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An analytical expression for the energy spectrum of the ground and β bands was obtained through the 
JWKB approximation in the axially symmetric γ -rigid regime of the Bohr–Mottelson Hamiltonian with 
an oscillator potential and a sextic anharmonicity in the β shape variable. Due to the scaling property of 
the problem, the resulting energy depends up to an overall multiplicative constant on a single parameter. 
Studying the behavior of the energy spectrum as a function of the free parameter, one establishes the 
present model’s place among other prolate γ -rigid models and in the more general extent of collective 
solutions. The agreement with experiment is achieved through model fits for few nuclei.
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1. Introduction

Fixing the γ shape variable to 0◦ in the Bohr–Mottelson classi-
cal model [1] leads to a whole new space of collective phenomena 
described in terms of only three variables, i.e. two Euler angles 
and the β shape variable. This particular construction facilitates
the exact separation of angular variables from the β variable. The 
first venture into this subject was made in Ref. [2], where the au-
thors proposed a parameter-free model based on the square well 
potential in β variable. Due to the choice of the potential and the 
closeness to the X(5) predictions [3], the model was named X(3). 
Although the square well shape is a suitable approximation for the 
collective potential [4,5], a more natural choice is the harmonic 
oscillator amended with higher order anharmonic terms. A special 
attention in this sense is deserved by the sextic oscillator which 
not only simulates the square well but can also provide a deformed 
minimum. Besides, it is also the lowest order polynomial potential 
which is quasi-exactly solvable [6]. However, analytical solutions 
are available only for a family of potentials, whose coefficients sat-
isfy certain relations between them and the angular momentum of 
the centrifugal term. Due to the condition of a constant potential, 
the exact solutions cannot be achieved in the prolate γ -rigid case 
as it happens in the γ stable [7,8] and γ unstable [9,10] realiza-
tions.

In this paper I propose an approximate analytical formula for 
the energy spectrum of a prolate γ -rigid collective Hamiltonian 
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with a harmonic oscillator potential corrected by a sextic term, 
which is based on the fourth order approximation made on the 
JWKB quantization rule [11]. The shape of such a potential resem-
bles a smoothed out square well, the resulting formalism being 
considered thus as a X(3) derivative. It is found that the cor-
responding energy spectrum depends up to a factor on a single 
free parameter, which when vanishing leads to a parameter-free
X(3)-β6 model. On the other hand, the adopted approximation 
has a finite convergence radius which is determined in respect 
with exact numerical energies. The experimental realization of the 
model is found in 102Pd, 150Sm and 222Th nuclei, while 176Pt ap-
pears to be a suitable candidate for X(3)-β6.

2. Prolate γ -rigid collective Hamiltonian with a sextic 
anharmonicity

The Hamiltonian associated with a prolate γ -rigid nucleus
is [2,12]:

H = − h̄2

2B

[
1
β2

∂

∂β
β2 ∂

∂β
− Î2

3h̄2β2

]
+ U (β), (2.1)

where Î is the angular momentum operator from the intrinsic 
frame of reference, while B is the mass parameter. The Schrödinger 
equation associated to such a Hamiltonian is solved by separating 
the β variable from the angular ones which is achieved through 
the factorization:

Ψ (β, θ1, θ2) = F (β)YIM(θ1, θ2), (2.2)
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where the angular factor state is a spherical harmonic function and 
has the property:

Î2YIM(θ1, θ2) = I(I + 1)h̄2YIM(θ1, θ2). (2.3)

With this, the Schrödinger equation is reduced to a second order 
differential equation in variable β:
[

1
β2

d
dβ

β2 d
dβ

− I(I + 1)
3β2 + 2B

h̄2
(
E − U (β)

)]
F (β) = 0. (2.4)

Making the change of function F (β) = f (β)
β and the denotations

ε = BE/h̄2, u(β) = BU (β)/h̄2, one obtains an equation which re-
sembles the radial Schrödinger equation for a three-dimensional 
isotropic potential u(β):
[

d2

dβ2 − I(I + 1)
3β2 + 2

(
ε − u(β)

)]
f (β) = 0. (2.5)

The potential is chosen to be of the following form:

u(β) = 1
2
α1β

2 + α2β
6, α1 ! 0, α2 > 0. (2.6)

The eigenvalue problem for such a potential has the following scal-
ing property:

ε(α1,α2) = α
1
4
2 ε(λ,1) = α

1
4
2 W (λ), λ = α1α

− 1
2

2 , (2.7)

which follows from the change of variable β ′ = α
1
8
2 β in the differ-

ential equation (2.5). The problem is then reduced to solving the 
radial Schrödinger equation with a modified centrifugal term for 
the scaled potential:

ũ
(
β ′) = 1

2
λβ ′ 2 + β ′ 6, λ ! 0. (2.8)

The Schrödinger equation for such a potential is not exactly solv-
able, thus an approximate method is required. For this, one adapts 
the method from Ref. [11] for finding the eigenvalue W , to the 
present case of the modified centrifugal term. Following the pro-
cedure of Ref. [11] one can write the eigenvalue W as function 
of λ, n – the β vibration quantum number and the intrinsic angu-
lar momentum I , as follows:

WnI (λ) = (NnI )
3
2

5∑

k=0

Gk(λ, I)(NnI )
−k, (2.9)

where

NnI = 2
√
2a

[
2n + 1+ 1

2

√
1+ 4I(I + 1)

3

]
, (2.10)

with the functions Gk(λ, I) given in Appendix A where the con-
stant a is also defined.

The energy spectrum of a nucleus described by the Hamilto-
nian (2.1) with a potential defined by Eq. (2.8) is then determined 
by the following expression:

EnI = h̄2

B
α

1
4
2

[
WnI (λ) − W00(λ)

]
. (2.11)

3. Model characteristics

The energy levels of the ground state band (n = 0), as well as 
of the β vibrational bands (n > 0) defined by Eq. (2.11) depend 
on a single parameter, i.e. λ, up to a multiplying constant. Be-
fore analyzing the evolution of the energy spectrum as function 

Fig. 1. Theoretical ground state energy W00 as function of λ represented by the 
solid line is compared to few exact eigenvalues taken from [14] (circles) and [15]
(diamonds) which are interpolated by straight dashed lines between them.

of λ it is necessary to establish the limit where the adopted ap-
proximation starts to diverge from the exact numerical solutions. 
Taking into account the fact that the accuracy of the JWKB based 
eigenvalues is improving with the increasing of the quantum num-
bers [13], one will limit the comparison only to the ground state 
which is the same as in the case of the usual centrifugal term. 
There are very few numerical estimates of the eigenvalues corre-
sponding to this particular form of the potential and only for the 
one-dimensional case. However, making a correspondence between 
the associated quantum numbers, one finds that the ground state 
in the three-dimensional case is equivalent to the first excited state 
from the one-dimensional case. In Refs. [14,15] the corresponding 
eigenvalues are computed for some selected values of the parame-
ter λ which are linearly interpolated in Fig. 1, in order to simulate 
a continuous dependence. Comparing the resulting curve with that 
given by the present model visualized on the same graph one as-
certains that the convergence radius of our approximate formulas 
is about λc = 10.

The evolution of the energy spectrum normalized to the first 
excited state and comprising the ground and two excited β bands 
as function of λ in the interval [0, 10] is depicted in Fig. 2. From 
there one can see that the low lying states from different bands 
become almost degenerate in the second half of the considered 
interval, becoming more distinct at high angular momenta. Also as 
λ goes from 0 to 10 the states I+1 and (I − 4k)+k (k > 1) change 
their order and at some point intersect each other. Also for each 
value of λ the spectra of the considered bands are almost identical 
being differentiated only by their relative positions, i.e. bandheads.

The convergence radius λc = 10 does not in any way limit 
the model’s applicability. Indeed, as the scaled variable β ′ is un-
der unity in the region of interest, a higher value for λ would 
bring the potential into the harmonic limit. This can be seen from 
Fig. 3, where the line corresponding to λ = 10 is very close to the 
X(3)-β2 predictions for the low spin states. Moreover, the states of 
different bands are almost degenerated in the spectrum of λ = 10
(see Fig. 2) which is consistent with the X(3)-β2 behavior. In both 
graphs of Fig. 3 representing the ground and first β bands, the 
spectra covered by the present model are situated in the mid-
dle between the predictions of the X(3) [2] and X(3)-β2 limiting 
models, more closer to the last in the β band case. Addition-
ally, it seems that the model extension also covers the spectrum 
of the X(3)-β4 model [12] with a different distribution of states. 
The spectra in the acting interval vary uniformly equidistant from 
λ = 0 to λc = 10. It is worth to mention that for λ = 0 one obtains 
a parameter-free model denoted X(3)-β6 due to the already es-
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Fig. 2. Theoretical energy spectrum normalized to the energy of the state 2+
1 given 

as function of λ. The full, dashed and dot-dashed lines correspond to the ground, 
first and respectively second excited β bands.

Fig. 3. Ground band (top) and the first β band (bottom) theoretical energy spec-
tra normalized to the first excited state energy are given as a function of angular 
momentum for λ = 0 and λ = 10 which enclose the existence region of the model 
(gray area). The X(3) [2], X(3)-β2 and X(3)-β4 [12] predictions are also shown for 
comparison.

Table 1
Few energy levels of the X(3)-β6 model, normalized to the 2+

1 excited state energy.
I E0I/E02 E1I/E02 E2I/E02

0 0.000 2.556 6.013
2 1.000 4.080 7.925
4 2.343 5.941 10.193
6 3.905 7.968 12.606
8 5.654 10.141 15.141

10 7.571 12.449 17.791
12 9.642 14.884 20.551

tablished nomenclature [2,12] and whose normalized spectrum is 
given separately in Table 1. Summing up, the model’s acting space 
given in terms of the ratio R4/2 = E(4+

1 )/E(2+
1 ) is enclosed be-

tween 2.343 and 2.154, while the bandhead of the first β band 
denoted R0/2 lies between 2.556 and 2.109 with the limits corre-
sponding to the X(3)-β6 model with λ = 0 and respectively the 
cutoff value λc .

Besides the conclusions drawn from Fig. 3, it is desirable to 
place the present results in a wider context of collective mod-
els. This is done in Table 2, where the signature ratios R4/2 and 
R0/2 of the proposed formalism are compared with those provided 
by other models with similar values. The parameter-free dynami-
cal symmetries included in comparison are schematically discussed 
in Ref. [5] and reviewed in more detail along with other analyt-
ical solutions in Ref. [16]. There are other models which fall in 
the same criteria for comparison, but not listed due to their com-
plex structure and greater number of adjustable parameters. The 
γ unstable cases of the Morse potential [19], Davidson [17] and 
Kratzer [18] potentials amended with a deformation dependent 
mass term and their soft triaxial solutions [20], are a few of them. 
Also one cannot omit the recently developed Algebraic Collective 
Model [21–23] which provides accurate and rapidly converging nu-
merical solutions of the collective Hamiltonian for many different 
potentials. From Table 2 one can see that concerning the existence 
intervals, the X(3) related models are close to the triaxial rigid and 
γ -unstable solutions. In particular, the E(5)-β2n models seem to 
be the closest ones, even with neighboring candidates like 100Pd 
and 102Pd. Moreover, in Ref. [27] it was shown that the critical 
point symmetry of the U (5) ↔ O (6) shape phase transition should 
be the E(5)-β4 model instead of E(5). This claim enforces the im-
portance for the study of the polynomial potentials.

The model proposed provides a polynomial formula for the 
energy, but unfortunately no information on the wave functions 
which are essential for computing electromagnetic transitions. De-
spite this shortcoming, the usefulness of the model resides in the 
continuous description of the energy spectrum as function of a 
single parameter. Knowing the value of the free parameter for a 
certain nucleus, one can therefore compute numerically some tran-
sition probabilities which is not an easy task and it is not the scope 
of the present letter.

4. Experimental realization

The experimental realization of the model was found to oc-
cur in 102Pd, 150Sm, 176Pt and 222Th, whose model fits provide 
the best agreement. In order to obtain a quantitative measure of 
the agreement, one fitted the absolute experimental spectra with 
the energy function (2.11), obtaining thus the multiplying constant 
h̄2α1/4

2 /B and the parameter λ. The results of the fits are given in 
Fig. 4, while the corresponding parameters are listed in Table 3. 
Although the energy spectrum and the shape of the potential are 
completely determined only by λ, the unscaled potential (2.6) can 
be recovered. Indeed, equating the expression for the ground state 
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Table 2
Comparison of the present model with other relevant solutions in terms of the application range defined only by R4/2 and R0/2 signatures. i.s.w. stands for infinite square 
well. Apart from the original reference, the candidate nuclei are also complemented from Refs. [4,5]. Only the nuclei with a β band were considered as candidates for the 
X(3)–β2n models. The upper signature ratios of the last three solutions correspond to the O (6) limit [31].

Model ref. v(β) γ or v(γ ) R4/2 R0/2 Candidates

X(3)-β2 [12] β2 0◦ 2.13 2.00 –
X(3)-β4 [12] β4 0◦ 2.29 2.37 154Dy

[12] 1
2 λβ2 + β4 0◦ 2.00–2.29 1.81–2.37 100Mo, 152Gd

X(3)-β6 β6 0◦ 2.34 2.56 102Pd, 176Pt

Present 1
2 λβ2 + β6 0◦ 2.15–2.34 2.11–2.56 102Pd, 150Sm

X(3) [2] i.s.w. 0◦ 2.44 2.87 172Os, 186Pt

Z(4)-β2 [24] β2 30◦ 2.00 3.00 –
Z(4) [25] i.s.w. 30◦ 2.23 2.95 128,130,132Xe

U (5) [26] β2 unstable 2.00 2.00 Many
E(5)-β4 [27,28] β4 unstable 2.09 2.39 100Pd
E(5)-β6 [29] β6 unstable 2.14 2.62 98Ru
E(5)-β8 [29] β8 unstable 2.16 2.76 –
E(5) [30] i.s.w. unstable 2.19 3.03 104Ru, 106,108Cd

102Pd, 128Xe, 134Ba

[31] (β − β0)
2 unstable 2.00–2.50 2.00–∞ Many

[32] Davidson unstable 2.00–2.50 2.00–∞ –
[33] Kratzer unstable 1.35–2.50 1.00–∞ –

Fig. 4. Theoretical results for ground, first and second excited β bands energies are compared with the available experimental data for 102Pd [35], 150Sm [36], 176Pt [37]
and 222Th [38].

of the β2 average derived from the hypervirial relations [34] using 
Hellmann–Feynman theorem,

〈n, I|β2|n, I〉 = 2α
− 1

4
2

∂WnI

∂λ
, (4.12)

with a tabulated value of the quadrupole deformation one ob-
tains a determining equation for α1. Finally, α2 is extracted from 

λ = α1α
− 1

2
2 . The resulting values for the considered nuclei are 

listed in Table 3 together with all other ingredients, while the cor-
responding potentials are plotted as function of β in Fig. 5.

The results of Table 3 reveal that 150Sm and 176Pt are situated 
at the limits of the present model, being characterized by λ = 9.6
and respectively λ = 0 which marks the X(3)-β6 model presented 
in the last section. Apart from 176Pt, another candidate for X(3)-β6
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Table 3
The parameters obtained from the fits visualized in Fig. 4 corroborated with the tabulated quadrupole deformations β2 [39] used for determining α1 and α2. The quantity 
∂W00/∂λ essential for finding α2, the number of fitted states and the corresponding deviation σ =

√∑N
i (Eexp

i − ETh
i )2/N are also listed.

Nucleus β2 λ ∂W00
∂λ α1 α2 h̄2/B [keV] Nr. states σ [keV]

102Pd 0.133 0.5130 0.29474 569.7 1.2333 · 106 6.3188 12 102.292
150Sm 0.206 9.6001 0.17569 658.2 0.0047 · 106 12.1657 17 83.123
176Pt 0.171 0 0.29923 0 0.1755 · 106 4.8266 14 72.920
222Th 0.111 3.7289 0.25873 6577.4 3.1113 · 106 1.6871 13 15.945

Fig. 5. Potential (2.6) in the origin region as function of β for the considered nuclei 
with coefficients α1 and α2 listed in Table 3.

could be considered the 102Pd nucleus, for which one obtains a 
small value for λ. This nucleus was also treated in Refs. [17–19]
where only R4/2, and the β and γ bandheads were fitted. The 
best agreement with experiment is obtained with Morse poten-
tial [19], where although R4/2 is very well reproduced the R0/2
is overestimated with poorer accord with experiment than in the 
present calculations. The three nuclei with λ > 0 share a com-
mon feature which is the number of nucleons (three) above the 
shell closure at the magic numbers N = 50, 82 and respectively 
N = 126. It is also interesting that their lighter neighbors were 
successfully described with a quartic anharmonicity [12]. Excep-
tion is the X(3)-β6 nucleus 176Pt, which seems to be a critical one 
for its isotopic chain, given the fact that it has the smallest value 
of R4/2 ratio. Moreover, λ = 0 from Fig. 5 corresponds to the flat-
test potential in the framework of the present model which is a 
determining characteristic for a critical point. Although for nucleus 
222Th, there are no experimental data available for the β bands, 
it is certainly worth mentioning because of the precise reproduc-
tion of the ground band states up to I = 26.

5. Outlook

Based on higher order JWKB approximation, an analytical for-
mula is derived for the energy spectrum of the prolate γ -rigid 
Bohr–Mottelson Hamiltonian with an oscillator potential and a sex-
tic anharmonicity in β shape variable. The energy formula depends 
up to an overall factor on a single free parameter which is bounded 
by the convergence radius λc = 10 of the adopted approximation. 
The acting space of the model is then restricted to the interval 
[0, λc] which put in terms of the ratios R4/2 and R0/2 lies between 
[2.343, 2.154] and [2.556, 2.109], respectively. The upper limit cor-
responds to λ = 0 which is associated to the free parameter model 
X(3)-β6, while the lower limit is close to the X(3)-β2 predictions. 
The spectra described by the present model decrease uniformly in 
energy as the free parameter goes from 0 to λc and are placed in 
the middle between the X(3) and X(3)-β2 boundary models cov-

ering also the spectrum provided by X(3)-β4. It was also pointed 
out that its application range overlaps with that of the E(5)-β2n

models. The model is experimentally realized for 102Pd, 150Sm, 
176Pt and 222Th nuclei for which were performed quantitative fits, 
revealing the nucleus 176Pt as a suitable candidate for the X(3)-β6

model.
Before closing, it is worth to note that the present approxi-

mate formula can be easily translated to the case of four- and 
five-dimensional Bohr–Mottelson Hamiltonians with a similar sep-
arated potential for the β shape variable.

Appendix A

The functions Gk(λ, I) defining the energy WnI (λ) are taken 
from [11] and adjusted to the present physical problem acquire 
the following expressions:

G0 = 1, G1 = λa
2

,

G2 = b
12

[
5− 4I(I + 1)

]
+ λ2

24

(
a2 − b

)
,

G3 = λ

144

[
3− 10ab + 4(1+ 2ab)I(I + 1)

]

− λ3

864

(
1− 6ab + 2a3

)
,

G4 = − 1
288

{
b2

[
25− 40I(I + 1) + 16I2(I + 1)2

]

− λ2[5b2 + 5a2b − 3a − 4
(
a + b2 + a2b

)

× I(I + 1)
]
− λ4

12

(
2a − 3b2 − 6a2b + a4

)}
,

G5 = 5
1728

{
λb

[
24+ 25ab + 8(4− 5ab)I(I + 1)

+ 16abI2(I + 1)2
]
+ λ3

6

[
9a2 − 10ab

(
3b + a2

)

− 8b + 4a
(
3a + 6b2 + 2a2b

)
I(I + 1)

]

+ λ5

12

(
2a3b − a2 + 3ab2 − a5

5

)}
,

where

a = π+( 23 )

+( 16 )+( 12 )
, b = +( 56 )+( 23 )

+( 16 )+( 43 )
. (4.13)
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