J (b+b+)J ]0 + h.c.}

+
∑

J=0,2,4

A(J )
22 [(b+b+)J (bb)J ]0 (13.1.1)

ThisHamiltonian has been used by several authors to describe the low lying collective
states of positive parity. The quadrupole bosons b+

μ , (−2 ≤ μ ≤ 2) are of phenom-
enological type. For example they could be associated to the small and harmonic
oscillations of nuclear surface around a spherical equilibrium shape. Throughout
this section the index “2” specifying the angular momentum carried by the quadru-
pole bosons is omitted. It is worth mentioning that among the invariants of fourth
order comprised by the model Hamiltonian only five are linearly independent. Con-
sequently, the forth order terms could be rewritten so that only five parameters appear
in the new version.

The eigenvalues of H can be obtained by a diagonalisation procedure using the
basis |NvαIM〉 with N the number of bosons, v the seniority, α the “missing”

© Springer International Publishing Switzerland 2015
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quantum number, I the angular momentum and M its projection on z-axis. Here the
spectral properties of H will be studied within a time dependent formalism. Such
treatment may give information not only about the static properties but also about
the time evolution of the nuclear system.

Thus, we consider the variational equation

δ

t∫

0

〈ψ|H − i�
∂

∂t ′
|ψ〉dt ′ = 0. (13.1.2)

The solutions of this equations satisfy the time dependent Schrödinger equation
provided the variational states |ψ〉 span the whole Hilbert space. Here we confine the
boson space to the subspace generated by the states

|ψ〉 = exp[z0b+
0 − z∗

0b0 + z2(b
+
2 + b+

−2) − z∗
2(b2 + b−2)]|0〉 (13.1.3)

where zμ (μ = 0, 2) are complex functions of time and z∗
μ denote the corresponding

complex conjugate functions. |0〉 stands for the vacuum state of the quadrupole
bosons.

The wave function |ψ〉 is a coherent state with respect to the boson operators b+
0 ,

b+
±2. Bymeans of the boson operators b+

μ , bμ one can define the collective coordinates
and their conjugate momenta:

αμ = 1√
2k

(b+
μ + (−1)μb−μ); πμ = ik√

2
((−1)μb+−μ − bμ), μ = 0,± 2

(13.1.4)

up to a real constant k.
Note that by Eq. (13.1.2), to the quantum mechanical eigenvalue problem of H ,

a set of classical equations for a point M(t) in the phase space {(z0, z∗
0, z2, z∗

2)} is
associated. Knowing the position of M at a certain value for t , say t0, the Eq. (13.1.2)
determine M(t) for any t ≥ t0. The set {M(t)}t≥t0 defines the classical trajectories.
Some of these trajectories can be quantized [KaGr79]. If H is restricted to its har-
monic term the semiclassical spectrum coincide up to an additive constant to the
corresponding quantal one.

The functions | ψ〉 form an overcomplete set in the boson space. This stems
from that no vector component is missing in the expansion of | ψ〉 in the basis
| NvαI M〉. Therefore, to some extent the variational function | ψ〉 is able to account
for some properties of H in the whole boson space. Due to these features one hopes
that choosing a coherent state as trial function, the requantized system approximate
reasonably well the initial one.
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Now let us denote byuμ, vμ the real and imaginary components of zμ, respectively.
Their time dependence is determined by solving the classical equations of motion
yielded by (13.1.2):

•
u0 = 1

2

∂ H
∂ v0

; •
v0 = −1

2

∂ H
∂ u0

(13.1.5)
•
u2 = 1

4

∂ H
∂ v2

; •
v2 = −1

4

∂ H
∂ u2

where “•” denotes the time derivative operation and H is the expected value of H
(13.1.1)

H(u0, v0,u2, v2) ≡ 〈ψ | H | ψ〉 = A(u2
0 + v20 + 2u2

2 + 2v22)

+ 2Bu0(6u
2
2 − u2

0) + 2C(2u0v
2
2

+ 4v0u2v2 − u0v
2
0) + D(u2

0 + 2u2
2)

2

+ E(u0v0 + 2u2v2)
2 + F(u0v2 − u2v0)

2

+ G(v20 + 2v22)
2. (13.1.6)

The factors A, B, C , . . . , G are determined by the coefficients involved in the model
Hamiltonian. Hereafter the units convention � = 1 is adopted.

Note that, since the trial wave function was subject to the restriction defined by
z2 = z−2, the number of parameters characterizing the fourth order terms is equal
to four and not to five as suggested by the Eq. (13.1.1).

In deriving (13.1.5) from (13.1.2) the expression for the density of classical action
was needed:

s(t) ≡ 〈ψ | i
∂

∂t
| ψ〉 = i[u0

•
v0 − v0

•
u0 + 2(u2

•
v2 − v2

•
u2)] (13.1.7)

It can be easily checked that H is constant in time for u0, v0, u2, v2 satisfying the
Eq. (13.1.5).

H(u0, v0,u2, v2) = E . (13.1.8)

The classical equations of motion (13.1.5) are highly nonlinear. Therefore, only
numerical solutions are possible. However, there are closed and periodic orbits sur-
rounding closely a given minimum point of the energy surface which can be approx-
imated reasonably well by the solutions of the linearized equations of motion with
respect to that minimum. Finding such solutions is certainly much easier than inte-
grating the coupled differential equations. This class of orbits will be analyzed in the
following subsection.
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13.1.2 Stationary Points of H

To find the periodic and harmonic states we have to find first the stationary points of
H by solving the equations:

•
uμ = 0,

•
vμ = 0, μ = 0, 2. (13.1.9)

and then to depict theminima. There are seven solutions for the Eq. (13.1.9), provided
the coefficients of the model Hamiltonian satisfy the inequality:

9B2 − 8AD ≥ 0 (13.1.10)

All of them have vanishing values for the v components:
◦
v0 = ◦

v2 = 0.

Three of the stationary points have
◦
u2 = 0. The values of

◦
u0 distinguishing between

these three stationary points, hereafter denoted by S, D1, E1, are

◦
u0(S) = 0,

◦
u0(D1) = (3B + X)/4D,

◦
u0(E1) = (3B − X)/4D, (13.1.11)

where the following notation was used: X = (9B2 − 8AD)
1
2 . The other four points

are denoted by D2, D3, E2, E3 respectively, and have the coordinates (
◦
u0,

◦
u2) given

by:

(D2; D3; E2; E3) = ((X0, Y0); (X0,−Y0); (X1, Y0); (X1,−Y0)) (13.1.12)

with (
X0
X1

)
= −3B ∓ X

8D
, Y0 =

√
3

2
◦
u0 (13.1.13)

The points S, Dk, Ek (k=1, 2, 3) are represented in Fig. 13.1a for B > 0 and in
Fig. 13.1b for B < 0. The nature of the stationary points is found by analyzing the

(a) (b) (c)

Fig. 13.1 a Stationary points of the energy surface for B > 0. Black circles correspond to minima
while open circles to saddle ponts; b The same as in a, but for B < 0; c The stationary coordinate
◦
u0 as function of B for D = 0.4, A = 1, C = E = F = 0 (in units of MeV). One distinguishes
three branches (see the comment from the text)
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sign of the Hessian function associated toH. The results are as follows: For B > 0,
the point S and Dk are minima forH, while Ek are saddle points. When B < 0, the
minima are in S and Ek, while Dk are saddle points forH. Replacing the coordinates
zμ, z∗

μ by the values which produce the minima Dk (B > 0), the variational state
become | ψ(Dk)〉 with k = 1, 2, 3. These states describe the static ground state
of our system. Any two of these three wave functions can be related by a rotation
transformation. Indeed, it can be checked that the following equations hold:

| ψ(D2)〉 = R(0,
π

2
, 0) | ψ(D1)〉, | ψ(D3)〉 = R(

π

2
,
π

2
, 0) | ψ(D1)〉, (13.1.14)

where
| ψ(D1)〉 = exp[◦

u0(D1)(b
+
0 − b0)] | 0〉, (13.1.15)

and
◦
u0(D1) denotes the coordinate u0 for D1 which is given by (13.1.11). In virtue

of these relations and the fact that H is a scalar for rotations, it results that the ground
state is degenerate. Indeed, for B > 0 we have

H(D1) = H(D2) = H(D3) (13.1.16)

Parametrizing the average values of the quadrupole coordinate as:

〈ψ|α0|ψ〉 = β cos γ, 〈ψ|α±2|ψ〉 = 1√
2
β sin γ, (13.1.17)

one obtains the relation between the coordinates u0 and u±2 and the classical defor-
mations β and γ:

u0 = k√
2
β cos γ; u2 = k

2
β sin γ (13.1.18)

It is worthmentioningwhat is the shape of the nuclear system for the stationary points
of H. This can be obtained either from Eq. (13.1.8) or by evaluating the invariants
β2 and β3 cos 3γ:

I2 ≡ β2 = (

√
2

k
)2(u2

0 + 2u2
2), I3 ≡ β3 cos 3γ = (

√
2

k
)3u0(u

2
0 − 6u2

2). (13.1.19)

Inserting the coordinates of the stationary points into the Eq. (13.1.19) it results:

I2(S) = I3(S) = 0 (13.1.20)

As for the other points the values of the invariants are:
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I2(Dn) = 8

k2
X2
0, I3(Dn) = −16

√
2

k3
X3
0,

I2(En) = 8

k2
X2
1, I3(En) = −16

√
2

k3
X3
1; n = 1, 2, 3 (13.1.21)

where X0, X1 are defined by (13.1.13). One can prove that:

sign I3 = sign B for any of Dn,En, n = 1, 2, 3. (13.1.22)

Therefore for B > 0 the nuclear system exhibits a prolate, while for B < 0 cor-
responds to an oblate axially symmetric shape. In order to obtain a triaxial ground
state, the model Hamiltonian should comprise boson monomials of order higher than

four. The stationary coordinate
◦
u0 (according to the previous analysis there are three

values: 0, (3B − X )
/
4D, (3B + X )

/
4D) this is plotted in Fig. 13.1c as function of

B for D = 2/5 and A = 1. There are three branches in this plot: (i) u0 = 0 for any
value of B; as we have already seen this abscissa axis correspond to the minimum
point of the type S; (ii) From the compatibility condition (13.1.10) it results that the
lower limit for B is

√
8AD/3. For this value of B, there is only one stationary point

(minimum) forH; (iii) For larger values of B there are two stationary points different
from zero. One is a minimum, while the other one is a saddle point.

For a particular set of parameters (in units of MeV)

A = 1, B = 0.8, D = 0.4, C = E = F = 0 (13.1.23)

the cuts of the potential energy surface foru2 = 0 andu0 =2.5 are given inFig. 13.2a,
b respectively. In order to stress the sensitivity of the u2 potential energy on the fixed
value of u0 we give it in Fig. 13.2c, d for u0 = 0 and u0 = −1.25, respectively.

13.1.3 The RPA Like Equations

For what follows it is convenient to use the phase space coordinates:

Uk = 2
k+2
4 uk, Vk = 2

k+2
4 vk; k = 0, 2 (13.1.24)

Written in terms of these coordinates the energy function has the stationary points

(
◦

Uk,
◦

V k). Denoting by (qk, pk) the deviation of the current point from the “mini-
mum”

qk = Uk − ◦
Uk, pk = Vk − ◦

V k (13.1.25)

the classical equations for qk and pk are:
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Fig. 13.2 The cuts of the equipotential energy obtained with the parameters A = 1, B = 0.8,
D = 0.4, C = E = F = 0 (in units of MeV) with the planes: u2 = 0 (a), u0 = 2.5 (b), u0 = 0 (c)
and u0 = −1.25 (d)

•
qk = {qk, H}; •

pk = {pk, H} (13.1.26)

where { , } denotes the Poisson bracket. Keeping only the linear terms in qk, pk in
the r.h.s. of (13.1.26), one obtains

•
qk =

∑

m=0,2

Akm pm; •
pk =

∑

m=0,2

Bkmqm (13.1.27)
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where the matrices A and B have simple expressions in terms of the structure coef-
ficients. Consider now the complex conjugate variables a∗

k , ak with

a∗
k = qk − i pk√

2
(13.1.28)

Using the coordinates a∗
k , ak, the normal mode coordinate is defined by:

C∗ =
∑

k=0,2

(Rka∗
k − Skak) (13.1.29)

where the amplitudes Rk and Sk are determined so that the following equations are
obeyed:

{C∗,H} = iωC∗, {C∗, C} = i (13.1.30)

From Eqs. (13.1.29) and (13.1.30) it results the RPA equations:

(
A−B
2 − A+B

2
A+B
2 − A−B

2

)(
R
S

)
= ω

(
R
S

)
(13.1.31)

The compatibility condition for this homogeneous system of equations yields the
dispersion equation for ω:

ω4 + B ω2 + C = 0 (13.1.32)

with

B =
∑

i,k=0,2

Aik Bki ; C = (A00A22 − A20A02)(B00B22 − B20B02) (13.1.33)

The amplitudes Rk , Sk are determined byEq. (13.1.31) up to amultiplicative constant
which is determined by the second Eq. (13.1.30), which yields:

∑

k=0,2

(R2
k − S2

k) = 1. (13.1.34)

For the two sets of degenerate minima (one prolate and one oblate) the results for
energy and amplitudes are particularly simple.

If the parameters involved in the model Hamiltonian (13.1.1) are such that C = 0,
the Eq. (13.1.32) admits ω = 0 as solution. On the other hand the appearance of a
vanishing energy is a signature for a phase transition. Here the transitions might be
from spherical to axially deformed prolate shape, when ω0 = 0, and from prolate to
an oblate deformed shape for ω2 = 0.
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The equation C = 0 determines four separatrices in the parameter space bordering
two different “phases”. Their equations are:

A − 6Bβ0 + 6Dβ2
0 = 0, A − 2Cβ0 + Eβ2

0 = 0,

A + 6Bβ0 + 2Dβ2
0 = 0, A + 2Cβ0 + 1

2
Fβ2

0 = 0. (13.1.35)

It is worth commenting on that the energies dependence on the coefficients C, E,
and F multiplying the terms coupling the coordinates and momenta. These of course
may influence the distribution as well as the nature of stationary points. Ignoring
the coordinates-momenta coupling terms the situation becomes more transparent.
Indeed, the separatrices become:

D = 0, B = ±2

3

√
2AD.

For D > 0, the branch corresponding to the sign + delimits spherical and prolate
shapes, while the curve determined by the sign − borders the spherical and oblate
phases.

Under these circumstances, the situation ω2 = 0 cannot be reached with the
Hamiltonian (13.1.1) where the second order term (b+b+ + bb) is missing. Includ-
ing this term, one could approach the prolate—oblate transition through a gamma
unstable regime.

Note that the Eq. (13.1.30) is equivalent to the differential equation:

•
C

∗
= i ω C∗ (13.1.36)

which has the solution
C∗ = K ∗eiωt (13.1.37)

where K ∗ is a complex number K ∗ = | K ∗ | eiϕ which may be fixed by requiring
that some “initial” conditions are fulfilled. The quantization procedure imposes a
restriction to the classical action and this allows us to fix | K ∗ | but not ϕ [RCGP84].
However, the classical energy does not depend on ϕ and therefore the quantiza-
tion condition fully determines the energies. Keeping still the classical picture, it is
instructive to get an image about how the nuclear system moves when accommodat-
ing one of the RPA state. To this aim we shall successively consider the oscillations
around the minimum points D1, D2, D3 which are visualized in Fig. 13.1a for a pro-
late shape. For the sake of simplicity we consider the case with C = E = F = 0.

To begin with, let us start with D1. For
◦
u2 = 0 the RPA equations have a block

structure. Indeed, for the state of energy ω0 the amplitudes R0, S0 can analytically
be calculated, while R2, S2 are equal to zero. Conversely, for the state of energy
ω2 the amplitudes R0, S0 are vanishing, while R2, S2 are not. Reversing the RPA
transformation (13.1.29), one can express the canonical variables a∗

k , ak in terms of
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the normal mode variables. This way the time dependence of the coordinates uk, vk

are readily obtained.
Denoting by u(k)

l the coordinates ul corresponding to the RPA state of energy ωk

one obtains the following result:

u
(k)
l = ◦

ul + δln(
A

ωn2
n
2
)
1
2 | K ∗

n | cos(ωnt + ϕn); l, n = 0, 2 (13.1.38)

Parameterizing the nuclear radius by the classical coordinates αμ (13.1.4) with
k=√

2,
R = R0(1 +

∑
αμY ∗

2μ) (13.1.39)

the deviation of the nuclear radius corresponding to the nth axis of the intrinsic frame
of reference, from the constant value R0 is:

�Rn = (
5

4π
)
1
2 R0β cos(γ − 2π

3
n), n = 1, 2, 3 (13.1.40)

By means of Eq. (13.1.18), these quantities can be easily expressed in terms of the
phase space coordinates u0, u2:

�Rn = (
5

4π
)
1
2 R0[1

2
(−u0 + √

3u2)δn1 + 1

2
(−u0 − √

3u2)δn2 + u0δn3] (13.1.41)

Inserting (13.1.38) in (13.1.40), the result for the state of energy ω0 is:

�R1 = �R2 = −1

2
�R3,

�R3 = (
5

4π
)
1
2 R0[◦

u0 + (
A

ω0
)
1
2 | K ∗

0 | cos(ω0t + ϕ0)] (13.1.42)

while for the RPA state corresponding to ω2, one obtains:

(
�R1
�R2

)
= 1

2
(
5

4π
)
1
2 R0[−◦

u0 ± √
3(

◦
u2 + (

A

2ω2
)
1
2 | K ∗

2 | cos(ω2t + ϕ2))]

�R3 = (
5

4π
)
1
2 R0

◦
u0 (13.1.43)

TheEqs. (13.1.42) and (13.1.43) comprise the signatures of the twoRPAsolutions.
The first solution is a β-like vibration, since gamma is constantly equal to zero, while
β exhibits a harmonic motion around a static value. The nuclear system oscillates
along the 3rd axes with the pulsation ω0. The amplitudes of the oscillations along
the 1st and 2nd axes are half of that corresponding to the oscillation along the 3rd
axes. We also notice on that the radii R1 and R2 oscillate in phase with respect to
each other but out of phase with respect to the radius R3.
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As for the other RPA solution (ω2), both the β and γ variables are functions of
time. However, the radius R3 is a constant of time. The radii R1 and R2 oscillate
with opposite phase but with equal frequencies. This equatorial motion of the nuclear
system is conventionally called gamma vibration. It is worth noting that for harmonic
spherical limit (only A is different from zero) the beta and gamma vibrations loose
the abovementionedmeaning. Indeed, their energies become equal and they describe
quadrupole oscillations around a spherical shape.

Consider now the motion around the points D2 and D3 from Fig. 13.1 which

are characterized by
◦
u2 = +

√
3
2

◦
u0 and

◦
u2 = −

√
3
2

◦
u0 respectively. To express the

quantities �Rk as functions of time, one has first to reverse the RPA transformation
(13.1.29) and then use the connection with the coordinates u0 and u2. The final
expressions for �Rk are:

�R1 = −1

2
(
5

4π
)
1
2 R0[◦

u0 − √
3

◦
u2 + 1

2

√
21

2

√
A

ω2
| K ∗

2 | cos(ω2t + ϕ2)],

�R2 = −1

2
(
5

4π
)
1
2 R0[◦

u0 + √
3

◦
u2 + 1

2

√
5

2

√
A

ω0
| K ∗

0 | cos(ω0t + ϕ0)]

�R3 = (
5

4π
)
1
2 R0[◦

u0 + 1

4

√
5

2

√
A

ω0
| K ∗

0 | cos(ω0t + ϕ0)]

+ 1

4

√
21

2

√
A

ω2
| K ∗

2 | cos(ω2t + ϕ2)]. (13.1.44)

In conclusion, for a ground state which is not axially symmetric the axes 1 and
2 vibrate with the definite frequencies ω2 and ω0, respectively. Concerning the third
axis, its motion is determined by a constructive interference of two vibrations of
frequency ω0 and ω2, respectively. Also it is worth noting that this radius oscillates
in antiphase with the radii R1 and R2.

13.1.4 Large Amplitude Motion

The results of the previous subsection were based on the linearization procedure
applied to the classical equations of motion. Solving the linearized equations one
finds classical periodic orbits which might be quantized. On the other hand, for a
given set of initial conditions the exact solutions of the classical equations of motion
can be obtained by numerical methods. Note that, since the energy is a constant
of motion one has to specify only three initial coordinates, the fourth one being
determined by requiring that the point belongs to the energy surface. If the orbit
lies close to the minimum point of the energy surface, it may be approximated by
that corresponding to the linearized equations of motion. The latter orbits might be
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quantized through the Bohr-Sommerfeld procedure. If the closed orbit is lying far
away from the minimum point, the linearization method does not work and we are
faced with the quantization of a large amplitude motion. Along the time, several
solutions for such a quantization procedure have been proposed. Here we mention
only those procedures which have a direct connection to this study. According to
Kan and Griffin [KaGr79] , the gauge invariant and periodic orbits are quantized by
imposing the following restriction to the associated action:

T∫

0

s(t ′)dt ′ = 2nπ (13.1.45)

where s(t) is given by Eq. (13.1.7) and T denotes the period of the orbit under
consideration. Another methodwas proposed by Cambiaggio et al. in Ref. [CAM93].
Therein, the authors study the Fourier spectrum of the action:

S(t) =
t∫

0

s(t ′)dt ′ (13.1.46)

As mentioned above, there is a family of classical orbits depending continuously on
the energy E. For a given value of E one calculates the Fourier spectrum of S(t).
One selects that value of E which satisfies the following consistency condition: the
first peak in the Fourier spectrum has an abscissa equal to E − E0, where E0 is the
minimum value of the classical energy. Let us denote the selected energy by E1. The
process is continued for E > E1 and the next quantized energy is depicted when the
consistency condition, i.e. the first peak appears at an energy equal to E2 − E1, is
obeyed, etc. It is worth noting that the action S(t) and its time derivative s(t) have
their peaks located at equal energies. Due to this feature, the above procedure may
be also applied to the time derivative s(t). For the sake of simplicity we shall adopt
the latter version. This will be applied to find the quantum states lying in the second
well of the potential energy shown in the Fig. 13.2a and in the well from Fig. 13.2b,
respectively.

The classical orbits corresponding to the two potential energies are fully deter-
mined once the phase space coordinates characterizing the system at the initial time,
t = 0, are specified. Thus, we consider the orbits emerging from the points

P1 = (2.5, 0, v0, 0), P2 = (2.5, 0, 0, v2) (13.1.47)

where v0 and v2 are determined by requiring that P1 and P2 belong to the surface
given by the Eq. (13.1.8). Conventionally, a point in the phase space is specified by
its coordinates, i.e. (u0,u2, v0, v2). The minimum values of the potential energies
shown in Fig. 13.2a, b are equal. The common value is:
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E0 = −3.125MeV (13.1.48)

One can check that the trajectories comprising P1 are of a beta type, while those
passing through P2 have a gamma character. The first three beta states fulfilling the
consistency conditions for the quantization procedure have the excitation energies

e1 = 1.72, e2 = 3.02, e3 = 4.00 (MeV) (13.1.49)

It is worth mentioning that this procedure predicts an excitation energy which is
twice as much as the energy of gamma vibration. This reflects the degeneracy of the
vibrations along the axesu2 andu−2. Indeed, identifyingu2 andu−2 the fundamental
frequencies defining the Fourier spectrum for s(t) are doubled. Due to this fact in
the Fourier spectrum shown in Fig. 13.4d the peak corresponding to the first gamma
vibration appears at 8.14MeV. The lower peak at about 2MeV corresponds to the
vibrational beta state, induced by an anharmonic coupling.

In order to see how the nuclear shape changes when the excitation energy is
increased, some additional details about the structure of the states are necessary. To
begin with, we consider first two beta states, namely those lying at 1.72 and 4MeV.
The Fourier spectra of the corresponding action density are shown in Fig. 13.3a, b,
respectively. In the Fig. 13.3a one sees three peaks having the energies e1, 2e1, 3e1,
respectively. The second and third peaks correspond to two and three beta phonon
states, respectively. To conclude, due to the anharmonic terms of the model Hamil-
tonian, the first excited state is a mixture of one (this is the dominant component),
two and three phonon states.

As shown in Fig. 13.3b, the state lying at 4MeV has a more complex structure.
Indeed, this state is about 1MeV above the previous state which lies close the first
minimum of the potential energy (see Fig. 13.2a). Consequently the classical orbit
surrounds both minima and therefore a larger number of components contribute in
building up the state. In other words, the state is determined by the interference
of two oscillations having different reference energies. This feature is revealed by
Fig. 13.3d, showing the time dependence of s(t) given by Eq. (13.1.7). By contrast,
Fig. 13.3c shows a sole frequency characterizing the first beta state.

The shape variables β, γ behave differently in the two states considered above.
While for the first state, i.e. that of energy equal to 1.72MeV, the beta deformation
is a periodic function of time (describing a harmonic oscillation of β around its
static value), as shown in Fig. 13.3e for the third state, which has the excitation
energy of about 4MeV, the beta variable exhibits two components describing the
oscillations around a spherical and a deformed equilibrium shape, respectively. The
latter behavior is shown in Fig. 13.3f. The beta vibration character of the first state is
also confirmed by the plot Fig. 13.3g showing the time dependence of gamma. The
gamma deformation is constantly equal to its static value. Therefore the prolate shape
with axial symmetry is preserved in time. The time evolution of the deformation γ in
the state lying at 4MeV, is shown in Fig. 13.3h. The nuclear shape changes suddenly
from prolate to oblate and after a while comes back to the initial shape which is
preserved for another interval of time. The average value of gamma is π/6. This is
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Fig. 13.3 a Fourier spectrum of the action density for the first quantized beta-like state. The
consistency condition is fullfiled at the excitation energy e1 = 1.72MeV. The parameters involved
in the model Hamiltonian are the same as in Fig. 13.2a. b The same as in (a) but for the third
quantized beta-like state. The consistency condition is fulfilled for e3 = 4.00MeV; the energy is
normalized to the ground state energy. c The time dependence of the action density for the first
quantized beta state.dThe same as in (c) but for the third quantized beta state. eThe time dependence
of the deformation parameter β for the first quantized beta state. f The same as in (e) but for third
quantized beta state. g The time dependence of the papameter cos 3γ for the first quantized beta
state. h The same as in (g) but for the third quantized beta state
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a typical case of large amplitude motion pointing to the coexistence of two different
shapes.

As for the potential well from Fig. 13.2b, one finds two quantum states of gamma
type, whose excitation energies are 4.07 and 7.82MeV, respectively. It is worth
noting that, although these states lie above the saddle point (u2 = 0) having the
excitation energy equal to 3.075MeV (see Fig. 13.2a), due to the initial conditions,
the corresponding trajectories do not reach this point. This happens since the kinetic
energy within a period is not large enough to exceed the deep of the u0–potential
well.

Let us focus our attention on the first excited gamma like state lying inside the
potential energy shown in Fig. 13.2b. In this state the beta and gamma degrees of free-
dom are coupled together. However, we keep calling the state as gamma vibrational
state in virtue of the geometrical interpretation referring to the time dependence of the
nuclear ellipsoidal axes. As we have already seen, there are two frequencies which
are contributing both to cos 3γ and β variables. This is again shown in Fig.13.4a,
b, where the time dependencies of β and cos 3γ are plotted, respectively. The com-
plex structure of the shape coordinates yields the action time derivative s(t) which
is shown in Fig. 13.4c. Its Fourier spectrum is plotted in Fig. 13.4e. Since the two
frequencies are commensurable the classical orbit is a closed curve. This feature is
pictured in Fig. 13.4d, where the trajectory starting from P2 with v2 satisfying the
equation H = 0.95 is plotted. One sees that the curve is located in a finite domain
(u0,u2) ∈ [2.17, 2, 52] ⊗ [−0.36, 0.36] which is consistent with the above men-
tioned property concerning the confinement inside the second well of the potential
Fig. 13.2a.

The last case considered here is that of the trajectory starting from P2 lying on
the surface with energy E = 5MeV (we recall that the second quantized energy
is of 4.70MeV). The solutions u0(t),u2(t) of the classical equations of motion
with the initial conditions mentioned above, do not have any periodic structure.
They are plotted in Figs.13.5a and 13.5b as functions of time. Collecting the points
{(u0(t),u2(t))}t one obtains the trajectory from Fig. 13.5c, which encircles all min-
ima presented in Fig. 13.1a (the points S, D1, D2, D3). The corresponding Fourier
spectrum for the derivative of the action s(t), shown in Fig. 13.5d, is given in
Fig. 13.5e and does not exhibit a discrete structure. Therefore such orbits cannot
be quantized.

13.1.5 Summary and Conclusions

Herewe summarize themain achievements for the large amplitudemotion.We solved
numerically the equations of motion and showed the time dependence of the shape
variables β and cos 3γ, as well as the Fourier spectrum for the time derivative of
the classical action. If the “consistency” condition is satisfied one can extract the
quantized energy from the Fourier spectrum. The corresponding quantum state is a
mixture of states with higher energies. In the case of beta states, these higher energies
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Fig. 13.4 a The time dependence of the deformation β for the first quantized gamma state. The
consistency condition is achieved for e1 = 4.07MeV. The parameters defining the Hamiltonian
are those from Fig. 13.2a. b The time dependence of the parameter cos 3γ for the first quantized
gamma state. c The time dependence of the action density for the first quandized gamma state. d
The classical trajectory corresponding to the first quantized gamma state, in the plane (u0,u2). e
Fourier spectrum of the action density given in (c)
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Fig. 13.5 a The time dependence of the coordinate u0 for the first gamma-like trajectory at the
energy E = 5MeV. The parameters defining the Hamiltonian are those from Fig. 13.2a. b The same
as in (a) but for the coordinate u2. c The open classical trajectory of a gamma type motion in the
plane (u0,u2). The time evolutions of the coordinates u0,u2 are given in (a) and (b), respectively.
d The time dependence for the action density corresponding to the trajectory shown in (c). e Fourier
spectrum of the action density for the trajectory given in (c)
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are multiple of the lowest energy, while in the case of gamma states there are two
fundamental frequencies associated with oscillations of the first and second nuclear
radii, respectively. The orbits are closed and periodical. Also, a case of high energy
(H = 5) is considered. The corresponding orbit is surrounding all minima points and
is not a closed one. Obviously, such kind of orbits cannot be quantized. All results
described above, were obtained using for the parameters defining the Hamiltonian
(13.1.1) the followingvalues:A=1,B=0.8,D=0.4,C=E=F=G=0.These para-
meters determine the energies of the harmonic beta and gamma states: ω0 = 2. and
ω2 = 4.23MeV. Within the harmonic approximation (RPA) the next two excited
beta states have the energies equal to 4 and 6 MeV, respectively. The energies of the
first three states of the harmonic picture should be compared with the values 1.72,
3.02, 4.MeV, which are predicted by the Fourier spectrum analysis. The difference
in the two sets is caused by the higher RPA contributions in the latter states. The one
and two phonon gamma states have the energies equal to 4.23 and 8.46MeV, respec-
tively, while the first peaks in the Fourier spectrum of the gamma like trajectories
are located at 4.07 and 7.82MeV. By comparing the two sets of energies one may
conclude that including the “RPA-boson” correlations the energies are decreased.
Also, the anharmonicities affect beta like states to a larger extent than the states of
gamma type.

Of course, a legitimate question is how well does the quantized energies for the
“large amplitude” trajectories approximate the exact oneswhich could be obtained by
diagonalizing the quantal Hamiltonian (13.1.1). To answer this question we invoke
the results of Ref. [CAM93] where such a comparison is made in connection with a
solvable model Hamiltonian. Indeed, for the cases where the Fourier spectrum has
a discrete structure, the quantized spectrum approximate fairly well the exact one.
For the complementary cases the diagonalization procedure applied to the quantal
Hamiltonian is slowly convergent and therefore a special treatment is required from
both quantal and classical sides.

13.2 Solvable Sixth Order Boson Hamiltonians

13.2.1 A Sextic Boson Hamiltonian

Here we shall treat semi-classically the following sixth order quadrupole boson
Hamiltonian

H = A1

∑

μ

b†μbμ + A2

∑

μ

(
b†μb†−μ + b−μbμ

)
(−)μ + A4 P̂2 + A6 P̂3, (13.2.1)

where b†μ (bμ) with −2 ≤ μ ≤ 2, denotes the creation (annihilation) quadrupole
boson operator and
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P̂ = 1

2

∑

μ

(
b†μ + (−)μb−μ

) (
b†−μ + (−)μbμ

)
(−)μ. (13.2.2)

Obviously, themodelHamiltonian does not commutewith the bosonnumber operator

N̂ =
∑

μ

b†μbμ. (13.2.3)

As in the previous section we are interested in solving the time dependent variational
principle (TDVP) equations

δ

t∫

0

〈�|
(

H − i�
∂

∂t ′

)
|�〉dt ′ = 0. (13.2.4)

with the variational state |�〉 given by:

|�〉 = exp
[
z0b†0 − z∗

0b0 + z2(b
†
2 + b†−2) − z∗

2(b2 + b−2)
]
|0〉. (13.2.5)

The boson vacuum state is denoted by |0〉. The function |�〉 depends on the complex
parameters z0, z2 and their complex conjugates z∗

0, z∗
2. These parameters play the

role of classical phase space coordinates whose equations of motion are provided
by the TDVP equations. The function |�〉 is a good candidate for the trial function,
given the fact that H does not conserve the number of bosons. Note that the trial
function is a mixture of components of different angular momenta which results
in obtaining an intrinsic frame for the boson system. Also, the trial function is a
mixture of components which are eigenstates of the z-component of the angular
momentum. The corresponding eigenvalues for such components are conventionally
called K quantum numbers. From Eq. (13.2.5) it results that � is a mixture of even
K components. As proved in Refs. [GRC78, RCG78], the coherent state |�〉 may
generate, through projection, the full SU(5) basis |NvαJ M〉 with N- the number
of bosons, v the seniority, α the missing quantum number, J and M the angular
momentum and its projection on z-axis. From the trial function only the K = even
components of good angularmomentumcanbeprojected.ThemeaningofKquantum
number in the projection formalism was commented in Ref. [RCGD82]. Indeed,
the projected state with fixed K is actually a linear combination of components
with different K′, the projection of angular momentum on the z-axis of the intrinsic
frame defined as in the framework of the liquid drop model. However, for large
deformation the componentwith K ′ = K prevails. To conclude, the quantumnumber
K is related with an intermediate intrinsic frame where the function |�〉 (13.2.5) has
only K = even components, while K ′ is defined within the real intrinsic frame
defined by the principal axes of the moment of inertia.
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Then, the variational principle equation yields the following equations:

∂H
∂z0

= −i�
•
z
∗
0,

∂H
∂z∗

0
= i�

•
z0

∂H
∂z2

= −2i�
•
z
∗
2,

∂H
∂z∗

2
= 2i�

•
z2. (13.2.6)

Here the symbol “•” denotes the time derivative operation. It is convenient to have
the classical equations of motion in a canonical form. In order to reach this goal we
perform the following change of variables

qi = 2(k+2)/4Re(zk), pi = �2(k+2)/4Im(zk), k = 0, 2, i = k + 2

2
. (13.2.7)

Up to an additive constant, 35
4 A4 + 315

8 A6, the classical energy function, defined
as the average value of the model Hamiltonian with the coherent state |�〉, has the
expression:

H ≡ 〈�|H |�〉 = A′

2�2
(p21 + p22) + A

2
(q2

1 + q2
2 ) + D

4
(q2

1 + q2
2 )

2 + F

6
(q2

1 + q2
2 )

3,

(13.2.8)

where the following notations were used:

A′ = A1 − 2A2, A = A1 + A2 + 14A4 + 189

2
A6,

D = 4A4 + 54A6, F = 6A6. (13.2.9)

The new variables obey the equations:

∂H
∂qk

= − •
pk,

∂H
∂ pk

= •
qk, k = 1, 2 (13.2.10)

The sign minus in the first Eq. (13.2.10) suggests that pk and qk play the role of
classical generalized momenta and coordinates, respectively. In terms of bosons, the
conjugate coordinates have the expression:

α0 = 1√
2
(b†0 + b0), π0 = �

i
√
2
(b0 − b†0),

α2 = 1

2
(b†2 + b†−2 + b2 + b−2),π2 = �

i2
(b2 + b−2 − b†2 − b†−2) (13.2.11)
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The phase space coordinates are given by:

qk = 〈�|αi |�〉,
pk = 〈�|πi |�〉, k = 1, 2; i = 1 + (−1)k. (13.2.12)

The nice feature of the classical energy function H consists of the fact that it does
not contain powers of momenta higher than two, although we started with a high
order boson Hamiltonian.

It is worth mentioning that similar time dependent approaches are also used for
treating many body systems, when for example a Hartree Fock or an RPA approxi-
mation [RiSh80, RCGP84] is performed.

13.2.2 The Classical Description

From Eq. (13.2.10), the momenta can be expressed as the coordinate time derivative:

pk = �
2

A′
•
qk, k = 1, 2. (13.2.13)

The classical energy expressed in terms of the polar coordinates (r, θ) associated to
the plane (q1, q2), and their time derivatives looks like:

H = �
2

2A′ (
•
r
2 + r2

•
θ
2
) + V (r), (13.2.14)

where V (r) is the potential energy:

V (r) = 1

2
Ar2 + 1

4
Dr4 + 1

6
Fr6. (13.2.15)

For r > 0, depending on the coefficients involved, the potential energy function
exhibits either two or no extreme points. In the first situation, the ordering of the
maximum and minimum points is decided by the relative signs of the defining coef-
ficients A, D and F. Here we study the case A > 0, D < 0, F > 0, D2 > 4AF ,
which defines a potential having first a maximum and then a minimum. The other
ordering situation is also interesting but will be not considered here. Since V (r)

depends only on even powers of r , r = 0 is an extreme point. For example for the
coefficients A, D, F satisfying the ordering relations mentioned above, r = 0 is a
minimum point.
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For illustrative purposes we assume some concrete values for the structure coef-
ficients involved, satisfying the sign restrictions mentioned above:

A = 3 MeV, D = −0.4 MeV, F = 0.01 MeV, A′ = 0.0025 MeV. (13.2.16)

There are two constants of the motion, the energy:

H = E, (13.2.17)

and the third component of the angular momentum,

L3 ≡ 1

2
(q1 p2 − q2 p1) = �

2

2A′ r
2 •
θ. (13.2.18)

For the sake of completeness we give also the expressions of the other two compo-
nents of angular momentum:

L1 = 1

4
[�(q2

1 − q2
2 ) + 1

�
(p21 − p22)], L2 = 1

2
[�q1q2 + 1

�
p1 p2]. (13.2.19)

These components generate a classical SUc(2) algebra with the multiplication oper-
ation:

{Li ,Lk} = εik jL j , (13.2.20)

where {, } denotes the Poisson brackets and εik j the antisymmetric unit tensor. Li

might be obtained as average values on |�〉 (13.2.5) of angular momentum compo-
nents operators L̂i acting on a boson space [RPB03] and defined in Chap. 3.

These boson operators generate a boson SUb(2) algebra. The correspondence
1
i�[, ] → {, } achieves a homeomorphism of the two algebras mentioned above,

SUc(2) abd SUb(2). Since the operators
b2+b−2√

2
and

b†2+b†−2√
2

satisfy boson commu-
tation relations, Eq. (3.4.17) represent the Schwinger boson representation of the
angular momentum components acting in a fictitious space [Schw65].

The boson algebra defined above is different from the SUq(2) algebra of the
angular momentum components carried by the quadrupole boson operators in the
laboratory frame:

Jμ = √
10�

(
b†b

)

1μ
(13.2.21)

Indeed, with respect to the associated SUq(2) group, the bosons b†2μ are tensors of
rank 2 and projection μ. The tensor character of the quadrupole bosons with respect
to the SUb(2) algebra is decided by their commutation relations with the generators

L̂k. Thus, one finds that b†0 and
b†2+b†−2√

2
are the components 1

2 and –
1
2 respectively, of a

tensor of rank 1
2 with respect to the rotations around a set of axes (1′, 2′, 3′) obtained

from (1, 2, 3) through the transformation: 1 → 3′, 2 → 1′, 3 → 2′. Indeed, it can

http://dx.doi.org/10.1007/978-3-319-14642-3_3
http://dx.doi.org/10.1007/978-3-319-14642-3_3
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be checked that the operators L̂2−i L̂3√
2

,− L̂2+i L̂3√
2

, L̂1 are the components −1,+1, 0

respectively, of a tensor of rank one with respect to the group SUb(2).
Due toEq. (3.4.17), the operator L̂3 does not commutewithJ2 and consequently an

eigenstate of L̂3 is a mixture of components of different angular momenta. We stress
on the fact that the operators L̂k generate rotations in a fictitious space. Moreover,
they are different from the components of angularmomentum in the intrinsic frame as
defined within the liquid drop model. Three differences between the two momenta
are to be noticed: (i) they obey different commutation relations; (ii) the intrinsic
angular momentum describes the motion of the Euler angles, while the angular
momentum considered here is defined by means of the intrinsic coordinates and
their corresponding conjugate momenta; (iii) the intrinsic angular momentum length
is the same as that of angular momentum in the laboratory frame. However, for the
angular momentum L̂k such an equality holds neither in the quantum mechanical
picture nor for their classical images. Indeed, by a direct calculation one finds:

〈�| Ĵ 2|�〉 = 6�2
(
|z0|2 + 2|z2|2

)
,

〈�|L̂2|�〉 = �
2

4

[(
|z0|2 + 2|z2|2

)2 + 3
(
|z0|2 + 2|z2|2

)]
. (13.2.22)

From these equations one derives an equation relating the averages of Ĵ 2 and L̂2.

〈�| Ĵ 2|�〉 = −9 + 12

√
9

16
+ 〈�|L̂2|�〉,

〈�|L̂2|�〉 = 1

144

[
〈�| Ĵ 2|�〉

]2 + 1

8
〈�| Ĵ 2|�〉,

�
2

3∑

k=1

L2
k = 1

144

[
〈�| Ĵ 2|�〉

]2
. (13.2.23)

This equation constitutes a proof for the assertion made above.
Therefore, classifying the states describing the intrinsic degrees of freedom by the

quantum numbers associated to the L̂2 and L̂3 operators is a point of view which is
different fromall knownboson formalisms.However, here 〈�|L̂2|�〉 is not a constant
of motion for the classical system which is a consequence of the fact that 〈�|J2|�〉
is not either, despite the fact that in the laboratory frame the model Hamiltonian is
a scalar operator with respect to the rotation group. Actually, this happens since the
trial function has not good symmetry with respect to rotations. This implication does
not hold in general. For example the BCS function breaks the gauge invariance and
on the other hand the average of the particle number operator is a constant of motion
for the classical system. However, an example of a sixth order boson Hamiltonian
which together with the trial function � define a classical system which admits both
L3 and L2 as prime integrals, will be analyzed in one of the next subsections. In that
case in the laboratory frame the SU (2) ⊗ SU (2) symmetry can be used to classify

http://dx.doi.org/10.1007/978-3-319-14642-3_3
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the nuclear states, one group factor being associated to the dynamic deformations β
and γ, while the other one to the motion of the Euler angles.

In order to avoid the confusion generated by the use of a common name for
the L̂μ and Jμ operators we shall conventionally call L̂μ as the components of the
pseudo-momentum of the quadrupole intrinsic coordinates. Moreover, to simplify
the nomenclature, hereafter we shall refer to L̂ as to intrinsic pseudo-momentum.
We notice that the variable θ is analogous to the dynamic γ deformation in the liquid
dropmodel. Due to this analogy the intrinsic pseudo-momentummight be also called
as the γ angular momentum.

The trial function |�〉 is a superposition of componentswith odd number of bosons
and components with even number. Obviously, the first components are mixture of
intrinsic pseudo-momenta equal to half-integer multiple of � while the second type
of components comprise only intrinsic pseudo-momenta which are integer multiples
of �. It results that from � one may project both components with L3 equal to
k�, k= integer and components with L3 equal to 2k+1

2 �, k= integer. One expects
therefore that the third component of the classical intrinsic pseudo-momentum can
take both sets of values mentioned above.

From the classical equation of motion it results that
•
L3 = 0 and consequently, the

equation L3 = const. holds. Actually, this equation is implied by the conservation
law equation [H, L̂3] = 0, which takes place in the quantal picture. The classical
system has two constants of motion,H and L3, and two degrees of freedom, r and θ.
Therefore, the system is fully integrable and, consequently, analytical solutions for
trajectories are expected to be possible.

Note that �2

A′ plays the role of the mass, m0, of a classical non-relativistic particle
moving in a central force field. The classical energy may be viewed as a counterpart
of amicroscopic Hamiltonian including a two bodymonopole-monopole interaction.
In that case the coordinate r signifies the classical image of a collective microscopic
coordinate [ReiSc82]. It is worth noting that the function L3 is actually half of the
angular momentum component describing the rotation around an axis perpendicular
to the plane spanned by the q1, q2 coordinates.

L̄3 = q1 p2 − q2 p1. (13.2.24)

Eliminating the angular variable in Eq. (13.2.14) one obtains:

�
2

2A′
•
r
2 + Veff(r) = E, (13.2.25)

where Veff (r) is the effective potential energy given by:

Veff(r) = A′L̄2
3

2�2r2
+ V (r). (13.2.26)
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The constant of motionL3 depends on the initial conditions determining the classical
trajectory (q1(t), q2(t), p1(t), p2(t)).

Before fixing the constant of motion, some additional comments are necessary.
Since the operators L̂μ act in the boson space spanned by the operators b†0 and

(b†2 + b†−2)/
√
2, which behave like spinors, one may say that they generate a SU(2)

group. On the other hand we have seen that L̄3 describe a rotation around an axis
perpendicular on the plane of the (q1, q2) coordinates. Extending the plane to a
three dimensional space (q1, q2, q3)with q3 the coordinate corresponding to the axis
perpendicular to the plane (q1, q2), one could assert thatLk generates an SO(3) group
describing the rotation in the specified three dimensional space. Since the angular
momentum associated to these rotations takes values which are integer multiples of
�, we fix the constant of motion by the quantization restriction:

L3 = L

2
�, L = 0, 1, 2, ... (13.2.27)

Here we treat only the trajectories corresponding to the even values of L which
results in confining our considerations to the quantization condition:

L3 = L�, L = 0, 1, 2, ... (13.2.28)

The trajectories corresponding to half integer values of L in Eq. (13.2.28) can be
treated in a similar manner. In principle, the values of L from Eq. (13.2.28) should be
upper bounded by the angular momentum L length. However, L2 is not a constant
of motion and therefore such limitation for L does not exist. Replacing L̄3 by its
quantized expression, the effective potential becomes:

Veff(L; r) = 2A′L2

r2
+ V (r). (13.2.29)

This is a generalization of the Davidson potential [Dav32] since contains additional
fourth and sixth powers of the coordinate r . For L < 59, Veff(L; r) exhibits a two
minima shape. For the critical value L = 59, theminimumof the left well gets unified
with the maximum of Veff which results in arising an inflection point. For L = 25 and
the set of parameters specified by Eq. (13.2.16), Veff (L; r)was plotted as function of
r , in Fig. 13.6. The deep of the two wells depends on intrinsic pseudo-momentum in
a different fashion. Indeed, while the first minimum exhibits a strong L dependence
the second one is only slightly depending on L. This feature is shown in Fig. 13.7.
From there we see that the difference between the maximum and the first minimum
values of Veff is decreasing with L and is vanishing at L equal about 59, where the
two extremes become an inflection point.

From the equations of motion for x = r2 and θ, one obtains:

dt = �

2

√
3

A′F
dx√

P4(x; E, L)
, dθ = L

√
3

A′F
dx

x
√

P4(x; E, L)
, (13.2.30)
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Fig. 13.6 The effective
potential with the
coefficients A′, A, D, F
specified in Eq.13.2.16, is
plotted as function of r for
L = 25 with L the
pseudo-angular momentum
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eff min2

max eff max
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Vr

Vr

Over (O)

where

P4(x; E, L) = −x4 − αx3 − βx2 − γ (E) x − δ(L),

α = 3D

2F
< 0, β = 3A

F
> 0, γ(E) = −6E

F
< 0, δ(L) = 12

A′L2

F
> 0.

(13.2.31)

For any L < 59 there are three energy domains defined as follows (see Fig. 13.6
for the case L = 25):

(a) UNDER, for E ∈ [Veff min 2(L), Veff min 1(L)],
(b) BETWEEN, for E ∈ [Veff min 1(L), Veff max(L)], (13.2.32)

(c) OVER, for E ∈ [Veff max(L),+∞).

The labels for the three intervals will be hereafter abbreviated by U, B and O respec-
tively, whenever one wants to mention the fact that a given observable characterizes a
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Fig. 13.7 The effective
potential with the
coefficients A′, A, D, F
specified in Eq.13.2.16, is
plotted as function of r for
several values of the
pseudo-angular momentum:
L=0, 10, 20, 30, 40, 50, 59
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certain energy region. The systemmotion is allowed only for the values of “x” where
the polynomial P acquires positive values. Such allowed intervals are depicted sep-
arately for each of the energy regions U, B and O.

13.2.3 Results for an “U” Energy

In the energy interval U, the motion is possible only in the right well (see Fig. 13.6).
Indeed, inside U, the equation

P4(x; E, L) = 0, (13.2.33)

has two real
x1 = a(E, L), x2 = b(E, L), x1 > x2, (13.2.34)

and two complex conjugate solutions:

x3 = u(E, L) + iv(E, L) = x∗
4 , (13.2.35)
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Writing the polynomial P4(x; E, L) in the form

P4(x; E, L) = −
4∏

k=1

(x − xk), (13.2.36)

it is clear that P4(x; E, L) ≥ 0 for x ∈ [x2, x1].
For what follows it is useful to introduce the equation

v2λ2 + (ab − (a + b)u + (u2 + v2))λ − 1

4
(a − b)2 = 0. (13.2.37)

whose solutions are conventionally denoted by λ1,2(E, L) (λ2 > λ1). We notice
that the first Eq. (13.2.30) provides the time as function of the radial coordinate r. The
analytical result for this sunction is given in Appendix H. By an inversion operation
one obtains r as a function of time. Inserting this in the second Eq. (13.2.30) and
integrating the resulting equation, one obtains θ as function of time. The two functions
of time, r and θ, are periodic. However, their periods are different from each other.
Moreover, they are not commensurable, which results in having open trajectories.
Here we give details about the description of the motion of r , the calculations for the
θ variable being performed by following similar steps.

For r , the period of the motion, TU (E, L), i.e. twice the time elapsed between
two successive passages through the turning points situated at rmin = √

b(E, L) and
rmax = √

a(E, L), is given by the equation [PBM81, WW50, GrRy65]

TU(E, L) = π�

√
3

A′F
1

4
√

�U (E, L)
2F1(

1

2
,
1

2
; 1; k2U (E, L)), (13.2.38)

where

�U (E, L) = (ab − (a + b)u + (u2 + v2))2 + (a − b)2v2, (13.2.39)

with a, b,u and v depending on the energy E and the quantum number L as shown
in Eqs. (13.2.35) and (13.2.36). 2F1(a, b; c; z) is the Gauss hypergeometric function
and

k2U (E, L) = λ2(E, L)

λ2(E, L) − λ1(E, L)
. (13.2.40)

The classical action corresponding to the degree of freedom r , written in units of
2π� is given by the following integral:

IU (E, L) = 1

2π�

E∫

Veffmin2(L)

TU (w, L)dw. (13.2.41)
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13.2.4 Results for a “B” Energy

Similarly, in the caseB, the zeros of the polynomial P4(x; E, L), are positive numbers
denoted by

x1 = a(E, L), x2 = b(E, L), (13.2.42)

x3 = c(E, L), x4 = d(E, L),

and ordered as follows
x1 > x2 > x3 > x4. (13.2.43)

The solution for t as a function of r is given inAppendixH. The periods in bothwells,
left and right, are equal to each other. Indeed, one can prove that the two periods
have a common expression:

TB(E, L) = π�

√
3

A′F
1√

(a(E, L) − c(E, L))(b(E, L) − d(E, L))

2F1(
1

2
,
1

2
; 1; k2B(E, L)), (13.2.44)

where

k2B(E, L) = (a(E, L) − b(E, L))(c(E, L) − d(E, L))

(a(E, L) − c(E, L))(b(E, L) − d(E, L))
. (13.2.45)

Since the hypergeometric function has a simple pole in k = 1 the period diverges
when the energy approaches Veff max(L) from below. If we calculate the period for
E = Veff max(L), the same divergence is obtained.

For the left well, the integral action given in units of 2π� is equal to that formulated
for the right well but restricted to the corresponding energy interval:

Ileft(E, L) = IB(E, L) = 1

2π�

E∫

Veffmin1(L)

TB(w, L)dw. (13.2.46)

The action for a trajectory of energy E lying in the right well consists of two terms:

Iright(E, L) = IU (Veffmin1(L), L) + IB(E, L). (13.2.47)
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It turns out that IU (Veffmin1(L), L) is an integer number, namely

IU (Veffmin1(L), L) = 1

2π�

Veffmin1(L)∫

Veffmin2(L)

TU(w, L)dw = L . (13.2.48)

This equation was numerically checked in Ref. [RAU06] and seems to be a conse-
quence of the restriction for the constant of motion L3, i.e. L3 = L�. If we change
this to L3 = L

2 � the r.h.s. of the above equation would be L/2 and, moreover, the
equation would be satisfied only for even values of L. The nice feature of our quanti-
zation procedure is that it produces degenerate quantal states in the two wells which
in fact is consistent with what one obtains by solving the one dimensional stationary
Schrödinger equation associated to the potential Veff. Indeed, if E is an eigenvalue
in the interval [Veff min1, Veff max] then there are two independent solutions: for one
solution the square of the wave function modulus is centered in the first well, while
for another solution the system is localized in the second well. The initial condition
is decisive for the system to choose one state or another. By contrast, the Schrödinger
equation for the case L3 = L

2 � with L = odd yields non-degenerate states whose
probability distributions are centered either on one or on another well.

Note that the classical trajectory in a well is taking care of the presence of the
trajectory in the other well and thereby the tunneling effect is already included. If
the two states are determined by the potential restricted to a single well respectively,
then the final states are to be determined by switching on the interaction between
the two states caused by the barrier separating the two wells. If the states energy
is far away from the maximum value of the effective potential one expects that the
two solutions are not interacting with each other. If this condition is not fulfilled
the tunneling effect produces a shift of energies in the two wells. Since the two
wells are centered in different r , one expects the shifts of the corresponding levels
are different from each other. The difference of energies in the two wells and the
time interval necessary for tunneling from one well to the other obey the uncertainty
principle inequality. Of course, we should keep inmind that we deal with the intrinsic
degrees of freedom which are fully decoupled from the rotational motion. Whether
this degeneracy persists when the rotational degrees of freedom are switched on, i.e.
the system is considered in the laboratory frame, is an issue to be studied in one of
the next subsections. Deconspiring the result obtained there, we just mention that,
indeed, such degeneracy persists, the degenerate states being characterized by the
same seniority quantum number and different angular momenta. However, neither
seniority nor the angular momentum are constants of motion for the intrinsic motion
of the system considered so far. Indeed, considering the Casimir operator of the group
O(5), defining the seniority quantum number,

�̂2 = N̂ (N̂ + 3) − 5
(

b†b†
)

00
(bb)00 , (13.2.49)
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and averaging it on the trial function one obtains:

〈�|�̂2|�〉 = 2

(
q2
1 + q2

2 + 1

�2

(
p21 + p22

))
+ 1

�2
(q1 p2 − q2 p1)

2 , (13.2.50)

One can check that this quantity is not a constant of motion although seniority is a
good quantum number for the starting bosonHamiltonian. Therefore, the degeneracy
in the intrinsic frame is caused by a different symmetry. As we mentioned before, the
Hamilton function is invariant against changing L3 → −L3 or equivalently against
changing the axis 1 with the axis 2 and axis 2 by axis 1. Whether the degeneracy seen
for the states in the two wells, when L3 = L�, is caused by the symmetry mentioned
above is still an open question.

Thus, the final expression for the integral action for a trajectory from the right
well is

Iright(E, L) = L + Ileft(E, L). (13.2.51)

We notice that k2B(E, L) < 1 for E < Veff max(L), but k2B(Veff max(L), L) = 1.

13.2.5 Results for an “O” Energy

The case (c) called “OVER” is similar to the case “UNDER”. The only change to
be done in the formulae pertaining to case U is the mere replacement b(E, L) →
d(E, L) required by the conventional designations of the zeros of the polynomial
P4. Thus, the roots of P4(x; E, L), are

x1 = a(E, L), x2 = u(E, L) + iv(E, L) = x∗
3 , x4 = d(E, L), (13.2.52)

with x1 > x4. (See also the notations for case (b) BETWEEN, when all roots are
real and positive.)

Correspondingly,wedenote byλ1,2(E, L) (λ2 > λ1) the solutions of the equation

v2λ2 + (ad − (a + d)u + u2 + v2)λ − 1

4
(a − d)2 = 0. (13.2.53)

For a chosen energy in the interval O, the first Eq. (13.2.30) has the analytical solution
given in Appendix H.

The period of the motion of the coordinate r , TO(E, L), i.e. twice the time elapsed
between two successive passages through the turning points situated at rmin =√

d(E, L) and rmax = √
a(E, L), is given by the equation

TO(E, L) = π�

√
3

A′F
1

4
√

�O(E, L)
2F1(

1

2
,
1

2
; 1; k2O(E, L)), (13.2.54)
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where

k2O(E, L) = λ2(E, L)

λ2(E, L) − λ1(E, L)
. (13.2.55)

and �O(E, L) is the discriminant of Eq. (13.2.53). When the energy approaches
Veff max(L) from above, λ2 → ∞, and k2O → 1. Thus, the period of the motion
diverges also when the energy approaches Veff max(L) from above.

The integral action for the case O is:

IO(E, L) = Iright(Veff max(L), L) + 1

2π�

E∫

Veff max(L)

TO(w, L)dw. (13.2.56)

13.2.6 The Virtual Motion Under the Hump

The region shown in Fig. 13.6 under the hump is forbidden for the classical motion
of r . Indeed, there the energy is smaller than Veff which results in having a negative
kinetic energy as required by Eq. (13.2.25). Note that for this situation, the integral
(13.2.30) provides imaginary values for time, i.e., τ = i t . It is interesting to notice
that by changing the time variable t by −iτ the resulting equation can be again
integrated since the corresponding effective potential is now −Veff while the energy
becomes -E. Trajectories in the well−Veff are conventionally called virtual. They are
periodic curves in the new variable τ . Moreover, this period may be connected with
the tunneling time through the hump, for the associated quantum system [ReiSc82,
Ne85, LaMa94].

The period of the motion in the well −Veff (L; r), or in the hump of Veff(L; r), is
given by

Tvirt(E, L) = π�

√
3

A′F
1√

(a(E, L) − c(E, L))(b(E, L) − d(E, L))

2F1(
1

2
,
1

2
; 1; k2V (E, L)), (13.2.57)

where

k2V (E, L) = (b(E, L) − c(E, L))(a(E, L) − d(E, L))

(a(E, L) − c(E, L))(b(E, L) − d(E, L))
. (13.2.58)
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The integral action for the inverse of the humppotential is obtained in an analogous
way with the procedure described before. The final result is:

Ivirt(E, L) = 1

2π�

Veff max(L)∫

E

Tvirt(w, L)dw. (13.2.59)

13.2.7 Numerical Application

Here we give information about trajectories and the semiclassical spectrum corre-
ponding to the coefficients (13.2.16). The shape of trajectories depends on the chosen
value of energy. Here we consider a pair of trajectories corresponding to an energy
lying close to the maximum value of the effective potential, Fig. 13.6. One trajectory
is lying in the left well, while the other one in the right well. The two trajectories
are quite different. Indeed, as shown in Fig. 13.8, upper left panel, in the left well r
is running most of the distance

√
x4 − √

x3 in a very short time, then spends a large
interval of time to reach the value

√
x3 and to depart from it. Finally, r is coming

quickly back to the value
√

x4. The angle θ undertakes a jump of 2.5 rad before
ending a period of motion. As for the right well, the r curve corresponding to E close
to Veff max is different from the one commented above. Indeed, Fig. 13.8, upper right
panel, shows that r stays longer close to the value

√
x2 and a very short time in the

neighborhood of
√

x1. On the other hand, θ changes the speed around the half of
period which is at variance with the behavior of the trajectory from the left well.

From Fig. 13.8 we see that after an interval of two periods of r , 2T, the variable
θ covers about 11 rad in the left well, lower left panel, and only 5 rad in the right
well, as shown in the lower right panel. This suggests that the trajectory r = r(θ) is
not closed.

The two trajectories, lying in the left and right well respectively, correspond to
E=6.984326MeV and are presented in Fig. 13.9.

As shown there, the inner and outer trajectories are almost tangent to each other.
When the energy value is far from Veff,max (=6.98433) there is an unreachable region,
due to the hump. Such a situation is presented in Fig. 13.10 for E = 6MeV and
L = 25.

The periods of trajectories lying close to the maximum value of Veff are much
larger than those staying far from the top of the hump. As a matter of fact, the period
of r has a discontinuity for E = Veff max, which is pictorially shown in Fig. 13.11.
Such a discontinuous behavior suggests that Veff max is a critical point of a phase
transition. In one phase, for a given energy, the system may follow one of two r
trajectories of equal periods, depending on the initial conditions, while in the second
phase only one trajectory is possible.

Other two properties of the period are worth mentioning. From Fig. 13.11 it is
clear that the curve does not start from zero. That means that the limit of period,
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Fig. 13.8 The trajectories r(t) (adimensional) and θ(t) (in units of rad) for the left and right wells,
E=6.984326MeV and L=25, where L has the meaning specified by Eq. (13.2.28)

Fig. 13.9 The trajectories
r(θ) (adimensional) are
represented in the
coordinates q1 = r cos(θ)
and q2 = rsin(θ) for L=25
and E=6.984326MeV. The
curves in both the left (the
inner curve) and right (the
outer curve) wells are given

when the energy tends to Veff min2, is a non-vanishing finite value Tmin2. Also when
E → Veff min1, the period is a non-vanishing quantity, Tmin1. On the other hand when
the energy is equal to the minimum value of the effective potential the trajectories
of r are reduced to one of the stationary points r(t) = r0,1, r(t) = r0,2 which are
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Fig. 13.10 The trajectories
r(θ) (adimensional) are
represented in the
coordinates q1 = r cos(θ)
and q2 = rsin(θ) for L=25
and E=6MeV. The curves
in both the left (the inner
curve) and right (the outer
curve) wells are given

Fig. 13.11 The trajectory
periods in the left well of the
region B as well as in the
region O are plotted as
function of energy

22 -

characterized by a vanishing period. The results reflect the fact that the periods TU

and TB given by Eqs. (13.2.39) and (13.2.45) respectively, are singular for energies
equal to Veff min2 and Veff min1, respectively. In order to restore the continuity feature
of the two periods one has to admit that the energy cannot reach the extreme values
of Veff where the kinetic energy would be equal to zero, but there is a limiting energy
in each of the two wells, E01, E02 determined by the period limits mentioned above.
As a matter of fact, this is a nice classical display for the zero point motion appearing
in the quantum mechanical picture.
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13.3 Quantization of Periodic Trajectories

We note that H does not depend on θ but only on its conjugate momentum. Con-
sequently, there is a constant of motion L3 which is discretized by the constraint
(13.2.28). The remaining variable r and its conjugatemomentum pr are both involved
in the classical Hamiltonian. Moreover, r performs a periodical motion. Conse-
quently, its motion can be quantized by a constraint for the classical action similar
to the Bohr-Sommerfeld condition, corrected with the zero point motion term. This
condition will be applied separately for each region specified in Fig. 13.6. Thus, in
the energy region called “UNDER”, the quantization equation

IU(E, L) = n1 + 1

2
, (13.3.1)

gives the energy levels Eunder(L , n1) situated in the right well below Veff min 1(L).

Let us denote by E0 the solution of Eq. (13.3.2) for n1 = 0 and by E01 and E02
the energies of the first quantized states (of n=0) in the two wells respectively. It is
remarkable that the following equation holds:

E01 = Veff min 1(L) + E02, n1 = L . (13.3.2)

This equation says that Veff min 1(L) + E02 is a quantal level in both left and right
wells. Moreover, below this energy, in the right well there are another L levels. The
quantization condition in the left and right wells of the region “BETWEEN”, reads

Ileft(E, L) = n2 + 1

2
, Iright(E, L) = n1 + 1

2
, (13.3.3)

These equations determine the same energy levels in both wells

Eleft(L , n2) = Eright(L , n1), (13.3.4)

where n1 = n2 + L . The spectrum in the region “OVER” is obtained by solving the
equation provided by the quantization condition

IO(E, L) = n3 + 1

2
. (13.3.5)

The virtual quantum states lying in the potential –Veff are obtained from

Ivirt(E, L) = n4 + 1

2
. (13.3.6)

Having the integral action for the forbidden energy region, one can calculate the
transmission coefficient through the potential barrier. Indeed, according to the WKB
(Wentzel-Kramer-Brillouin) approximation, the transmission coefficient through the



13.3 Quantization of Periodic Trajectories 399

hump is given by the equation:

D(E, L) ≈ exp(−2π Ivirt(E, L)). (13.3.7)

13.3.1 Numerical Results

Solving the above equations of E, one finds the semiclassical spectrum of the system.
It is instructive to see howmany quantum states with energy less than Veff max accom-
modate in each of the two wells. The number of states is presented in Figs. 13.12 and
13.13 as a function of angular momentum for the left and right well, respectively.
Note that for some L, the number of states is the same as for the L+1 case.

Fig. 13.12 The number of
states from the left well are
given as function of L
(13.2.28)

Fig. 13.13 The number of
states in the right well is
plotted as function of L
(13.2.28)
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Fig. 13.14 The energy
levels of the L = 0, L = 1
and L = 2 bands from the
left well. Energy levels are
labeled by n
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Fig. 13.15 The energy
levels in the L = 0, L = 1
and L = 2 bands obtained in
the right well. Energy levels
are labeled by n
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The quantal states are tentatively organized in rotational bands in Figs. 13.14 and
13.15, in a full analogy with the standard definition of the lowest bands within the
liquid drop model. Indeed, each energy level is labeled by two quantum numbers, L
and n.We have two options to organize the energy levels in columns. One is to choose
n as column index and the second one when L is the column label. The first one is
apparently more attractive because then we would have a �L = 1 sequence which
looks similar to some rotational bands in the laboratory frame. The second one is also
a good option since L here is the third component of L and therefore would play the
role of a K quantumnumber. In order to decidewhich one corresponds to the standard
definition of a band one has to analyze the reduced transition probabilities between
consecutive states of a band. Here we make the option for the second version having
in mind the following arguments. If we consider a lowest order boson expression for
the E2 transition operator, T ha , this cannot relate states characterized by L = integer,
since it is a tensor of rank 1

2 . Let us consider now as anharmonic term a scalar operator

with respect to the group generated by L̂k with k=1, 2, 3:

T anh = qanh

[
2b†0b0 +

(
b†2 + b†−2

)
(b2 + b−2)

]
. (13.3.8)



13.3 Quantization of Periodic Trajectories 401

Obviously, this can relate states of equal L . Therefore, when the transition operator
has the expression T ha + T anha the bands are decoupled from each other. If the
rotational symmetry is restored, then on the top of each member of the above defined
bands, one could build a full band. A similar situation may be met in the case of
L = half integer.

In contradistinction to what happens for real trajectories, the integral action for
the virtual states, is a decreasing function of energy. Also, the number of states from
−Veff is a decreasing function of intrinsic pseudo-momentum.

Energy levels for the virtual states do not coincide with energy levels correspond-
ing to real states of left and right well. The differences in energy and the period of
virtual states satisfy the uncertainty relations.

Let us consider the transmission coefficients corresponding to the virtual state
of highest energy, i.e., the first one under the hump. These are calculated within
the WKB approximation by making use of Eq. (13.3.7), for a given value of the
intrinsic pseudo-momentum. The results are given in Figs. 13.16 and 13.17. It is
worth mentioning the discontinuity of D(E, L) given by Eq. (13.3.7) for some values
of L. Indeed, going from the values 10, 22, 29, 35, 40, 44, 47, 50, 53, 55 to 11, 24,
30, 36, 41, 45, 48, 51, 54, 56 respectively, one achieves a very big jump in magnitude
for the transmission coefficient. These discontinuities correspond to the jumps in the
number of states in terms of L .

Note that the transmission coefficients depend exponentially on the energy dis-
tance of the first virtual state and Veff max .

Fig. 13.16 The transmission
coefficient calculated with
Eq. (13.3.7) is plotted as
function of L given by
Eq. (13.2.28)
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Fig. 13.17 The transmission
coefficient (adimensional)
defined by Eq. (13.3.7) is
plotted versus �Emax− f irst
the excitation energy (given
in units of keV) of the first
virtual state

13.3.2 Another Boson Hamiltonian

Here we spend few words about another sixth order quadrupole boson Hamiltonian
which exhibits some distinct properties:

H2 = ε
∑

μ

b†μbμ +
∑

J=0,2,4

CJ

[
(b†b†)J (bb)J )

]

0
+ F(b†b†)0 N̂ (bb)0. (13.3.9)

N̂ denotes the quadrupole boson number operator. Using the same notations as in
the previous subsections, the average of H2 on |�〉 has the expression:

H2 = A

2

(
q2
1 + q2

2 + 1

�2
(p21 + p22)

)
+ B

4

(
q2
1 + q2

2 + 1

�2
(p21 + p22)

)2

+ C

8�2
(q1 p2 − q2 p1)

2 + F

10

[
1

4

(
q2
1 + q2

2 + 1

�2
(p21 + p22)

)2

− 1

�2
(q1 p2 − q2 p1)

2
] (

q2
1 + q2

2 + 1

�2
(p21 + p22)

)
. (13.3.10)

where A, B, C have simple expressions in terms of CJ with J = 0, 2, 4. Note that
the classical energy involves terms which are quartic or even sextic in momenta as
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well as terms coupling the coordinates and momenta. These two features are missing
in the classical Hamiltonian treated above. Also, one can prove that both L2 and L3
are constants of motion. We recall that in the case treated in the previous subsection
only L3 had this property. Taking the two constants equal to �

2L(L + 1) and �M
respectively, the energy becomes a function of the quantum numbers L and M :

EL M = 2A
√

L(L + 1) + 4BL(L + 1) + C

2
M2

+ F
8

5

√
L(L + 1)

[
L(L + 1) − M2

]
. (13.3.11)

This energy is associated to themotion of the intrinsic degrees of freedom. Supposing
that these degrees of freedom are only weakly coupled to the Euler angles, then the
total energy may be written as:

E J L M = EL M + δJ (J + 1). (13.3.12)

where J denotes the angular momentum in the laboratory frame while δ has a simple
expression in terms of the structure coefficients ε and CJ with J = 0, 2, 4. On the
other hand, the ground band energies can be obtained by averaging H on the states
{|NvαJ M〉} with N = v = J

2 . The same energies are obtained if in Eq. (13.3.11)
one substitutes:

2
√

L(L + 1) → J

2
, M = 0. (13.3.13)

Thus, energies of the ground band are given by the following equation:

E J = A
J

2
+ B

J 2

4
+ δJ (J + 1) + F

5

J 3

8
≡ A1 J + B1 J 2 + C1 J 3. (13.3.14)

The three parameters formula describes a large number of experimental ground band
energies with high accuracy [RAU06].

Alternatively, the quantal energy for the intrinsic motion can be obtained by
quantizing the anharmonic plane oscillator and the third component of the intrin-
sic pseudo-momentum. In this case the result is:

En,M = A(n +1)+ B(n +1)2+ C

2
M2+ F

5

[
(n + 1)3 − 4(n + 1)M2

]
. (13.3.15)

Neglecting the zero point energy terms and taking M = √
L(L + 1) one obtains:

En,L = A1n − B1n2 + C1L(L + 1) + F

5

(
n3 − 4nL(L + 1)

)
(13.3.16)
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Fig. 13.18 Excitation
energies of the Jπ = 0+
states described
semi-classically, panel a, and
by eigenvalues of the model
Hamiltonian, corresponding
to the seniority v=0, panel
b, and v=3, panel c
respectively, are compared
with the experimental data

(a)

(b)

(c)

with evident notations for the coefficients A1, B1, C1. From the above equation one
sees that the sixth order term brings two types of corrections, one depending on n3

and one depending on the product nL(L +1). Equation (13.3.16), involving four free
parameters, seems to be very useful to describe in a realistic fashion the excitation
energies of states having the same angular momentum. Using the analytical formulas
provided by the classical and quantal treatments respectively, a good description of
the monopole and quadrupole multiplets, identified experimentally in Ref. [Buc06],
for 168Er was possible. Results are given in Figs. 13.18 and 13.19.

13.3.3 Summary and Conclusions

Here we treated, semiclassically, two boson Hamiltonians of sixth order. Concerning
the first Hamiltonian the results are as follows. In terms of polar coordinates (r, θ),
the classical equations of motion have a canonical form. There are two constants
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Fig. 13.19 Excitation
energies of the Jπ = 2+
states, described
semi-classically, panel a, and
by eigenvalues of the model
Hamiltonian, corresponding
to the seniority v=1, panel b
and v=2, panel c,
respectively, are compared
with the experimental data

(a)

(b)

(c)

of motion and therefore the system is fully integrable. The reduced classical phase
space is one dimensional, the independent degree of freedom being the radius r .
For a suitable set of the structure coefficients, the effective potential involved in the
classical energy function has a two minima shape. Note that the kinetic energy is
separated from the potential. The differential equation in r can easily be integrated.
The trajectories r(t) are periodic. Fixing the constant of motion L3, the equation of
motion for θ can also be analytically solved. The corresponding solution θ(t) is also a
periodical function of time. The periods of r(t) and θ(t) are different from each other.
Moreover, they are incommensurable and therefore the trajectory r(θ) is not closed.
The emphasis is put mainly on the r(t) trajectories. There are three distinct energy
regions, labeled by U, B and O , where the r(t) trajectories have distinct behaviors.
Indeed, for a given energy E and a given value of L in the region U there is only one
periodic trajectory, in B the are two trajectories of equal periods while in O again
there is only one periodic trajectory.
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The period magnitude depends on energy. It is an increasing function for E <

Veff max and is singular at the interval end, while for the complementary region the
period decreaseswhen the energy is increased. This feature suggests that E = Veff max

is a critical point where the system undertakes a phase transition. Moreover, the
periods in B and U have finite nonvanishing values when the energy tends to Veff min1
and Veff min2 respectively. In a quantal picture this is equivalent to saying that these
limiting values cannot define touchable states and therefore a zero point motion
corresponds to a finite relative energy with respect to the potential energy minima.

Although the trajectories r(t) have a complex structure which is far from that of
a periodic harmonic function, they can be quantized by a constraint for the integral
action similar to the Bohr-Sommerfeld quantization condition. This way one obtains
a semi-classical spectrum for each of the regionsU, B and O . Choosing the constraint
(13.2.28) forL3 in the region U there are L +1 states, while in B an equal number of
states in the left and right wells, respectively. The states in B are tentatively organized
in rotational bands keeping close to the conventional definition adopted by the liquid
drop model. Each energy level is labeled by two quantum numbers (L , n), one being
used as band label (L) while the other one to distinguish the levels of the same band.
The bands in the right well are very little excited. Thus, the bands are almost identical
concerning the energy spacings.

The tunneling phenomenon from the left to the right well through the separat-
ing barrier was also studied. A special attention is paid to the first virtual state
under the hump. It is noteworthy that there are several values for the intrinsic
pseudo-momentum L where the transmission coefficients, evaluatedwithin theWKB
approach, exhibit a spectacular increase in magnitude. It is interesting to see whether
this result has some relevance for alpha or heavy cluster emissionwhere the tunneling
takes place from a bound state to an unbound state. Represented as a function of the
energy distance between the chosen state and Veff max, the transmission coefficient is
an exponentially decreasing function.

The other Hamiltonian has a more complex structure, involving quartic and sextic
terms in momenta and terms coupling the coordinates and moments. Such a Hamil-
tonian was treated both semiclassically and quantum mechanically. In both cases
one obtains analytical formulas for energies. These were used to describe quantita-
tively the excitation energies of themonopole and quadrupolemultiplets respectively,
in 168Er.



Chapter 14
Comparison of CSM with Some Other
Models

14.1 Solvable Models and Hamiltonian Symmetries

14.1.1 Introduction

It has been noticed that a given nuclear phase may be associated to a certain symmetry.
Hence, its properties may be described with the help of the irreducible representation
of the respective symmetry group. Thus, the gamma unstable nuclei can be described
by the O(6) symmetry [WIJE56], the symmetric rotor by the SU (3) symmetry and the
spherical vibrator by the U (5) symmetry. The gamma triaxial nuclei are characterized
by the invariance symmetry group D2 [DF58] of the rigid triaxial rotor Hamiltonian.
Thus, even in the 50’s of the last century, the symmetry properties were greatly
appreciated. However, a big push forward was brought by the interacting boson
approximation (IBA) [AI76, ArIa76, IAAR87], which succeeded to describe the
basic properties of a large number of nuclei in terms of the symmetries associated to
a system of quadrupole (d) and monopole (s) bosons which generate a U (6) algebra.
The three limiting symmetries U (5), O(6), SU (3) are dynamic symmetries for U (6).
Moreover, for each of these symmetries a specific group reduction chain provides the
quantum numbers characterizing the states, which are suitable for a certain region
of nuclei. For nuclei lying close to the region characterized by a certain symmetry,
the perturbative corrections are to be included.

In Ref. [CAIA81], a new classification scheme was proposed, all nuclei being
distributed on the legs of a symmetry triangle. The vertices of this triangle symbolize
the U (5) (vibrator), O(6) (gamma soft) and SU (3) (symmetric rotor), while the
legs of the triangle denote the transitional region. The properties of nuclei lying far
from vertices are difficult to explain since the states have some characteristics of
one vertex while some others are easy to describe by using the adjacent symmetry.
The transition from one phase to another reaches a critical point depending on the
specific parametrization as well as on the transition type [RB98, RO04, TRO05]. In
Refs. [GIKI80, DI83], it has been proved that on the U (5)− O(6) transition leg there
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exists a critical point for a second order phase transition, while the U (5)− SU (3) leg
has a first order phase transition. Later on it was found that some nuclei are falling
inside the Casten’s triangle.

Recently, Iachello [Iac00, IA01] pointed out that these critical points correspond
to distinct symmetries, namely E(5) and X (5) (not known yet), respectively. For the
critical value of an ordering parameter, energies are given by the zeros of a Bessel
function of half integer and irrational indices, respectively. The description of low
lying states in terms of Bessel functions was used first by Jean and Willet [WIJE56],
but the interesting feature saying that this is a critical picture in a phase transition
and defines a new symmetry was, indeed, advanced first in Ref. [Iac00].

Representatives for the two symmetries have been experimentally identified. To
give an example, the relevant data for 134Ba [CAZA00] and 152Sm [ZAM86] suggest
that they are close to the E(5) and X (5) symmetries, respectively. Another candidate
for E(5) symmetry, proposed by Zamfir et al. [ZZ90] is 102Pd. A systematic search
for E(5) behavior in nuclei was reported in Ref. [CLCR04].

Shortly after the pioneering papers concerning critical point symmetries appeared,
some other attempts were performed, using other potentials like Coulomb,
Kratzer [FOVI03] and Davidson potentials [BONA04]. These potentials yield also
Schrödinger solvable equations and the corresponding results may be interpreted in
terms of symmetry groups. In Ref. [RGF05] the hypothesis advanced was that the
critical point in a phase transition is state dependent. The test with a hybrid model
was made for 134Ba and 104Ru.

The departure from the gamma unstable picture was treated by several authors
whose contributions are reviewed by Fortunato in Ref. [FO05]. The difficulty in
treating the gamma degree of freedom consists in the fact that this is coupled to the
rotational degrees of freedom. A full solution for the Bohr-Mottelson Hamiltonian
including an explicit treatment of gamma deformation can be found in Refs. [GRC78,
RCG78]. Therein, the gamma unstable and the rotor Hamiltonian were also separately
treated. A more complete study of the rotor Hamiltonian and the distinct phases
associated to a tilted moving rotor is given in Ref. [GRC98]. Distinct solutions,
expressed in laboratory frame shape coordinates, were reported in Refs. [CHMO76,
CMW76, SR77]. The gamma dependent part of the wave function was found as a
solution to a specific differential equation in Ref. [BE59].

Finding theγ depending part of the wave function becomes even more complicated
when we add to the liquid drop Hamiltonian a potential depending on β and γ at a
time. To simplify the starting problem related to the inclusion of γ, one uses model
potentials which are sums of a β term, V (β), and a factorized β − γ term U (γ)/β2.
This way the nice feature for the beta variable to be decoupled from the remaining
four variables, specific to the harmonic liquid drop, is preserved. In the next step,
the potential in gamma is expanded around γ = 0 or γ = π

6 . In the first case, if only
the singular term is retained one obtains the infinite square well model described by
Bessel functions in γ. If the γ2 term is added to this term, the Laguerre functions
are the eigenstates of the approximated γ depending Hamiltonian, which results in
defining the so called X(5) approach.
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Note that any approximation applied to the γ-Hamiltonian modifies automatically
the differential equation for β. Indeed, the centrifugal term τ (τ + 3)/β2

disappears but another one is expected to show up from the β−γ coupling, after some
approximations are performed.

The drawback of these approximations is that the resulting functions are not
periodic, as the starting Hamiltonian. Moreover, they are orthonormalized on unbound
intervals, although the underlying equation was derived under the condition of |γ|
small. Moreover, the scalar product of the resulting functions is not defined with
the integration measure | sin 3γ|dγ as in the liquid drop model. Under these circum-
stances it happens that the approximated Hamiltonian in γ loses its hermiticity.

Here we shall describe some solvable approaches where the said drawbacks are
removed.

14.1.2 The Starting Hamiltonian

Written in the intrinsic frame of reference, the original Bohr-Mottelson Hamiltonian
has the expression:

H = − �
2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

∑

k=1,2,3

Q2
k

sin2(γ − 2
3πk)

⎤

⎦ + V (β, γ), (14.1.1)

where the dynamic deformation variables are denoted by β and γ, while the intrinsic
angular momentum components by Qk , with k = 1, 2, 3. Within the liquid drop
model (LDM) the potential energy depends quadratically on β. Here we assume
that the potential energy depends on both deformation variables, beta and gamma.
Without exception, the solvable models proposed for a simultaneous description of
β and γ variables, adopt the variable separation methods. Two situations are to be
distinguished:

(a) If the potential energy term is depending on deformation variables in a sepa-
rable manner:

V (β, γ) = V (β) + U (γ), (14.1.2)

and some additional assumptions are adopted, the eigenvalue equation associated to
H (14.1.1) can be separated in two parts, one equation describing the beta variable
and the other one the gamma deformation and the Euler angles � = (θ1, θ2, θ3).
Indeed, in this case the separation of variables, achieved by various models, is based
on two approximations [CA04, BLMPY07]: (i) restriction to small values of γ, i.e.
|γ| � 1; (ii) replacing the factor 1/β2 by 1/〈β2〉 in the terms involved in the equation
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for γ. The diagonalization of the Bohr-Mottelson Hamiltonian shows that the first
approximation is valid for large γ stiffness while the second one for small γ stiffness
[BLMPY07].

(b) A complete separation of equations for the two variables, β and γ is possible
if we choose the potential

V (β, γ) = V (β) + U (γ)/β2. (14.1.3)

This way the approximation consisting of replacing β2 by 〈β2〉 is avoided but the
restriction to the case |γ| � 1 is still kept. Thus, the theory involves one parameter
which is the γ stiffness which affects the excitation energies in both the beta and
gamma bands.

In what follows the two equations, for β and γ, will be considered separately.

14.1.3 The Treatment of the β Hamiltonian

The solvable models for β, presented here, have been used by E(5) formalisms, which
ignore the potential in γ. Considering the potential in γ, of course, the picture for β
is changed. However, as we shall see later on, it is very easy to derive analytically
the energies and wave functions associated to β from the corresponding results of
the E(5) descriptions. Actually, this is the motivation for reviewing, here, the beta
solvable models.

The equation in β is:

[
− 1

β4

∂

∂β
β4 ∂

∂β
+ �

β2 + u(β)

]
f (β) = ε f (β), (14.1.4)

where � is the eigenvalue of the Casimir operator of the SO(5) group. This is related
to the seniority quantum number τ , by � = τ (τ + 3). The ‘reduced’ potential u(β)

and energy ε are defined as:

E = �
2

2B
ε, V = �

2

2B
u. (14.1.5)

where E denotes the eigenvalue of the Hamiltonian H corresponding to the potential
V (β). Here we mention the most used potentials for β:

14.1.3.1 The case of u(β) = β2

A full description of the eigenstates of the Bohr-Mottelson Hamiltonian satisfying
the symmetry U (5) ⊃ SO(5) ⊃ SO(3) ⊃ SO(2), may be found in Refs. [GRC78,
RCG78] and Chap. 11 of this book. In particular, the solution of the radial Eq. (14.1.4)

http://dx.doi.org/10.1007/978-3-319-14642-3_11
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with u(β) = β2 is easily obtained by bringing first Eq. (14.1.4) to the standard
Schrödinger form by changing the function f to ψ by:

ψ(β) = β2 f (β). (14.1.6)

The equation obeyed by the new function ψ is:

d2ψ

dβ2 +
[
ε − β2 − (τ + 1)(τ + 2)

β2

]
ψ = 0. (14.1.7)

This equation is analytically solvable. The solution is:

ψnτ (β) =
√

2(n!)
�(n + τ + 5/2)

Lτ+3/2
n (β2)βτ+2 exp(−β2/2), (14.1.8)

εn = 2n + τ + 5/2, n = 0, 1, 2, . . . ; τ = 0, 1, 2, 3, . . . (14.1.9)

where Lν
n denotes the generalized Laguerre polynomials. The number of polynomial

nodes is denoted by n and is related to the number of the quadrupole bosons (N ) in
the state, by: N = 2n + τ . Consequently, the initial Eq. (14.1.4) has the solution

fnτ = β−2ψnτ . (14.1.10)

The spectrum, given by Eq. (14.1.9), may be also obtained by using the unitary
representation of the SU (1, 1) group with the Bargman index k = (τ + 5/2)/2.

Indeed, the standard generators for SU (1, 1) are:

K0 = 1

4
H0, K± = 1

4

[
(τ + 1)(τ + 2)

β2 − (β ± d

dβ
)2
]

, (14.1.11)

where

H0 = − d2

dβ2 + β2 + (τ + 1)(τ + 2)

β2 ,

H0ψn = εnψn . (14.1.12)

H0 obeys the following equations:

[
K−, K+

] = −1

2
H0,

[
K±, H0

] = ±4K±. (14.1.13)
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14.1.3.2 Davidson’s Potential

Another potential in β which yields a solvable model is due to Davidson [Dav32]:

u(β) = β2 + β4
0

β2 . (14.1.14)

This potential was used by several authors in different contexts [EEP86, SR77,
BONA04]. For example, the potential was used by Bonatsos et al. [BLMPY07],
to describe the dynamic deformation variable β. For this potential the above
Eqs. (2.6–2.10) hold for τ replaced [BONA04] by

τ ′ = −3

2
+

[(
τ + 3

2

)2

+ β4
0

]1/2

. (14.1.15)

In particular, the excitation energies have the expressions:

En,τ = 2n + 1 +
[(

τ + 3

2

)2

+ β4
0

]1/2

. (14.1.16)

The factor β4
0 is considered to be a free parameter which is to be determined varia-

tionally for each angular momentum, as suggested in Ref. [BONA04]:

d2 R(g)
L

dβ2
0

= 0, (14.1.17)

where R denotes the ratio of the excitation energy of the ground band state L+ and
the excitation energy of the state 2+

g .

14.1.3.3 Five Dimensional Infinite Well

Now, let us turn our attention to the situation considered by Iachello in Ref. [Iac00],
where the potential term associated to the spherical to gamma unstable shape transi-
tion is so flat that it can be mocked up as an infinity square well:

u(β) =
{

0, β ≤ βw,

∞, β > βw.
(14.1.18)

http://dx.doi.org/10.1007/978-3-319-14642-3_2
http://dx.doi.org/10.1007/978-3-319-14642-3_2
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A more convenient form for the equation in β, is obtained through the function
transformation:

ϕ(β) = β3/2 f (β), (14.1.19)

The equation for ϕ is

d2ϕ

dβ2 + 1

β

dϕ

dβ
+

[
ε − u(β) − (τ + 3/2)2

β2

]
ϕ = 0. (14.1.20)

Changing the variable β to z by

z = kβ, k = √
ε (14.1.21)

and denoting with ϕ̃(z) = ϕ(β) the function of the new variable, one arrives at:

d2ϕ̃

dz2 + 1

z

dϕ̃

dz
+

[
1 − (τ + 3/2)2

z2

]
ϕ̃ = 0. (14.1.22)

This equation is analytically solvable, the solutions being the Bessel functions of
half integer order, Jτ+3/2(z). Since for β > βw the function ϕ̃ is equal to zero, the
continuity condition requires that the solution inside the well must vanish for the
value of β equal to βw. This, in fact, yields a quantized form for the eigenvalue E .
Indeed, let xξ,τ be the zeros of the Bessel function Jν :

Jτ+3/2(xξ,τ ) = 0, ξ = 1, 2, . . . ; τ = 0, 1, 2, . . . (14.1.23)

Then, due to the substitution introduced in Eqs. (14.1.21) and (14.1.5) one obtains:

Eξ,τ = �
2

2B
k2
ξ,τ , kξ,τ = xξ,τ

βw

. (14.1.24)

To conclude, the differential equation for the beta deformation corresponding to an
infinite well potential provides the energy spectrum given by Eq. (14.1.24) and the
wave functions:

fξ,τ = Cξ,τ β
−3/2 Jτ+3/2(

xξ,τ

βw

β), (14.1.25)

where Cξ,τ is a normalization factor.
It is worth noticing that the spectra corresponding to E(5) and Davidson potentials

become directly comparable by establishing the formal correspondence n = ξ − 1.
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14.1.4 The Sextic Oscillator with a Centrifugal Barrier

The Hamiltonian of the sextic oscillator with a centrifugal barrier has the expression
[LA04, LA10]:

Hx = − ∂2

∂x2 +
(
2s − 1

2

) (
2s − 3

2

)

x2 + [b2 − 4a(s + 1

2
+ M)]x2 + 2abx4 + a2x6,

(14.1.26)

where x ∈ [0,∞). The classical counterpart of Hx was studied in Ref. [RAU06].
Analytical solutions for the classical trajectories were found, and then quantized.
Also, we note that for the particular value a = 0 the sextic potential becomes the
Davidson potential [Dav32]. Here we use the quantal form of the equation of motion
and show that they yield also analytical solutions. To be concrete, the eigenvalue
equation associated to (14.1.26) is quasi-exactly solvable for any value of b. Indeed,
for any given non-negative integer M , it has M + 1 solutions which can be found
algebraically. This can be easily verified if we consider the Schrödinger equation

Hxψ(x) = Eψ(x) (14.1.27)

and take as an appropriate ansatz the function

ψn(x) = Pn(x2)x2s− 1
2 e− ax4

4 − bx2
2 , n = 0, 1, 2, . . . (14.1.28)

where Pn(x2) is a polynomial in x2 of degree n. Indeed, substituting (14.1.28) in
(14.1.27) and eliminating the common factor, we obtain an equation for the Pn(x2)

Q Pn(x2) = E Pn(x2), (14.1.29)

with

Q = −
(

∂2

∂x2 + 4s − 1

x

∂

∂x

)
+ 2b

(
x

∂

∂x
+ 2s

)
+ 2ax2

(
x

∂

∂x
− 2M

)
.

(14.1.30)

Now, let us assume that M is a non-negative integer: M = 0, 1, 2, . . .. In this case
the differential spectral Eq. (14.1.29) can easily be transformed into an algebraic
form. The action of the Q-operator (14.1.30) on Pn(x2) gives again a polynomial
in x2 at the same order. Considering the coefficients of the polynomial Pn(x2) as
components of an (M +1)-vector, one can treat (14.1.29) as an (M +1)-dimensional
spectral matrix equation. This means that the initial Schrödinger equation (14.1.27)
has at least M + 1 solutions of the form (14.1.28) and thus can be interpreted as a
quasi-exactly solvable equation of order M + 1.
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If in Eq. (14.1.4) one makes the change of function f (β) = β−2ϕ(β) one gets

[
− ∂2

∂β2 + L(L + 1) + 2

β2 + v1(β)

]
ϕ(β) = εβϕ(β). (14.1.31)

We choose v1(β) such that Eq. (14.1.31) becomes the equation for a sextic oscillator
potential with a centrifugal barrier. Indeed, this is achieved with the identifications

x = β, E = εβ,

(
2s − 1

2

)(
2s − 3

2

)
= L(L + 1) ⇒ s = L

2
+ 3

4
,

(14.1.32)

v1(β) = (b2 − 4ac)β2 + 2abβ4 + a2β6, c = L

2
+ 5

4
+ M.

This identification was possible after adding the term −2/β2 to the equation for β
(14.1.4) and 2/〈β2〉 to that of γ (14.1.57). This way the final centrifugal term in
Eq. (14.1.31) will be L(L + 1)/β2. This trick assures a rational form for s.

Suppose we fixed the constant parameters a and b. Then, the potential depends
on c which, in its turn, depends on L and M . It is desirable that the potential is
independent on angular momentum, i.e. c is a constant. Due to the equation relating
c and L

L = 2c − 5

2
− 2M, (14.1.33)

this infers a certain dependence of L on M . Indeed, in order to keep c constant it is
necessary that increasing/decreasing M by one unit should take place at a time with
decreasing/increasing L by two units. So we get two constant values for c, one for
L-even and other for L-odd

(M, L) : (k, 0); (k − 1, 2); (k − 2, 4); (k − 3, 6) . . . ⇒ c = k + 5

4
≡ c+ (L-even),

(14.1.34)

(M, L) : (k, 1); (k − 1, 3); (k − 2, 5); (k − 3, 7) . . . ⇒ c = k + 7

4
≡ c− (L-odd).

(14.1.35)
The final form of the potential will be

vπ
1 (β) = (b2 − 4acπ)β2 + 2abβ4 + a2β6 + uπ

0 , (π ≡ ±), (14.1.36)

where uπ
0 are constants which will be fixed such that the minima (βπ

min > 0) of the
two potentials v+

1 (β) and v−
1 (β) have the same energy. The extremal points can be

obtained from the first derivative of the potential
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∂vπ
1 (β)

∂β
|β=βπ

0
= 0 ⇒ (βπ

0 )2 = 0 and (βπ
0 )2 = 1

3a

[
−2b ±

√
b2 + 12acπ

]
.

(14.1.37)

For βmin = 0 we have u+
0 = u−

0 . When βmin > 0 we can set u+
0 = 0 and from the

condition v−
1 (β−

0 ) − v+
1 (β+

0 ) = 0 we get

u−
0 = (b2 − 4ac+)(β+

0 )2 − (b2 − 4ac−)(β−
0 )2 + 2ab[(β+

0 )4 − (β−
0 )4]

+ a2[(β+
0 )6 − (β−

0 )6]. (14.1.38)

The shape of the potential vπ
1 (β) depends on the signs of b2 − 4acπ and b. When

b > 2
√

acπ , the potential has a minimum at β = 0 and it increases monotonously
with β. When −2

√
acπ < b < 2

√
acπ , a minimum shows up at β > 0, while for

b < −2
√

acπ , the potential has a maximum and a minimum.
The excitation energies for the β equation are easily obtained using Eqs. (14.1.5)

and (14.1.32).

Eβ(nβ, L) = �
2

2B

[
4bs(L) + λ(M)

nβ
(L) + uπ

0

]
, nβ = 0, 1, 2, . . . , M. (14.1.39)

The notation λ(M)
nβ is used for the eigenvalue corresponding to the eigenvector deter-

mining the coefficients defining the polynomial Pn(x2). Functions in the β variable
are given by the Eq. (14.1.28) replacing x with β

ϕ(M)
nβ ,L(β) = Nnβ ,L P(M)

nβ ,L(β2)β2s− 1
2 e− a

4 β4− b
2 β2

, nβ = 0, 1, 2, . . . M, (14.1.40)

where Nnβ ,L are the normalization constants.
Note that in all treatments mentioned above, no potential in γ is considered. Due

to this fact the spectra and wave functions are labeled by the seniority quantum
number τ . This feature does not hold when we switch on the γ-depending potential
and, moreover, impose variable separability by approximating the terms depending
on γ.

14.1.5 The Description of γ Degree of Freedom

Let us consider the Hamiltonian

H = − 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ U (γ) + W (γ, Q), (14.1.41)

where U is a periodic function in γ with the period equal to 2π and
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W (γ, Q) = 1

4

3∑

k=1

1

sin2 (γ − 2π
3 k)

Q2
k (14.1.42)

with Qk denoting the components of the intrinsic angular momentum.
Any approximation for the potential, by expanding it in power series of γ, alters the

periodic behavior of the eigenfunction. Moreover, the approximating Hamiltonian
loses its hermiticity with respect to the scalar product defined with the measure for
the gamma variable, | sin(3γ)|dγ.

We illustrate this by considering the case of a more complex potential

U = u1 cos(3γ) + u2 cos2(3γ). (14.1.43)

Performing the change of function ϕ = √|sin(3γ)|ψ, the eigenvalue equation
Hψ = Eψ, becomes H̃ϕ = 0, with

H̃ = ∂2

∂γ2 + 9

4

[
1 + 1

sin2(3γ)

]
− U − W + E . (14.1.44)

We shall consider two situations:
A. Suppose that |γ| � 1. Expanding the terms in γ in power series up to the fourth

order, one obtains:

U4 = u1 + u2 − 9γ2
(u1

2
+ u2

)
+ 27γ4

(u1

8
+ u2

)
,

W4 = 1

3

(
1 + 2γ2 + 26γ4

9

)(
Q2

1 + Q2
2

)

+2
√

3γ

9

(
1 + 2γ2

) (
Q2

2 − Q2
1

)

+1

4

(
1

γ2 + 1

3
+ γ2

15
+ 2γ4

189

)
Q2

3. (14.1.45)

The low index of U and W suggests that the expansions in γ were truncated at the
fourth order. Note that due to the term W, the equations of motion for the variable
γ and Euler angles are coupled together. Such a coupling term can in principle be
handled as we did for the harmonic liquid drop in Ref. [GRC78, RCG78]. Here, we
separate the equation for γ by averaging W4 with an eigenfunction for the intrinsic
angular momentum squared. The final result for H4 is:

H4 = ∂2

∂γ2 + 1

4γ2

(
1 −

〈
Q2

3

〉)
+ h0 + h2γ

2 + h4γ
4

+2
√

3γ

9

(
1 + 2γ2

) 〈
Q2

2 − Q2
1

〉
,
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h0 = E − 1

3
L(L + 1) + 1

4

〈
Q2

3

〉
− (u0 + u1 + u2) + 15

2
,

h2 = −2

3
L(L + 1) − 13

20

〈
Q2

3

〉
+ 9

2
u1 + 9u2 + 27

20
,

h4 = −26

27
L(L + 1) − 121

126

〈
Q2

3

〉
− 27

8
u1 − 27u2 + 27

14
. (14.1.46)

where L denotes the angular momentum. If the average is made with the Wigner
function DL

M K , important simplifications are obtained since the following relations
hold: 〈

Q2
2 − Q2

1

〉
= 0,

〈
Q2

3

〉
= K 2 (14.1.47)

Actually, this is the situation considered here. Note that H4 contains a singular term
in γ, at γ = 0, coming from the term coupling the intrinsic variable γ with the Euler
angles. One could get rid of such a coupling term by starting with a potential in
gamma containing a singular term which cancels the contribution produced by the
W term. Thus, the new potential would be

U ′ = U + 9K 2

4 sin2(3γ)
. (14.1.48)

The corresponding fourth order expansion for the Hamiltonian is:

H ′
4 = ∂2

∂γ2 + 1

4γ2 + h′
0 + h′

2γ
2 + h′

4γ
4, (14.1.49)

h′
0 = h0 + K 2, h′

2 = h2 + 27

20
K 2, h′

4 = h4 + 27

14
K 2.

Some remarks concerning the equation H ′
4ϕ = 0 are worth mentioning:

(i) If in this equation one ignores the γ4 term, the resulting equation has the
Laguerre functions as solutions and moreover the Hamiltonian exhibits the X (5)

features.
(ii) Note also that the Hamiltonian coefficients are different from those of Ref.

[FO05]. The difference is caused by the fact that here, the expansion is complete.
(iii) Taking in the expanded potential u1 = u2 = 0 and ignoring, for γ small,

the term 27
20 K 2γ2, the resulting potential is that of an infinite square well which was

treated by Iachello in Ref. [IA01]. The solutions are, of course, the Bessel functions
of half integer indices.

(iv) Irrespective of the potential in γ, in the regime of |γ| small a term proportional
to γ2 shows up due to the rotational Hamiltonian W . Therefore, even when the
potential is taken as an infinite square well, of the form 1/γ2, the equation describing
the γ variable admits a Laguerre function as solution and not, as might be expected,
a Bessel function of semi-integer index. Amazingly, the potential in γ is also of
Davidson type.
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(v) None of the mentioned solutions is periodic.
(vi) Also, the approximated Hamiltonians are not Hermitian in the Hilbert space

of functions in gamma with the integration measure as introduced by the liquid drop
model, i.e. | sin 3γ|dγ.

B. The case |γ − π/6| � 1. Using the fourth order expansion in y = |γ − π/6|,
one obtains a Hamiltonian similar to that given by Eq. (14.1.50):

H ′
4 = ∂

∂γ2 + h′
2γ

2 + h′
4γ

4 + 2
√

3y

(
1 + 22

√
3

3
y2

)
〈Q2

3 − Q2
2〉. (14.1.50)

If 〈Q2
3−Q2

2〉 = 0 and, moreover, one ignores the term in γ4 the resulting equation in γ
describes a harmonic oscillator. Again the eigenfunctions, i.e. the Hermite functions,
are orthogonal on an unbound interval of γ, and not on [0, 2π].

14.1.6 An Exact Solution Which Preserves Periodicity
and Hermiticity

In order to remove the drawbacks mentioned above, we try first to avoid making
approximations. Thus, let us consider the Hamiltonian given by Eq. (14.1.41) where
instead of U we consider U ′ as defined by Eq. (14.1.48), and ignore for a moment
W . Changing the variable x = cos 3γ, the eigenvalue equation associated to this
Hamiltonian, HS = ES, becomes:

(
1 − x2

) d2S

d x2 − 2x
dS

d x
+

(
1

9
(E − u1x − u2x2) − K 2

4(1−x2)

)
S = 0. (14.1.51)

Note that we denoted the eigenfunction by S which suggests that the differential
Eq. (14.1.51) is obeyed by a spheroidal function. If u1 = u2 = K = 0, the solution
of this equation is the Legendre polynomial Pn , while E = 9n(n +1). This case was
considered in Ref. [FO05]. This function may be used to approximate the solution of
the original liquid drop model. For other particular choices of the coefficients u1, u2
defining the potential in gamma, the solution is readily obtained if one compares the
above equation with that characterizing the spheroidal oblate functions [ABST72]

(
1 − x2) d2Snm

d x2 − 2x
dSnm

d x
+

(
λnm − c2x2 − m2

1−x2

)
Snm = 0. (14.1.52)

The prolate case is reached by changing c → ic.
For c = 0, the solutions of Eq. (14.1.52) are the associated Legendre functions

Pm
n . For c �= 0, Snm , with m, n integers and n ≥ m ≥ 0, are linear series of these

functions.
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In the case u1 = 0, the solution of Eq. (14.1.51) is identified as being the spheroidal
function while the energy is simply related to λnm :

m = K

2
, c2 = u2

9
, λnm = 1

9
Enm . (14.1.53)

Here Enm denotes the eigenvalue E corresponding to the quantum numbers n and
m. For |c| small the energies Enm exhibits the asymptotic expansion

Enm ≈ 9n(n + 1) − 2
(
n(n + 1) + m2 − 1

)

(2n − 1)(2n + 3)
u2

+ 1

18

[
(n − 1)2 − m2

]
(n2 − m2)

(2n − 3)(2n − 1)3(2n + 1)
u2

2

− 1

18

[
(n + 1)2 − m2

] [
(n + 2)2 − m2

]

(2n + 1)(2n + 3)3(2n + 5)
u2

2. (14.1.54)

Eq. (14.1.54) considered for a fixed m but various n, defines a band. Similar expan-
sions may be derived for |c| large.

Enm ≈ −u2 + 3q
√

u2 + 9

(
m2 − q2 + 5

8

)
− 27q

64
√

u2
(11 + q2 − 32m2),

q = 2(n − m) + 1 (14.1.55)

We notice that the spectrum has a rotational behavior for small c, due to the term
n(n +1), while for large values of c it has an oscillator feature, the energy depending
linearly on n.

If one needs the expansion up to the 1/c2 terms, the results for the first few energies
are:

E11 = 9

(
1

4
− c2 + c + 5

16c
+ 33

64c2

)
,

E21 = 9

(
−3

4
− c2 + 3c + 9

16c
+ 135

64c2

)
,

E22 = 9

(
13

4
− c2 + c + 29

16c
+ 177

64c2

)
,

E31 = 9

(
−11

4
− c2 + 5c − 5

16c
+ 219

64c2

)
,

E32 = 9

(
9

4
− c2 + 3c + 81

16c
+ 855

64c2

)
,

E33 = 9

(
33

4
− c2 + c + 69

16c
+ 417

64c2

)
. (14.1.56)
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Fig. 14.1 The spheroidal
energies E ′

nm = λnm =
Enm/9, for 0 ≤ m ≤ n ≤ 3
are plotted as functions of
c = √

u2/3
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It is worth spending a few words on Fig. 14.1, where the energies correspond to
the spheroidal functions with the parameters specified by Eq. (14.1.54). Indeed, for
c → 0 one notices some multiplet degeneracy which suggests a symmetry with
respect to K, i.e. a rotation invariance of states of a given n. Increasing c, the split in
energy is similar to that in Nilsson [NIL55] model when the energy is � dependent.
The difference is that, while in Nilsson model each deformed state is a superposition
of states with different angular momentum, here the multiplet members are charac-
terized by the same n. In this respect, the feature shown in Fig. 14.1 is similar to the
one obtained with a spherical projected single particle basis [RDI93]. In the region
of large c, for a given large n the set of states of different m seem to form a band. On
the other hand, for a fixed m the set of states with different n is a band of equidistant
energy levels.

14.1.7 Mathieu Equation

Expanding the γ dependent term W (γ,�) in power series around γ0 = π
6 and then

averaging the result with the Wigner function DL
M R , the common eigenfunctions of

Q2, Q1 and Lz (the angular momentum projection on the third axis of the laboratory
frame), leads to the equation in gamma variable:

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 3

4
R2 +

(
10L(L + 1) − 39

4
R2

)(
γ − π

6

)2

+ v2(γ)

]
φ(γ) = ε̃γφ(γ), (14.1.57)
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where the following notations are used:

v2(γ) = 2B

�2 V2(γ), ε̃γ = 〈β2〉2B

�2 Eγ . (14.1.58)

Further, we change the function

φ(γ) = M(3γ)√| sin 3γ| . (14.1.59)

The equation for the new function is:

[
∂2

∂γ2 +
(

ε̃γ + 1

4
+ 3

4
R2

)
+ 9

4 sin2 3γ
−

(
10L(L + 1) − 39

4
R2

)(
γ − π

6

)2

− v2(γ)

]
M(3γ) = 0. (14.1.60)

The potential in γ is chosen to exhibit a minimum at γ0 = π/6:

v2(γ) = μ cos2 3γ. (14.1.61)

Making the Taylor expansions around the minimum value of the gamma potential:

9

4 sin2 3γ
∼ 9

4
+ 81

4

(
γ − π

6

)2
, μ cos2 3γ ∼ 9μ

(
γ − π

6

)2
, (14.1.62)

the equation for the variable γ becomes:

[
∂2

∂γ2 +
(

ε̃γ + 3

4
R2 + 5

2

)

−
(

10L(L + 1) − 39

4
R2 + 9μ − 81

4

)(
γ − π

6

)2
]
M(3γ) = 0. (14.1.63)

Using again in (14.1.63) the approximation

(
γ − π

6

)2 = 1

9
cos2 3γ, (14.1.64)

and making the change of variable y = 3γ, we obtain

[
∂2

∂y2 + 1

9

(
ε̃γ + 3

4
R2 + 5

2

)

−1

9

(
10

9
L(L + 1) − 13

12
R2 + μ − 9

4

)
cos2 y

]
M(y) = 0. (14.1.65)
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This can be written in a compact form as:

(
∂2

∂y2 + a − 2q cos 2y

)
M(y) = 0, (14.1.66)

where

q = 1

36

(
10

9
L(L + 1) − 13

12
R2 + μ − 9

4

)
, a = 1

9

(
ε̃γ + 3

4
R2 + 5

2

)
− 2q.

(14.1.67)

Eq. (14.1.66) is just the well-known Mathieu equation. For q �= 0 the Mathieu
functions are periodic in γ only for a certain set of values of a, called characteristic
values. These are denoted by c+

n for even and c−
n for odd functions, respectively. In

the plane (a, q), the characteristics curves c±
n separate the stability regions, shown in

Fig. 14.2 by gray color, from the non-stability ones, indicated by white color in the
quoted figure. For q = 0 the equalities c±

n (0) = n2 hold. By means of Eq. (14.1.68)
the characteristic values determine the energy E.

Eγ(nγ, L , R) = �
2

2B

1

〈β2〉
[

9anγ (L , R) + 18q(L , R)

−3

4
R2 − 5

2

]
, nγ = 0, 1, 2, . . . . (14.1.68)

The orthonormalization restriction for the Mathieu functions is

2π∫

0

Mn(y)Mm(y)dy = πδnm . (14.1.69)

Fig. 14.2 The characteristic
curves c±

n are plotted as
functions of q for several
values of n
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The total energy for the system is obtained by summing the energies given by the
Eqs. (14.1.39) and (14.1.68)

E(nβ, nγ, L , R) = E0 + Eβ(nβ, L) + Eγ(nγ, L , R) (14.1.70)

Once the wave functions are determined by solving the corresponding eigenvalue
equations, we can proceed to calculating the electric transition probabilities. The
reduced E2 transition probabilities were calculated by using alternatively a harmonic,
T (h), and an anharmonic transition operator, T (anh)

2μ , having the expressions:

T (h)
2μ = tβ

(
cos γD2

μ0 + sin γ√
2

(D2
μ2 + D2

μ,−2)

)
,

T (anh)
2μ = t1β

(
cos γD2

μ0 + sin γ√
2

(D2
μ2 + D2

μ,−2)

)

+ t2

√
2

7
β2

(
− cos 2γD2

μ0 + sin 2γ√
2

(D2
μ2 + D2

μ,−2)

)
(14.1.71)

The strengths t , t1 and t2 are free parameters which are fixed by fitting one and two
particular B(E2) values, respectively. Due to the structure of the wave functions
specified above, the matrix elements between the states involved in a given transition
are factorized into matrix elements of the transition operators factors depending on
β, γ and the Euler angles, respectively.

To summarize, so far we have used a form of the potential in β and γ variables
which yields separable equations for the two deformations. Several potentials in β
were described, which yield a fully solvable equation. Similarly, two potentials in
the γ deformation were presented, which yield solvable equations for spheroidal
and Mathieu functions, respectively. Any combination of one solvable equation in β
and one solvable equation in γ define a solvable approach. Thus one obtains Infinite
Square Well and Spheroidal (ISWS), Davidson and Spheroidal (DSA), Sextic and
Spheroidal (SSA), Infinite Square well and Mathieu (ISWM), Davidson and Mathieu
(DMA), Sextic and Mathiew (SMA) approach. Each of these methods was applied
for several nuclei and the results were compared with both the experimental data and
CSM. Some selected applications are presented below.

Concerning the methods which treat the γ variable with spheroidal functions we
present as an example the nucleus 150Nd, which exhibits the so called X (5) symmetry.
The parameters defining the excitation energies and the E2 transition probabilities
were fitted by the least square method. For each model 〈β2〉 was taken constant,
namely the average values of the expected values in various states from the ground
band. The fitted parameters are given in Table 14.1. The corresponding results for
energies and B(E2) values are given in Tables 14.2 and 14.3, respectively.

As representatives for the SMA formalism we chose three isotopes 228,230Th and
182W. The Triaxial Vibration Rotation Model (TRVM) [MFK97], predicts for 228Th
γ◦ = 13◦. Thus, this isotope is closer to an axial symmetric shape than to a triaxial
one. A similar situation is expected also for 130Th. Under such circumstances, one
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Table 14.1 The parameters determining the excitation energies as well as those involved in the
transition operator are listed for 150Nd
150Nd X(5) ISWA DSA SSA CSM

B1 (keV) 17.77 14.68 A1 (keV) 19.219

X (keV) 966.50 A2 (keV) 3.467

E (keV) 369.5 0.75 A3 (keV) −658.299

F (keV) 28.88 26.48 3.87 A4 (keV) −491.884

u1 −152.35 −168.78 −3877.84 A5 (keV) −438.394

u2 0.0 0.0 0.0 d 2.42

β0 1.71 q1[W.u.]1/2 0.527

a 2636.48 q2[W.u.]1/2 −4.916

b 88. q3[W.u.]1/2 6.344

t1 [W.u.]1/2 1.03 538.99 154.70 1754.26

t2 [W.u.]1/2 0.49 −387.08 −25.31 −6698.41

Table 14.2 Energies calculated within various models are compared with experimental data for
150Nd. Data are taken from Ref. [MATU95]
150Nd Exp X(5) ISWA DSA SSA CSM

2+
g 130 124 121 124 111 130

4+
g 381 361 358 384 348 386

6+
g 720 675 682 738 683 734

8+
g 1,130 1,054 1,084 1,158 1,098 1,149

10+
g 1,599 1,494 1,560 1,625 1,580 1,618

12+
g 2,119 1,993 2,106 2,129 2,118 2,133

14+
g 2,683 2,549 2,722 2,664 2,707 2,688

0+
β 675 702 580 739 630 675

2+
β 851 926 783 863 822 852

4+
β 1,138 1,328 1,157 1,123 1,158 1,167

6+
β 1,541 1,833 1,639 1,477 1,590 1,541

8+
β 2,415 2,209 1,897 2,095 1,931

10+
β 3,067 2,859 2,364 2,661 2,319

2+
γ 1,062 1,091 1,087 1,076 1,091 1,101

3+
γ 1,201 1,198 1,197 1,195 1,197 1,191

4+
γ 1,353 1,327 1,333 1,345 1,328 1,310

5+
γ 1,476 1,491 1,518 1,474 1,448

6+
γ 1,641 1,671 1,713 1,663 1,615

7+
γ 1,823 1,872 1,924 1,838 1,790

8+
γ 2,020 2,093 2,151 2,079 1,998

9+
γ 2,233 2,334 2,390 2,276 2,201

10+
γ 2,461 2,594 2,641 2,561 2,445

r.m.s. (keV) 114 48 28 29 20
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Table 14.3 Results obtained with several approaches for 150Nd are compared with the
corresponding experimental data taken from Ref. [KR02]

B(E2)(W.u.) Exp X(5) ISWA DSA SSA CSM

2+
g → 0+

g 115+2
−2 107 104 92 116 81

4+
g → 2+

g 182+2
−2 169 168 144 177 160

6+
g → 4+

g 210+2
−2 212 210 183 211 222

8+
g → 6+

g 278+25
−25 243 243 224 240 278

10+
g → 8+

g 204+12
−12 269 269 268 266 330

2+
β → 0+

β 114+23
−23 85 83 130 86 116

4+
β → 2+

β 170+51
−51 128 125 194 144 165

0+
β → 2+

g 39+2
−2 67 73 51 37 41.2

2+
β → 0+

g 1.2+0.2
−0.2 2.1 2.9 3.1 1.6 5.2

2+
β → 2+

g 9+2
−2 10 10 9 6 9

2+
β → 4+

g 17+3
−3 39 42 40 26 26

4+
β → 2+

g 0.12+0.02
−0.02 1.07 1.61 1.64 0.57 5.6

4+
β → 4+

g 7+1
−1 6 8 8 5 7.2

4+
β → 6+

g 70+13
−13 30 33 46 26 26

2+
γ → 0+

g 3+0.8
−0.8 2.4 8 9.8 5.1 16.3

2+
γ → 2+

g 5.4+1.7
−1.7 3.6 11.9 14.3 7.3 5.4

2+
γ → 4+

g 2.6+2.0
−2.0 0.2 0.6 0.7 0.4 0.74

4+
γ → 2+

g 0.9+0.3
−0.3 1.6 5 6.1 3 28.6

4+
γ → 4+

g 3.9+1.2
−1.2 5.3 15.5 18.9 9 9.6

may ask why considering these nuclei as samples of triaxiality. The reason is as
follows. It is well known the fact that the most distinctive signature of the triaxial
rigid rotor is the equation relating the energies of three particular states:

E2+
1

+ E2+
2

= E3+
1
. (14.1.72)

Actually this equation is only approximately obeyed by the considered nuclei. Indeed,
denoting by �E the modulus of the difference between the left and right hand side
of the said relation, the experimental data for the two nuclei lead to the values:

�E = 4keV; 8keV; 10keV (14.1.73)

for 228Th, 230Th and 182W, respectively. Clearly, these deviations indicate that,
indeed, these isotopes are close an ideal triaxial rotor. As a matter of fact, this is
a good reason to use the γ = 30◦ as reference picture. Deviations from this static
situation were considered by a Taylor expansion. It is worth mentioning that the T h
isotopes considered here, were found [BLMPY05, LB06] to be located in the region
with octupole vibration, as opposed to octupole deformation, the border between the
two regions located at 224Th or 226Th [BLMPY05, LB06, BB08]. One may say that
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the T h isotopes may be used to study not only the transition from gamma unstable
to triaxial shapes but also the one from octupole deformed to octupole vibrational
nuclei. It is an open question whether a quadrupole triaxial shape may favor the onset
of the static octupole deformation.

The parameters involved in the expressions of energies as well as of the electric
reduced quadrupole transition probabilities were determined by a fitting procedure
with the results listed in Table 14.4. The calculated excitation energies with the SMA
and CSM approaches are compared with the experimental data in Fig. 14.3 for 228Th,
Fig. 14.4 for 230Th and Fig. 14.5 for 182W.

From these figures we may conclude that the SMA procedure provides a reason-
able quantitative description of the experimental data. Moreover, the two theoretical
methods considered, SMA and CSM, yield agreements with the data of similar qual-
ity with a slight advantage for the CSM.

In Refs. [ZACA91, MBZC07] one considers the level staggering in the γ band as
a sensitive signature for triaxiality. The doublet structure is reflected in the saw-teeth
shape of the function:

S(J ) = [E(J ) − E(J − 1)] − [E(J − 1) − E(J − 2)]
E(2+

g )
(14.1.74)

where E(J ) stands for the energy of the state J+ belonging to the γ band. It is
worth noting that S(J ) is proportional to the discrete second derivative of E(J ) with
respect to J . In order to see whether this signature is revealed also by SMA and
CSM approaches, we plotted in Figs. 14.6 and 14.7 the function S(J ) for the nuclei
228,230Th. We notice a very weak staggering for 228Th. For 230Th there are not enough
relevant data while the two formalisms, SMA and CSM show a well pronounced and
almost no staggering, respectively. We note that the oscillation amplitude of S(J ) is
increasing with J . As mentioned already before, the transition to a triaxial regime
in CSM is determined by anharmonicities and quadrupole deformation. Within the
SMA, which describes the deformations β and γ in the intrinsic frame, the triaxial
shape is assumed from the beginning when a potential with a minimum in γ0 = π

6 is
chosen and the rotational term is expanded in powers of γ around γ = π

6 . Actually this
is reflected in Figs. 14.6 and 14.7 which suggests an excess of staggering predicted
by SMA. It is interesting to notice that while Eq. (14.1.73) recommends 228Th as
exhibiting a triaxial shape from Fig. 14.6 we see that experimental data as well as
the CSM indicate that these nuclei show only a quite weak staggering. Due to this
feature some people have doubts that the staggering in the γ band would represent a
signature for triaxiality.
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Fig. 14.3 Excitation
energies for ground β and γ
band states calculated with
SMA and CSM are
compared with the
corresponding experimental
data for 228Th. Experimental
data are from Ref. [GRO98]
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Fig. 14.4 Excitation
energies for ground β and γ
band states calculated with
SMA and CSM are
compared with the
corresponding experimental
data for 230Th. Experimental
data are from Ref. [AKO93]

2

0

3

4

0

2
2

4
4

5

6

6
7

8

8

9

10

10

12

14

16

18

20

22

24

g band

γ  band

β  band

230Th

SMA    Exp.    CSM

0 0 0
53

171

349

580

860

1184

1547

1945

2377

2840

3331

3849

53

174

357

594

880

1208

1573

1972

2398

2850

3325

3812

53

174

356

591

874

1199

1560

1956

2384

2840

3325

3837

737

793
863
941

1048
1145

1288

1400

1575

781

826
884

1040

1251

1520

776

823
884
959

1048
1149

1266

1390

1532

593
662

812

635

678
770

635

680
785

SMA    Exp.    CSM
SMA    Exp.    CSM



430 14 Comparison of CSM with Some Other Models

Fig. 14.5 Excitation
energies for ground, beta and
gamma bands in 182W,
obtained with SMA and
CSM formalism respectively,
are compared with the
corresponding experimental
data taken from Ref.
[SING10]
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14.1.8 A Possible Relationship of the SMA and the CSM

The applications considered above point the fact that SMA and CSM describe the
data of the considered nuclei equally well. This amazing feature raises the question
why that happens?

Aiming at answering this question, we study the classical properties emerging
from CSM, by dequantizing the specific boson Hamiltonian used by CSM, consid-
ering its average with the coherent state:

|ψ〉 = exp
[
z0b†

0 + z2b†
2 + z−2b†

−2 − z∗
0b0 − z∗

2b2 − z∗−2b−2

]
|0〉, (14.1.75)

where zk, z∗
k with k = 0,±2 are complex numbers depending on time. As usual |0〉

denotes the vacuum state for the quadrupole bosons. The classical Hamilton function
associated to the CSM’s model Hamiltonian is:

H ≡ 〈ψ|H |ψ〉 = 2(11A1 + 3A2)
(
|z0|2 + |z2|2 + |z−2|2

)

+ A1

(
2z∗

2z∗−2 + z∗2
0 − d2

) (
2z2z−2 + z2

0 − d2
)

+ A3

70

[
2
(

6z∗
0z∗

2z∗−2 − z∗3
0

)
+ 3d

(
2z∗

2z∗−2 + z∗2
0

)
− d3

]

×
[
2
(

6z0z2z−2 − z3
0

)
+ 3d

(
2z2z−2 + z2

0

)
− d3

]
. (14.1.76)

The equations of motion described by the classical coordinates z0, z± and their com-
plex conjugates z∗

0, z∗± are obtained from the variational principle of the minimum
action:

δ

t∫

0

〈ψ|H − i�
∂

∂t ′
|ψ〉dt ′ = 0. (14.1.77)

The variational principle yields the classical equations:

∂H

∂zk
= −i

•
z
∗
k ,

∂H

∂z∗
k

= i
•
zk, k = 0,±2. (14.1.78)

These equations support the interpretation of zk , with k = 0,±2, as classical phase
space coordinates and of z∗

k as the corresponding conjugate momenta. With the
complex coordinates we may define the canonical conjugate coordinates:

Qk = z−k + z∗
k√

2
, Pk = zk − z∗−k

i
√

2
k = 0,±2. (14.1.79)
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which, evidently, obey the equations:

{Q0, P0} = 1, {Q±2, P±2} = 1,

{Qk,H} = •
Qk, {Pk,H} = •

Pk, k = 0,±2. (14.1.80)

The Poisson brackets are defined in terms of the pairs (Qk, Pk), k = 0,±2. Thus,
for the coordinates zk, z∗

k we have: {zk, z∗
k } = −i .

In what follows we shall study the Hamilton function H in the subspace defined
by z2 = z−2, where we use the canonical coordinates defined by:

q0 = Q0, p0 = P0, q2 = Q2 + Q−2

2
, p2 = P2 + P−2

2i
(14.1.81)

These coordinates are related to the real and imaginary part of the complex variable
zk by the following equations:

q0 = √
2u0, p0 = √

2v0, q2 = 2u2, p2 = 2v2,

u0 = Re z0, v0 = I m z0, u2 = Re z2, v2 = I m z2. (14.1.82)

In the expression of H we adopt the following approximation and coordinate trans-
formations: (i) we neglect the terms non-quadratic in momenta as well as the terms
coupling the coordinate with momenta; (ii) we take care of the restriction z2 = z−2
by introducing the new canonical coordinates q0; p0 and q2; p2; (iii) for the new
coordinates we use the polar form:

q0 = r cos γ, q2 = r sin γ (14.1.83)

In this way H is a sum of the kinetic and potential energies:

H = (11A1 + 3A2 + A1d2 + 3

70
d2 A3)(p2

0 + p2
2) + V (r, γ),

V (r, γ) = A1d4 + A3

70
d6 + r2

[
(11A1 + 3A2) − d2

2
A1 − 3A3

70
d4 − d2

2
A1 cos(2γ)

]

+ A3
√

2

70
d3r3 cos(3γ) +

(
A1

4
+ 9A3

280
d2

)
r4 − 3A3d

70
√

2
r5 cos(3γ)

+ A3

280
r6 (cos(6γ) + 1) . (14.1.84)

In order to obtain a separable equation for the variables r and γ we approximate
V (r, γ) by a sum of two potentials one depending only on r , (V1(r)), and the other one
only on γ, (V2(γ)). The V1(r) potential is obtained by summing the terms depending
exclusively on r and the coupling terms for which the γ depending factors were taken
in the minimum point of V2(γ), i.e. π

6 . The term denoted by V2(γ) is obtained from
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the coupling term proportional to cos(6γ), with the factor depending on r considered
in the minimum point of V1(r), denoted by r0. The approximated potential will be
denoted by U (r, γ).

U (r, γ) ≈ V1(r) + V2(γ),

V1(r) = A1d4 + A3

70
d6 + r2

[
(11A1 + 3A2) − 3A1

4
d2 − 3A3

70
d4

]

+
(

A1

4
+ 27

280
d2

)
r4 + A3

280
r6,

V2(γ) = A3

280
r6

0 cos(6γ). (14.1.85)

In Fig. 14.8 we plotted the approximated V (r, γ) for values of the parameters,
d, A1, A2, A3 close to those listed in Table 14.4 for 182W. Indeed, the parameters in
Table 14.4 were slightly modified such that the exact potential V (r, γ) reaches the
minimum value in the same point (r0,π/6) as the approximated one, U (r, γ). The
difference between the contour plot as well as the potential section for the exact
(V (r, γ)) and approximated potential (U (r, γ)) are essentially small.

The classical Hamilton function becomes:

H = (11A1 + 3A2 + A1d2 + 3

70
d2 A3)(p2

0 + p2
2) + U (r, γ). (14.1.86)

Fig. 14.8 The potential V (r, γ) is plotted as function of the r and γ for 182W (left panel). The
parameters involved are given in Table 14.4. The minimum is reached in (r0, γ0) = (2.5, π

6 ).
Equipotential curves separated by 50 keV, surrounding the minimum value of the potential are
given in the upper right panel. Vmin = −3250.92 keV . Two sections γ = π

6 and r0 = 2.5 are
presented in the lower panels
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This can be quantized by replacing the sum of the momenta squared by the Laplace
operator written in polar coordinates:

Ĥ = −(11A1+3A2+ A1d2+ 3

70
d2 A3)

(
1

r

∂

∂r
+ ∂2

∂r2 + 1

r2

∂2

∂γ2

)
+V1(r)+V2(γ).

(14.1.87)
It is convenient to introduce the notation:

F = (11A1 + 3A2 + A1d2 + 3

70
d2 A3). (14.1.88)

The Schrödinger equation:

Ĥ�(r, γ) = E�(r, γ), (14.1.89)

for the trial function:
�(r, γ) = ψ1(r)ei Kγψ2(γ), (14.1.90)

is separated:

[
−F

(
1

r

∂

∂r
+ ∂2

∂r2 − K 2

r2

)
+ V1(r)

]
ψ1(r)ei Kγ = E (1)ψ1(r)ei Kγ,

[
−F

(
2i K

r2
0

∂

∂γ
+ 1

r2
0

∂2

∂γ2

)
+ V2(γ)

]
ψ2(γ) = E (2)ψ2(γ). (14.1.91)

In what follows we shall show that the first Eq. (14.1.91) leads to a Schrödinger
equation for a sextic potential plus a centrifugal term while the second equation
provides a differential equation obeyed by the Mathieu function.

Indeed, dividing both sides of the first Eq. (14.1.91) by F and denoting by

u1(r) = V1(r)/F , εr = E (1)/F (14.1.92)

the equation in the variable r becomes:

[
− ∂2

∂r2 − 1

r

∂

∂r
+ K 2

r2 + u1(r)

]
ψ1(r) = εrψ1(r). (14.1.93)

Changing the function

ψ1(r) = r− 1
2 φ(r), (14.1.94)

the equation for the new function is

[
− ∂2

∂r2 + K 2 − 1
4

r2 + u1(r)

]
φ(r) = εrφ(r), (14.1.95)
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which is nothing else but the Schrödinger equation for a sextic potential plus a
centrifugal term.

Now let us turn our attention to the second equation in (14.1.91). Multiplying it
by r2

0 /F and denoting by:

μ = A3

F280
r8

0 , εγ = r2
0 E (2)

F , (14.1.96)

one obtains:

[
− ∂2

∂γ2 − 2i K
∂

∂γ
+ μ cos 6γ

]
ψ2(γ) = εγψ2(γ). (14.1.97)

With the change of function:

ψ2(γ) = e−i Kγ M(3γ), (14.1.98)

we obtain: [
∂2

∂γ2 + εγ + K 2 − μ cos 6γ

]
M(3γ) = 0. (14.1.99)

Changing now the variable γ to y = 3γ the equation for the Mathieu function is
readily obtained: [

∂2

∂y2 + a − 2q cos 2y

]
M(y) = 0, (14.1.100)

where the following notations were used:

a = 1

9
(εγ + K 2), 2q = μ

9
. (14.1.101)

Before closing this section we would like to comment on the relation of the
variable r and the dynamic nuclear deformation β. Aiming at this goal, let us consider
the canonical transformation relating the quadrupole conjugate coordinates and the
boson operators:

α̂2μ = 1

k
√

2

(
b†

2μ + (−)μb2,−μ

)
, π̂2μ = ik√

2

(
b†

2,−μ(−)μ − b2μ

)
. (14.1.102)

Note that the canonical transformation from above is determined up to a multiplicative
factor k. Averaging these equations with the coherent state ψ (14.1.75) one obtains
that the coordinates Qμ and Pμ introduced above are related with the quadrupole
operators by:

Qμ = 〈ψ|kα̂2μ|ψ〉, Pμ = 〈ψ|1

k
π̂2μ|ψ〉. (14.1.103)
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Identifying the averages of α̂2μ, with the quadrupole coordinates in the intrinsic
reference frame we obtain [RBD95]:

Q0 = ka20 = kβ cos γ, Q±2 = kβ√
2

sin γ. (14.1.104)

In the restricted classical phase space the canonical coordinates are:

q0 = kβ cos γ, q2 = kβ sin γ. (14.1.105)

From here it results:
r = kβ (14.1.106)

Using this simple relation in connection with the differential equation in r , one obtains
the Shrödinger equation for sextic potential plus centrifugal term in the variable β.

[
− ∂2

∂β2 + K 2 − 1
4

β2 + k2u1(kβ)

]
φ(kβ) = εβφ(kβ) (14.1.107)

In concluding this section, we may say that while in Ref. [RBUG11] the sextic
potential for β and the γ potential, yielding the equation for the Mathieu function,
were introduced as an ad-hoc choice, here they are derived in a natural manner from
the CSM formalism. Moreover, the variable separation is based on two approxima-
tions suggested by the classical picture: (i) the non-quadratic terms in momenta are
ignored and (ii) the coupling of coordinates and momenta are vanishing due to the
local character of the classical phenomenological forces.

14.2 Lipas’s Projection Method

The CSM model states for the ground band are identical to those introduced by P.O.
Lipas and his collaborators in a series of papers which started with Ref. [LS69] where
the model was formulated in great details and [HHL70] where a short application was
presented. The Hamiltonian used there was a harmonic one. The initial version of
the CSM treated, indeed, the ground band [RD76] with the same generating function
but with a highly anharmonic Hamiltonian. The extensions of the two models to
three interacting bands are essentially different both in terms of the model states and
the Hamiltonian. Also, in many respects the philosophical viewpoints are entirely
at odds. Moreover, while the projection method (PM) extension (EPM) limits itself
to a simultaneous description of the ground, beta and gamma bands, the CSM was
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developed extensively in several directions described in the previous chapters in a
comprehensive but not exhaustive manner. Due to the said common features it is fair
to devote some space to the PM description.

To sketch the context in which the PM approach appeared, note first that the
big merit of the liquid drop model (LDM) is that it offers a reasonable descrip-
tion of spherical and well deformed nuclei. The prediction, somewhat confirmed by
experimental data, was that spherical nuclei have equidistant spectrum while the
deformed nuclei exhibit rotational bands. However, between the two limiting classes
there are transitional (from spherical to well deformed) nuclei whose properties can-
not be accounted for by none of the two extreme pictures. The drop from LDM
oscillates around a spherical shape and therefore it is difficult to describe nuclei with
static deformation. Moreover, for transitional nuclei there are properties which are
mainly attributed to anharmonicities. Therefore, both experimental data and principle
problems required corrections for LDM, along this line.

P.O. Lipas and his collaborators attempted to build up a model which treats the sta-
tic deformation and anharmonicities in the simplest possible manner. The quadrupole
coordinates defining the nuclear surface are defined in the standard way

R(θ,φ) = R0[1 +
∑

m

a∗
mY2m]. (14.2.1)

The LDM supposes that in the intrinsic frame of reference a±1 = 0, a2 = a−2. Due
to these restrictions, the intrinsic coordinates are not the components of a tensor of
rank 2. This property is recovered once the restrictions mentioned above are released.
Thus, the intrinsic frame in the PM is different from the standard one defined by the
LDM. The LDM Hamiltonian is rotationally invariant while that used by the PM is
not. The symmetry is broken in two ways: (a) one assumes that a0 has a static value
β; (b) The inertial as well the stiffness parameters are m-dependent i.e., the drop is
anisotropic.

Hence, the drop considered by the PM is described by the deformed Hamiltonian:

h = 1

2

∑

m

Bm | •am |2 + 1

2

∑

m

Cm |am |2 + 1

2
(a0 − β)2. (14.2.2)

The quantization of this Hamiltonian is achieved by Writing it in terms of the quadru-
pole bosons defined by the canonical transformation:

aμ = 1

k
√

2
(b†

μ + (−)μb−μ), πμ = ik√
2
((−)μb†

−μ − bμ) = Bμ
•
aμ. (14.2.3)
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The said transformation is determined up to a constant k which is determined
such that the cross term b†

0b†
0 + b0b0 has a vanishing coefficient. The quantized

Hamiltonian looks like:

h = �ω

[
(b†

0b0 + 1

2
) − d(b†

0 + b0) + d2
]

+ �ω

⎡

⎣
∑

m �=0

fm((b†
mbm + 1

2
) +

∑

m �=0

(b†
mb†

−m(−)m + b−mbm(−)m)

⎤

⎦ , (14.2.4)

where

fm = 1

2

(
B0

Bm
+ Cm

C0

)
, gm = 1

4

(
− B0

Bm
+ Cm

C0

)
,

�ω =
√

C0

B0
, d = 1√

2
kβ, k = (B0C0)

1/4. (14.2.5)

The first term, the one corresponding to the zeroth component of the boson operator,
admits the coherent state as eigenfunction, while the second one can be diagonalized
through the Bogoliubov-Valatin transformation for each m �= 0. Thus, the boson
Hamiltonian (14.2.4) is fully solvable and defines a deformed basis which is to
be used for treating complex rotationally invariant Hamiltonians, in the laboratory
frame. In this respect the intrinsic Hamiltonian plays a similar role as the mean field
does for the particle motion.

The chosen invariant Hamiltonian is a harmonic one and the energy is defined by
its average with the coherent state. Energy depends on a scaling parameter c1 and
the deformation parameter d. The model is tested numerically for the ground band
energies of 152Gd and 152Sm where the known levels, at that time, were up to 8+
in 152Gd and 12+ for 152Sm. The calculated energy spacing is less than the exper-
imental one and the deviation is an increasing function of the angular momentum.
The agreement is however qualitatively good, although the parameters were fixed by
fitting the lowest two energies.

The projected states defined by PM were used in Ref. [RD76] in connection with
a complex anharmonic Hamiltonian for many nuclei where data are available up to
high spin states. In the quoted reference and [RGB77] the authors obtained analyti-
cal expressions for the overlap integrals which facilitated very much the numerical
application. The agreement obtained was overall very good. Moreover, the calcula-
tions were extended for two bands, the ground and beta, in Ref. [Ra76, RB76]. These
two publications are, in fact, precursors of the CSM.

The authors of the PM, extended the formalism by including the excited bands,
β and γ. Thus, the projected states for ground, beta and gamma bands are:

|g0〉 = P2
M0|0̃〉, |β0〉 = P2

M0(b
†
0 − d)|0̃〉, |γ0〉 = P2

M2b†
2|0̃〉. (14.2.6)
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Note that the projected model states are not mutually orthogonal. The state overlaps
go to zero when d → ∞ and to 1 for d → 0. This infers that at least for the
transitional region the orthogonalization through the Gram-Schmidt procedure is
necessary. The order of orthogonalization is chosen such that the link between the
vibrational and rotational spectrum be consistent with the Sheline-Sakai scheme.
This way the obtained orthogonal basis states are:

|g〉 = |g0〉, |γ〉 = Nγ(1 − |g〉〈g|)|γ0〉, |β〉 = Nβ(1 − |g〉〈g| − |γ〉〈γ|)|β0〉.
(14.2.7)

Since the main purpose is to qualitatively study the low lying spectra of the transitional
nuclei, the rotationally invariant Hamiltonian used for the description in the labo-
ratory frame is, again, proportional to the boson number operator, i.e. of the form
c1 N̂ . Energies are defined by averaging the model Hamiltonian with the orthogonal-
ized boson states. Results were as follows: (a) The right sign for the experimental
spectroscopic quadrupole moment is reproduced; (b) Although there are only two
adjustable parameters, the energy scaling parameter c1 and the deformation para-
meter, the low lying spectra of 114Cd and 152Sm are reasonably well described; (c)
The calculated quadrupole moment of the first state 2+ in 114Cd is close to the
corresponding experimental data.

Aiming at improving the agreement with the data, the intrinsic function for the
ground band was taken as the ground state of the whole intrinsic Hamiltonian, i.e.
including also the anisotropic terms:

|0̃〉 = exp(db†
0 + A1b†

1b†
−1 + A2b†

2b†
−2)|0〉 (14.2.8)

We see that the new function contains two additional factors which are coherent
states for the SU (1) groups acting on the dipole and quadrupole degrees of freedom,
respectively. These states where fully described in one of previous chapters. Actually,
they are vacuum states for the Bogoliubov-Valatin transformed bosons. The excited
states were defined by acting on the newly defined ground state with the operators:

b̃†
0 = b†

0 − d, b̃†
m = b†

m − A|m|b−m, m �= 0. (14.2.9)

From this point the same path as for the isotropic case was followed. That is the states
were orthogonalized and then the average values with the orthogonal states were
calculated. The agreement with experiment was improved, having 4 free parameters
instead of 2, but not to such extent that the efforts are justified.

The full description of the CSM was published in 1981,1982 and 1983 [RCGD81,
RCGD82, RS83], with the main results presented in Chap. 6.

From 1985 to 1987, several publications [SuLi185, SuLi285, Su87] formulated a
refinement of the extended projection method (EPM) which significantly improved
the quantitative results obtained before. Here, we describe the main ingredients of
the new version of the EPM.

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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The authors gave up the orthogonalization process of the deformed basis for the
ground, β and γ bands. Instead, the model Hamiltonian, which is of fourth order
in the quadrupole bosons, is diagonalized in the non-orthogonal basis. The gener-
alized eigenvalue problem provides an orthogonal set of eigenstates which, in fact,
are the optimal orthogonal Schmidt basis. Concerning the Hamiltonian, this is at the
beginning considered to be the most general fourth order Hamiltonian constructed
by imposing some restrictions as hermiticity, rotational and time reversal invariance.
Since the formalism is purely phenomenological, one ignores the underlying micro-
scopic boson expansion many body Hamiltonian and thus the structure coefficients
(multiplying the monomials Bmn , with m denoting the number of operators b† while n
the number of annihilation boson operators b, involved) are taken as free parameters.
There are nine parameters in total. The number of parameters is too big and should
be diminished by requiring additional criteria to be fulfilled. First, one notices that
several high order terms have no other effect on the matrix elements than renormal-
izing the m.e. of the second order boson terms, in the asymptotic limit. Due to this
feature we ignore them. The numerical analysis indicates that some third order terms
bring a negligible correction on the matrix elements. Also, from the fourth order
terms one keeps only one, the rest being either negligible or not independent terms.
Thus, the starting Hamiltonian:

H =
∑

m,n=0,1,2

cmn Bmn, with B11 = b† · b̄ = N

B20 = b† · b† + b̄ · b̄, B21 = [b†b†]2 · b̄ + h.c.

B30 = [b†b†]2 · b† + h.c., B40 = (b†b†)2 + h.c.,

B31 = b† b†b† · b̄ + h.c., B(L)
22 = [b†b†]L · [b̄b̄]L , L = 0, 2, 4. (14.2.10)

is contracted to an effective Hamiltonian:

H = c0 N + c1 B20 + c2 B
′
21 + c3 B(2)′

22 , where

B
′
21 = −

√
7

8

1

d
B21 − N , B(2)′

22 = 7

2d2 B(2)
22 +

√
7

8

1

d
B21 + N . (14.2.11)

To calculate all matrix elements involved, one has to calculate numerically 11 overlap
integrals. Information about the boson expansion convergence of H was obtained by
successive fits using the second-order (3 parameters), third order (4 parameters) and
fourth order (5 parameters) expansion of the laboratory frame Hamiltonian. Thus,
the results for the isotopic chains of Sm, Gd, Yb and Er show that the parameters c0
and c1 obtained with the three and four parameters version do not differ too much
from each other, but they are significantly different when the fifth parameter is added.
On the other hand, the parameters c2 and c3 obtained by the fitting procedure within
the four and five parameters version, respectively, are not far away from each other.
Thus, it is not clear how big the corrections to c0 and c1 are when terms of order
higher than 4 are added.
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The transition probabilities were studied with a transition operator which is linear
in the quadrupole bosons:

T (E2) = e∗(b† + b̄). (14.2.12)

The effective charge e∗ was fixed by fitting the experimental reduced transition prob-
ability B(E2; 2g → 0g). Numerical results were compared with those obtained by
other methods, like rotation-vibration model (RVM) [FaGr62], the dynamic pairing-
plus-quadrupole model (DPPQ) [Ku67], boson expansion technique (BET) [KT72]
as well as with the experimental data. For Sm isotopes the agreement with experi-
mental data appraised by means of the rms values of deviations is better than that
corresponding to the IBA method. Also, the spectroscopic quadrupole moments of
Sm isotopes are excellently described. The theoretical results are closer to the exper-
imental data than those yielded by IBA as well as by BET.

The transition rates are very sensitive to the wave function structure. For example,
if transition probabilities are calculated with the states (14.2.6) and alternatively
with the states yielded by the diagonalization procedure, the results are dramatically
different. Anharmonic effects may be included either by considering higher order
terms in the expression of the transition operator or by considering anharmonic terms
in the model Hamiltonian and, consequently, the wave functions are correspondingly
modified. In Ref. [SuLi185] the latter option is adopted. For illustration, the results
for the ratios:

R1 = B(E2; 2γ → 0g)

B(E2; 2β → 0g)
, R2 = B(E2; 2γ → 0β)

B(E2; 2β → 0g)
. (14.2.13)

calculated with the wave functions obtained when only the harmonic term is included
in H and alternatively with all anharmonic terms added are shown in Table 14.5.
From there we may conclude that indeed, the anharmonicities play a crucial role for
a quantitative description of the transition rates:

Comparison of the EPM results with the IBA predictions for even-even isotopes
of Sm was presented also in Refs. [SuLi285, Su87] and concluded that EPM does
better for many of the data.

Note that since 1987 there has not been any publication on the EPM. Moreover,
all existing applications refer mainly to the low lying states and even these only for
few isotopes.

On the contrary, CSM was widely used (about 194 nuclei were studied) and its
extensions explain in a realistic fashion a large variety of collective phenomena in

Table 14.5 Ratios R1 and R2 calculated with harmonic (h) and full anharmonic (ah) Hamiltonian
146Sm (d≈1.5) 150Sm (d≈2.5)

Ratios h ah h ah

R1 4 400 60,000 1

R2 0.03 3,000 40,000 10
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spherical, transitional and well deformed nuclei. Moreover, the high and very high
angular momentum states are accessible.

Before closing this section we would like to mention a few features of the CSM
which contrast the EPM: (i) The model spaces for intrinsic and projected states
for the two models are different. Indeed, within the CSM the states are orthogonal
before and after projection and the latter ones have a structure in the extreme limits of
vanishing and large deformation parameter, which are consistent with the Sheline-
Sakai scheme. The beta states include excitations of third order in bosons while
those from gamma band states with two phonons; (ii) The model Hamiltonian is by
construction effective, i.e. it leaves the beta states uncoupled to the states from the
ground and gamma bands. Moreover, it includes high anharmonicities, in the three
parameter version (which works pretty well for a large number of nuclei) being of
sixth order in bosons, while the five parameters version is of eight order in bosons; (iii)
An important achievement of the CSM is the existence of analytical formulas for both
excitation energies and transition probabilities in the near vibrational and rotational
regions. It seems that the expressions obtained can be used also for the transitional
nuclei; (iv) The CSM extensions to the description of the proton and neutron systems,
of the negative parity states, of the even-odd nuclei and even of the chiral spectra
in even-even nuclei, cover a huge variety of collective features in nuclei; (v) The
ability of coherent states to generate single particle and boson basis were intensively
exploited; (vi) Due to the semiclassical properties of the coherent state manifested
by that it minimizes the uncertainty relations of quadrupole coordinates and their
conjugate momenta, the classical features of highly anharmonic Hamiltonians could
be studied. On this line the exact classical solution for a sixth order boson Hamiltonian
was presented. Solutions for the quantization of the classical trajectories were also
described.

In view of the above mentioned properties, one could assert that CSM represents
one of the most versatile collective model able to describe states of high spin in tran-
sitional and well deformed nuclei, covering various classes of nuclei characterized
by specific symmetries or in other words, nuclear phases.

14.3 Rotation Vibration Model

The quadrupole degrees of freedom have been intensively used by phenomenological
models to interpret the data for energies and electromagnetic transitions of collective
states. In the pioneering model of Bohr and Mottelson [BM53] (Liquid Drop Model=
LDM) some collective properties are treated in terms of quadrupole shape coordinates
describing small oscillations of the nuclear surface around a spherical equilibrium
shape.

The harmonic motion of the liquid drop and the restriction to a spherical shape
for the ground state are severe limitations of this approach. The first improvement of
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the LDM was obtained in the rotation-vibration model (RVM) [FaGr62] in which the
deviation of the shape coordinates from their static values is considered and by this
an axially symmetric deformed shape is described. Here we give the main ingredients
of RVM. The nuclear surface is described by five quadrupole coordinates which are
complex functions of time:

R = R0(1 +
∑

μ

α∗
2μ(t)Y2μ), α∗

2μ = (−1)μα2,−μ. (14.3.1)

The intrinsic frame is obtained from the laboratory one by a rotation of Euler angle
� = (θ1, θ2, θ3) defining the frame of principal axes of inertia ellipsoid. Corre-
spondingly, by rotating the quadrupole coordinates α2μ which form a tensor of rank
2, one obtains a set of coordinate characterizing the system in the intrinsic reference
frame:

a2μ =
∑

ν

D2∗
νμα2ν . (14.3.2)

By contrast to the Bohr-Mottelson model which assumes a22 = a2,−2, a21 =
a2,−1 = 0 and moreover, the nonvanishing coordinates are parametrized as:

a20 = β cos γ, a22 = a2,−2 = β√
2

sin γ (14.3.3)

the RVM uses the intrinsic coordinates a20, a22(= a2,−2) to study the classical and
quantized Hamiltonian. Thus instead of quantizing the classical Hamiltonian by
writing the Laplace operator in the curvilinear space spanned by the dynamic (β, γ)

deformations, where the volume element of intrinsic variables is β4| sin 3γ|dβdγ the
quantization is achieved in the Euclidean space of a20, a22 with the volume element
equal to da20da22. To simplify the notations from now on we shall omit the low
index 2 specifying the rank of the shape coordinate. Thus, the classical Hamiltonian
of the liquid drop written in terms of intrinsic coordinates reads:

H =
∑

k

I 2
k

2Jk(aμ)
+ 1

2
B
∑

ν

•
a

∗
ν

•
aν + V (aν), (14.3.4)

with B denoting the mass parameter and V (aν) the potential energy of surface oscil-
lations:

V (aν) = 1

2
C0a2

0 + 1

2
C2(a

2
2 + a2−2), (14.3.5)

where C0, C2 stand for the elasticity parameters. The symbols Ik,Jk stand for the
kth component of the intrinsic angular momentum and the moment of inertia relative
to the axis k, respectively.
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Suppose now that the nuclear surface has an axially deformed static shape, i.e.
the time dependence of the coordinates is of the form:

a0(t) = β0 + a
′
0(t), a±2 = 0 + a

′
±2(t), |a

′
ν

β0
| � 1, ν = 0,±2. (14.3.6)

Considering the deviations from the static values small, one can expand the reciprocal
moment of inertia in terms of the coordinate relative deviations from the static values,
i.e. a

′
ν/β0. In the next step the kinetic energy is quantized by the replacements:

B
•
a0 = −i�

∂

∂a
′
0

, B
√

2
•
a

′

2 = −i�
∂√

2∂a
′
2

. (14.3.7)

The quantized Hamiltonian is:

H ≡ T + V = TR + TV + TRV + Va0a2(a
′
0, a

′
2),

TR = Î2 − Î 2
3

2J0
+ Î 2

3

16Ba2
2

, J0 = 3Bβ2
0 ,

TV = − �
2

2B

(
∂2

∂a
′2
0

+ 1

2

∂2

∂a
′2
2

)

TRV = Î 2 − Î 2
3

2J0

[
2

a
′2
2

β2
0

− 2
a

′
0

β0
+ 3

a
′2
0

β2
0

]

− Î 2+ + Î 2−
2J0

[
−√

6
a

′
0a

′
2

β2
0

+ 1

3

√
6

a
′
2

β0

]
+ 2ε

a
′
0

β0
, ε = �

2

J0
,

Va0a2(a
′
0, a

′
2) = 1

2
C0a

′2
0 + C2a

′2
2 . (14.3.8)

The basis states for treating the rotation-vibration term TRV is defined by the eigen-
states of the unperturbed operator:

H0 = TR + TV + Va0a2(a
′
0, a

′
2). (14.3.9)

The function with a proper symmetry against the change a
′
2 → −a

′
2 is:

|I K , n2n0〉 =
(

2I + 1

16π2

1

1 + δK ,0

)1/2

(DI
M K + (−)I DI

M−K )

×
(

λ
1
2 K+1�( 1

2 K + 1 + n2)

n2!

) 1
2 (

�(
1

2
K + 1)

)−1

|a′
2|

1
2 (a

′
2)

1
2 K e− 1

2 λa
′2
2

×1 F1(−n2,
1

2
K + 1;λa

′2
2 )

1

(n0!) 1
2

β̂0β̂0 . . . β̂0︸ ︷︷ ︸
n0 times

|0〉,
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E I K
n2,n0

= (n0 + 1

2
)Eβ + (2n2 + 1

2
K + 1)Eγ + (I (I + 1) − K 2)

1

2
ε,

I =
{

0, 2, 4, . . . for K = 0
K , K + 1, . . . for K �= 0

, n0, n2 = 0, 1, 2, . . . ,

where

Eβ = �

(
C0

B

) 1
2 = �ω0, Eγ = �

(
C2

B

) 1
2 = �ω2, ε = �2

3Bβ2
0

,

(14.3.10)

a
′
0 =

√
�

2Bω0
(β̂0 + β̂+

0 ),
•
a

′

0 = −iω0

√
�

2Bω0
(β̂0 − β̂+

0 ), λ = 2Eγ

3εβ2
0

.

The eigenvalues of H can be obtained by diagonalizing it in the basis defined above.
Note that the matrix elements of the rotation-vibration term in this basis can be
analytically calculated. The model authors made a systematic of spectra in differ-
ent regions of the nuclear chart by choosing for each angular momentum 13 states
|IK, n2n0〉 with K ≤ 6 and n0 + n2 ≤ 2. The wave functions are used for describing
the reduced E2 transition probabilities. The transition operator is also expanded in
power series around the deformation static values. The final expression is:

T2μ = 3Z

4π
R2

0

[
D2

μ0

(
β0(1 + 2

7

(
5

π

) 1
2

β0)

)
+ D2

μ0a
′
0

(
1 + 4

7

(
5

π

) 1
2

β0

)

+ D2
μ0

2

7

(
5

π

) 1
2

(a
′2
0 − 2a

′2
2 ) + (D2

μ2 + D2
μ−2)

((
1 − 4

7

(
5

π

) 1
2

β0

)
a

′
2

−4

7

(
5

π

) 1
2

a
′
0a

′
2

)]
. (14.3.11)

With the Rose convention for the reduced matrix elements, the B(E2) transitions are
readily obtained:

B(E2; Ii → I f ) = |〈Ii ||T2||I f 〉|2. (14.3.12)

The RVM has been successfully applied to a large number of nuclei, including the
even-even isotopes of Sm, Gd, Dy, Er, Yb, Hf, W, Os, Th, U, Pu. The agreement
with experimental data was good for both excitation energies in the ground, beta and
gamma bands and the E0, E2 and E4 reduced transition probabilities. The parameters
of the RVM are the reciprocal moment of inertia ε, and the vibrational energies
Eβ and Eγ . They were fixed by fitting the data concerning the excitation energies
of the first 2+ state and the head states of the beta and gamma bands. However,
some systematic deviations from the experimental data are to be noted. They were
interpreted in terms of the Coriolis anti-pairing (CAP)[MoVa60] and blocking of the
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states above the Fermi sea in excited states. The corrections due to these effects were
accounted for in a phenomenological way and thus, the agreement with the data was
improved.

14.3.1 Comparison of the RVM and the CSM

In this subsection we shall prove that the RVM energies for the ground beta and
gamma bands can be analytically derived within a semiclassical treatment of the
CSM Hamiltonian [MRF98]:

H = A1

(
22N̂ + 5�

†
β′�β′

)
+ A2 Î 2 + A3�

†
β�β . (14.3.13)

We recall that N̂ and Î 2 denote the quadrupole boson number and total angular
momentum squared operators, respectively. Here the notations from Chap. 6 are
used:

�
†
β′ =

[
b†

2 × b†
2

]0 − d2

√
5
, (14.3.14)

�
†
β =

[
b†

2 × b†
2 × b†

2

]0 + 3d√
14

[
b†

2 × b†
2

]0 − d3

√
70

, (14.3.15)

where b†
2μ (−2 ≤ μ ≤2) are the components of the quadrupole boson operator.

The classical motion of an axially non-symmetric shape can be studied by the
associated energy function:

H = 〈�|Ĥ |�〉, (14.3.16)

where

|�〉 = exp(z0b†
20 + z2b†

22 + z−2b†
2−2 − z�

0b20 − z�
2b22 − z�−2b2−2)|0〉, (14.3.17)

and Ĥ is given by (14.3.13). The vacuum state for the quadrupole bosons is denoted
by |0〉. The coefficients z0, z2, z−2, z�

0, z�
2, z�−2 are complex functions of time and

define the classical phase space coordinates. By direct calculation one finds:

H = 2 (11A1 + 3A2)
(
z0z�

0 + z2z�
2 + z−2z�−2

)

+ A1

(
z2

0 + 2z2z−2 − d2
) (

z� 2
0 + 2z�

2z�−2 − d2
)

+ A3

70

[
2
(

6z0z2z−2 − z3
0

)
+ 3d

(
z2

0 + 2z2z−2

)
− d3

]

×
[
2
(

6z�
0z�

2z�−2 − z� 3
0

)
+ 3d

(
z� 2

0 + 2z�
2z�−2

)
− d3

]
. (14.3.18)

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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The motion of the phase space coordinates is governed by the equations provided
by the variational principle1

δ

t∫

0

〈�|(H − i
∂

∂t ′
)|�〉dt ′ = 0. (14.3.19)

The results are:

{zk,H} = i
•
zk,

{
z�

k,H
} = i

•
z
�

k,
{
zk, z�

k′
} = −iδkk′ , (14.3.20)

where the Poisson bracket is defined with respect to the canonically conjugate vari-
ables (uk, vk) = (

√
2Re(zk),

√
2I m(zk)). Stationary points of the phase coordinates

motion are also stationary points for the surface of constant energy:

H(z0, z�
0, z2, z�

2, z−2, z�−2) = E (14.3.21)

Suppose now that this surface exhibits a minimum point (z0, z2) = (u0, u2) with
u0 and u2 being real numbers. The existence of such a minimum is proved in Ref.
[RBD95]. Since we want to mention here some classical features which do not depend
on whether this minimum is axially symmetric or not we consider the simplifying
case of u2 = 0. Expanding H around the minimum point and keeping only the
quadratic terms in the deviations z′

k, z� ′
k , one obtains:

H = H0 + Hβ + Hγ . (14.3.22)

where H0 is a constant term (not depending on coordinates) and

Hβ = B1z′
0z� ′

0 + B2

(
z′ 2

0 + (
z� ′

0

)2
)

, (14.3.23)

Hγ = G1
(
z′

2z� ′
2 + z′−2z� ′−2

) + G2
(
z′

2z′−2 + z� ′
2 z� ′−2

)
, (14.3.24)

The coefficients B1, B2, G1 and G2 have the following expressions:

G1 = 22A1 + 6A2,

G2 = 2A1(u
2
0 − d2) − 3A3

35
(d + 2u0)(u0 − d)(2u0 − du0 − d2),

B1 = 22A1 + 6A2 + 4A1u2
0 + 18

35
A3u2

0(d − u0)
2,

B2 = A1(u
2
0 − d2) − 3A3

70
(d − 2u0)(u0 − d)(2u0 − du0 − d2). (14.3.25)

1 We use the units � = c = 1.
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Note that at the level of quadratic approximation there is no β − γ coupling term.
The classical motion can be quantized as follows. One defines first a new set of
coordinates:

Q2 = 1√
2
(z�

2 + z−2), Q−2 = 1√
2
(z�−2 + z2), Q0 = 1√

2
(z�

0 + z0), (14.3.26)

P2 = i√
2
(z�−2 − z2), P−2 = i√

2
(z�

2 − z−2), P0 = i√
2
(z∗

0 − z0). (14.3.27)

The Poisson brackets of these coordinates can be easily calculated and the result
reflects their canonically conjugate character:

{Qk, Pk′ } = δkk′ , k = 0,±2. (14.3.28)

For small deviations from the minimum point, it is useful to introduce the parame-
trization:

Q±2 = √
2γe±2iφ ≡ √

2q±2 (14.3.29)

Let us consider as coordinate operators Q̂k , and the corresponding momenta defined
by:

P̂±2 = − i√
2

∂

∂q±2
, P̂0 = −i

∂

∂Q0
(14.3.30)

Indeed, one can easily check that

[
Q̂±2, P̂±2

]
= i,

[
Q̂0, P̂0

]
= i, (14.3.31)

The transformation (Qk, Pk)→(Q̂k, P̂k) with k = 0,±2 is usually called canon-
ical quantization. Quantized Hamiltonians are obtained by writing Hβ and Hγ in
terms of (Q±2, P±2) and then making the above mentioned replacements. The latter
transformation is made after putting the mixed Q and P terms in a symmetrized
form. The final results are:

Ĥγ = −1

4
(G1 − G2)

(
∂2

∂γ2 + 1

γ

∂

∂γ
+ 1

4γ2

∂2

∂φ2

)
+ (G1 + G2)γ

2 (14.3.32)

Ĥβ = −1

2
(B1 − 2B2)

∂2

∂Q2
0

+ 1

2
(B1 + 2B2)Q2

0 (14.3.33)
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Note that Hγ describes a plane oscillator in terms of the polar coordinates (γ, 2φ).
The spectra which are obtained with the above two operators, Hβ and Hγ , are:

E (γ)
N = ωγ(N + 1), N = 2n + 1

2
|K |, n = 0, 1, 2, . . . |K | = 0, 2, 4, . . .

(14.3.34)

E (β)
n = ωβ(n + 1

2
), n = 0, 1, 2, . . . (14.3.35)

where

ωγ =
(

G2
1 − G2

2

)1/2
, ωβ =

(
B2

1 − 4B2
2

)1/2
(14.3.36)

Inspecting the expressions of the coefficients G and B, one sees that G1 and B1
are mainly given by the N̂ term of the model Hamiltonian. Indeed, the coefficient
A2 accompanying Î 2 is usually small. Therefore, the γ and β harmonic frequencies
are decreased by anharmonicities. Although we discuss the simplest case, the γ
degree of freedom could not be entirely decoupled from the rotational coordinate
φ. This seems to be a general feature for the liquid drop model. The Hamiltonian
Ĥβ + Ĥγ is similar to the unperturbed part of the RVM. Moreover, the semiclassical
spectrum obtained above is identical with the one provided by the vibrational part
of the unperturbed Hamiltonian. Concerning the coupling terms, here only one is
reproduced. The reason is that by restricting the coherent state to the b†

20, b†
22, b†

2−2
bosons, the motion of two Euler angles is not taken into account. We notice the fact
that, since the CSM is a boson formalism, it includes powers of momenta larger than
two, which contrasts the RVM where only terms quadratic in momenta are involved.

The CSM uses a highly anharmonic Hamiltonian and the projected states are
superpositions of all K quantum numbers. This results in generating some important
effects for high spin states. By contradistinction, RVM uses a harmonic vibrational
Hamiltonian and a diagonalization basis subject to the restriction K ≤ 6. On the
other hand, in order to adapt the CSM to higher excited bands would require a great
amount of additional effort. The effect of anharmonicities on the γ and β vibrational
energies was analyzed in detail in Ref. [RBD95].

14.3.2 The Triaxial Rotation Vibration Model

In the Ba and Xe region there are experimental data which cannot be described by
the RVM, the deviations being caused by the restriction to the axially symmetric
equilibrium shape. In Ref. [MFK97] the mentioned restriction is released and the
agreement with experimental data was improved.

We consider, again, the classical Hamiltonian associated to a harmonic liquid drop.
Now we suppose that the equilibrium shape is an asymmetric ellipsoid. Therefore
the stationary point of the energy surface is achieved in (β,a2) with both coordinates
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different from zero. The coordinates time dependence is carried by their deviations
from the static values:

a0(t) = β0 + a′
0(t), a2(t) = a2 + a′

2(t). (14.3.37)

The new dynamical coordinates are supposed to be small comparing them to the static
deformations. In this case we may expand the model Hamiltonian up the second order
in a′

0/β0 and a′
2/a2. After quantization, the Hamiltonian splits up into several terms

which can be written as:

H ≡ T + V = Trot + Tvib + Trotvib + Vβ0a2(a
′
0, a′

2), (14.3.38)

where the following notations were used:

Trot = Î2 − Î 2
3

2I0
+ Î 2

3

16Ba2
2

, Tvib = − �
2

2B
(

∂2

∂a′2
0

+ 1

2

∂2

∂a′2
2

),

Trotvib = Î2 − Î3
2

2I0
f0(β0, a2, a′

0, a′
2) + Î 2+ + Î 2−

2I0
f1(β0, a2, a′

0, a′
2)

+ Î 2
3

16Ba2
2

f2(a2, a′
2) + 2ε

a′
0

β0
, (14.3.39)

Vβ0a2(a
′
0, a′

2) = 1

2
C0a′2

0 + C2a′2
2 .

The expansion coefficients f0, f1, and f2, have the expressions:

f0 = −2
a′

0

β0
+ 3

a′2
0

β2
0

+ 2

β2
0

(a2
2 + 2a2a′

2 + a′2
2 ),

f1 = 1

3

√
6

1

β0
(a2 + a′

2) − √
6

1

β2
0

a′
0(a2 + a′

2),

f2 = −2
a′

2

a2
+ 3

a′2
2

a2
2

. (14.3.40)

We mention that the notations introduced in the subsection devoted to the RVM are
preserved. The eigenstates of the unperturbed Hamiltonian

H0 = Trot + Tvib + Vβ0a2 , (14.3.41)

are taken as diagonalization basis for the coupling Hamiltonian. A basis state
|IK, n2n0〉 is labeled by the total angular momentum (I ), its projection on the intrin-
sic z-axis (K ) and by the number of phonons for the β (n0) and γ (n2) vibrations. For
K = 0, the angular momentum I takes only even values, whereas for K = 2, 4, 6, . . .
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all values I > K are allowed. The basis is restricted to quantum numbers K ≤ 6
and n2 + n0 ≤ 2.

The TRVM has four parameters. These are the vibration energies Eβ(=�

√
C0
B )

and Eγ(=�

√
C2
B ), the inverse moment of inertia ε and the ratio a2/β0 of the static

deformations. To these four parameters, we add the Lipas’s parameter αL [HoLi68],
which corrects the incomplete description of the variation of the moment of inertia
due to the restriction of the diagonalization space. The Lipas’s parameter relates the
excitation energies E0, obtained by diagonalizing the model Hamiltonian, with the
energies E which are to be compared with the data:

E = E0/(1 + αL E0). (14.3.42)

The Lipas’s parameter influences only the energies, but not the wave functions.
The transition probabilities can be readily obtained once we have determined the

initial and final states as well as the transition operator. In Ref. [MFK97] a compact
expression for the transition operator m(E2,μ) was obtained. This is given by:

m(E2,μ) = 3Z
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2)
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) 1
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)]
(14.3.43)

We use standard notations for the nucleus charge (Ze), nuclear radius (R0) and
Wigner’s functions (D2

MK). The transition operator depends on both the static and
the dynamical deformations. It contains not only terms which are linear in a′

0 and
a′

2 but also quadratic and constant terms. While the latter terms are caused by the
deformation effects due to the expansion around the static values, the former terms
reflect an anharmonic structure for the E2 transition.

For illustration purposes, the TRVM was applied for 126Xe, 130Ba and 228Th
which are considered to be of triaxial shape, and results were compared with those
obtained in the framework of CSM. The fitted parameters characterizing the TRVM
and CSM, respectively, are listed in Table 14.6.

Energies corresponding to these parameters are represented in Fig. 14.9 for 126Xe
and 130Ba where, the experimental data and the results of the IBA (interacting boson
approximation) are also given for comparison purposes. The results for the CSM
have been already given in Chap. 6, Figs. 6.10–6.13. The predictions of the TRVM
for 228Th are also given in the last quoted figure. Results obtained with the CSM

http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
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Table 14.6 Parameters used by the TRVM (the first 5) and the CSM (the last 5) for 126Xe, 130Ba
and 228Th. Their significance is explained in the text

126Xe 130Ba 228Th

Eβ (keV) 1,769 1,168 1,120

Eγ (keV) 1,314 1,179 645

ε (keV) 81.3 80.5 17.54

a20/β0 0.333 0.329 0.1585

αL (keV−1) 10−4 10−4 10−4

d 1.46 1.32 3.14

A1 (keV) 14.325 15.783 17.731

A2 (keV) 19.211 12.377 1.512

A3 (keV) 14.411 −0.423 −7.021

q2/q0 −0.119 0.073 −0.071

Fig. 14.9 The experimental (exp.), the TRVM and IBA predictions for the excitation energies in
the ground, β and γ bands in 126Xe and 130Ba. Data are from Ref. [Kch]

and the TRVM for the β bands are collected in Table 14.7. The calculated B(E2)
branching ratios are listed in Table 14.8. Considering the data in Tables 6.3 and 14.8
one can judge the quality of the agreement between the TRVM predictions and
the corresponding experimental data. Note that the CSM accounts for non-axial
properties by means of anharmonicities included. From the analysis presented in
this section as well as in Chap. 6 for the three considered nuclei, one may conclude
that the two formalisms, TRVM and CSM, yield similar agreement with the data
concerning both the energies and the B(E2) values. In Fig. 14.9 one sees that the
TRVM describes the experimental data better than IBA, although the two models
use the same number of parameters.

http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
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Table 14.7 Experimental (first column) and predicted excitation energies (in units of keV) of the
0+

2 band given by the TRVM (second column) and the CSM (third column)
126Xe 130Ba 228Th

Exp. TRVM CSM Exp. TRVM CSM Exp. TRVM CSM

0+ 1,314 1,314 1,314 1,179 1,179 1,179 1,120 1,120 1,120

2+ 1,679 1,600 1,670 1,557 1,490 1,523 1,176 1,173 1,170

4+ 2,042 2,150 2,254 2,053 2,017 1,290 1,292 1,283

6+ 2,758 3,025 2,644 2,635 1,468 1,454

8+ 2,917 3,968 3,196 3,365 1,690 1,679

10+ 3,518 5,074 3,947 4,200 1,946 1,949

Table 14.8 B(E2) branching ratios for 126Xe ,130Ba and 228Th in the triaxial Rot-Vib Model
(TRVM). Data were taken from Refs. [Kch, Btz96] and shown in Table 6.3

Ii → I f
126Xe Ii → I f

130Ba Ii → I f
228Th

2+
2 → 0+

1 8.7 2+
2 → 0+

1 4.5 2+
3 → 0+

1 54

2+
1 100.0 2+

1 100.0 2+
1 100.0

4+
1 6.1

3+
1 → 2+

2 100.0 3+
1 → 2+

2 100.0 3+
1 → 2+

1 100.0

4+
1 24 4+

1 16 4+
1 62

2+
1 4.4 2+

1 2.6

4+
2 → 2+

2 100.0 4+
2 → 2+

2 100.0 4+
4 → 2+

1 15.1

4+
1 66 4+

1 57 4+
1 100

2+
1 1.5 2+

1 2.75 6+
1 8.84

0+
2 → 2+

2 100.0 0+
2 → 2+

2 100.0 5+
1 → 4+

1 100.0

2+
1 1.1 2+

1 3.0 6+
1 112

2+
3 → 0+

2 100.0 2+
3 → 0+

2 100.0 2+
5 → 0+

1 65

2+
2 0.8 2+

2 0.04 2+
1 100

4+
1 0.04 4+

1 0.11 4+
1 267

2+
1 0.01 2+

1 0.06

0+
1 0.01 0+

1 0.04

3+
1 20 3+

1 18

5+
1 → 6+

1 43 4+
3 → 2+

2 670 4+
5 → 4+

1 100

4+
2 83 3+

1 214 6+
1 362

3+
1 100.0 4+

2 100.0

4+
1 0.8 4+

1 7.2

6+
2 → 6+

1 22 2+
1 23.3

4+
2 100.0

4+
1 1.3

7+
1 → 6+

2 22

5+
1 100.0

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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14.4 The Generalized Collective Model

As already mentioned, the liquid drop model has the merit of describing nuclei of
spherical shape or well deformed but is fully unusable for the transitional cases, where
specific properties like gamma soft, triaxial deformation, isomeric states show up.
For example, even for near spherical nuclei the triplet 0+, 2+, 4+ is not degenerate.
Therefore, the presence of anharmonic terms in the model Hamiltonian is necessary.
How to choose anharmonicities such that the continuous emergence of rotational
bands from the multi-phonon degenerate states be described? Moreover, due to the
development of accelerator and detector devices a huge amount of data regarding
states of high and very high spins are available.

The first anharmonic model was proposed by Gneuss and Greiner (GGM)
[GMG69, GG71] which used a Hamiltonian of sixth order in the quadrupole coor-
dinate, α2μ, and second order in the conjugate momenta, π2μ, including a linear
coupling with coordinates. The terms which do not depend on momenta define the
potential energy. This is chosen as a polynomial in the invariants of second and
third order in α2μ. The Hamiltonian involves two mass and six stiffness parameters
which are to be determined by minimizing the χ2 associated to eight experimental
data and corresponding theoretical values obtained either through diagonalization
if the energies are concerned or by calculating the transition probabilities with the
resulting wave functions. The most difficult step in applying this model is to write
the matrix elements in the collective “mathematical” basis defined by Hecht [H65].
In the intrinsic frame the potential energy looks like:

V (β, γ) = C2β
2 + C3β

3 cos(3γ) + C4β
4

+ C5β
5 cos(3γ) + C6β

6 cos2(3γ) + D6β
6. (14.4.1)

Note that the invariance to the octaedral group requires the symmetry of V (β, γ) to
the transformation:

γ → −γ, γ → γ + 2π

3
. (14.4.2)

Also, the rotational invariance implies that the potential and mass parameters do not
depend on the Euler angles. Once the six stiffness and the two mass parameters are
determined by fitting some data, the remaining of experimental information regard-
ing energies and transition probabilities are predictions of the model. Moreover, the
potential energy surface (PES) in the β and γ dynamic deformations can be rep-
resented as a contour plot. This way one may say that to the low lying spectrum
and transitions connecting its members one associates a PES. Conversely, the shape
and characteristics of the PES reflect some fundamental properties of nuclei. Is the
number of parameters large enough to describe the principal collective properties of
nuclei? For example, the properties of a minimum in the potential (β − γ location,
depth and the curvature in the β and γ direction) require 5 parameters. The sixth
parameter may be used to calculate details about one ground-state minimum but in
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order to describe two minima there is not enough freedom for fixing details. The
GGM was however very useful in describing nuclei intermediate between spherical
vibrator, deformed rotor and triaxial nuclei. The PES associated to the intermediate
nuclei reflect the smooth evolution of the transitions between the limiting situations.
What are the elements of nuclear structure which are directly connected with the
PES? They are: minima are assigned to the ground state or isomeric state, stiffness
determines vibrational excitation energies, while barriers hinder transitions, etc.

In contrast to some earlier calculations where the bands β and γ are not interacting
and therefore the head states energies can be freely moved at the desired values, the
GGM takes properly into account the β−γ interaction in the γ soft potential bringing
the γ band at a low lying energy and consequently one can assert, for example, that
Os isotopes are asymmetric nuclei.

Another interesting result refers to oblate and prolate nuclei whose PES are mirror
images with respect to the γ = 30◦ axis. These nuclei have identical spectrum and
in the first order in α, the same transition probabilities and mean square radii. Also,
the quadrupole moments are equal in magnitude but of different sign.

For the PES exhibiting two minima, one could determine the membership of
an energy level to one or another minimum by calculating either the quadrupole
moments or the mean square radii, knowing the fact that for less deformed minimum
these quantities are smaller. Thus, the PES for 112Cd and 114Cd suggest that close to
the triplet 0+, 2+, 4+ which belongs to the spherical minimum, there are deformed
states located in the second minimum. It is noteworthy that the GGM explains, by
means of a PES with two minima, the striking experimental result for 72Ge and 98Mo
saying that the first excited state is 0+. For the said nuclei the zero point energy is
quite high, which results in having even low lying excited states at energies larger
than the height of the barrier separating the two minima. Their wave functions will
be spread over both wells. These states of mixed symmetries cannot be organized in
rotational bands.

Another category of nuclei considered in Ref. [GG71] is that of Te, Xe, and Ba.
The corresponding PES indicate that they are asymmetric nuclei with some specific
features: The excited state 0+ is missing from the region of the vibrational triplet.
Instead, the state 3+ shows up. Another property reflected by the PES is the large
softness in the γ direction which determines a small difference between the ground
state minimum and the oblate minimum. Actually, the spectra associated to each of
the mentioned nuclei are essentially influenced by the relative position of the two
minima. An interesting result which is worth mentioning is that concerning the first
excited band in 174Hf. Indeed, this is not the β band, as expected, but the ground state
band belonging to the oblate minimum. This is attested by the sign of the quadrupole
moments of the ground state and β bands.

As for the kinetic energy parameters, they do not have a transparent physical
meaning. However, the numerical analysis showed that the parameter of the har-
monic term stretches or compresses the spectrum, depending on whether enlarged
or diminished, but it does not change the sequence order. On the contrary, the anhar-
monic term changes the level ordering (only because of it one could obtain the state
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2+ belonging to the triplet on the first place) and even the bands order. Also, the
convergence of the numerical procedure is sensitive to the variation of the anhar-
monic term.

It should be mentioned that there is no reason, except for simplicity, for choosing
in the kinetic energy only quadratic terms in momenta. Why choose the kinetic
energy in second order in momenta and the potential energy of sixth order? One may
argue that classical mechanic requires such dependence. However, this contrasts the
requirement that the Hamiltonian is invariant to the transformation which changes α
with π and vice-versa. Also, it should be invariant to the canonical transformations
which mix the coordinates with momenta. On the other hand if one uses a boson
Hamiltonian involving anharmonicities, the associated Hamiltonian in coordinate
and momenta would comprise terms quartic and sextic in momenta, which suggests
that the GGM misses the effects produced by high anharmonicities in momenta.

The GGM was to some extent improved by other collaborators of Greiner, by
extending its flexibility such that the description of states of very high spin is pos-
sible. The new version, called the generalized collective model (GCM) [HSMG80,
HMG81], is based essentially on the same principles as the GGM but involving sev-
eral technical new features: (i) The diagonalization basis is a physical one, labeled by
the quantum numbers |NvαJ M〉, obtained analytically by three groups [CHMO76,
CMW76, GRC78]. The model authors preferred the basis of Chacon and Moshinski
since the matrix elements of the used Hamiltonian are obtainable in a convenient form
for their codes. (ii) The kinetic energy has three terms (not two as in the GGM), two
of them coupling momenta with coordinates. (iii) The potential energy generalizes
the one used in the GGM including many additional terms:

V (β, γ) =
∑

ρ,μ

Vρμβρ(cos 3γ)μ, 2 ≤ ρ ≤ 6, 0 ≤ μ ≤ 4. (14.4.3)

Actually, not all of the expansion coefficients are used in practical applications.
The ones employed in calculations correspond to the indices in the Table 14.9. (iv)
Adding to the stiffness parameters, whose indices are listed in the Table 14.9, the
three mass parameters, one obtains that the GCM uses 20 parameters, whereas the
GGM involves only 8. In concrete applications, these parameters were fixed by fitting
the data about some low lying energy levels, reduced E2 transition probabilities and
quadrupole moments. (v) It is important to notice that while the potential V (β, γ)

of the GGM is obtained from a low order polynomial expansion in the second and
third order invariants in the quadrupole coordinates, the GCM includes terms which
do not correspond to monomials of the said invariants.

Table 14.9 The indices defining the stiffness parameters given in Eq. (14.4.3)

μ 0 1 2 3 4

ρ 2, 3, 4, 5, 6 2, 3, 4, 5 2, 3, 4, 6 2, 3 2, 3
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This model has been successfully applied to the isotopic chains of Pt, Os and
W and the specific features are interpreted in terms of the PES. For example the Pt
isotopes show a transition from the γ soft, nearly triaxial nucleus 196

78 Pt to the nearly
γ-unstable nuclei 188

78 Pt and 190
78 Pt. 186

78 Pt exhibits two minima, one at the prolate
and one at the oblate axis. The same is observed for 184

76 Os. Increasing the neutron
number, the oblate minimum disappears while the prolate minimum develops to a
γ-soft, nearly triaxial minimum in 192

76 Os. Two minima are also noticed in the PES
of 184

74 W and 186
74 W, but only one in 180

74 Pt and 182
74 Pt. Special attention must be paid to

the last two isotopes where, because of few available data, the PES is not uniquely
determined.

The said isotopes with two minima in the PES exhibits a backbending structure in
the yrast band and this is due to the crossing of the lowest bands in the two minima.
This picture is achieved by the “catch up” of the ground state band due to the bands
in the second minimum lying on the oblate axis. It is worth mentioning that this
backbending is different from that caused by crossing of the ground band with a two
quasiparticle-core band. Indeed, for some Pt isotopes there are several states 10+ and
several 12+ which are of two quasiparticle nature. Moreover, the first 12+ is heading
a (νi13/2)

2 qp band which can be explained only in the framework of a prticle-core
coupling picture [RLF83].

The GCM was also applied to 238
92 U, where energies in the ground band are known

up to spin 30+ and a few states in the side bands β and γ. Unfortunately, only very
few data are known about the transition probabilities. This is the reason why for
this case only 18 parameters were used. The existent data are fairly well explained.
However, there are experimental suggestions of a secondary minimum at very high
deformation on the prolate axis [UF79]. For such situation the model is inadequate.
Indeed, for two minima corresponding to very different deformations, the model
encounters difficulties concerning the states convergence. The convergence is very
bad even when 30 phonons are included in the basis. This situation proves that the
properties of very deformed nuclei cannot be described by using a basis of spherical
bosons. This is the point where the CSM seems to be a better option for describing
the deformed nuclei.

Since the GCM and GGM use in fact the same fundamental ingredients, the
difference regarding only some technical details, the unified name of the two models
as the Gneus-Greiner model is more appropriate.

14.4.1 Comparison with the CSM

The CSM and GGM are two phenomenological models which address similar issues.
However, the followed paths are different and, because of their capacities to simulate
the realm, the two models are not similar to a certain extent. First of all, the CSM uses
a boson Hamiltonian while within the GGM the collective Hamiltonian depends in a
specific way on coordinates and momenta. In this respect the CSM includes effects
coming from the higher order terms in momenta. The essential difference between the
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two formalisms consists in the bases used to treat the chosen Hamiltonian. For a given
angular momentum, the CSM basis consists of angular momentum projected states
(which, by construction, are orthogonal), from a coherent state and two orthogonal
polynomial excitations of it. The criteria for selecting the unprojected states ensure a
connection between the vibrational and rotational spectra according to the empirical
rule of Sheline-Sakai [Sh60, Sa76]. The model Hamiltonian fulfills the invariance
conditions (rotation, hermiticity, time reversal) and, moreover, is effective in the three
dimensional basis, meaning that the β band is decoupled from the ground and γ bands.
Although the projected states are eigenfunctions of the angular momentum squared
and its projection on z-axis, they depend on a deformation parameter. This makes
the basis suitable for treating the well deformed nuclei contrasting the GGM, which
confronts with convergence difficulties when applied to very deformed nuclei. Both
are recovering the traditional models, as the liquid drop, triaxial rotator, the model for
gamma unstable nuclei, as limiting cases. Also, they describe the transition between
these extreme pictures.

Another difference between the two models is that, while the GGM uses 20 para-
meters and a huge boson bases, the CSM has, in its simplified version, 4 parameters
(and in the full version 6), and a three dimensional basis. Despite the reduced dimen-
sion, each basis member is an infinite series of bosons and, because of that, effects
coming from the whole boson space are included. The situation looks as if a very
complicated boson Hamiltonian was diagonalized in the whole boson space and
then from the resulting eigenfunctions only those corresponding to the lowest three
eigenvalues were depicted. Subsequently, an effective Hamiltonian is treated in the
reduced collective space. In this respect, the CSM is easier to handle and its pre-
dictability power is larger than that of GGM. Concerning the PES structure, we have
already compared the results of CSM for 190Pt and 182W with those of Kumar and
Baranger model [KB68], which, to some extent, is the microscopic counterpart of
the GGM (see Chap. 6), and the exactly solvable model called SMA (see the first
section of this chapter), respectively. We concluded that the compared models are
consistent with each other at least in what regards the corresponding PES.

14.5 Interacting Boson Approximation

One central issue of the many body theories is to project out a set of coordinates to
be used for describing the collective properties of nuclei. This was actually the goal
of the Interacting Boson Approximation (IBA) [AI76, ArIa76] which supposed that
nucleons of the next closed major shell, if that is less of half filled or the nucleon
holes for the shells which are more than half-filled, are pairwise coupled to angular
momentum zero and two. The paired nucleons or holes are considered to behave
like monopole (s) or quadrupole bosons (d†

μ, with −2 ≤ μ ≤ 2). Despite their
boson character the total number of bosons is restricted to half of the total number of
particles/holes in the next filled major shell. To give an example, consider the case
of 152

64 Gd92. The next closed shell for protons (neutrons) is 50 (80) resulting in a total

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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of 14+12 valence nucleons. Therefore, this isotope possesses a total of 13 bosons.
If we denote by ns and nd the number of bosons of type s and d, respectively, the
restriction ns + nd = N with N the total number of nucleons divided by 2 in the
open shells must be fulfilled by any physical state yielded by diagonalizing a model
Hamiltonian.

The boson components ŝ and d̂μ with −2 ≤ μ ≤ 2 define a 6 dimensional space.
The unitary transformations acting on this space form a group called U (6) whose
generators are the 36 operators: d̂†

μd̂ν , d̂†
μŝ, ŝ†d̂μ, ŝ†ŝ. For pragmatic reasons, it is

more convenient to use instead the basis defined as angular momentum coupled
products:

[
ŝ† × ŝ

]0
,

[
d̂† × ŝ

]2

μ
,

[
ŝ† × ˆ̃d

]2

μ
,

[
d̂† × ˆ̃d

]0

[
d̂† × ˆ̃d

]1

μ
,

[
d̂† × ˆ̃d

]2

μ
,

[
d̂† × ˆ̃d

]3

μ
,

[
d̂† × ˆ̃d

]4

μ
. (14.5.1)

With the help of the 36 generators of the U (6) group one builds the most general
invariant, with respect to rotations, which is of fourth order in bosons. Considering
now the restriction regarding the total number of bosons and recoupling the terms
involved, the final expression of the Hamiltonian looks more transparent:

Ĥ = ε′′n̂d + a0 P̂† P̂ + a1 L̂2 + a2 Q̂2 + a3T̂ 2 + a4T̂ 2
4 . (14.5.2)

Here the following tensors of rank 0, 1, . . . , 4 are involved:

P̂ = 1

2

([ ˆ̃d × ˆ̃d
]0

− ŝ ŝ

)
,

T̂l =
[
d̂† × ˆ̃d

]l
, l = 0, . . . , 4,

L̂μ = √
10T̂1μ, Q̂2μ =

(
d̂†
μŝ + ŝ† ˆ̃dμ

)
−

√
7

2
T̂2μ. (14.5.3)

To find the eigenvalues of this Hamiltonian, one could diagonalize it in a certain basis
defined by the Casimir operators of the intermediary groups of a certain reduction
chain of the maximal symmetry group of H , that is U (6). A piece of this chain should
be O(3) ⊃ O(2), in order to assure the presence, among the basis quantum numbers,
of the angular momentum and its projection on z-axis. The groups of the chain are
generated by subsets of operators (14.5.1) which form a closed Lie algebra.
There are three possible chains obeying the said requirements:

A : U (6) ⊃ U (5) ⊃ O(5) ⊃ O(3) ⊃ O(2),

B : U (6) ⊃ SU (3) ⊃ O(3) ⊃ O(2),

C : U (6) ⊃ O(6) ⊃ O(5) ⊃ O(3) ⊃ O(2). (14.5.4)
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The operators which generate the smaller groups are:

O(6) : L̂μ,
[
d̂† × ˆ̃d

]3

μ
,

[
d̂† × ŝ

]2

μ
−

[
ŝ† × ˆ̃d

]2

μ
,

U(5) :
[
d̂† × ˆ̃d

]L

M
, L = 0, 1, . . . , 4,

O(5) :
[
d̂† × ˆ̃d

]L

M
, L = 1, 3,

SU(3) : L̂μ, Q̂μ,

O(3) :
[
d̂† × ˆ̃d

]1

M
, O(2) :

[
d̂† × ˆ̃d

]1

0
, (14.5.5)

The Casimir operators of the groups listed in (14.5.4) are given in Table 14.10. where
the generators of O(5) and O(6) are:

O(5) : �̂μν = d̂†
μ

ˆ̃dν − d̂†
ν

ˆ̃dμ,

O(6) : ˆ̃
�μ,ν = �̂μν, d̂†

μŝ − ŝ† ˆ̃dν . (14.5.6)

Throughout this book we used the standard notation, ˆ̃bμ, for the second rank tensor
(−)μb̂−μ. With the above generators, one defines the Casimirs:

ˆ̄�2 = 1

2

∑

μν

ˆ̄�μν
ˆ̄�†

μν, �̂2 = 1

2

∑

μν

�̂μν�̂
†
μν . (14.5.7)

whose eigenvalues are λ̄(λ̄ + 4) and λ(λ + 3). The quantum numbers λ̄ and λ are
called the generalized seniority and seniority, respectively. The basis defined by
the three reduction chains is listed in Table 14.11. The quantum numbers belong to
the intervals:

Table 14.10 The Casimir operators (CO) their eigenvalues (EIG) and corresponding quantum
numbers (QN) for the groups involved in the chains (14.5.4)

Group U(6) O(6) U(5) O(5) SU(3) O(3) O(2)

CO N̂ ˆ̃
�2 n̂d �̂2 Ĉ2 L̂2 L̂ z

EIG N λ̄(λ̄ + 4) nd λ(λ + 3) l2 + lm + m2 + 3(l + m) L(L+1) M

QN N λ̄ nd λ (l,m) L M

Table 14.11 The states labeled by the quantum numbers corresponding to the three group reduction
chains

Reduction chain A B C

Basis state |NndλτLM〉 |N (l, m)KLM〉 |N λ̄λτLM〉
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λ̄ = N , N − 2, N − 4, . . . , 1 or 0,

λ = λ̄, λ̄ − 1, . . . , 0, or λ = nd , nd − 2, nd − 4, . . . , 1 or 0,

(l, m) = (2N , 0), (2N − 4, 2), . . . (2N − 6, 0), (2N − 10, 2), . . . ,

(2N − 12, 0), (2N − 16, 2), . . . . (14.5.8)

Since the steps from O(5) to O(3) and SU (3) to O(3) are not decomposable, i.e. there
are several irreducible representations (irrep) of O(3) which correspond to a single
irrep of O(5) and several irrep of O(3) appear in the same irrep of SU (3). To count
the degenerate states from O(5) ⊃ O(3) one uses a “missing” quantum number τ
(which might be the number of d-boson triplet coupled to zero angular momentum)
and Elliot’s quantum number, K. For the chain B, K and L run as follows:

K = min(l, m), min(l, m) − 2, . . . , 1 or 0

For K = 0, L = max(l, m), max(l, m) − 2, . . . , 1 or 0,

For K �= 0, L = K, K + 1, K + 2, . . . , K + max(l, m). (14.5.9)

In order to solve the Schrödinger equation associated to (14.5.2) we have to expand
its eigenstate in the basis defined by one of the above group reduction chains. This
would be a numerical solution. Alternatively, we could impose some restrictions on
the defining coefficients such that the resulting Hamiltonian is diagonal in a chosen
basis. To this end we have to express the components of the initial Hamiltonian,
those written in terms of the invariant monomials in the bosons ŝ and d̂ , in terms of
the Casimir operators discussed before. This is fully achievable and the final form
would be close but not identical to the multipole expansion (14.5.2). In order to get
a diagonal form for H one has to set all coefficients equal to zero except for those
accompanying the Casimir operators associated to the chosen reduction chain. Thus,
one obtains three Hamiltonians which have analytical eigenvalues:

Ĥ A
IBA = εn̂d + Cnd n̂2

d + Cλ�̂2 + CL L̂2,

E A
ndλL = εnd + Cnd n2

d + Cλλ(λ + 3) + CL L(L + 1),

Ĥ B
IBA = CQ Q̂2 + CL L̂2 = 1

2
CQĈ2 + (CL − 3

8
CQ)L̂2,

E B
lmL = CQ

2

[
l2 + m2 + lm + 3(l + m)

]
+

(
CL − 3CQ

8

)
L(L + 1),

ĤC
IBA = Cλ̄

ˆ̃
�2 + Cλ�̂2 + CL L̂2 ,

EC
λ̄λL

= Cλ̄λ̄(λ̄ + 4) + Cλλ(λ + 3) + CL L(L + 1). (14.5.10)

The spectrum defined by E A
ndλL is referred to as the vibrational limit since its leading

term is identical with the harmonic term from the geometrical model the difference
being that within IBA, nd ≤ N , whereas in the latter case the boson number might be
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infinite. The set of energies E B
lmL defines the rotational limit since it contains the rotor

like term L(L +1). Finally, the set EC
λ̄λL

is similar to that for γ-unstable nuclei in the
geometrical model and for this reason is called the γ-unstable limit. The signature
of this kind of nuclei is that the energy of 2+

2 is lower than that of the state 0+
2 . If the

Hamiltonian HIBA can be projected onto one of those in (14.5.10), one says that it
exhibits a dynamical symmetry. Note that none of the Hamiltonians mentioned above
involves the O(2) Casimir, Lz , since that would break the rotational symmetry.

In order to calculate the reduced transition probabilities we need the expressions
of transitions operators, T̂ i

LM, with “i” taking the values E and M for electric and
magnetic transitions, respectively. They are listed below:

T̂ E
2M = β2

([
d̂† × ˆ̃s

]2

M

)
+ γ2

[
d̂† × ˆ̃d

]2

M
,

T̂ E
00 = α0

[
ŝ† × ˆ̃s

]0
, T̂ E

4M = γ4

[
d̂† × ˆ̃d

]4

M
,

T̂ M
1M = γ1

[
d̂† × ˆ̃d

]1

M
, T̂ M

3M = γ1

[
d̂† × ˆ̃d

]3

M
, (14.5.11)

Note that T̂ M
1M is proportional to the angular momentum and therefore is diagonal in

any of the bases labeled by A, B, C respectively, and consequently it does not cause
any transition. Therefore, the above expression must be supplemented by higher
order terms of the form:

[[
d̂† × ˆ̃s

]2 ×
[
d̂† × ˆ̃d

]1
]1

M
or

[[
d̂† × ˆ̃d

]2 ×
[
d̂† × ˆ̃d

]1
]1

M
. (14.5.12)

This model was successfully used to interpret the main collective properties in low
lying spectra of large number of nuclei. Certainly, in order to broaden the scope,
several extension have been proposed along the time. To distinguish the approach
described before from its extensions people refer to it as IBA1.

In order to save space here we do not give details about the other versions and
restrict ourself to enumerating them:

• IBA2: This formalism makes a distinction between the s and d bosons associated
to protons and those of neutrons [Ar77]. The Hamiltonian is a sum of three terms,
two associated to protons and neutrons respectively and one describing the inter-
action of the two components. The interaction contains the so-called Majorana
interaction:

M̂ = λ
√

5
[
(ŝ†

ν d̂†
π − ŝ†

π d̂†
ν ) × (ŝν

ˆ̃dπ − ŝπ
ˆ̃d†
ν )
]0

+
∑

L=1,3

ξL
√

2L + 1

[[
d̂†
ν × d̂†

π

]L ×
[ ˆ̃dν × ˆ̃dπ

]L
]0

. (14.5.13)
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Notice that this term involves three new parameters. This interaction has the
property that pushes up the p − n antisymmetric states and leaves the symmetric
one unaffected. This feature is exploited in order to fit the energy of the scissors
mode 1+. In this respect, IBA2 cannot predict the energy of 1+.

• sdg-IBA: This approach uses an additional boson comparing it with IBA1, that is
the boson g carrying the angular momentum 4. Also, it relaxes the restriction for
the total number of bosons N, which is considered now as a free parameter. This
way the model can be applied also to high spin states.

• sdf-IBA: In this version of IBA, a new boson shows up, namely the boson f
of angular momentum three. This makes applications to negative parity bands
possible.

• IBFM: Is a core-plus particle model, with the core described by IBA1. The
approach is meant to describe the even-odd nuclei.

Finally, we mention that IBA1 has a microscopic counterpart which was earlier for-
mulated by Jolos and his collaborators [Jol74, Ja74, Jol75]. Indeed, a SU (6) algebra
is constructed microscopically by boson expanding the quadrupole two quasiparti-
cle operators within a Holstein Primakoff formalism. The Lie algebra is closed by
retaining in the commutators algebra only the collective quadrupole operators and
neglecting the noncollective terms in the expansion. Thus, the quasiparticle operators
A†

2μ and the quadrupole density operators B†
2μ are represented by 36 boson operators

b†
2μ(N − N̂ )1/2, (N − N̂ )1/2b2μ, b†

2μb2ν, (14.5.14)

where b†
2 is the collective quadrupole phonon operator, N̂ the phonon number oper-

ator, while N is an expansion cut-off factor. Replacing the square root factors by
the s bosons, one obtains the phenomenological U (6) algebra used by IBA1. Imple-
menting the above boson expansion terms in the starting microscopic Hamiltonian
one obtains the Holstein-Primakoff boson representation of the initial many body
fermionic Hamiltonian. This approach is called the truncated quadrupole-phonon
model (TQPM). If the expansion coefficients are replaced with phenomenological
parameters, the results obtained in all limiting symmetries (SU (3), SU (5), O(5) . . .)
are the same in both models.

14.5.1 Comparison with the CSM

The CSM does not uses the boson ŝ. The Hamiltonian is defined in terms of quadru-
pole bosons and is effective in a restricted collective space projected over the angular
momentum, from one coherent state and two polynomial excitations of it. The idea
of effectiveness is common to both models. A two bosons coherent state can be writ-
ten as linear combination of any of the bases A, B, C states, the result having the
property that none of the components is missing. Due to this feature, the states used
by the CSM generalizes the bases mentioned above.
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Since the coherent state is a deformed function with a classical behavior and,
moreover, an infinite series of bosons it is expected to be suitable for the description
of deformed nuclei staying in a high spin state. This property contrasts IBA1 which
uses a relatively small number of bosons due to the restriction concerning the total
number and, consequently, it is not suitable for deformed nuclei and states of high
spin. For example for 232Th and 238U where energies of states up to 32+ in the
ground, 20+ in the β and 11+ in the γ band are known, the CSM yields results
impressively close to the data.

The property which mostly differentiates between the two approaches is that the
CSM Hamiltonian does not commute with the boson number operator. The projected
states are also combinations of components with different number of bosons. To cover
the nuclei of different dynamic symmetries, the IBA1 uses a specific Hamiltonian
while the CSM employs a sole Hamiltonian. The unifying feature of the CSM pro-
cedure is assured by the interaction of the bands ground and γ. Moreover, we have
seen that even in the vibrational limit the states of the β band can be written as a
specific excitation of the γ band. This is the reason why the transition between β and
γ bands is stronger than between β and ground band. The latter aspect is shared also
by IBA.

We have seen that CSM produces analytical expressions for both excitation ener-
gies and transition probabilities. For example, for the ratio characterizing the ground
band in the asymptotic region one has:

B(E2; (J + 2)+ → J+)g

B(E2; J+ → (J − 2)+)g
= (J + 1)(J + 2)(2J − 1)(2J + 1)

J (J − 1)(2J + 3)(2J + 5)
. (14.5.15)

Specializing this expression for J = 2 one obtains:

B(E2; 4+ → 2+)g

B(E2; 2+ → 0+)g
= 10

7
(14.5.16)

This result coincides with that predicted by IBA1 in the limit O(6) with N → ∞.
In this limit the IBA1 predicts [MtV79]:

B(E2; (J + 2)+g → J+
g )

B(E2; 2+
g → 0+

g )
= 5

2

J + 2

J + 5
,

B(E2; (J )+γ → J+
g )

B(E2; 2+
g → 0+

g )
= 10(J + 1)

J + 5
.

(14.5.17)

The first equation considered for J = 2, indeed, leads to a ratio equal to 10/7.
It is interesting to specify the CSM predictions for the above ratios in the vibra-

tional limit, having in mind that they do not depend on the nuclear deformation.
Using the results of Chap. 6 for the vibrational limit one obtains:

B(E2; (J + 2)+g → J+
g )

B(E2; 2+
g → 0+

g )
= J + 2

2
,

B(E2; (J )+γ → J+
g )

B(E2; 2+
g → 0+

g )
= 2(J + 1).

(14.5.18)

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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Comparing these results with the corresponding ones given by IBA1 one remarks a
difference of a factor 5/(J + 5) in both cases.

It is worth mentioning that, in the regime of large deformation, the CSM results
for transition probabilities agree with the Alaga’s rule. On the other hand, the reduced
transition probabilities predicted by IBA1 do not obey the said rule. This is explained
by the fact that the restriction of the total number of bosons prevents reaching the
asymptotic regime of deformation.

Concerning the extension called IBA2, this must be compared with the GCSM.
We recall that GCSM describes in an unified fashion the bands of electric nature,
such as the ground, β and γ bands, and the magnetic band built on the dipole scissors
mode 1+. The model contains the two rotors and two drops models as limiting cases.
Moreover, it is one of the very few formalisms which predict analytic expressions of
the M1 strength which depends quadratically on the nuclear deformation.

In its turn, the IBA2 introduces the Majorana interaction in order to get the right
energy of the scissors state. Also, IBA2 does not predict the quadratic dependence
of the M1 strength on the nuclear deformation.

The CSM has no correspondent version to the sdg-IBA. The reason is simple: due
to the fact that the basis states are infinite series of bosons, there is no need for a
boson g.

The CSM extension to pear-shaped nuclei corresponds to the sdf-IBA. In this
context we recall that the CSM extension which includes the octupole degrees of
freedom is able to describe simultaneously 8 rotational bands, four of positive and
four of negative parity. Again, the description includes states of very high angular
momentum. Moreover, signatures for static octupole deformations are pointed out
not only in the ground but also in excited bands. On the other hand, the sdf-IBA is
not describing the high spin states and due to this fact misses the states where the
static octupole deformation is set on.

The extension to the even-odd nuclei called IBMF also has a correspondent within
the CSM. The first application which coupled a CSM core to a system of particles
interacting among themselves by pairing and surface delta forces, concerned some
even-even isotopes of Pt, where the existence of several states 10+ and 12+ was
described by the intersection of the ground collective band with a 2qp band of neutron
type and 2qp of proton type. Later on, the formalism was extended to even odd nuclei
where the 1qp-core and 3qp-core bands were studied.

Recently, a new extension for the even-odd nuclei was formulated [RRF14] where
the description of the core includes the octupole degrees of freedom, while the single
particle space contains two shells of positive parity and one of negative parity. As
a result, six rotational bands were obtained, three of positive and three of negative
parity.

As mentioned already several times, using the language of symmetries, the nuclei
have been classified such that they are placed on the sides of a triangle having in the
vertexes the symmetries of SU (5), SU (3) and O(6). Later on, it was pointed out that
even inside the triangle border, one may find some nuclei. The nuclei staying on a leg
of triangle exhibit properties associated to the phase transition between the adjacent
vortexes. Moreover, the critical points for these transitions are also characterized by
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special symmetries, like E(5), X (5) (unknown yet), Z(5) (unknown yet). In Chap. 6
we showed that the CSM is able to describe not only the nuclei corresponding to the
said vertex symmetries but also the transitions between them including the critical
nuclei.

As a general conclusion one may say that the IBA together with its extensions
are able to account for the collective features of low lying states of moderate spin
and nuclear deformation. Due to its simplicity, it became very popular especially
among experimentalists who are extensively using the available codes to interpret
their measurements.

On the other hand, the CSM is a complete boson approach which is based on
a different philosophy from IBA and tries to get a general view upon the nuclear
properties of states with spin ranging from low up to very high values and nuclei
belonging to all three categories, spherical, deformed and transitional. Having the
coherent state as principal ingredient, the model describes very well the classical
properties of nuclei.

http://dx.doi.org/10.1007/978-3-319-14642-3_6


Chapter 15
Conclusions

15.1 Summary and Conclusions

Here we summarize by giving a unitary view of the material presented in the previ-
ous chapters. We start by presenting some arguments which may answer the question
Why use the coherent states? Since the coherent state was first used by Glauber for
a system of photons, a lot of progress has been made to extend the concept to other
systems with various goals. The ground state properties of a many body system is
often described by coherent state as in the BCS theory, the random phase approxi-
mation (RPA) or the time dependent Hartree-Fock (TDHF) formalisms. In general,
the dequantization procedure defined by a time dependent variational equation is
most reliable when the trial function is of a coherent type. Indeed, only in this case
quantizing back the classical trajectories the resulting spectrum might be close to
that associated with the initial many-body Hamiltonian. Such a treatment can be
applied also to quadrupole boson Hamiltonians. Indeed, as we showed in this book,
the classical trajectories of complicated boson Hamiltonians of fourth and sixth
order in bosons can be analytically expressed. The corresponding periodic trajecto-
ries which surround closely the minima points as well as those of large amplitude
could be quantized. The motion in a double well potential and the tunneling process
through the potential barrier were also considered.

The over-complete property of a coherent state allows for accounting the dynamics
causing the collective motion. Indeed, by expanding the coherent state in a Hilbert
space basis, no expansion coefficient ismissing.Due to this property, for a quadrupole
boson Hamiltonian contributions in the whole boson space are included, which is
not the case when a diagonalization procedure is adopted. The useful consequence
of the said property is the role of the coherent state as generating function for a
basis of states in the considered Hilbert space. Several bases have been generated by
projection from a coherent state having either a phenomenological or a microscopic
structure. In this context we mention the SU(5), the SU(1,1) boson basis and the
O(5) basis projected out from a generalized BCS function. It is well known that the
interaction of particles with the core breaks the rotational symmetry manifested in

© Springer International Publishing Switzerland 2015
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the structure of the mean-field. This property is exploited by defining a projected
spherical single particle basis.

Herewe deal with quadrupole bosonHamiltonians and therefore we use an axially
symmetric coherent state defined by the quadrupole boson, b+

20 and b20, and simple
polynomial excitations of it. It is generally accepted that the nuclear system behaves
more or less classically in a state of high angular momentum. This fact recommends
the coherent states as an efficient tool for treating the high spin states. Indeed, it is
well known that the coherent states minimize the Heisenberg uncertainty relations,
which in fact reflects a classical character. However, the coherent state breaks several
symmetries among which the most important are the rotational and the gauge ones.
The question is whether restoring these symmetries, the classical properties are pre-
served or not. This feature is studied in chapter two for the mentioned symmetries
and two pairs of conjugate coordinates: the quadrupole coordinate and its conjugate
momentum and the boson number operator and the conjugate phase.

Studying a second order boson Hamiltonian within a time dependent variational
formalism with a quadrupole coherent state as a trial function, and a constraint, the
corresponding classical equation is exactly solvable, which results in having a closed
formula for the ground band energies, which generalizes the result of Holmberg
and Lipas. In the classical picture, the kinetic and potential energies are naturally
separated. The potential is just the Davidson potential. Alternatively, the energy can
be obtained with the angular momentum projected state, i.e. within an approach of
variation after projection. An analytical formula for energies is obtained, which is
similar to that resulting in a semi-classical treatment. The two very simple formulas
have been applied to 44 nuclei covering regions characterized by different dynamic
symmetries or, in other words, belonging to various known nuclear phases. In all
cases one obtains very good agreement with the experimental data.

The coherent state description (CSM): Being encouraged by the results obtained
for the ground band, we extended these ideas to three interacting bands, ground, beta
and gamma. We started with an axially symmetric coherent state as a model state of
the ground band in the intrinsic frame and two polynomial excitations of that, which
are associated to the beta and gamma band. The excitations were chosen such that
the three states are orthogonal before and after angular momentum projection. The
three sets of projected states have very attractive properties: (1) they depend on a
real parameter which simulates the nuclear deformation. (2) when the deformation
is going to zero the functions for the ground band tend to the highest seniority states
| J
2

J
2 0J M〉, while those for gamma and beta bands go to the second and third high-

est seniority states, respectively. When the deformation is large the projected wave
functions are identical with those provided by the liquid drop model. Moreover, the
continuous link between the two sets of wave functions, in vibrational and rotational
limits, is the same as the correspondence established empirically by Sheline and
Sakai. Within the restricted boson space of projected states we considered an effec-
tive boson Hamiltonian, which yields maximally decoupled bands. For a given J, the
energies for beta band and gamma band states of odd angular momentum are taken
to be the corresponding average values while the states of ground band and gamma
band of even angular momenta are obtained by diagonalizing a 2×2matrix. Energies
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and quadrupole transition probabilities are given in an analytical form, which in the
vibrational as well as rotational limits become very simple. This model is called the
Coherent State Model (CSM) and was applied to a huge number of nuclei belonging
to different symmetry regions. Salient features are analytically pointed out within
both the laboratory and intrinsic frame.

Several Extension of CSM: The CSM was subject to several extensions:
(1) A particle-core Hamiltonian with the core described by the CSMwas considered
in particle-core space to describe the properties caused by the crossing of the ground,
beta and gamma bands with a two quasiparticle-core band where the particle-like
angular momentum is aligned to the collective one leading to several backbendings.
The model was applied to the Pt region where several states 12+ were seen. In a
similar spirit we described the one and three quasiparticle bands in even odd nuclei.

(2)We attached to the quadrupole bosons an isospin quantum number distinguish-
ing the proton-like from the neuron-like bosons. The formalism obtained following
a similar path and arguments as for CSM was conventionally called the Generalized
Coherent State Model (GCSM). This new approach describes simultaneously the
major bands, ground, beta and gamma, and one band built on the top of the scissors
state 1+. We proved analytically that the GCSM predicts for the total M1 strength
of exciting 1+ from the ground state 0+, a quadratic dependence on the nuclear
deformation, which in fact confirms the collective character of the mode. Based on
semi-classical calculations we derived an analytical expression for the gyromagnetic
factor of neutrons which corrects the M1 transition operator towards improving the
agreement with the data. The GCSM was the first approach extended to describe
the scissors modes in the even-odd nuclei, predictions being later on confirmed by
experiment.

(3) Recently, the GCSM Hamiltonian has been amended by a mean field, a pair-
ing and a particle-core term consisting of a quadrupole-quadrupole and a spin-spin
interaction. The collective magnetic dipole band is crossed by four two quasiparticle
magnetic bands which have a chiral character. The chiral symmetry is broken by
the spin-spin term in four distinct ways, which results in having four twin bands. I
just mention that this is the first formalism which treats the twin bands in even-even
nuclei.

(4) TheCSMmay be easily extended to the negative parity states if the unprojected
state of ground band is replaced by a product function of two coherent states, one
of quadrupole and one of octupole type. This way the unprojected ground state
violates not only the rotational symmetry but also the space reflection symmetry.
Therefore, in the laboratory framewe have to restore not only the rotational symmetry
but also the parity. This way, instead of three bands described by the CSM we
have three pairs of parity bands. The space was enlarged by adding two dipole
parity partner bands. We kept the principles governing the CSM in constructing the
generating functions for independent bands and the effective Hamiltonian. Thus, the
extension provides a realistic description of eight rotational bands, four of positive
and four of negative parity. The properties of these bands have been studied in several
publications. Excitation energies of these bands as well as B(E2), B(E1) and B(E3)
values have been described for a large number of nuclei.
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(5) Adding an odd particle to the Hamiltonian used at (4), we extended the
description to the odd nuclei. Here we describe realistically six rotational bands,
three of positive and three of negative parity bands. One points out that one pair of
parity partner bands exhibits a chiral symmetry.

Projected spherical single particle basis: Averaging a particle core-Hamiltonian
with a coherent state one obtains a deformed mean field which resembles the
Nilsson Hamiltonian. On the other hand averaging the particle-core Hamiltonian
with the spherical single particle wave function one obtains a boson Hamiltonian
which admits the axially deformedquadrupole coherent states as eigenfunctions. This
suggests that projecting out the good angular momentum from the product function
of a spherical shell model state and an axially deformed quadrupole coherent state
might be an efficient basis to treat the particle core-Hamiltonian. From the projected
states we succeeded to select a basis. This basis can be used to treat particle-like
Hamiltonians. Indeed, when the matrix element of a particle-like operator is cal-
culated, first the boson factors are orthogonalized leading to a factor depending on
nuclear deformation. In particular, the average of the particle-core Hamiltonian with
an element of the projected spherical basis gives a set of single particle energies
whose deformation dependence is similar to that of Nilsson model states. Moreover,
when the deformation is going to zero the single particle energies go to those of spher-
ical shell model. Therefore, the defined basis has the nice property that it recovers
the shell model basis in the vibrational limit, while the Nilsson model energies are
obtained when the deformation goes apart from zero. This feature allows us to treat
in an unified fashion the spherical and deformed nuclei. This was tested by describ-
ing the scissors-like modes and the rate of the 2νββ decay. A systematic analysis
including 190 nuclei from all regions of the nuclides periodic table, is presented in
a recent publication [RB14].

Comparison with other models: A special chapter is devoted to the comparison
of our methods and some phenomenological models which are very popular in the
field of nuclear structure. (a) The first model used for comparison with the CSM is
a phenomenological solvable model. Starting from the Bohr-Mottelson Hamiltonian
written in the intrinsic coordinates supplemented with a specific potential term, by
expanding the rotational and potential terms in series of the variable γ around its
static values, 0◦ and 30◦, we obtained a separable form for the differential equations
associated to the dynamic deformation variables, which are fully solvable. Thus, the
equation in γ is satisfied by the spheroidal or Mathieu functions, depending whether
the static value of γ is 0◦ or 30◦. Regarding the β variable, the equations used are
alternatively those for a sextic oscillator potential with a centrifugal barrier included,
an infinite square well or a Davidson potential. Solutions were used to describe the
ground, beta and gamma bands energies and E2 transition probabilities for axially
deformed and triaxial nuclei, respectively. The differences and similarities with the
CSM were discussed in detail. The other models to which we referred in this book
comparing them with the CSM are: (b) The liquid drop model. We didn’t devote
special space to this model since we used it in many places along the book; (c) The
projection method of Lipas and Haapakoski; (d) The deformed liquid drop the model
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of Greiner and Faessler; (e) The model of Gneuss and Greiner; (f) The Interacting
Boson Approximation proposed by Arima and Iachello.

The book covers the essential features of a large variety of nuclear structure
properties of both collective and microscopic nature. Most of the results are given in
an analytical form, giving a deep insight of the considered phenomena. The detailed
comparison with all existent nuclear structure models provides the readers a proper
framework and, at the same time, the perspective of new developments. The book is
very useful for young as well as for experienced researchers. Due to its self-content
exposure, the book can be successfully read and used also by undergraduate students.
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Appendix A: Useful Mathematics Information

A.1.1 Elements of Group Theory

We say that a set {gi } is a group if it obeys the following restrictions:

(1) There is a multiplication operation “.” with respect to which the set is closed,
i.e. if gi and g j are group elements, then gi .g j also belongs to the group;

(2) Multiplication is an associative operation: gi .(g j .gk) = (gi .g j ).gk ;
(3) There is a unity element 1, with the property that for any gi we have: 1.gi =

gi .1 = gi ;
(4) For any group element gi there is another group element denoted as g−1

i with
the property that gi .g

−1
i = g−1

i .gi = 1.

The groups are of several types. A discrete group has a finite number of ele-
ments. An example is the group of transformations which leave a cristal invariant.
Operations of space inversion, charge conjugation and temporal inversion constitute
a special class of discrete groups. The continuous group is a group which depends
continuously on a set of parameters. The simplest example is the group of orthogonal
transformations in a plane, O(2). Such transformations preserve the distance between
two arbitrary points. If one rotates the planewith the angle θ then a point which before
rotation had the coordinates (x, y) will have after rotation the coordinates (x ′, y′)
which are related to the old coordinates by:

(
x ′

y′

)
=
(

cos θ sin θ

− sin θ cos θ

)(
x

y

)
. (A.1)

Denoting by x1 = x and x2 = y, this equation becomes:

xk′ = Oki xi . (A.2)
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For small angles the above equations lead to:

δxi = θεi j x j , (A.3)

where εi j is the 2 × 2 antisymmetric matrix with ε12 = 1. It is simple to prove that
Oi j (θ) form a group. The restriction that these transformations preserve distances
leads to:

x ′i x ′i = x j
{

Oi j Oik
}

xk = xi x j . (A.4)

Hence,
Oi j Oik = δ jk, or OT 1O = 1. (A.5)

The unity matrix is called the group metric. Due to the above relation the group O(2)
is the orthogonal group in two dimensions. Also, due to the said properties, O(2) is
also called the group of the real and orthogonal matrices 2 × 2. One can prove that
any element of O(2) may be written as:

O(θ) = eθτ , (A.6)

where τ is the matrix:

τ =
(

0 1
−1 0

)
(A.7)

Indeed, expanding the exponential in power series one obtains:

eθτ = cos θ1 + τ sin θ =
(

cos θ sin θ
− sin θ cos θ

)
(A.8)

Note that all elements are parametrizedwith a sole angle. For this reason one says that
O(2) is a group with a single parameter, i.e. it has the dimension 1. The orthogonality
condition provides the equation for the determinant of the group element:

det
(

O OT
)

= det Odet OT = (det O)2 = 1,⇒ det O = ±1 (A.9)

The elements of O(2) characterized by det O = +1 form a group, called SO(2).
Elements forwhich det O = −1 can be obtained bymultiplying an element of SO(2)
with the matrix:

P =
(
1 0
0 −1

)
(A.10)

P describes the parity transformation:

x → x, y → −y. (A.11)

Note that P2 = 1 and thus P is a discrete group. In general, a group is uniquely
defined by the multiplication rule. For the bidimensional matrices this is:

Oi j (θ)O jk(θ) = Oik(θ). (A.12)
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Any matrix D(θ) (not necessarily orthogonal or of dimension 2) which has the
multiplication rule:

D(θ)D(θ′) = D(θ + θ′); D(θ) = D(θ + 2π) (A.13)

is a representation of O(2) since has the same multiplication rule.
The angular momentum operator in two dimensions is defined as:

L ≡ iεi j ∂

∂x j
= i(x1∂2 − x2∂1). (A.14)

This operator is the generator of a rotation around an axis perpendicular on the plane
(x1, x2). Then, the operator

U (θ) = eiθL (A.15)

describes a rotation in plane and therefore is an element of SO(2).
It is instructive to see how the scalar and vectorial fields transform when the

coordinate system is rotated by U (θ), defined above.
Let �(x) be a scalar field. Under the action of an element of SO(2), the field

transforms like:
U (θ)�(x)U−1(θ) = �(x ′) (A.16)

This equation might be proved by using the expansion:

eA Be−A = B + [A, B] + 1

2! [A, [A, B]] + 1

3! [A, [A, [A, B]]] + ... (A.17)

and then identifying the Taylor series of �(x ′) around the point x.
A vectorial field �i (x) transforms, against the SO(2) action, as follows:

U (θ)�i (x)U−1(θ) = Oi j (−θ)� j (x ′) (A.18)

A.1.2 Representations of SU(2) and U(1)

If gi is an element of the group G, then D(gi ) is called the group representation if
satisfying equation:

D(gi )D(g j ) = D(gig j ) (A.19)

for any group element. A representation is irreducible if it can be written in a block-
diagonal form:

D(gi ) =
⎛
⎝D1(gi ) 0 0

0 D2(gi ) 0
0 0 D3(gi )

⎞
⎠ (A.20)

where Di are group representations of lower dimension.
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A method of generating higher representations for O(2) is the vectors multiplica-
tion. For example if Ai and A j are vectors then their product transforms as:(

Ai ′ B j ′) =
[

Oi ′i (θ)O j ′ j (θ)
] (

Ai B j
)

. (A.21)

The matrix Oi ′i (θ)O j ′ j (θ) constitutes a representation of the group SO(2) since it
has the samemultiplication rule as O(2), and the spacewhere they act is of dimension
2 × 2. We shall call tensor the set which transforms, under the action of the group
O(2), as a product of vectors. In general a tensor T i jk... transforms under the action
of the group O(2) elements as the product of a row of vectors:

(
T ′)i1i2.. = Oi1 j1 Oi2 j2 ...T j1 j2.. (A.22)

Notice that the transformation of T i jk.. is identical with the transformation of the
vector product xi x j xk .... This product is a representation of O(2) since the matrix

Oi1,i2..iN ; j1, j2.. jN ≡ Oi1 j1(θ)Oi2, j2(θ)...OiN , jN (θ), (A.23)

has the samemultiplication rule as O(2). In general, the tensors obtained through vec-
tor multiplication form reducible tensors. Forming suitable combinations, symmetric
or antisymmetric, one can extract irreducible tensors. A simple way of constructing
irreducible tensors is to use the constant tensors: δi j , εi j . Indeed, one can check that
such tensors obey the equation:

δi ′ j ′ = Oi ′i O j ′ jδi j ,

εi ′ j ′ = Oi ′i O j ′ j εi j (A.24)

The first equation expresses the orthogonality property for the matrix O , while the
second one defines the determinant of the matrix O which is 1 if it belongs to SO(2).
From these equations it results that the tensor δi j is invariant. Since εi j transforms
as a tensor only if the determinant of O is one, it is called pseudovector. If O is a
space inversion operator then the l.h.s. of the above equation is written as:(

1 0
0 −1

)(
0 1

−1 0

)(
1 0
0 −1

)
= −

(
0 1

−1 0

)
(A.25)

To conclude, the pseudotensor ε changes the sign under the space inversion consid-
ered above. These two tensors can be used to construct symmetric and antisymmetric
scalar forms, by multiplying two vectors:

Aiδi j B j = Ai Bi , Ai εi j B j = A1B2 − A2B1. (A.26)

To form irreducible representations of higher order, the following relations are
necessary:

εi j εkl = δikδ jl − δilδ jk, εi j ε jk = −δik . (A.27)
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Let us consider now the complex number u = a + ib and suppose it transforms like:

u′ = U (θ)u = eiθu (A.28)

Obviously, U is a unitary transformation:

U × U † = 1 (A.29)

The action of U upon the complex number u becomes more evident if one uses its
polar form:

u′ = U (θ)ρeiα = ρei(θ+α). (A.30)

Therefore, this transformation preserves the norm of the complex number and shifts
the angle with θ. U (θ) can be looked at as a unitary matrix of dimension 1. The set
of these is a group denoted by U (1). The multiplication rule is:

eiθeiθ′ = ei(θ+θ′) (A.31)

similar to that for the group O(2) although the space where the two groups act is
different. Indeed, the space of U (1) is the uni-dimentional space of the complex
numbers. One says that the two groups are isomorphic to each other.

SO(2) ∼ U (1). (A.32)

In other words, there is a one to one correspondence of the elements of the two groups

eθτ ↔ eiθ. (A.33)

To explain the correspondence between O(2) and U(1), we consider two scalar fields
which transform under SO(2) transformations of small angle as:

δ�i = θεi j� j (A.34)

Let us consider now the complex field:

� = 1√
2
(�1 + i�2). (A.35)

Variation of � under the action of U (1) for small angles is:

δ� = −iθ�. (A.36)

This equation can be directly obtained from A.35. The product �∗� is invariant
against U (1). On the other hand, for O(2) the combination 1

2�
i�i is invariant.

However, the relation
1

2
�i�i = �∗�. (A.37)

holds. Therefore the two groups are isomorphic and have the same invariants. An
important property of O(2) consists of that it is Abelian, i.e. their elements comute
with each other.
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A.1.3 Representations of the Groups SO(3) and SU(2)

The group O(3) is a non-abelian group which leaves invariant the distance in a
three dimensional space. Matrices having this property are of dimension 3 × 3 and
orthogonal. The orthogonality conditions reduce the number of independent matrix
elements from 9 to 3. Any element from O(3) can be written as an exponential of
an antisymmetric matrix:

O = exp

(
i

3∑
k=1

θkτ k

)
. (A.38)

where τ k are matrices with imaginary elements. There are only three independent
3×3matrices, thus just the number of independent degrees of freedom. In conclusion,
O(3) is a Lie group parametrized with three angles. The antisymmetric matrices
mentioned above are

τ1 = τ x = −i

⎛
⎝0 0 0
0 0 1
0 −1 0

⎞
⎠ , τ2 = τ y = −i

⎛
⎝0 0 −1
0 0 0
1 0 0

⎞
⎠ ,

τ3 = τ z = −i

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ . (A.39)

Note that the above matrices can be expressed by means of the completely antisym-
metric tensor εi jk :

(τ i ) jk = −iεi jk, (A.40)

where ε123 = 1. The antisymmetric matrices satisfy the following commutation
relations: [

τ i , τ j
]

= iεi jkτ k . (A.41)

The matrices τ which satisfy the above commutation relations define the Lie algebra
SO(2). Notice that an element of the group is obtained by exponentiating an algebra
element. The constants εi jk involved in the commutation relations are called the
structure constants of theLie algebra. It is clear that specifying the structure constants,
one determines both the algebra and the associated group. For small angles, the
coordinates are shifted with the quantities:

δxi = εi jkθk x j . (A.42)

As we proceeded for the case of SO(2) we introduce the operators:

Li ≡ iεi jk x j∂k . (A.43)
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One can show that these operators satisfy the same commutation relations as the
matrices τ i , which are specific for the SO(3) algebra. Let us consider the operator:

U (θk) = eiθk Lk
. (A.44)

Under the action of such operator the scalar and vectorial fields transform as follows:

U (θk)�(x)U−1(θk) = �(x ′),
U (θk)�i (x)U−1(θk) = (O−1)i j (θk)� j (x ′). (A.45)

The irreducible representations of the tensor fields of higher orders can be extracted
by using the constant tensors δi j and εi jk . For concrete calculations the following
relations are useful:

εi jkεlmn = δilδ jmδkn − δilδ jnδkm + δimδ jnδkl

− δimδ jlδkn + δinδ jlδkm − δinδ jmδkl ,

εi jkεklm = δilδ jm − δimδ jl (A.46)

As in the case of the O(2) group, here one could also establish the connection with a
special unitary group. To this end consider the set of matrices 2×2 which are unitary
and of determinant equal to 1. The unitarity condition plus the condition of having the
determinant equal to one, reduces the number of independent matrix elements to: 8−
4−1 = 3.Any unitary matrix can be written as an exponential of a hermitian matrix:

U = ei H (A.47)

Taking into account that the unitary and special matrices can be parametrized by
three parameters, then it is convenient to choose as hermitian matrices, the Pauli
matrices and to represent an arbitrary element of SU (2) in the form:

U = eiθkσk/2, (A.48)

where:

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (A.49)

The matrices σi obey the commutation relations:[
σi

2
,
σ j

2

]
= iεi jk σk

2
. (A.50)

These commutation relations are identical with those characterizing the SO(3) alge-
bra. Due to this reason one says the following isomorphism holds:

SO(3) ∼ SU (2). (A.51)
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To make this correspondence explicit we notice that:

eiσ j θ j /2 = cos(θ/2) + i(σknk) sin(θ/2), (A.52)

where θi = niθ and (ni )2 = 1. It results:

eiτ j θ j ↔ eiσ j θ j /2 (A.53)

where the l.h.s. is an orthogonal 3× 3 matrix while the r.h.s. contains a unitary
complex 2× 2 matrix. We just mention that the isomorphism is local. In general,
the correspondence is one to two and not one to one. Although the matrices from
the two sides act in different spaces, they have the same multiplication rules. This
fact allows us to establish a relation between the vectors (x, y, z) and the matrices
mentioned before. To establish this relation we introduce the notation:

h(x) = σ · x =
(

z x − iy
x + iy −z

)
. (A.54)

Then the SU(2) transformation

h′ = UhU−1, (A.55)

is equivalent with the SO(3) transformation:

x′ = O · x. (A.56)

A.1.4 Representations of the Group SO(N)

Generalization to O(N ) is straightforward. O(N ) is the group which leaves invariant
the distance

√
(xi )2. These transformations are rotations defined as follows:

x ′i = Oi j x j . (A.57)

Alternatively, one could say that the group O(N ) is the set of the real and orthog-
onal matrices of dimension N × N . The number of independent matrix elements is
obtained by subtracting from the total number, the number of restrictions due to the
orthogonality conditions.

N 2 − 1

2
N (N + 1) = 1

2
N (N − 1). (A.58)

This is just the number of N-dimensional antisymmetric matrices which are linearly
independent.Any element of O(N ) can bewritten as exponential of an antisymmetric
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matrix O = eA . Therefore, we could choose the following parametrization:

O = exp

⎛
⎝i

N (N−1)/2∑
k=1

θkτ k

⎞
⎠ , (A.59)

where τ i are antisymmetric matrices, linearly independent with imaginary elements.
These are called the group generators, while θi are rotation angles or the group para-
meters. Finding the irreducible representations of the group O(N ) is a complicated
operation due to the complex structure of the commutator equations. The closing
relation of the elements product is proved by using the factorization theorem of
Baker-Campbell-Hausdorff:

eAeB = eA+B+(1/2)[A,B]+... (A.60)

where by the symbol “...” we understand the multiple commutators. As the commu-
tator of two antisymmetric matrices is an antisymmetric matrix, it results that the
exponent from the r.h.s. is an element of O(N ). The antisymmetric matrices algebra
is characterized by the commutation relations:

[τ i , τ j ] = i f i jkτ k . (A.61)

where f i jk are the structure constants of the group. The structure constant can be
determined for any N if the generators for O(N ) are chosen to be τ i :

[τ i , τ j ] = i f i jkτ k . (A.62)

The commutators for these matrices can be easily calculated:

[Mi j , Mlm] = i(−δil M jm + δ jl Mim + δim M jl − δmj Mil) (A.63)

To define the action of any element from O(N ) upon fields we need the operators:

Li j ≡ i(xi∂ j − x j∂i ). (A.64)

It canbeproved that these operators exhibit commutation relations specific to SO(N ).
Consider now the operator:

U (θk j ) = eiθk j Lk j
, (A.65)

where θi j is an antisymmetric matrix. The structure constants f i jk could be looked
at as forming a representation of the algebra. If one defines:

(τ i ) jk = f i jk, (A.66)

then, this is a representation of the O(N ) generators. It also results that f i jk is a
constant tensor as δi j is. For small angles the field transforms according to:

δ�i = iθa(τa)i j�
j . (A.67)
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We recall that before we discussed about the isomorphisms: O(2) ∼ U (1) and
O(3) ∼ SU (2). One could show that the following isomorphisms hold:

SO(4) ∼ SU (2) ⊗ SU (2); SO(6) ∼ SU (4). (A.68)

One should mention that there is no other isomorphism between SO(N ) and SU (M)

besides those mentioed before. This can be proved by considering the number of the
independent elements for the groups to be compared.

A.1.5 Irreducible Representations of D2

The group D2 is a subgroup of the rotation group R3, its elements being rotations of
angle π around the axes 1, 2, 3, respectively. There are 4 distinct elements:R1

π, R2
π,

R3
π, E , with E denoting the unity element, i.e., the identical rotation.
The irreducible representations of a group can be identified with the help of

characters.We call character a function defined on the group having complex values:

χ : G → C.

It is worth enumerating some useful properties:

(1) χ associated to equivalent representations are equal;
(2) the identical transformation corresponds to the unity element;
(3) χ(E) = f - the dimension of the representation;
(4) the number of distinct irreducible representations of the group is equal to the

number of equivalence classes in the group.

∑
G

χ(α)(G)χ(β)∗(G) = gδαβ,

∑
G

|χ(α)(G)|2 = g - the group order.

If f1, f2, · · · , fr are the dimensions of the irreducible representations, we have:

| f1|2 + | f2|2 + · · · + | fr |2 = g.

In the particular case of the Abelian groups (r = g), all irreducible representations
are of dimension 1: f1 = f2 = · · · = fr = 1.

Generally speaking, the dimensions of the irreducible representations are divi-
sors of the order of the group. For D2, all representations are unidimensional and
moreover, χ(G) = ±1 if G �= E . Consequently, the characters for D2 are those
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Table A.1 The characters
defining the irreducible
representations for D2

D2 E R1
π R2

π R3
π

A 1 1 1 1

B1 1 −1 −1 1

B2 1 −1 1 −1

B3 1 1 −1 −1

from the TableA.1. The angular momentum components involved in the rigid rotor
Hamiltonian behaves against the action of the D2 elements as follows:

R j
π I j R j+

π = I j ,

R j
π Ik R j+

π = −Ik; k �= j, k, j = 1, 2, 3,

R j
π HR R j+

π = HR .

It results that HR is invariant to the action of any element of D2. Also, one can show
that D2 is a subgroup of the octahedral group. Indeed, preserving the meaning of the
transformations Tk used in Chap.4, we have:

R2
π = T1; R3

π = (T2)
2 ; R1

π = R3
π R2

π = (T2)
2 T1; E = (T1)

2 . (A.69)

A.1.6 Tensorial Operators

A particular set of Euler angles defines the rotation relating the laboratory and
intrinsic reference frames (Fig.A.1). A set of 2k + 1 operators T k

κ , with κ =
−k,−k+1, , ..., k−1, k, which at a rotation of Euler angles� = α,β, γ, transforms
according the rule:

R(�)T k
κ R−1(�) =

∑
κ

Dk
κ′κ(�)T k

κ′ , (A.70)

defines a tensor operator of rank k. An equivalent definition due to Racah consists of
the commutation relations with the spherical components of the angular momentum,
J±1, J0:[

Jμ, T k
μ

]
= (−1)μ [k(k + 1)]1/2 Ck 1 k

κ±μ,∓μ κT k
κ±μ, μ = 0,±1. (A.71)

One can check that the spherical components of the angular momentum form a
tensor of rank 1. Also, the eigenfunctions of the orbital angular momentum, Ylm ,
behave as a tensor of rank l and projection m. The m.e. of a tensor operator between
eigenfunctions of the angular momentum squared and its projection on z-axix, sat-
isfy the Wigner-Eckart theorem asserting that they can be written in a factorized

http://dx.doi.org/10.1007/978-3-319-14642-3_4
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Fig. A.1 The Euler angles relating, by a rotation, the laboratory reference frame (x, y, z) and the
intrinsic frame of coordinates (x ′, y′, z′). ξ1 and ξ2 are intermediary axes between x and x ′ while
η is an intermediary axis between y and y′

form, the entire angular momentum projections dependence being contained in a
Clesch-Gordan coefficient. The other factor is conventionally called the reduced
matrix element.

〈 j ′m′|T k
κ | jm〉 = C j k j ′

m κ m′ 〈 j ′||T k || j〉. (A.72)

Multiplying two tensors of ranks k1 and k2 respectively, one obtains a superposition
of tensors of ranks k obeying |k1−k2| ≤ k ≤ k1+k2. Projecting a certain rank reads:

T k
κ =

∑
κ1,κ2

Ck1 k2 k
κ1 κ2 κT k1

κ1
T k2

κ2
. (A.73)

The scalar product of two operators of the same rank is by definition the product of
rank 0. [

T k(1)T k(2)
]0
0

= 1

k̂

∑
κ

(−1)κT k
κ (1)T k−κ(2). (A.74)

In concrete calculations it is useful to know the explicit expressions of the reduced
matrix elements. Here are some examples:

〈 j ′||J || j〉 = [ j ( j + 1)]1/2 δ j j ′,

〈l f ||Y l ||li 〉 = 1√
4π

l̂i l̂
ˆl f

C
li l l f
0 0 0 ,
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〈1
2

l j ||Y k(�)||1
2

l ′ j ′〉 = (−1) j− j ′
√
2k + 1

4π
C j k j ′

1
2 0 1

2

1

2

[
1 + (−1)l+k+l ′

]
,

〈 j ′1 j ′2 j ||
[
T k(1)T k(2)

]0 || j1 j2 j〉 = ĵ ′1 ĵ ′2
k̂

(−1) j ′1+ j ′2− j W ( j1 j2 j ′1 j ′2; jk)

× 〈 j ′1||T k(1)|| j1〉〈 j ′2||T k(2)|| j2〉. (A.75)

In the last equation, W (a b c d; e f ) stands for the Racah coefficient.

A.1.7 Matrix Representation of Rotations

The rotation of Euler angle � = (α,β, γ) is defined by:

R(�) = e−iγ Jz′ e−iβ Jη e−iαJz = e−iαJz e−iβ Jy e−iγ Jz . (A.76)

The matrix elements of the rotation operator between two eigenfunctions of J 2

and Jz are known under the name of Wigner functions:

D j
m′m(�) = 〈 jm′|R(�)| jm〉. (A.77)

The action of a rotation operator on an eigenfunction of J 2 and Jz reads:

R(�)| jm〉 =
∑
m′

D j
m′m(�)| jm′〉. (A.78)

The dependence on the three Euler angles is factorized as:

D j
m′m(�) = e−im′αd j

m′m(β)e−imγ . (A.79)

The reduced matrix d j
m′m(β) has the expression:

d j
m′m(β) = [

( j + m)!( j − m)!( j + m′)!( j − m′)!]1/2
×
∑
κ

(−1)κ
[
( j − m′ − κ)!( j + m − κ)!(κ + m − m′)!κ!]−1

× [cos(β/2)]2 j+m−m′−2κ [− sin(β/2)]m
′−m+2κ . (A.80)

The Wigner functions satisfy the relations:

∫
d�D j1∗

μ1m1(�)D j2
μ2m2(�) = 8π2

2 j1 + 1
δ j1 j2δμ1μ2δm1m2 . (A.81)
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For the reduced matrix, the orthonormalization relation holds only for j :

π∫
0

d j
μm(β)d j ′

μm(β) sin βdβ = 2

2 j + 1
δ j j ′ . (A.82)

The harmonic functions andLegendre polynomials are particular cases of the rotation
matrix:

Dl
m0(α,β, 0) =

√
4π

2l + 1
Y ∗

lm(β,α),

Dl
00(0,β, 0) = Pl(cosβ). (A.83)

The reduced matrix satisfies the following symmetry relations:

d j∗
mm′(β) = d j

mm′(β),

d j
m′m(−β) = d j

mm′(β),

d j
m′m(−β) = (−1)m′−md j

m′m(β),

d j
m′m(β) = (−1)m′−md j

mm′(β),

d j
m′m(β) = d j

−m,−m′(β),

d j
m′m(β) = (−1)m′−md j

−m′,−m(β),

1

2

∑
j

(2 j + 1)d j
mμ(β)d j

mμ(β) = δ(cosβ − cosβ′). (A.84)

The symmetry relations of the Wigner functions which are frequently met are:

D j
m′m(−γ,−β,−α) = D j∗

mm′(α,β, γ),

D j∗
m′m(α,β, γ) = (−1)m′−m D j

−m′,−m(α,β, γ),∑
m

D j∗
m′m(�)D j

m′′m(�) = δm′,m′′ ,

∑
m

D j∗
mm′(�)D j

mm′′(�) = δm′,m′′ . (A.85)

The product of two rotationmatrices can bewritten as a linear combination of rotation
matrices:

D j1
μ1m1(�)D j2

μ2m2(�) =
∑

j

C j1 j2 j
μ1 μ2 μ1+μ2

C j1 j2 j
m1 m2 m1+m2

D j
μ1+μ2,m1+m2

(�). (A.86)
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This equation may be reversed with the result:

D j
μm(�) =

∑
μ1m1

C j1 j2 j
μ1μ−μ1μC j1 j2 j

m1m−m1m D j1
μ1m1(�)D j2

μ−μ1m−m1
(�). (A.87)

A.1.8 Angular Momenta Addition

Consider two independent subsystems characterized by angular momenta J1 and J2,
respectively. The state of the whole system is described by the wave function:

| j1 j2m1m2〉 = | j1m1〉| j2m2〉, (A.88)

where | jkmk〉 are eigenfunctions for J 2
k and Jk,z , with k = 1, 2. The set of functions

just defined is complete in the space describing the system with two components.
Consider the total angular momentum:

J = J1 + J2. (A.89)

Another set of operators which can define a complete set of functions is formed
of J 2

1 , J 2
2 , J 2, Jz . The common eigenfunctions of these operators are: |( j1 j2) jm〉.

Any function from this set can be written in an unique manner in the complete basis
defined by Eq. (A.88).

|( j1 j2) jm〉 =
∑

m1,m2

〈 j1 j2m1m2|( j1 j2) jm〉| j1 j2m1m2〉

=
∑

m1,m2

〈 j1 j2m1m2|( j1 j2) jm〉| j1m1〉| j2m2〉. (A.90)

The coefficients of this expansion are called the Clebsch-Gordan coefficients. In the
literature several notations are used. In this book the following notation was used:

C j1 j2 j
m1 m2 m = 〈 j1 j2m1m2|( j1 j2) jm〉. (A.91)

In what follows we shall enumerate the properties of the Clebsch-Gordan coeffi-
cients:

(1) The matrix 〈 j1 j2m1m2|( j1 j2) jm〉 is unitary. Consequently the equation:

|( j1 j2) jm〉 =
∑

m1,m2

C j1 j2 j
m1 m2 m | j1m1〉| j2m2〉, (A.92)

can be reversed:
| j1m1〉| j2m2〉 =

∑
j

C j1 j2 j
m1 m2 m |( j1 j2) jm〉. (A.93)
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(2) C j1 j2 j
m1 m2 m = 0, if m1 + m2 �= m. The coefficiet is vanishing if the involved

agular momenta do not obey the triangle rule: | j1 − j2| ≤ j ≤ ( j1 + j2).
(3) Racah obtained an analytical expression for the Clebsch-Gordan coefficient:

C j1 j2 j
m1 m2 m = δm1+m2,m

[
(2 j + 1)( j1 + j2 − j)!( j1 − j2 + j)!(− j1 + j2 + j)!

( j1 + j2 + j + 1)!
]1/2

× [( j1 + m1)!( j1 − m1)!( j2 + m2)!(( j2 − m2)!( j + m)!( j − m)!]1/2

×
∑

z

(−1)z [z!( j1 + j2 − j − z)!( j1 − m1 − z)!( j2 + m2 − z)!

× ( j − j2 + m1 + z)!( j − j1 − m2 + z)!]−1 . (A.94)

(4) The orthogonality relations are::

∑
m1,m2

C j1 j2 j
m1 m2 mC j1 j2 j ′

m1 m2 m′ = δ j j ′δmm′ ,

∑
j,m

C j1 j2 j
m1 m2 mC j1 j2 j

m′
1 m′

2 m = δm1m′
1
δm2m′

2
. (A.95)

(5) Symmetry relations:

C j1 j2 j3
m1 m2 m3 = (−1) j1+ j2− j3C j1 j2 j3−m1, −m2, −m3

= (−1) j1+ j2− j3C j2 j1 j3
m2 m1 m3

= (−1) j1−m1
ĵ3

ĵ2
C j1 j3 j2

m1, −m3, −m2

= (−1) j2+m2
ĵ3

ĵ1
C j3 j2 j1−m3, m2, −m1

, where ĵ = √
2j + 1. (A.96)

(6) Particular cases:

C j1 j2 j3
0 0 0 = (−1) j+ j3

[
(2 j3 + 1)( j1 + j2 − j3)!( j1 + j3 − j2)!( j2 + j3 − j1)!

( j1 + j2 + j3 + 1)!
]1/2

× j !
( j − j1)!( j − j2)!( j − j3)! . (A.97)

Here we used the notation j1 + j2 + j3 = 2 j . If j1 + j2 + j3 = odd, the coefficient
is equal to zero.
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C j1 j2 j1+ j2
j1 j2 j1+ j2

= 1,

C j1 j2 j3
0 0 0 = 0, if j1 + j2 + j3 = odd,

C j1 0 j3
m1 0 m3

= δ j1 j3δm1m2 . (A.98)

(7) Coefficients with small quantum numbers. Let us consider an electron with
the orbital angular momentum equal to 1�. The total angular momentum might be
any of j satisfying inequalities: 1

2 ≤ j ≤ 3
2 .

| jm〉 =
∑
ml ,σ

C
1 1

2 j
m1 σ mY1m1χ 1

2σ. (A.99)

Clebsch-Gordan coefficients have simple expressions, the wave functions having the
final form:

ψ 1
2
1
2

= −
√
1

3
Y10χ 1

2
1
2

+
√
2

3
Y11χ 1

2− 1
2
,

ψ 1
2− 1

2
= −

√
2

3
Y1−1χ 1

2
1
2

+
√
1

3
Y10χ 1

2− 1
2
,

ψ 3
2
3
2

= Y11χ 1
2
1
2
,

ψ 3
2
1
2

=
√
2

3
Y10χ 1

2
1
2

+
√
1

3
Y11χ 1

2− 1
2
,

ψ 3
2− 1

2
= −

√
1

3
Y1−1χ 1

2
1
2

+
√
2

3
Y10χ 1

2− 1
2
,

ψ 3
2− 3

2
= Y1−1χ 1

2− 1
2
. (A.100)

The coefficients for the wave function of angular momentum equal to 1 are given in
TableA.2.

Consider now three angular momenta j1, j2, j3. Coupling them succesively, one
can achieve a state of total angular momentum j in two distict ways:

j1 + j2 = j12, j12 + j3 = j,

j2 + j3 = j23, j1 + j23 = j. (A.101)

Table A.2 Expressions for

C
1
2 l j

ms ml m

ms = 1
2 ms = − 1

2

j = l + 1
2

√
l+m+ 1

2
2l+1

√
l−m+ 1

2
2l+1

j = l − 1
2

√
l−m+ 1

2
2l+1 −

√
l+m+ 1

2
2l+1
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The state obtained with the first coupling scheme is:

|( j1 j2) j12m12〉 =
∑

m1,m2

C j1 j2 j12
m1 m2 m12 | j1m1〉| j2m2〉. (A.102)

| [( j1 j2) j12, j3)] jm〉 =
∑

m12,m3

C j12 j3 j
m12m3 m |( j1 j2) j12m12〉| j3m3〉

=
∑

m1,m2
m3,m12

C j1 j2 j12
m1 m2 m12C j12 j3 j

m12 m3 m | j1m1〉| j2m2〉| j3m3〉. (A.103)

Similarly, following the second coupling scheme the final state reads:

| [ j1, ( j2 j3) j23] jm〉 =
∑

m1,m2,
m3,m23

C j2 j3 j23
m2 m3 m23C j1 j23 j

m1 m23 m | j1m1〉| j2m2〉| j3m3〉. (A.104)

The functions (A.102) and (A.104) represent twodistinct bases connectedby aunitary
transformation:

| [( j1 j2) j12, j3)] jm〉 =
∑
j23

〈[ j1, ( j2 j3) j23] j | [( j1 j2) j12, j3] j〉| [ j1, ( j2 j3) j23] jm〉.

(A.105)

Further, the transformation coefficients can be written in the form:

〈[ j1, ( j2 j3) j23] j | [( j1 j2) j12, j3] j〉 = ˆj12 ˆj23W ( j1 j2 j j3; j12 j23), (A.106)

where the factor W ( j1 j2 j j3; j12 j23) is called the Racah coefficient. This can be
expressed as a linear combination of products of four Clebsch-Gordan coefficients:

W ( j1 j2 j j3; j12 j23) =
∑

m1,m2,m3,
m12,m23

C j1 j2 j12
m1 m2 m12C j12 j3 j

m12 m3 mC j2 j3 j23
m2 m3 m23C j1 j23 j

m1 m23 m

× 1
ˆj12 ˆj23

. (A.107)

The Racah coefficients have the analytical expressions:

W (abcd; e f ) = [(abe)] [(cde)] [(ac f )] [(bd f )]
∑
κ

(−1)a+b+c+d+κ(κ + 1)!

× [(a + b + c + d − κ)!(a + d + e + f − κ)!(b + c + e + f − κ)!]−1

× [(κ − a − b − e)!(κ − c − d − e)!(κ − a − c − f )!(κ − b − d − f )!]−1 ,

(A.108)
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where we denoted:

[(abc)] =
[
(a + b − c)!(a − b + c)!(−a + b + c)!

(a + b + c + 1)!
]1/2

. (A.109)

Using this expression one can prove the following symmetry relations:

W (abcd; e f ) = W (badc; e f ) = W (cdab; e f ) = W (acbd; f e) (A.110)

= (−1)e+ f −a−d W (ebc f ; ad) = (−1)e+ f −b−cW (ae f d; bc).

If one argument is vanishing the coefficient has a simple expression:

W (abcd; 0 f ) = δabδcd(−1) f −b−d 1

b̂d̂
. (A.111)

The orthogonality relation is:

∑
e

(2e + 1)(2 f + 1)W (abcd; e f )W (abcd; eg) = δ f g. (A.112)

The product of two Clebsch-Gordan coefficients having a common pair of indices,
j, m, can be written as a linear combination of Racah coefficients:

Ca b e
α β α+βCe d c

α+β, δ, α+β+δ =
∑

f

ê f̂ Cb d f
β, δ, β+δCa f c

α, β+δ, α+β+δW (abcd; e f ).

(A.113)

Appendix B: Overlaps and m.e. in CSM

The equations connecting the overlap integrals I J2
02 , I(k)

J (k=2, 3, 4) (see 6.1.15) and

the basic integrals I (0)
J , I (1)

J are as follows (details given in Ref. [RCGD82]:

I J2
02 = 2

√
J (J + 1)

6(J − 1)(J + 2)

{
1 − x

x
I (0)

J + I (1)
J

}
, x = d2,

I(2)
J =

[
1

3
+ 2

(J − 1)(J + 2)

]
I (1)

J + 2

x

[
1 + x

3
+ 1 − x

(J − 1)(J + 2)

]
I (0)

J , J = even

I(2)
J = 1

2J + 1

[
(J − 1)I (0)

J+1 + (J + 2)I (0)
J−1

]
, J = odd.

I(3)
J = 3Z J − 2I(2)

J , I(4)
J = 14

3
I(2)′

J + 10

3
I(2)

J − 7Z J ,

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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Z J = 1

2J + 1

{[
J + (J + 1)(J + 2)

6x

]
I (0)

J−1 +
[

J + 1 − J (J − 1)

6x

]
I (0)

J+1

}
, J = odd,

Z J = 2 + x

3x2
I (0)

J + 2

3
I (1)

J , J = even. (B.1)

It is worth mentioning that the matrix element of any quadrupole boson monomial
with the angular momentum projected states can be fully expressed in terms of the
norms of the states involved. Then, due to the above equations the mentioned m.e.
can be expressed in terms of I (0)

J and I (1)
J .

In order to calculate the energies of the three bands, we need the m.e. of the terms
involved in the model Hamiltonian, corresponding to the projected states basis. To
this end we introduce the notations:

H20 = (b+b+)0 + h.c, H22 = (b+b+)0(bb)0. (B.2)

Results for the nonvanishing m.e. are listed below:

〈ϕg
J M |H20|ϕg

J M 〉 = 2

√
1

5
d2, (B.3)

〈ϕg
J M |H20|ϕβ

J M 〉 = 6d√
14

Nβ
J

N g
J

,

〈ϕg
J M |H20|ϕγ

J M 〉 = 2

√
2

5
d2(2J + 1)N g

J Nγ
J e−d2

I J2
02 ,

〈ϕβ
J M |H20|ϕβ

J M 〉 = 2

√
1

5
d2 + 72

5

√
1

5
d2

(
Nβ

J

N g
J

)2

,

〈ϕβ
J M |H20|ϕγ

J M 〉 = 6

35
(2J + 1)Nβ

J Nγ
J e−d2

[
(7d + 3d3)I J2

02 + 4d3 I J2′
02

]
,

〈ϕγ
J M |H20|ϕγ

J M 〉 = 2

√
1

5
d2 + 24

7

√
1

5
(2J + 1)(Nγ

J )2e−d2
d2I(2)

J , (B.4)

〈ϕg
J M |H22|ϕg

J M 〉 = 1

5
d4,

〈ϕg
J M |H22|ϕβ

J M 〉 = 6d3

√
70

Nβ
J

N g
J

,

〈ϕg
J M |H22|ϕγ

J M 〉 = 2

5

√
2

7
N g

J Nγ
J e−d2

d4 I J2
02 ,
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〈ϕγ
J M |H22|ϕγ

J M 〉 = 1

5
d4 + 8

245
(2J + 1)

× (Nγ
J )2e−d2

[
(14d2 + 25d4)I(2)

J − 7d4I(3)
J + 3d4I(4)

J

]
,

〈ϕγ
J M |H22|ϕβ

J M 〉 = 6

35

√
1

5
(2J + 1)Nβ

J Nγ
J e−d2

[
(29d3 + 3d5)I J2

02 + 4d5 I J2′
02

]
,

〈ϕβ
J M |H22|ϕβ

J M 〉 = 1

5
d4 + 18

175

(
Nβ

J

N g
J

)2

×
[
44d4 + 25d2 + 4J (J + 1) + (4d2 − 12d4)

I (1)
J

I (0)
J

]
. (B.5)

Here the symbol “ ’ ” has the meaning of the first derivative with respect to x (=d2)
Using these results one can check that 22N̂ + 5�+

β′�β′ has vanishing m.e. between

ϕ
β
J M and ϕi

J M with i = g, γ. The nonvanishing m.e. of the remaining operators
ivolved in the CSM Hamiltonian are:

〈ϕβ
J M |�+

β �β |ϕβ
J M 〉 = 54

1225

⎛
⎝ Nβ

J

Ng
J

⎞
⎠
2

×
{
2450

3
+ 350d2 + 369

2
d4 + 147

2
J (J + 1) + (833d2 + 357d4)

I (1)
J

I (0)
J

}
,

(B.6)

〈ϕβ
J M |�+

β �2
β′ + h.c.|ϕβ

J M 〉 = 96

5

√
1

70
d

×
⎡
⎢⎣ 1

2
d2 − 〈ϕβ

J M |N̂ |ϕβ
J M 〉 − 18

⎛
⎝ Nβ

J

Ng
J

⎞
⎠
2 (

1 + d2

7
+ 3

5
d2

I (1)
J

I (0)
J

)⎤⎥⎦ ,

(B.7)

〈ϕβ
J M |�+2

β′ �2
β′ |ϕβ

J M 〉 = 288

875
d2

(
Nβ

J

N g
J

)2

×
[
3d4 + J (J + 1) − 2(d2 + 1)d2 I (1)

J

I (0)
J

]
. (B.8)
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Appendix C: Near Vibrational Expansion

The coefficients of the near vibrational energy expansions have the expressions:

3∑
k=0

A(g)
J,k xk = J

2
+ J

2(2J + 3)
x + 9

2

(J + 1)(J + 2)

(2J + 3)2(2J + 5)
x2

+ 27

2

(J + 1)(J + 2)

(2J + 3)3(2J + 5)(2J + 7)
x3,

3∑
k=0

Q(γ,0)
J,k xk = (J + 1)(J + 2)(2J + 3)

6(J − 1)
+ (J + 2)(7J 2 + 7J − 24)

(J − 1)(2J + 3)
x

+ 3

2

20J 4 + 85J 3 + 85J 2 + 38J + 42

(J − 1)(2J + 3)2(2J + 5)
x2

+ 9(J + 1)(14J 4 + 84J 3 + 108J 2 − 122J − 204)

(J − 1)(2J + 3)3(2J + 5)(2J + 7)
x3, (C.1)

3∑
k=0

Q(γ,1)
J,k xk = (J + 2)2 + 9J 3 + 22J 2 − 10J − 6

(2J + 1)(2J + 3)
x

+ 3J (12J 3 + 53J 2 + 81J + 22)

(2J + 1)2(2J + 3)(2J + 5)
x2

+ 9J (3J + 5)

(2J + 1)2(2J + 3)(2J + 5)
x3, (C.2)

3∑
k=0

R(γ,0)
J,k xk = 1

12(J − 1)
(J − 2)(J + 1)(J + 2)(2J + 3)

+ 44J 5 + 199J 4 + 67J 3 − 748J 2 − 948J − 144

12(J − 1)(J + 2)(2J + 3)
x

+
[

1

J + 2
(22J 4 + 59J 3 − J 2 + 82J + 288)

+ 3(J + 1)

(2J + 3)(2J + 5)
(2J 4 + 4J 3 − 5J 2 − 7J − 24)

]

× x2

4(J − 1)(2J + 3)
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+
[
9(J + 1)(34J 4 + 196J 3 + 99J 2 − 959J − 1200)

(2J + 3)2(2J + 5)(2J + 7)

+ 39J 3 + 81J 2 − 54J − 120

J + 2

]
x3

4(J − 1)(2J + 3)
, (C.3)

3∑
k=0

R(γ,1)
J,k xk = 1

2
(J − 1)(J + 2)2 + 11J 4 + 24J 3 − 43J 2 − 100J − 42

2(2J + 1)(2J + 3)
x

+ 9J 3 + 25J 2 + 38J + 3

(2J + 1)(2J + 3)
x2 + 9

2

J (J − 1)2(J + 2)

(2J + 1)2(2J + 3)(2J + 5)
x2

+ 3
J (12J 3 + 41J 2 + 36J + 31)

(2J + 1)2(2J + 3)(2J + 5)
x3, (C.4)

3∑
k=1

U (γ,0)
J,k xk = 4J (J + 1)(J + 2)

15(J − 1)
x − 8(J + 1)(J + 2)(J − 3)

5(J − 1)(2J + 3)
x2

+ 12

5

4J 4 + 23J 3 + 5J 2 − 110J − 120

(J − 1)(2J + 3)2(2J + 5)
x3, (C.5)

3∑
k=2

U (γ,1)
J,k xk = 16

5
x2 − 48

5

J

(J + 1)(2J + 3)
x3, (C.6)

3∑
k=0

Q(β)
J,k xk = 3J + 10 + 3

7

17J + 15

2J + 3
x + 27

(J + 1)(J + 2)

(2J + 3)2(2J + 5)
x2

+ 81
(J + 1)(J + 2)

(2J + 3)3(2J + 5)(2J + 7)
x3, (C.7)

3∑
k=0

R(β)
J,k xk = 3

2
J 2 + 14J + 30 + 72J 2 + 403J + 180

14(2J + 3)
x

+ 3

14

160J 3 + 1333J 2 + 2847J + 1680

(2J + 3)2(2J + 5)
x2

+ 27

14

(J + 1)(J + 2)(48J 2 + 240J + 427)

(2J + 3)3(2J + 5)(2J + 7)
x3, (C.8)
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35

6

3∑
k=0

U (β)
J,k xk = 2J (2J + 3) + −12J 2 + 34J + 75

2J + 3
x

+ 2(52J 3 + 313J 2 + 606J + 378)

(2J + 3)2(2J + 5)
x2

− 216
(J + 1)(J + 2)(J 2 + 5J + 5)

(2J + 3)3(2J + 5)(2J + 7)
x3, (C.9)

3∑
k=0

V (β)
J,k xk = 3

5
(9J 2 + 60J + 100) + 18

35

51J 2 + 236J + 150

2J + 3
x

+ 27

245

[
123 + 119

4J 3 + 37J 2 + 78J + 42

(2J + 3)2(2J + 5)

]
x2

+ 16524

35

(J + 1)(J + 2)(J 2 + 5J + 7)

(2J + 3)3(2J + 5)(2J + 7)
x3, (C.10)

3∑
k=1

B(β)
J,k xk = 96

175

[
J 2x − 2J (J + 2)

2J + 3
x2 + 20J 3 + 107J 2 + 192J + 117

(2J + 3)2(2J + 5)
x3
]

,

(C.11)

3∑
k=0

Z (β)
J,k xk = 48

5
√
70

[
− (3J 2 + 46J + 120) +

(
Q(β)

J,0 − 72J 2 + 649J + 360

7(2J + 3)

)
x

+
(

Q(β)
J,1 − 3

7

160J 3 + 1711J 2 + 3981J + 2436

(2J + 3)2(2J + 5)

)
x2

+
(

Q(β)
J,2 − 27

7

(J + 1)(J + 2)(48J 2 + 240J + 553)

(2J + 3)3(2J + 5)(2J + 7)

)
x3
]
,

(C.12)

3∑
k=1

TJ,k xk = 242
J (J + 1)(J + 2)

J − 1

[
x

6
− x2

2J + 3
+ 3

2

4J + 7

(2J + 3)2(2J + 5)
x3
]

,

(C.13)
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3∑
k=0

X J,k xk = (J + 1)(J + 2)(2J + 3)

6(J − 1)
+ 3(4J 3 + 11J 2 − 11J − 34)

(J − 1)(2J + 3)
x

+
[

− 88J 5 + 196J 4 − 460J 3 − 973J 2 − 585J − 396

4(J − 1)(2J + 3)2(2J + 5)

+ 22J 3 + 15J 2 − 31J + 144

4(J − 1)(2J + 3)

]
x2

+ 9

4

[
(J + 1)(−28J 5 − 24J 4 + 639J 3 + 1176J 2 − 1559J − 2844)

(J − 1)(2J + 3)3(2J + 5)(2J + 7)

+ 14J 5 + 81J 4 + 137J 3 − 13J 2 − 191J − 108

(J − 1)(2J + 3)3(2J + 5)

]
x3.

(C.14)

The term �E J accounts for the interaction between the states φ
g
J M and φ

γ
J M . In the

near vibrational regime this has the expression

�E J = A1

∑3
k=0 TJ,k xk∑3

k=0

(
22X J,k + 5U (γ,0)

J,k

)
xk

, (C.15)

with coefficients TJ,k and X J,k given above.

Appendix D: Asymptotic Expansion

Here we give the expressions of the terms ivolved in the asymptotic expansion of the
ground, β and γ band energies, used in Chap.6 (see Eqs. (6.3.15)–(6.3.18)).

Pβ
J = 12

5
+ 171

35
x − 6

5x
+
(

3

5x
+ 1

x2
+ 13

5x3

)
J (J + 1) − 1

15x3
J 2(J + 1)2,

(D.1)

Sβ
J = 2

35

[
1917x2 + 5946x + 759 − 1937

x

]

+ J (J + 1)

35

[
1125 + 2537

x
+ 14365

3x2
+ 25181

3x3

]

− J 2(J + 1)2

7x2

(
8 + 1937

45x

)
, (D.2)

Fβ
J = 54

1225

[
− 406

3
+ 1083

2
x2 + 826x − 833

3x
+
(
133 + 714

3x
+ 4403

9x2

+ 10829

18x3

)
J (J + 1) − 119

18x2

(
1 + 7

3x

)
J 2(J + 1)2

]
, (D.3)

http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
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For J = odd we have

Sγ
J = 198(J + 1)x3 + (J + 1)(−66J + 368)x2 + (J + 1)

(
77J 2 − 335

3
J − 188

3

)
x

+ 1

9
(−165J 4 + 1023J 3 + 635J 2 − 2219J − 2046)

+ (J − 1)

27x
(33J 4 − 688J 3 + 4549J 2 + 7098J − 396)

+ 11J (J − 1)

27x2
(2J 4 + 3J 3 − 162J 2 + 499J + 1296)

− 11

27x3
J (J − 1)3(J − 2)(J 2 − J − 39), (D.4)

Pγ
J = 9(J + 1)x2 − (3J − 4)(J + 1)x + 1

3
(J + 1)(6J 2 − 7J − 7)

+ 1

9x
(J − 1)(−3J 3 + 21J 2 + 28J − 6)

+ 1

x2
J (J − 1)(−1

9
J 3 − 17

27
J 2 + 152

27
J + 20

3
)

+ J (J − 1)3

27x3
(J 2 − J − 39). (D.5)

For J = even we have

Sγ
J =

4∑
k=0

U (k) J k(J + 1)k, Pγ
J =

3∑
k=0

V (k) J k(J + 1)k, (D.6)

where

U (0) = − 396x3 − 736x2 + 376

3
x + 1364

3
− 88

3x
,

U (1) = 198x3 + 368x2 − 584

3
x − 3835

9
− 4655

9x
− 1056

x2
+ 572

9x3
,

U (2) = 66x + 1037

9
+ 5702

27x
+ 18847

54x2
+ 451

6x3
,

U (3) = − 47

54x
− 49

9x2
+ 539

162x3
,

U (4) = − 11

81x3
, (D.7)

V (0) = − 18x2 − 8x + 14

3
− 4

3x
,

V (1) = 9x2 + 4x − 16

3
− 53

9x
− 40

3x2
+ 26

9x3
,

V (2) = 3

2
+ 22

9x
+ 169

27x2
+ 113

54x3
,

V (3) = − 7

54x2
− 1

18x3
. (D.8)
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The factors T n,β
J , with n = 4, 5, involved in the equation determining the excitation

energies in the beta band have the following expression:

T 4,β
J = 171

35
x2 + 195

7
x + 321

35
− 361

35x
− 1949

105x2
− 1591

45x3

+ J (J + 1)

(
99

70
+ 361

70x
+ 1973

210x2
+ 559

30x3

)

− 1

54x3

(
129

5
+ 108

35
x

)
J 2(J + 1)2,

T 5,β
J =

[
9x3 + 24x + 16 + 104

3x
+ 74

3x2
+
(
6x − 8 − 18

x
− 13

x2

)
J (J + 1)

+ x + 1

3x2
J 2(J + 1)2

]
. (D.9)

The function G defining the ground band energies by means of Eq. (6.3.13) has
the following expression:

G J = 9

4
x(x − 2) +

(
J + 1

2

)2

− 4

9x

(
3 + 10

x
+ 37

x2

)

+ 2

3x

(
1 + 10

3x
+ 13

x2

)
J (J + 1) − 2

9x3
J 2(J + 1)2. (D.10)

Appendix E: E2 Transition Operator Matrix Elements

The exact m.e. of the harmonic part of the quadrupole transition operator (6.2.27)
can be expressed in terms of the projected state norms:

〈φg
J ||Qh

2 ||φg
J ′ 〉 = qhdC J ′ 2 J

0 0 0

[
2J ′ + 1

2J + 1

N g
J ′

N g
J

+ N g
J

N g
J ′

]
, (E.1)

〈φβ
J ||Qh

2 ||φβ
J ′ 〉 = qhdC J ′ 2 J

0 0 0

[
Nβ

J

Nβ
J ′

+ 18

5

Nβ
J Nβ

J ′

(N g
J ′ )2

+ 2J ′ + 1

2J + 1

(
Nβ

J ′

Nβ
J

+ 18

5

Nβ
J Nβ

J ′

(N g
J )2

)]
, (E.2)

〈φg
J ||Qh

2 ||φβ
J ′ 〉 = 0, (E.3)

〈φγ
J ||Qh

2 ||φg
J ′ 〉 = qhd Nγ

J

[√
2

7
C J ′ 2 J
0 2 2

1

N g
J ′

+ 2
∑

J1

2̂ ĴC2 J J1−2 2 0C J ′ 2 J1
0 0 0

× W (22J J ′; 2J1)
2J ′ + 1

2J1 + 1

N g
J ′(

N g
J1

)2
]
, (E.4)

http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
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〈φβ
J ||Qh

2 ||φγ
J ′ 〉 = qh Nβ

J Nγ
J ′ (2J ′ + 1)

6

7
√
5

{
C J ′ 2 J
2−2 0

1

2J + 1

[
3

(
2

7
d2 − 1

) (
N g

J

)−2

+ 5

3

(
Nβ

J

)−2
]

− 2d2C J ′ 2 J
2 0 2

∑
J1

1

2J1 + 1
C J 2 J1
0 0 0 C J 2 J1

2−2 0

(
N g

J1

)−2
}
, (E.5)

〈φγ
J ||Qh

2 ||φγ
J ′ 〉 = qh

[
1 + Ĵ ′

Ĵ
(−)J ′−J (J ′ ↔ J )

]
〈φγ

J ||b||φγ
J ′ 〉, (E.6)

〈φγ
J ||b||φγ

J ′ 〉 = d(2J ′ + 1)Nγ
J Nγ

J ′

{
1

2J + 1
C J ′ 2 J
2 0 2

(
Nγ

J

)−2

+
∑

J1

C J ′ 2 J1
2−2 0 W (J ′2J12; J2) ×

[
2

√
2

7

2̂

Ĵ1
C J1 2 J
0−2−2

(
N g

J1

)−2

+ 20
∑

J2

Ĵ1

Ĵ2
C J1 2 J2
0 0 0 C J2 2 J

0−2−2W (J2J22; J12)
(

N g
J2

)−2

⎤
⎦}. (E.7)

The exact expressions for the m.e. of the anharmonic quadrupole transition oper-
ator (6.2.27) are following:

〈φg
J ||Qanh

2 ||φg
J ′ 〉 = −qanhd2

√
2

7
C J ′ 2 J
0 0 0

[
2J ′ + 1

2J + 1

Ng
J ′

Ng
J

+ Ng
J

Ng
J ′

]
, (E.8)

〈φβ
J ||Qanh

2 ||φβ
J ′ 〉 = −qanhd2

√
2

7
C J ′ 2 J
0 0 0

⎡
⎣ Nβ

J

Nβ
J ′

+ 2J ′ + 1

2J + 1

Nβ
J ′

Nβ
J

⎤
⎦ , (E.9)

〈φβ
J ||Qanh

2 ||φg
J ′ 〉 = −6

√
1

5
qanhdC J ′ 2 J

0 0 0

Ng
J ′ N

β
J

(Ng
J )2

2J ′ + 1

2J + 1
, (E.10)

〈φγ
J ||Qanh

2 ||φg
J ′ 〉 = qanh Nγ

J Ng
J ′

[
2
(

Ng
J ′
)−2

C J ′ 2 J
0 2 2

(
1 + 2

7
d2
)

+ 20d2 Ĵ ′ ∑
J1 J2

Ĵ2C J1 J2 J
0−2−2C J1 2 J ′

0 0 0 C2 2 J2
0 2 2 (−)J T J J ′

J1 J2

]
, (E.11)

〈φβ
J ||Qanh

2 ||φγ
J ′ 〉 = qanh

qh

⎡
⎣ 6√

5
〈φg

J ||Qh
2 ||φγ

J ′ 〉
Nβ

J

Ng
J

+ 2d 2̂
∑
J1

Ĵ1C J1 0 J
0 0 0 W (22J J ′; 2J1)〈φβ

J1
||Qh

2 ||φγ
J ′ 〉

Nβ
J

Nβ
J1

⎤
⎦ . (E.12)

〈φγ
J ||Qanh

2 ||φγ
J ′ 〉 = qanh

[
1 + Ĵ ′

Ĵ
(−)J ′−J (J ′ ↔ J )

]
〈φγ

J ||(bb)2||φγ
J ′ 〉, (E.13)

〈φγ
J ||(bb)2||φγ

J ′ 〉 = Nγ
J Nγ

J ′

{
−
√
2

7
C J ′ 2 J
2 0 2 d2(Nγ

J ′)−2

http://dx.doi.org/10.1007/978-3-319-14642-3_6
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+ 20d2
√
2

7
Ĵ ′ ∑

J1 J2

Ĵ2C J1 2 J ′
0−2−2C J1 J2 J

0−2−2C2 2 J2
0 2 2 T J J ′

J1 J2

+ 40d22̂ Ĵ ′ Ĵ
∑

J1 J2 J3

Ĵ2C2 2 J3
2 0 2 C J J2 J3

2 0 2 C J1 2 J2
0 0 0 C J1 2 J ′

0−2−2S J J ′
J1 J2 J3

}
.

(E.14)

In the above equations, the following notations were used:

T J J ′
J1 J2 = W (2222; 2J2)W (J ′2J1 J2; J2)

(
N g

J1

)−2
, (E.15)

S J J ′
J1 J2 J3 = W (2222; 2J3)W (J32J J ′; 2J2)W (22J ′ J2; 2J1)

(
N g

J1

)−2
. (E.16)

With the analytical expressions listed above, one derives simple relations for the
quadrupole moments in the ground and β bands:

〈ϕg
J J |Qanh

20 |ϕg
J J 〉

〈ϕg
J J |Qh

20|ϕg
J J 〉 = −qanh

qh

√
2

7
,

〈ϕβ
J J |Qanh

20 |ϕβ
J J 〉 = 〈ϕg

J J |Qanh
20 |ϕg

J J 〉, (E.17)

〈ϕβ
J J |Q20|ϕβ

J J 〉 =
⎡
⎣1 + 18

5

(
Nβ

J

N g
J

)2 (
1 − d

qanh

qh

√
2

7

)−1
⎤
⎦ 〈ϕg

J J |Q20|ϕg
J J 〉.

From the last equation it results that for dqanh < qh

√
7
2 the order of the quadrupole

moments for the states J+
β and J+

g is not affected by supposing an anharmonic
structure for Q2μ.

Appendix F: Coefficients of Fractional Parentage

Coefficients of fractional parentage for the boson operators b† and b, are obtained
by using the vibrational limit (i.e. d → 0) of their m.e. with the projected states. The
final results are:

〈 J

2
,

J

2
, 0, J ||b†|| J − 2

2
,

J − 2

2
, 0, J − 2〉 =

(
J

2

)1/2

,

〈 J + 3

2
,

J + 3

2
, 0, J ||b†|| J + 1

2
,

J + 1

2
, 0, J + 1〉

= − J + 2

2J + 1

[
3(J − 1)(J + 1)(2J + 3)

J (2J 2 + 5J + 11)

]1/2
, J = odd,
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〈 J

2
+ 1,

J

2
+ 1, 0, J ||b|| J

2
+ 2,

J

2
+ 2, 0, J + 2〉

=
[

J (2J + 5)(2J + 7)

2(2J + 1)(2J + 3)

]1/2
, J = even,

〈 J + 3

2
,

J + 3

2
, 0, J ||b|| J + 5

2
,

J + 5

2
, 0, J + 2〉

=
[

(J − 1)(J + 3)2(J + 4)

2(J + 2)(2J 2 + 5J + 11)(2J 2 + 13J + 29)

]1/2

×
(
2J + 6 + 25J + 17

(J + 1)(2J + 1)

)
, J = odd,

〈 J

2
+ 1,

J

2
+ 1, 0, J ||b|| J

2
+ 2,

J

2
+ 2, 0, J + 1〉

= −
[

18(J + 2)(J + 3)3

J (2J + 1)(2J + 3)(2J 2 + 9J + 18)

]1/2
, J = even,

〈 J

2
+ 3,

J

2
+ 1, 0, J ||b†|| J

2
+ 2,

J

2
+ 2, 0, J + 2〉

=
[

J (2J + 5)(2J + 7)

(J + 7)(2J + 1)(2J + 3)

]1/2
,

〈 J

2
+ 3,

J

2
+ 1, 0, J ||b†|| J

2
+ 2,

J

2
+ 2, 0, J + 1〉

= −
[

36(J + 2)(J + 3)3

J (J + 7)(2J + 1)(2J + 3)(2J 2 + 9J + 18)

]1/2
,

〈 J

2
+ 3,

J

2
+ 1, 0, J ||b†|| J

2
+ 2,

J

2
, 0, J − 2〉

=
[
(J + 11)2(J − 2)(2J + 3)

2(J + 5)(J + 7)(2J − 1)

]1/2
,

〈 J

2
+ 3,

J

2
+ 3, 1, J ||b†|| J

2
+ 2,

J

2
+ 2, 0, J + 2〉

= 7

[
6(2J + 5)(2J + 7)

(J + 7)(2J + 1)(9J 2 + 199J + 490)

]1/2
,

〈 J

2
+ 3,

J

2
+ 3, 1, J ||b†|| J

2
+ 2,

J

2
+ 2, 0, J + 1〉

=
[

54(J + 2)(J + 3)3(J + 11)2

(J + 7)(2J + 1)(2J 2 + 9J + 18)(9J 2 + 199J + 490)

]1/2
,

〈 J

2
+ 3,

J

2
+ 3, 1, J ||b†|| J

2
+ 2,

J

2
+ 2, 1, J − 2〉

= [7(J + 5)(J + 7)(3J + 10) − 6(J − 2)(J + 11)(2J + 3)]
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×J 1/2[2(J + 5)(J + 7)(9J 2 + 199J + 490)(9J 2 + 163J + 128)]−1/2.

(F.1)

In the asymptotic regime, the expressions of β and γ states amplitude in terms of
the ground state amplitude are:

�
β
J K = 1√

70

[
−4

√
2(kβ)3 cos 3γ + 6(kβ)2d − 15d + 4d3

]
�

g
J K

− 6d√
35

[(
−√

2(kβ)2 cos 2γ + 2kdβ cos γ
)∑

J ′
C J 2 J ′
0 0 0 C J 2 J ′

K 0 K �
g
J ′ K (F.2)

+
(
(kβ)2 sin 2γ + √

2kdβ sin γ
)∑

J ′
C J 2 J ′
0 0 0

(
C J 2 J ′

K −2 K−2�
g
J ′ K−2 + C J 2 J ′

K 2K+2�
g
J ′ K+2

)]
,

�
γ
J K = √

2

[(
−√

2(kβ)2 cos 2γ − kβ cos γ
)∑

J ′
C J 2 J ′
2 −2 0C J 2 J ′

K 0 K �
g
J ′ K (F.3)

+
(

(kβ)2 sin 2γ − kdβ√
2
sin γ

) ∑
J ′

C J 2 J ′
2 −2 0

(
C J 2 J ′

K −2 K−2�
g
J ′ K−2 + C J 2 J ′

K 2K+2�
g
J ′ K+2

)]
.

The matrix element of the function (kβ)a cosb γ sinc γ has the expression:

I g,g
J K ,J ′ K ′ (, a, b, c) =

∑
X J K

mn X J ′ K ′
m1n1

× A(m + n + m1 + n1 + a)B(n + n1 + b, m + m1 + c)dm+n+m1+n1 ,

A(t) = 1

2

(
t + 3

2

)
!δt,odd + (t + 3)!( t+2

2

)!
√

π

2t+4 δt,even (F.4)

B(p, k) = δp,evenδk,even

k/2∑
l=0

(
k/2

l

)
(−)l

(p + 2l + 1)(p + 2l + 3)

[
1

2p+2l−3 + 4(3p + 6l + 1)

]
.

The indices m, n, m1, n1 satisfy the restrictions:

n + n1 + b = even, m + m1 + c = even. (F.5)

Consequently,

I g,g
J K ,J ′K ′(a, b, c) = 0, if K ± K′ + 2c �= 4s, s = integer. (F.6)

Appendix G: Single and Multiple Core

Hereweconsider twoparticle-core projected states and connect themwith the product
of two single particle projected states.
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Consider first two unprojected states for the particle-core system which generates
the projected state:

�
(1)
nl j I = |nl j I 〉�g(d),

�
(2)
n′l ′ j ′ I ′ = |n′l ′ j ′ I ′〉�g(d), (G.1)

The product of the two deformed states can be written as

�
(1)
nl j I �

(2)
n′l ′ j ′ I ′ = |nl j I 〉|n′l ′ j ′ I ′〉�g(2d). (G.2)

In the right hand side of the above equation, we used the explicit form for the coherent
state �g which implies the property that the product of two coherent states is a
coherent state of a double deformation parameter. In conclusion, due to the addition
property of the coherent states the product of two functions describing the particle-
core system in the intrinsic frame, each of them carrying a core factor function, is
equal to the function describing two particles and a global core. The question which
naturally arises is whether this property also holds for the projected states. In order
to prove that, let us consider two projected particle core states �I M

nl j and �I ′ M ′
n′l ′ j ′ . As

shown in Eq. (12.1.10) they can be written as:

�I M
nl j = N I

nl j

∑
J

C j J I
I 0 I

(
N (g)

J

)−1 [|nl j〉φ(g)
J

]
I M

,

�I ′ M ′
n′l ′ j ′ = N I ′

n′l ′ j ′
∑

J ′
C j ′ J ′ I ′

I ′ 0 I ′
(

N (g)

J ′
)−1 [|n′l ′ j ′〉φ(g)

J ′
]

I ′ M ′ , (G.3)

where φ
(g)
J M denotes the projected states of the CSM core function �g , with the norm

N (g)
J . The behavior of the projected states in the large deformation and the vibrational

limits are given in Chap.6. For an easier reading we rewrite these results here:

φ
(g)
J M = CJ β−1e

−(d− kβ√
2
)2

D J∗
M0(�0), for d large,

lim
d→0

φ
(g)
J M = | J

2
,

J

2
, 0, J M〉, (G.4)

where �0 denotes the Euler angles which define the intrinsic frame of refer-
ence with respect to the laboratory frame, and |N , v,α, J M〉 denotes the SU(5)
basis states. CJ is given by Eq. (6.3.3). In the regime of large deformation, the
product of two projected states will be a linear combination of functions like
|nl jm〉|n′l ′ j ′m′〉D J∗

M0(�0)D J ′∗
M ′0(�0). TheWigner function also has an addition prop-

erty which allows us to transform 2 functions into a linear combination of one
function:

http://dx.doi.org/10.1007/978-3-319-14642-3_12
http://dx.doi.org/10.1007/978-3-319-14642-3_6
http://dx.doi.org/10.1007/978-3-319-14642-3_6
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D J∗
M0(�0)D J ′∗

M ′0(�0) =
∑

Jc

C J J ′ Jc
0 0 0 C J J ′ Jc

M M ′ Mc
D Jc

∗
Mc0

. (G.5)

This way the product of two projected states is written as linear combinations of
terms consisting of two single particle states and one core function. Therefore, in the
large deformation regime the product of two projected states can be written as two
particles coupled to a single projected core.

A similar conclusion is derived also for the vibrational limit. Indeed, for the case
when the projection of the angular momentum on the z-axis is maximum one gets:

| J

2

J

2
, 0, J, J 〉 =

[√
(

J

2
)!
]−1/2 (

b†22

)J/2 |0〉, (G.6)

Identifying the product of the vacua associated to the two projected states with one
vacuum state one obtains:

| J

2

J

2
, 0, J, J 〉| J ′

2

J ′

2
, 0, J ′, J ′〉 =

√
((J + J ′)/2)!
(J/2)!(J ′/2)! |

J + J ′

2
,

J + J ′

2
, 0, J + J ′, J + J ′〉

(G.7)

The behavior of the product of two projected functions in the rotational and vibra-
tional limit allows us to generalize this property by inferring that the state

|J, J ′; Jc Mc〉 =
∑

M,M ′
C J J ′ Jc

M M ′ Mc
φ

(g)
J Mφ

(g)

J ′ M ′ . (G.8)

obtained with two independent core states φ
(g)
J M ,φ

(g)

J ′ M ′ , is a state belonging to the
core space of projected states. This way, the product of two projected functions can
be written as a product of two single particle states and a single core function.

This conclusion canbedrawnbya straightforward calculation exploitingEq. (G.2).
Indeed, the core factors appearing in the unprojected states �(1) and �(2) can be
written as:

�g(d) =
∑

J

(
N (c)

J (d)
)−1

φ
(g)
J0 (d),

�g(d) =
∑

J ′

(
N (c)

J ′ (d)
)−1

φ
(g)

J ′0(d). (G.9)

Therefore the equality which holds in the intrinsic frame:

�g(d)�g(d) = �g(2d) (G.10)
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yields, after inserting the expansions for each coherent state:

∑
J,J ′

(
N (g)

J (d)
)−1 (

N (g)

J ′ (d)
)−1

φ
(c)
J0(d)φ

(c)
J ′0(d) =

∑
Jc

(
N (g)

Jc
(2d)

)−1
φ

(g)
Jc0

(2d).

(G.11)

Projecting out the good angular momentum in the above equation, one obtains a
very simple relation between the product of two projected core states and a projected
single core state:

(
N (g)

Jc
(2d)

)−1
φ

(g)
Jc Mc

(2d) =
∑
J,J ′

(
N (c)

J (d)N (c)
J ′ (d)

)−1
C J J ′ Jc
0 0 0

[
φ

(g)
J (d)φ

(g)

J ′ (d)
]

Jc Mc
.

(G.12)

The above equation represents nothing else but the addition equation for the projected
coherent states. This equation can be inverted and thereby a product of two core
projected states can be expressed as a linear combination of one core projected
states. Due to this equation, the projected spherical single particle basis (12.1.9) can
be used for treating also thematrix elements of any two body interaction. Indeed, first
the product of projected core states is transformed, by means of the above identity,
into a projected single core state and then one factorizes the scalar product of the core
projected states. To be more concrete, in what follows we describe the application
for the scissors mode [REG02], where two single particle-core states are coupled to
an angular momentum equal to unity. The projection of the total angular momentum
can be performed in several equivalent ways. One way could be to project first the
angular momentum from each of the factor states �

(1)
nl j I and �

(1)
n′l ′ j ′ I ′ . Then, the pair

of particles of angular momentum equal to one is described by:

�
(1)
1M (nl j I ; n′l ′ j ′ I ′) = N (1)(N I

nl jN I ′
n′l ′ j ′)

−1C I I ′ 1
I I ′ I+I ′

[
�I

nl j�
I ′
n′l ′ j ′

]
1M

, (G.13)

whereN (1) denotes the norm of the state from the left hand side. This expression is
simplified if one multiplies first the unprojected core functions and then the angular
momentum is projected out from the global core state.

�
(1)
1M (nl j I ; n′l ′ j ′ I ′) = N (1)

∑
J2,J

C j j ′ J2
I I ′ I+I ′C

J2 J 1
I+I ′ 0 I+I ′

(
N (g)

J (2d)
)−1

[[|nl j〉|n′l ′ j ′〉]J2
φ

(g)
J (2d)

]
1M

. (G.14)

When a single core is associated with the two spherical shell model particles con-
sidered, the projected state with angular momentum equal to unity is:

http://dx.doi.org/10.1007/978-3-319-14642-3_12
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�
(2)
1M (nl j I ; n′l ′ j ′ I ′)

= N (2)
∑
J2,J

C j j ′ J2
I I ′ I+I ′C

J2 J 1
I+I ′ 0 I+I ′

(
N (g)

J (d)
)−1 [[|nl j〉|n′l ′ j ′〉]J2

φ
(g)
J (d)

]
1M

.

(G.15)

The difference between the two projected function consists of their dependence on
the parameter d. This dependence is due to the core states and the norms:

(
N (1)

)−2 =
∑
J,J2

(
N (g)

J (2d)
)−2 (

C j j ′ J2
I I ′ I+I ′C

J2 J 1
I+I ′ 0 I+I ′

)2
,

(
N (2)

)−2 =
∑
J,J2

(
N (g)

J (d)
)−2 (

C j j ′ J2
I I ′ I+I ′C

J2 J 1
I+I ′ 0 I+I ′

)2
, (G.16)

In Ref. [REG02], we investigated how this difference in the deformation dependence
manifests itself when a two body matrix element is calculated. Thus, we calculated
thematrix elements of a dipole-dipole interaction alternativelywith thewave function
�(1) and �(2). The resulting matrix elements differ from each other by the factor:

F (n)(d) =
∑

J

(
N (n)

)2 [
N (g)

J (n′d)
]−2 (

C1 J 1
1 0 1

)2
,

n′ = n + (−)n+1, n = 1, 2; J = 0, 2. (G.17)

The factor F (n)(d) is involved in the matrix element corresponding to the function
�(n). We calculated the quantities F (n)(d) (n=1, 2) corresponding to different pairs
of single particle orbits ( j, j ′) and found out that the differences between n=1 and
n=2 factors are negligible.

Appendix H: Solution of the 6th Order Boson Hamiltonian

Here we give the analytical solution of the first Eq. (13.2.30) for an energy value
belonging to one of the three domains defined in Sect. 13.2 of Chap.13. Aiming
at a compact presentation of the final results it is useful to introduce the following
notations:

Sm = �

2

√
3

A′F
1

4
√

�m
, m = U, O,

Sl = �

√
3

A′F
1√

(a − c)(b − d)
= Sr . (H.1)

http://dx.doi.org/10.1007/978-3-319-14642-3_13
http://dx.doi.org/10.1007/978-3-319-14642-3_13
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Here A′, F are two of the Hamiltonian coefficients. �m-the second rank
Eqs. (13.2.37), (13.2.53) discriminants and a,b,c,d are the roots of the fourth order
polynomial P4(x; E, L) introduced in Chap.13. Two particular values of the variable
x are to be specified:

μm = λ1u + 1
2 (a + b)

λ1 + 1
, ηm = λ2u + 1

2 (a + b)

λ2 + 1
, m = U, O (H.2)

λ1 and λ2 are the solutions of Eqs. (13.2.37) and (13.2.53) if m is equal to U and O,
respectively. Also the following intervals for r are needed:

R(1)
U = [√b,

√
ηU ], R(2)

U = [√ηU ,
√

a],
R(1)

O = [√d,
√

ηO ], R(2)
O = [√ηO ,

√
a],

R(1)
B = [√d,

√
c], R(2)

B = [√b,
√

a], (H.3)

Integrating the first equation (13.2.30) one obtains the time t as a function of r. In the
intervals R(1)

m with m = U, O and R(i)
B with i=1,2 the final result can be written in

a compact form:

tm(E, L; r) = Sm F(�1m(E, L; r), kn(E, L)), m = U, l, r, O,

n = m(δm,U + δm,O) + B(δm,l + δm,r ). (H.4)

If r belongs to R(1)
m with m = U, O , the solution is:

tm(E, L; r) = Sm

(
π

2
2F1(

1

2
,
1

2
; 1; k2m(E, L)) + F(φ2m(E, L; r), km(E, L))

)
.

(H.5)

F(�, k) denotes the incomplete elliptic integral of the first kind

F(φ, k) =
φ∫

0

dθ√
1 − k2 sin2 θ

, (H.6)

The functions �1m and �2m , m = U, O have the expressions

φ1m(E, L; r) = arccos

(
ηm − r2

r2 − μm

√
λ1(λ2 + 1)

λ2(λ1 + 1)

)
, (H.7)

http://dx.doi.org/10.1007/978-3-319-14642-3_13
http://dx.doi.org/10.1007/978-3-319-14642-3_13
http://dx.doi.org/10.1007/978-3-319-14642-3_13
http://dx.doi.org/10.1007/978-3-319-14642-3_13
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φ2m(E, L; r) = arcsin

⎛
⎜⎝ (λ2 + 1)(λ1 − λ2)

λ2(λ1 + 1)

1(
r2−μU
ηU −r2

)2 − λ2+1
λ1+1

⎞
⎟⎠

1
2

, m = U, O.

For the B energy region the functions � are

φ1l(E, L; r) = arcsin

√
(a − c)(r2 − d)

(c − d)(a − r2)
.

φ1r(E, L; r) = arcsin

√
(a − c)(r2 − b)

(a − b)(r2 − c)
. (H.8)
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