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Abstract. A prolate γ-rigid version of the Bohr-Mottelson Hamiltonian with a quartic anharmonic oscil-
lator potential in β collective shape variable is used to describe the spectra for a variety of vibrational-like
nuclei. Speculating the exact separation between the two Euler angles and the β variable, one arrives at
a differential Schrödinger equation with a quartic anharmonic oscillator potential and a centrifugal-like
barrier. The corresponding eigenvalue is approximated by an analytical formula depending only on a single
parameter up to an overall scaling factor. The applicability of the model is discussed in connection to
the existence interval of the free parameter, which is limited by the accuracy of the approximation, and
by comparison with the predictions of the related X(3) and X(3)-β2 models. The model is applied to
qualitatively describe the spectra for nine nuclei which exhibit near-vibrational features.

1 Introduction

Shape phase transitions between different dynamical sym-
metries became a more interesting topic since the intro-
duction of critical point symmetries [1,2] which allowed a
parameter free description not only of the extremes but
also of their critical point. However these are not true dy-
namical symmetries in the sense of group reduction de-
fined in the framework of the interacting boson model
(IBM) [3], but fitting descriptions provided by similarly
simple shapes of the potential surface in the collective
geometrical model [4,5]. Presently there are known two
such critical symmetries, associated to the phase transi-
tions from the spherical vibrator shape phase described by
the U(5) [6] dynamical symmetry to the O(6) [7] dynam-
ical symmetry characterizing the γ-unstable nuclei and,
respectively, to the SU(3) dynamical symmetry of axial
rotors. Iachello realized that the critical point potential
for both transitions can be fairly well approximated by
a square well potential, the resulted models being called
E(5) [2] and X(5) [1], respectively. However a consis-
tent algebraic treatment of the most general (up to two-
body terms) IBM Hamiltonian at the critical point of the
U(5) ↔ O(6) transition showed results equivalent to those
obtained in the geometric model with a pure quartic os-
cillator potential in β shape variable identified as E(5)-β4

model [8,9]. This particular transition have a special allure
due to the exact separation of the shape variables which
is not found in the other transition and consequently in
the X(5) model.

a e-mail: rbudaca@theory.nipne.ro

Imposing a certain value for the γ shape variable, one
reaches the γ-rigid version of the collective model which
is interesting by itself due to its description of the ba-
sic rotation-vibration coupling [10]. A γ-rigid version of
the critical symmetry X(5), called X(3) was proposed not
long ago [11], revealing a similarity in the β excited bands
between the two model predictions and which is based
on the exact separation of shape and angular variables.
Given the openness of the question regarding the shape of
the critical point potential, it is then interesting to study
the γ-rigid realization of the general quartic oscillator po-
tential with an emphasis on the pure quartic oscillator,
and compare it to the models defined in the same space
of variables, i.e. X(3) and X(3)-β2. It must be mentioned
that such a program was never realized primarily due to
the fact that quartic oscillator Schrödinger equation can-
not be analytically solved, and the existing predictions of
models involving mainly the pure quartic oscillator poten-
tial are based on numerical integration. The study of the
solutions corresponding to the quartic oscillator potential
is very important enforced also by the fact that the next
leading anharmonic term of the β potential is β4 not only
in the γ-rigid case, but also in the γ stable and unstable
models, with the potential separation approximation [7]
in the former case. The next-order anharmonic term leads
to a sextic potential which allows a nonvanishing mini-
mum, being thus suitable for the description of deformed
nuclei [12,13] and even of the candidates for the X(5)
critical point symmetry [14]. Moreover, the differential
equation for β with sextic potential is quasi-exactly solv-
able. It is worth to mention that treating semiclassically
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a second [15], fourth [16] and sixth [17] order quadrupole
boson Hamiltonian leads to a Schrödinger equation with
a harmonic oscillator, quartic and, respectively, sextic po-
tentials in a radial-like variable with a centrifugal barrier.

In this paper one investigates the γ-rigid problem for a
general quartic anharmonic oscillator potential (QAOP),
i.e. with both quadratic and quartic terms, by using an
analytical formula for the energies of the ground and β
excited bands. Due to the scaling property of the QAOP,
the energies are function only on one parameter up to an
overall multiplying factor, even though the potential is de-
fined by two parameters. The applicability of the energy
formula is studied with regard to the allowed values for
the ratio between the first two excited states R4/2 taking
also into account the validity of the adopted approxima-
tion. Theoretical calculations are carried out for nine nu-
clei exhibiting vibrational-like behaviour, the results being
compared with the corresponding experimental spectra.

2 γ-rigid realization of the Bohr-Mottelson
Hamiltonian

The quadrupole deformation is the fundamental mode of
deformation for a spherical system. It can be described
by a set of five amplitudes that form the components of a
spherical tensor. The five tensorial coordinates are usually
transformed by Bohr-Mottelson parametrization to three
orientation angles Ω = (θ1, θ2, θ3) and two shape variables
β and γ. In this parametrization, the potential energy of
the nuclear deformation depends only on the shape vari-
ables and its general form up to the sixth order is given
in the generalized collective model [18] as

V (β, γ) = c1β
2 + c2β

3 cos 3γ + c3β
4

+c4β
5 cos 3γ + c5β

6 (cos 3γ)2 + c6β
6. (1)

While the corresponding kinetic energy is quadratic in the
time derivatives of all variables and can be separated into
a vibrational part

Tvibr =
B

2

(

β̇2 + β2γ̇2
)

, (2)

and a rotational part given by

Trot =
1

2

3
∑

k=1

ω2
kIk, (3)

with

Ik = 4Bβ sin2

(

γ −
2

3
πk

)

(4)

and ωk being the moments of inertia, respectively, the an-
gular frequencies associated to the principal axes indexed
by k. Due to the treatment of the vibrations and rotations
on equal footing, the kinetic energy involves a single mass
parameter B. A Schrödinger equation in the (β, γ,Ω) co-
ordinates is obtained by following the general prescription
for quantization in curvilinear coordinates and the result is

the well-known Bohr-Mottelson Hamiltonian [4,5]. How-
ever, the quantification procedure is based on the metric
defined by the classical kinetic energy [5]. Imposing some
constraints on the kinetic energy one can reduce the num-
ber of variables and therefore obtain a different Hamil-
tonian. Indeed, by freezing the γ variable (γ̇ = 0) the
vibrational energy becomes

Tvibr =
B

2
β̇2. (5)

In this case γ is no longer a variable, being a simple pa-
rameter characterizing the shape. By quantizing now the
system of remaining variables one recovers the Davydov-
Chaban model [10] for γ-rigid nuclei where the volume
element is proportional to β3 not to β4 like in the usual
Bohr-Mottelson approach.

Going further, and considering the axially symmetric
prolate case (γ = 0), one reduces the number of variables
even more. For axially symmetric shapes the orientation
angle with respect to the symmetry axis is indeterminate
which leads to vanishing moment of inertia along the cor-
responding axis:

I3 = 0, I1 = I2 = 3Bβ2. (6)

In this situation, the rotational motion is described only
by two degrees of freedom

Trot =
3

2
Bβ2

(

ω2
1 + ω2

2

)

=
3

2
Bβ2

(

θ̇2
1 sin2 θ2 + θ̇2

2

)

, (7)

while the vibrational motion described by (5) is restricted
only to oscillations preserving the axial symmetry.

The quantization in the curvilinear coordinates θ1, θ2
and β shape variable, provides the following operators for
the two parts of the kinetic energy:

Tvibr = −
h̄2

2B

1

β2

∂

∂β
β2 ∂

∂β
, (8)

Trot =
Î

2

6Bβ2
, (9)

where Î is the angular momentum in the intrinsic frame of
reference. Now one can write the Hamiltonian associated
to a prolate rigid nucleus as

H = −
h̄2

2B

[

1

β2

∂

∂β
β2 ∂

∂β
−

Î
2

3h̄2β2

]

+ U(β). (10)

The Bohr-Mottelson Hamiltonian describes a variety of
different types of collective motion depending on the po-
tential energy function and the inertial parameters. The
restrictions imposed so far changes not only the Hamil-
tonian but also its associated Hilbert space which in this
case is defined by a metric proportional to β2 consistent
with the remaining three degrees of freedom, i.e. two Euler
angles and the β shape variable. It also leaves us only with
the choice of the potential energy of the nuclear deforma-
tion U(β), restricting thus the applicability of the above
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Hamiltonian only to the family of β vibrational nuclei with
γ-rigid axial symmetry. The Schrödinger equation associ-
ated to such a Hamiltonian is solved by separating the β
variable from the angular ones which is achieved through
the factorization

Ψ(β, θ1, θ2) = F (β)YIM (θ1, θ2), (11)

where the angular factor state is a spherical harmonic
function and has the property

Î
2
YIM (θ1, θ2) = I(I + 1)h̄2YIM (θ1, θ2). (12)

With this the Schrödinger equation is reduced to a second-
order differential equation in variable β:

[

1

β2

d

dβ
β2 d

dβ
−

I(I + 1)

3β2
+

2B

h̄2 (E − U(β))

]

F (β) = 0.

(13)
This equation can be written also in the following form:

[

d2

dβ2
+

2

β

d

dβ
−

I(I + 1)

3β2
+ 2(ε− u(β))

]

F (β) = 0,

(14)
where the following notations were used,

ε =
B

h̄2 E, u(β) =
B

h̄2 U(β). (15)

Up to this point the proceedings are exactly the same as
in the construction of the X(3) model [11]. As X(3) is the
γ rigid version of the X(5) critical point symmetry [1],
it uses an infinite square well potential which leads to a
Bessel equation. Given the different choice of the poten-
tial, here one will treat eq. (14) differently from ref. [11].

Thus, making the change of function F (β) = f(β)
β one

obtains the equation

[

d2

dβ2
−

I(I + 1)

3β2
+ 2(ε− u(β))

]

f(β) = 0, (16)

which resembles the radial Schrödinger equation for a
three-dimensional isotropic potential u(β).

3 Quartic oscillator potential in β variable

The quartic anharmonic oscillator potential in β variable,

u(β) =
1

2
α1β

2 + α2β
4, (17)

with α1,α2 > 0, is the lowest-order anharmonic potential
when γ = 0. With this choice of the potential u(β) and
the assumptions of the last section, the energy ε then can
be calculated as the eigenvalue of a Hamiltonian with a
QAOP and a centrifugal barrier factorized by I(I + 1)/3.
The Schrödinger equation for a QAOP cannot be solved
exactly. However there are more than a few approximative
methods for finding its eigenvalues which depend on the

relative importance of the two terms. Here one will em-
ploy the method from ref. [19] for calculating the eigen-
values ε, which to our knowledge is the only one provid-
ing analytical formulas for it. Even though the prescrip-
tion of ref. [19] refers to an N -dimensional quartic anhar-
monic oscillator it can be applied to the case of a more
general centrifugal term given the fact that the orbital
angular momentum is treated as a simple parameter in
the derivation of the corresponding formulas. As eq. (16)
with an oscillator potential u(β) = β2 can be brought
to a form corresponding to Laguerre polynomials like in
the case of the usual three-dimensional harmonic oscilla-
tor, the above-mentioned procedure can indeed be applied
in the present case because the numerical eigenvalues for
QAOP are usually obtained in a harmonic oscillator ba-
sis. Although the formulas are derived on the basis of the
forth order approximation made on the Jeffreys-Wentzel-
Kramers-Brillouin (JWKB) quantization rule [20], the nu-
merical results are very precise with respect to extensive
numerical computations [21,22] for few selected potentials
of the form (17). Moreover, the JWKB based energies in
any order of approximation preserve the scaling property

ε(α1,α2) = α1/3
2 ε

(

α1α
−2/3
2 , 1

)

= α1/3
2 W

(

α1α
−2/3
2

)

,

(18)
of the exact eigenvalues. This means that one can find the
eigenvalues of (16) by solving the Schrödinger equation for
the potential

ũ(β′) =
1

2
λβ′2 + β′4, (19)

with λ = α1α
−2/3
2 . This is actually equivalent to the

change of variable β → β′/α1/6
2 in (16). Following the

procedure of ref. [19] one can write the following formula
for the energy value W :

WnI(λ) = (NnI)
4

3

8
∑

k=0

Gk(λ, I) (NnI)
−

2k

3 , (20)

where

NnI =

√

9πη

8

[

2n + 1 +
1

2

√

1 +
4I(I + 1)

3

]

, (21)

with η being a constant which is given together with the
functions Gk(λ, I) in the appendix. The energy (20) is in-
dexed by the principal quantum number n which is associ-
ated to the number of β vibration quanta and the angular
momentum I of the collective rotation. The dependence
on angular momentum I comes from the angular degrees
of freedom defining the centrifugal term.

The energy of a nucleus described by the rotation-
vibration Hamiltonian (10) with QAOP is then given by

EnI =
h̄2

B
α−1/3

2 [WnI(λ) − W00(λ)] . (22)

So up to an overall scaling factor the energies depend only
on one parameter, namely λ. When λ = 0 the problem is
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reduced to the pure quartic oscillator, where the above
analytical formula for the energy levels still holds but no
longer depend on any parameter except the factorizing
one. In this case one obtains a parameter free model which
will be called X(3)-β4 on account of the same structure
as the already established X(3) model. Considering the
other limit of the quartic potential, i.e. λ → ∞, one re-
covers the harmonic oscillator case. It must be emphasized
that the adopted formalism does not yield the correct har-
monic oscillator energy levels because the expansion of the
JWKB integrals is about the pure quartic oscillator lev-
els. However, obtaining the harmonic oscillator results by
solving eq. (16) with an oscillator potential u(β) = β2 is
straightforward, providing the following energy:

Eho
nI =

h̄2

B

[

2n +
1

2

(
√

1 +
4I(I + 1)

3
− 1

)]

, (23)

normalized to the ground state. In this way one pro-
duced another parameter free model in the same three-
dimensional space which will be denoted hereafter as
X(3)-β2, following the above-mentioned reasons.

An important consequence of the analytical expression
of the QAOP energy is the possibility to derive the expec-
tation values for the even powers of the associated radial
variable from hypervirial relations [23] using Hellmann-
Feynman theorem. Thus, taking into account the scaling
relation (18) and the prescription of ref. [19] one can ex-
press the first order even moment as follows:

〈n, I|β2|n, I〉 = α−1/3
2

∂WnI

∂λ
. (24)

Unfortunately, except some recurrence relations between
different order moments [23], there are no analytical for-
mulas available for the nondiagonal moments β2k which
would be useful for calculating electromagnetic transition
probabilities.

4 Model applicability

The energy levels of the ground state band (n = 0), as
well as of the β vibrational bands (n > 0) defined by
eq. (22) and normalized to the energy of the lowest ex-
cited state 2+

1 depend only on λ. The shapes of the axi-
ally symmetric nuclei are parametrized by a nuclear de-
formation parameter which is not a directly measurable
observable. Then instead one usually describes different
nuclear shape phases in terms of the ratio R4/2 between
the lowest two collective energy levels 4+

1 and 2+
1 . In the

framework of IBM [3] to each shape phase there is associ-
ated a dynamical symmetry whose signature is a specific
value of R4/2. Thus it should be useful to check the ap-
plicability of our model by studying the dependence of
R4/2 on the parameter λ. This is done in fig. 1, where one
also represented the ratio between the second 0+

2 state
energy from the first β excited band and the 2+

1 ground
band energy. Beside R4/2, the ratio E(0+

2 )/E(2+
1 ) is an-

other key signature characterizing the dynamical symme-
tries, especially those associated to a critical point of a
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Fig. 1. The theoretical ratios R4/2 = E(4+

1 )/E(2+
1 ) and

E(0+
2 )/ E(2+

1 ) provided in the framework of QAOP are given
as functions of λ. For reference, the same ratios corresponding
to the X(3)-β2 model are also visualized.
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Fig. 2. The scaled energy W (20) given as function of λ for
n = 0 and different angular momenta I.

shape phase transition. The specific polynomial structure
of the energy (20) as function of λ visualized in fig. 2 pro-
duce a minimum at λmin = 15.0649 and a pole in R4/2

at the value λp = 17.4323 where W00 and W02 intersect
each other. It becomes clear from fig. 2 that the adopted
method for the determination of the QAOP eigenvalues
provides reliable results only for a limited interval of λ.

It is well known that the accuracy of the JWKB gen-
erated eigenvalues is increasing with the order of the so-
lution [24], i.e. the quantum numbers. Thus, in order to
establish the upper limit of the parameter λ for which
one would still obtain reliable eigenvalues, it is sufficient
to compare the present numerical results with the avail-
able exact eigenvalues only for the ground state. Tak-
ing as a benchmark the exact ground state eigenvalue
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Fig. 3. The scaled potential (19) given as a function of β′ for
different values of λ ranging from 0 to 10 with step 2.

computed in ref. [21] for the three-dimensional potential
u(r) = 1

2r2 + 0.025 r4, which corresponds to λ = 11.6961,
one finds that the present calculations overestimates the
corresponding eigenvalue by 4.3%, which is more than
satisfactory. However, in the view of the present physi-
cal context, one will choose for the upper limit of λ the
value λcutoff = 10.9802 which is associated to the ratio
R4/2 = 2 characterizing vibrational nuclei, ensuring in
this way an even better accuracy. Thus, in the following
calculations one will consider the values of λ only from
the interval [0,λcutoff ] where R4/2 is unambiguously de-
fined with values ranging continuously from 2.286 to 2,
and correspondingly with E(0+

2 )/E(2+
1 ) taking values be-

tween 2.374 and 1.808 as is shown in fig. 1. In the same
figure one also visualised for comparison the ratios pro-
vided by X(3)-β2 model, which amounts to R4/2 = 2.13
and E(0+

2 )/E(2+
1 ) = 2, consequently falling in the exis-

tence interval of the present model.
Although the potential (17) depends on two parame-

ters, α1 and α2, the normalized energy spectrum can be
described only by λ. As a matter of fact, the shape of
the potential (17) is also determined only by λ through
its scaled version (19). Indeed, the scaled potential (19) is
a function of β′ variable which depend on α2, such that
for the same λ the potential (17) will have the same shape
with a larger width for smaller α2. The shapes of the scaled
potential for different values of λ are shown in fig. 3 as
function of the scaled variable β′. From this figure one
can see that the flattest potential corresponds to the pure
quartic oscillator case λ = 0. As the critical point poten-
tial must exhibit a flat behaviour, it can be inferred that
the pure quartic oscillator potential is a critical one at
least for the family of the general anharmonic potentials
of the form (17) in the γ-rigid regime.

Concerning the allowed values only for R4/2, it should
be noted that the highest value 2.286 is achieved for the
pure quartic potential, while the lowest admissible value
Rmin

4/2 = 2.0 is very close to the signature of the X(3)-β2
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Fig. 4. Ground band energy normalized to the first excited
state energy given as a function of angular momentum for dif-
ferent values of parameter λ ranging from 0 to 10 with step 2.
The X(3) predictions taken from ref. [11] and the X(3)-β2 re-
sults obtained with (23) are also shown for guidance.

model described by R4/2 = 2.13. Moreover, the flexible
structure of the present model allows the description of
all interpolating solutions lying in between the X(3)-β2

and X(3)-β4 model realizations through the continuous
variation of a single parameter, λ. This transition is best
seen in the evolution of the ground band as function of
angular momentum for values of λ corresponding to the
shapes of the scaled potential depicted in fig. 3, which is
visualized in fig. 4, where the X(3) [11] and X(3)-β2 pre-
dictions are also shown. One can easily observe that for
λ = 0 the ground band spectrum has a behaviour distinct
from those corresponding to λ '= 0, being the steepest
one. As a matter of fact, the smaller the value of λ, more
closer to the rotational behaviour I(I + 1) is the corre-
sponding ground band spectrum and consequently farther
from the vibrational behaviour ∼ I. Moreover, the λ = 0
case seems to be positioned at the half-way between the
X(3) and X(3)-β2 model predictions with the lower re-
gion covered by the present model with λ > 0. In what
concerns the spectra situated between X(3) and X(3)-β4,
these can be described by eventual X(3)-β2n(n > 2) criti-
cal models as in the five-dimensional phase transitions [25,
26]. The same picture is also found in the dependence of
the energy spectrum on the vibrational quanta n for I = 0
shown in fig. 5. Another interesting feature arising from
figs. 4 and 5 is that the spectra corresponding to values
of λ up to approximatively 8 are somehow bunched to-
gether and more closely at low angular momentum states.
This phenomenon can be ascribed to the fact that at the
same value the curve of R4/2 from fig. 1 has a significant
change in its tangent. Making a more detailed analysis of
the function R4/2(λ) one ascertains that its third deriva-
tive vanishes at λ = 8.75 where R4/2 = 2.135. The math-
ematical meaning of this fact is that the angle between
the axis of the osculating parabola and the normal line
associated to that point is equal to the angle made by the
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Fig. 5. Bandheads energies normalized to the first excited
state energy given as a function of quantum number n indexing
the band for different values of parameter λ ranging from 0
to 10 with step 2. The X(3) predictions taken from ref. [11]
and the X(3)-β2 results obtained with (23) are also shown for
guidance. The quantum number s from ref. [11] corresponds to
n + 1 in the present indexing of bands.

tangent in that point. Although not in the true sense of
the theory of the quantum phase transitions [27], one can
say that there is a transition between two weakly delim-
ited phases defined by the two sides of the value λ = 8.75.
Combining the figs. 4 and 5, one visualized in fig. 6 the
ground band up to I = 12 together with the first and sec-
ond β bands spectra up to I = 10 for the pure quartic case
(λ = 0) and for two values of λ separated by the “critical”
point λc = 8.75 followed by the corresponding X(3)-β2 re-
sults. It is worth to mention that even thought the present
formalism cannot be extended to the harmonic oscillator
case, the X(3)-β2 predictions are fairly well simulated by
our model with λ > λc at least for the lowest-lying states.

5 Numerical application

In order to see how the model presented in the last sections
behave itself when applied to concrete nuclei, one browsed
the nuclide chart in search of nuclei with collective spec-
trum populated with at least seven states and whose ex-
perimental ratio R4/2 falls in the existence interval of our
model. There were found a lot of nuclei which satisfied the
above-mentioned criteria, but only to a handful of them
the present model could be successfully applied, namely
100Mo, 100Pd, 116Te, 130Xe, few lighter rare earth iso-
topes 148Sm, 152Gd, 154Dy, 154Er, and a trans-lead nucleus
220Th. All these nuclei have R4/2 > 2, as it is expected be-
cause a value R4/2 < 2 characterizes nuclei in the vicinity
of a shell closure where single-particle degrees of freedom
prevail. For each of these nine nuclei one determined the
parameter λ which is listed in table 1 by equating the theo-
retical and experimental ratio R4/2. The calculated values
for λ are then used to calculate higher angular momentum

state energies of the ground and β excited bands. The nu-
merical results obtained in this way for the ground, first
and second β excited bands energies normalized to the
energy of the 2+

1 state are compared with corresponding
available experimental data in fig. 7. Only three of the
considered nuclei, 100Mo, 152Gd and 154Dy, also have few
experimentally observed states in the β-vibrational bands,
while for nuclei 148Sm and 154Er one considered only the
ground band states up to the clearly visible backbending
happening between I = 14 and I = 16.

The original form of the potential (17), i.e. the pa-
rameters α1 and α2, can be recovered from eq. (24) and
thus being comparable with other choices for β potential
(square well, harmonic oscillator, etc.). Indeed, by equat-
ing the square of the ground state deformation β2 [28]
with the theoretical value (24) corresponding to λ calcu-
lated above, one would obtain an equation for determining
α2. The remaining parameter α1 is then recovered from
the definition of λ. The numerical values of α1 and α2

defining the potential (17) are given in table 1 for each
treated nucleus, where one also calculated the quantity
∂W00/∂λ which is essential in determining α2.

An overall impression of the comparison between
the theoretical and experimental spectra presented in
fig. 7 is that the theoretical predictions keep up with
the corresponding experimental values for few lower
states, and after there is a regression in the agreement
between them. This is due to the fact that one fixed the
free parameter λ by fitting the ratio R4/2, rather than
fitting the whole spectrum which might provide a better
agreement for higher spin states. The procedure adopted
here for fixing λ is justified by its direct relation to an
important observable, R4/2. Regardless, the agreement
with experiment over the whole spectrum is quite good
for all considered nuclei. A special attention is deserved
by 100Pd, which is well known as the most promising
candidate for the E(5)-β4 model [26,9]. As it happens, the
experimental spectrum limited only to the ground band,
is best reproduced for this nucleus. The prediction of
E(5)-β4 model [26,9] and those of the present formalism
for this nucleus are equally good, alternating the best
agreement at different states, even though the structure
and the acting space of the two models are completely
different. New experimental measurements regarding the
collective states of this nucleus will eventually incline the
scales toward the more suitable description.

Checking the nuclear deformation listed in table 1
for the treated nuclei, one can observe that it ranges
from very small β2 = 0.012 for 220Th to considerably
large β2 = 0.257 for 116Te even though all nuclei have a
vibrational-like collective spectrum. Apart from 100Pd, the
two extremes in terms of the nuclear deformation, 116Te
and 220Th, together with the rare earth nucleus 148Sm,
are in the view of the agreement with experiment the best
representatives of the model introduced in this paper. Al-
though with a poorer reproduction of the experimental
spectrum, the nuclei 100Mo, 152Gd and 154Dy are also
promising cases due to the simultaneous description of
the β excited band states which are fairly well reproduced
considering that the model has a single free parameter.
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Fig. 6. The theoretical ground, first and second excited β bands spectra for λ = 0, 6 and 10 compared to the corresponding
predictions of the X(3)-β2 model.

Table 1. The values of λ obtained from experimental R4/2 ratios are given for each treated nucleus together with the corre-
sponding parameters α1 and α2 of the initial potential (17) extracted from (24) with the tabulated β2 value used in the left-hand
side. The values of β2 were taken from [28].

Nucleus R4/2 λ β2
∂W00

∂λ α1 α2

100Mo 2.121 9.031 0.253 0.449 345.13 444.35
100Pd 2.128 8.893 0.136 0.447 14157.54 5204.48
116Te 2.002 10.949 0.257 0.626 853.21 984.91
130Xe 2.247 1.705 0.128 0.631 57066.90 2526.61
148Sm 2.145 8.508 0.112 0.447 45313.50 10814.20
152Gd 2.194 6.834 0.178 0.483 3543.80 1588.56
154Dy 2.234 2.739 0.179 0.598 6516.71 955.75
154Er 2.072 9.910 0.147 0.485 11333.37 5000.14
220Th 2.035 10.479 0.012 0.545 5.42 1010 1.50 108

The addition of experimental data for β excited states for
the rest of the considered nuclei will be an important test
of the present model as its quality is given at this moment
only by the ground band spectrum.

Before closing this section it is worth to mention the
fact that the treated nuclei happen to be separated almost
equally with respect to the critical value λc = 8.75. The
experimental energy spectrum of the nuclei with λ > 8.75
seem to be better reproduced by the theoretical calcula-
tions than the other half. An exception is the 148Sm nu-
cleus whose corresponding value of λ is not much smaller
than the critical value.

6 Conclusions

An analytical formula for the energies of the ground and
β vibrational bands was derived in the framework of the
prolate γ-rigid regime of the Bohr-Mottelson Hamiltonian

with a quartic oscillator potential in β shape variable. The
differential equation in β for a QAOP is not exactly solv-
able, such that the formula proposed is based on higher
order JWKB approximation. The energy formula depend
on a single free parameter up to an overall multiplying con-
stant. Studying the convergence of the adopted approxi-
mation to the exact results one fixed the upper limit of
the free parameter at λcutoff = 10.9802 which corresponds
to R4/2 = 2. The model applicability is then established
by the dependence of the R4/2 ratio on the free parame-
ter λ restricted to the interval [0,λcutoff ]. For λ = 0, which
marks the X(3)-β4 model, one obtains the maximum value
of the R4/2 ratio, which is 2.286. On the other hand, the
model predictions in the vicinity of λcutoff simulate quite
well the spectrum of the X(3)-β2 model. In virtue of these
limiting cases as well as of the results for various values of
λ (see figs. 4 and 5) one can say that the proposed model
represents a bridge between X(3)-β2 and X(3)-β4 mod-
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Fig. 7. Theoretical results for ground, first and second excited β bands energies normalized to the energy of the 2+ ground
state are compared with the available experimental data for 100Mo [29], 100Pd [29], 116Te [30], 130Xe [31], 148Sm [32], 152Gd [33],
154Dy [34], 154Er [34] and 220Th [35].

els with a complete set of interpolating solutions defined
by the continuous variation of the parameter λ. In addi-
tion, studying the behaviour of the ground band energy
spectrum and the evolution of the bandheads indexed by
vibrational quanta n, for different values of the free param-
eter λ, one identified a turning point at λc = 8.75 which
separates two “phases” characterized by specific features
of the collective spectrum.

The model was successfully applied for nine nuclei cov-
ering different parts of the nuclide chart. Indeed, even by
fixing the free parameter to reproduce the experimental
R4/2 ratio, a qualitative reproduction of the whole ex-
perimental ground band spectrum is obtained for all nu-
clei and even of the β excited bands when experimentally
available but with less precision. Moreover, the present

formalism produce almost the same agreement with ex-
periment for 100Pd as the E(5)-β4 model even though the
two span different spaces of shape and angular degrees of
freedom. It is worth to mention that the best agreement
with experiment is obtained for the nuclei with λ above
the critical value 8.75.

A few perspectives of the present approach are to be
pinpointed before closing. The QAOP can be further used
to investigate γ-rigid nuclei with γ '= 0 as in the Z(4) [36]
model of Bonatsos or to generate more extensive predic-
tions regarding the energy spectrum in the γ-unstable case
of the collective geometrical model. Another possible ap-
plication refers to the other branch of the symmetries’ tri-
angle, where the separation of the shape variables is only
approximative. Concluding, the novelty of the present for-
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malism consists in the introduction of an analytical for-
mula for the energy which was shown to be able to describe
nuclei with irregular vibrational-like spectra.

Appendix A.

The functions Gk(λ, I) defining the energy WnI(λ) are
taken from [19] and adjusted to the present physical prob-
lem acquire the following expressions:

G0 = 1, G1 =
λη

2
, G2 = −

λ2

32
(1 − 3η2),

G3 =
η

24

[

3 +
1

8
λ3η2 − 4I(I + 1)

]

,

G4 =
λ

192

[

1 − 3η2 +
1

64
λ(1 − 5η4)+4(1 + η2)I(I + 1)

]

,

G5 = −
λ2η

1280

[

5 +
1

16
λ3 + 20I(I + 1)

]

,

G6 =
1

192

[

−
11

8
−

15

8
η2 +

5

64
λ3(−1 + 4η2 + η4)

+
7

6144
λ6η2(3 + η4) +

[

− 25 + 15η2

+
1

16
λ3(5 + 60η2 − 5η4)

]

I(I + 1)

3

+(10 − 30η2)
I2(I + 1)2

9

]

,

G7 =
7λη

768

[

−
39

4
+

3

4
η2 +

1

64
λ3

(

7

2
−

10

3
η2 −

1

2
η4

)

−
1

1536
λ6η2

(

4

5
+

1

7
η4

)

+

[

28 − 6η4 +
1

32
λ3(−7 − 20η2 + η4)

]

I(I + 1)

3

+(−8 + 12η2)
I2(I + 1)2

9

]

,

G8 =
9λ2

4096

[

23

24
+

95

2
η2 −

9

8
η4 +

1

64
λ3

(

1

9
− 9η2 + 3η4

)

+
1

4096
λ6

(

1

63
+

9

5
η4

)

+

[

−
31

3
− 96η2 + 9η4

+
1

64
λ3

(

4

3
+

192

5
η2 + 36η4

)]

I(I + 1)

3

+

(

14

3
+ 16η2 − 18η4

)

I2(I + 1)2

9

]

,

where η =
[

2Γ ( 3

4
)

Γ ( 1

4
)

]2
= 0.457.
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