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The ground state of a many body Hamiltonian considered in the quasiparticle represen-
tation is redefined by accounting for the quasiparticle quadrupole pairing interaction.
The residual interaction of the newly defined quasiparticles is treated by the quasipar-
ticle random phase approximation (QRPA). Solutions of the resulting equations exhibit
specific features. In particular, there is no interaction strength where the first root is
vanishing. A comparison with other renormalization methods is presented. Application
to a single j-shell allows for the results interpretation by comparing them with those
obtained by exact calculations.
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1. Introduction

The big merit of the liquid drop model (LDM) proposed by Bohr and Mottelson1

is that one defined the concept of rotational bands. Also, some collective proper-
ties of spherical nuclei have been nicely described. The main drawback of LDM
consists of the fact that it accounts only for the spherical and harmonic motion of
the drop, while many experimental data reclaim a nonharmonic picture and, more-
over, many nuclei exhibit static deformed shapes. Many phenomenological improve-
ments have been proposed along the time, among which few are to be mentioned:
(a) rotation-vibration model;2 (b) Gneus–Greiner model;3 (c) generalized collective
formalism;4 (d) coherent state model;5,6 (e) interacting boson approximation.7 In
parallel, microscopic theories have been formulated, trying to get counterparts of
the phenomenological methods and interpret the nuclear collective motion in terms
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of the single particle motion. Thus, the random phase approximation (RPA) built
on the top of either the Hartree–Fock or the BCS ground state (QRPA)8 provides
a collective state which corresponds actually to the one phonon state predicted by
the harmonic LDM.9 Another important result is that of Kumar and Baranger,
who calculated the inertial and stiffness parameter microscopically,10 the potential
energy surface leading to some sound nuclear structure interpretation. Based on
the RPA ground state, several procedures of accounting for some new correlations,
i.e., of going beyond RPA, have been proposed. Such procedures are related with
the equations of motion method11–14 or boson expansion technique.15,16,18,19

The RPA method has also been extended to deformed nuclei by using a deformed
mean field20,21 and various two body interactions with the channels of particle-hole
(ph), particle-particle (pp) and hole-hole considered on equal footing.22 To give an
example, a fully consistent axially-symmetric deformed Hartree–Fock–Bogoliubov
(HFB) + Quasiparticle (QRPA) approach with the D1S Gogny interaction was used
in Ref. 24 to study giant resonances in Mg and Si even isotopes. A new method for
solving the Skyrme-HFB-QRPA problem in deformed nuclei was reported in Ref. 25.
Therein, the Skyrme-HFB-QRPA mean field was calculated in the coordinate-space
representation. The formalism was applied for isovector and isoscalar quadrupole
modes in spherical 20O and deformed 26Ne nuclei. The effect of deformation on the
double beta decay rate22 has been studied within a deformed pnQRPA.

A common features of all procedures involving QRPA for deformed nuclei is
the use of a deformed single particle basis like Nilsson, deformed Woods–Saxon or
projected spherical single particle basis,23 and the quasiparticle-quasiboson approx-
imation is built on the top a static deformed ground state.

A procedure which keeps the appealing harmonic picture of RPA but includes in
the definition of the phonon operator new correlations, is obtained by renormalizing
the specific equations of motion.26 This is achieved by considering in the commu-
tation relations of the two quasiparticle operators not only the C-number term,
which actually defines the quasi-boson approximation, but also a scalar term which
is replaced by its average on the correlated ground state. The average value depends
on the RQRPA amplitudes and consequently is to be determined self-consistently
together with the RQRPA equations. Thus, the drawback of the standard RPA
formalism of collapsing for a critical value of the attractive long range interaction
strength, is removed. Indeed, the collective root of the RPA equations goes to zero
not for a finite value of the mentioned interaction strength, but only asymptotically.
This approach was extended to the proton–neutron Gamow–Teller dipole interac-
tion in Ref. 27. We note that going beyond the quasiboson approximation by con-
sidering additional terms in the mutual commutation relations of the quadrupole
(or dipole) two quasiparticle operators the Pauli principle, violated by the stan-
dard QRPA formalism, is to some extent restored. A more complex procedure was
proposed in Ref. 28, where the RPA and BCS equations are simultaneously renor-
malized. As a consequence the BCS and RPA equations are coupled together and
therefore, are to be self-consistently solved.
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Vanishing the excitation energy of the collective RPA state corresponds to a
phase transition, where the ground state is unstable to adding small contribution.
Around this critical interaction, the RPA method is no longer valid. In order to
stabilize the ground state it is necessary either to change the mean field for the
single particle motion, which results in having deformed single particle orbits, or to
renormalize the basic equations.

A distinct renormalization procedure was proposed by Takada in Ref. 29. The
author defines two consecutive spherical Bogoliubov–Valatin (BV) transformation
for treating the pairing interaction. In the second-order quasiparticle representation,
one builds a phonon operator including a scattering term, conventionally called as
attached field, which allows accounting for nonlinear effects ignored in the standard
QRPA. The model was tested, with positive results, for a single j-shell. Note that
the second BV transformation is also spherical, i.e., the new quasiparticle operators
are tensors of definite rank. Therefore, the new ground state takes account of the
paring correlations but not of the quadrupole–quadrupole interaction. The non-
linear effects which renormalize the QRPA are due to the attached term and not by
deforming the single quasiparticle mean-field.

In the present paper, we propose a new method of renormalizing the QRPA
equations. As we shall see, the result for the collective root is that it does not
vanish in a critical interaction strength, where the standard QRPA collapses, but
reaches a minimum value and moreover the energy increases when a subsequent
increase of the strength is performed. The new point of this work is that the mean
field is redefined in the quasiparticle picture by including in the ground state the
quasiparticle quadrupole pairing correlations. Hence the ground state is redefined
by terms of the QQ interaction and not exclusively by pairing correlations, as in
Ref. 29. As a result, both the new quasiparticles and the new QRPA solutions are
deformed.

The project sketched above will be described according to the following plan.
In Sec. 2 the model Hamiltonian is presented. For the sake of completeness, the
results for the standard BCS and QRPA equations are briefly described. Section 3
is devoted to the deformed quasiparticles or, in other words, to the second-order
BCS approach. The new BCS and QRPA equations are analytically derived. In
Sec. 4, the formalism is numerically applied to a single j-shell. The new method
is compared with the HFB formalism in Sec. 5. The final conclusions are drawn in
Sec. 6.

2. The Model Hamiltonian

We consider a system of nucleons described by a many body Hamiltonian consisting
of the spherical mean field term, the pairing and the quadrupole–quadrupole two
body interactions. Written in second quantization, this has the form:

H =
∑

α

(εa − λ)c†αcα − G

4
P †P − X

4

∑
µ

Q2µQ2−µ(−)µ, (2.1)
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where P † and Q denote the pairing and quadrupole operator, respectively

P † =
∑

α

c†αc†−α(−)jα−mα ,

Q2µ =
∑
α,β

〈α|r2Y2|β〉c†αcβ ≡
∑
a,b,µ

qab(c†acb)2µ, (2.2)

qab =
ĵa

2̂
〈a‖r2Y2‖b〉, with ĵa =

√
2ja + 1.

The ph quadrupole operator is defined as

(c†acb)2µ =
∑

mα,mβ

Cjajb2
mα−mβµc†αcβ(−)jb−mβ . (2.3)

The second quantization is used within the spherical shell model basis |α〉 =
|a, mα〉 = |nalajamα〉. Thus, the creation (annihilation) operator of one particle
in the state |α〉 is denoted by c†α(cα). We also used the notation |−α〉 = |a,−mα〉.

The sum of the first two terms in Eq. (2.1) is quasidiagonalized by passing to
the quasiparticle representation defined by the BV transformation

a†
α = Uαc†α − Vasαcα,

aα = Uacα − Vasαc†−α, with sα = (−)ja−mα .
(2.4)

The quasiparticle vacuum state will be hereafter denoted by |BCS〉. In the new
representation up to an additive constant, the Hamiltonian is

H =
∑
α

Eaa†
αaα − X

4

∑
µ

Q2µQ2,−µ(−)µ, (2.5)

where Ea denotes the quasiparticle energy for the state characterized by the set of
quantum numbers “α”, while the quadrupole operators can be expressed in terms
of two quasiparticle and quasiparticle quadrupole density operators

Q2µ =
∑
a≤b

qab[ξab(A
†
2µ(ab) + A2−µ(ab)(−)µ)

+ ηab(B
†
2µ(ab) + B2−µ(ab)(−)µ)],

A†
2µ(ab) =

1√
1 + δab

∑
mα,mβ

Cja jb 2
mαmβµa†

αa†
β,

B†
2µ(ab) =

∑
mα,mβ

Cja jb 2
mα−mβµa†

αaβsβ ,

A2µ(ab) = (A†
2µ(ab))†; B2µ(ab) = (B†

2µ(ab))†,

ξab =
1√

1 + δab

(UaVb + UbVa), ηab =
1

1 + δab
(UaUb − VaVb).

(2.6)
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In deriving the expression of the quadrupole operator in the quasiparticle represen-
tation, some symmetry properties were used

A†
2µ(ba) = (−)ja−jbA†

2µ(ab); A2µ(ba) = (−)ja−jbA2µ(ab),

B†
2µ(ba) = (−)ja−jbB2−µ(ab)(−)µ; B2µ(ba) = (−)ja−jbB†

2−µ(ab)(−)µ, (2.7)

qba = (−)ja−jbqab.

The quasiparticle many body Hamiltonian is treated within the Random Phase
Approximation (QRPA) formalism. Thus, one defines a phonon operator

C†
2µ =

∑
[X(ab)A†

2µ(ab) − Y (ab)A2−µ(ab)(−)µ] (2.8)

with the amplitudes X(ab) and Y (ab) determined such that the following equations
are fulfilled:

[H, C†
2µ] = ωC†

2µ, [C2µ, C†
2µ′ ] = δµ,µ′ . (2.9)

The first equation yields for the phonon amplitudes the so-called QRPA equations(
A B

−B∗ −A∗

)(
X

Y

)
= ω

(
X

Y

)
. (2.10)

This is a homogeneous system of linear equations determining the phonon ampli-
tudes up to a multiplicative factor, fixed by the second equation (2.9) which gives:∑

ab

[|X(ab)|2 − |Y (ab)|2] = 1. (2.11)

The matrices involved in Eq. (2.9) have the expressions

Aab,a′b′ = (Ea + Eb)δa,a′δb,b′ − X

2
rabra′b′ ,

Bab,a′b′ = −X

2
rabra′b′ , with rab = qabξab.

(2.12)

Once the QRPA equations are solved, the phonon space is defined. Thus, the vac-
uum state denoted by |RPA〉 is the ground state, while the excited states are
multi-phonon excitations of |RPA〉. Since the two body interaction is of a sepa-
rable form, the QRPA equations provide a dispersion equation for the excitation
energies and analytical expressions for the phonon amplitudes. By inspecting of
these expressions, one finds that the first excited state corresponds to an energy
smaller than the minimal two quasiparticle energy and has a collective charac-
ter. Due to the attractive nature of the two body interaction, the collective state
energy is decreasing when the interaction strength X is increased. Consequently,
for a critical value of X the phonon energy is vanishing and the phonon operator
cannot be determined. This situation defines the breaking down point of the QRPA
approach. To avoid this regime, the mean field for the single particle motion should
be re-defined, which results in renormalizing the ground state energy such that the
collective state has a positive energy. Concretely, the spherical shell model single
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particle basis is to be replaced with the Nilsson single particle basis. Another way
to remove the QRPA breaking down is to define a new phonon operator by going
beyond the QRPA approach, which is actually based on the quasiboson approxima-
tion of the two quasiparticle quadrupole operators A†

2µ and A2µ. The quasiboson
commutation equations have been corrected by retaining from the exact expression
not only the constant term but also the scalar one, which is considered in the aver-
age. This average is determined self-consistently together with the QRPA solution
and, consequently, the collective root energy goes to zero only asymptotically. In the
next section, we formulate a new method to renormalize the ground state energy.

3. Deformed Quasiparticles

Here, we study the BCS ground state excitation

|B̃CS〉 = eT |BCS〉, with

T = zαa†
αa†

−α − z∗αa−αaαsα. (3.1)

In what follows, it is useful to employ the polar representation of the parameters zα:

zα = ραeiϕα . (3.2)

The images of the quasiparticle operators through the afore-defined transforma-
tion, are

d†α = eT a†
αe−T = a†

α cos(2ρα) − a−αsα sin(2ρα)e−iϕα ,

dα = eT aαe−T = aα cos(2ρα) − a†
−αsα sin(2ρα)eiϕα .

(3.3)

With the obvious notations:

uα = cos(2ρα); vα = sin(2ρα)e−iϕα , (3.4)

we recognize the BV transformation for the quasiparticle operators. The transfor-
mation parameters uα and vα satisfy the equation:

u2
α + |vα|2 = 1, (3.5)

which reflects the fermionic character of the new quasiparticle operators d†α and
dα. We note that the transformed state |B̃CS〉 is vacuum state for the quasiparticle
annihilation operators dα. It is worth mentioning that due to the transformation
dependence on the magnetic quantum number mα, the new quasiparticle operators
are tensors of rank ja with indefinite projection. In this respect, one can assert that
the newly defined quasiparticles are deformed operators.

The parameters uα and vα may be viewed as classical coordinates depending
on time. Moreover, considering the polar representation, the phase ϕα, defining the
coefficient vα, has the meaning of a generalized linear momentum. Consequently,
since we are concerned with the static properties of the new BV transformation
coefficients, it is reasonable to consider vanishing phases ϕα.
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In what follows, we try to determine the parameters uα and vα such that the
transformed state |B̃CS〉 becomes the true ground state of the many body system
under consideration, i.e., it corresponds to an energy lower than that associated
with |BCS〉. The new ground state is a deformed function, which is reflected by the
nonvanishing value of the expected quadrupole moment:

〈B̃CS|Q20|B̃CS〉 =
√

20
∑

a,mα>0

qaa

ĵa

Cja2ja

mα0mα
(ξaa(u−αvα + uαv−α)

+ ηaa(v2
α + v2

−α)) ≡ q0. (3.6)

The last part of the above relation expresses the fact that the state |B̃CS〉 has a
definite quadrupole deformation q0. The average value of H with the deformed state
|B̃CS〉 is

E ′ = 〈B̃CS|H |B̃CS〉

=
∑
α

Eav2
α − ∆2

20

X
− X

2

∑
a,b,mα

[qabC
jajb2
mα−mα0

× (ξab(u−αub,mα − vαvb,−mα) + ηab(ub,mαvα + u−αvb,−mα))]2, (3.7)

where we denoted:

∆20 =
X

2
〈B̃CS|Q20|B̃CS〉. (3.8)

Note that, the last term of Eq. (3.7) is provided by the average of the quasiparticle
terms of the type dαdb,mαd†b′,mα′d

†
−α′ . However, such terms will be treated at the

QRPA level, i.e., at a later stage. Due to this reason, hereafter, the mentioned term
from Eq. (3.7) will be neglected.

In what follows, we shall look for the stationary points of the function:

E =
∑
α

Eav2
α − ∆2

20

X
−
∑
α

µα(u2
α + v2

α − 1) (3.9)

with µα denoting the Lagrange multiplier corresponding to the restriction (3.5).
These are solutions of the equations obtained by vanishing the first derivatives
of E with respect to the parameters uα and vα, defining the BV quasiparticle
transformation. Eliminating the Lagrange multipliers, one arrives at:

∆20ξaaQ̄αα(uαu−α − vαv−α) − (Ea − 2∆20ηaaQ̄αα)uαvα = 0, (3.10)

where the following notation has been used:

Q̄αα =
2̂
ĵa

Cja2ja

mα0mα
qaa. (3.11)

We remark that the above equation is invariant to the change α → −α. This
suggests that the solutions of the above equation satisfy:

uα = u−α, vα = v−α. (3.12)
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Thus, the occupation probabilities acquire the expressions:(
v2

α

u2
α

)
=

1
2

(
1 ∓ Ea − 2∆20ηaaQ̄αα√

(Ea − 2∆20ηaaQ̄αα)2 + (2∆20ξaaQ̄αα)2

)
. (3.13)

It is interesting to note that by the quadrupole moment restriction and

∆20 =
X

2
q0, (3.14)

Eq. (3.13) fully determines the parameters vα and uα. With the notations:

Ēα = Ea − 2∆20ηaaQ̄αα, δα = 2∆20ξaaQ̄αα,

eα =
√

Ē2
α + δ2

α,
(3.15)

one obtains a more transparent expression for the BV transformation coefficients(
v2

α

u2
α

)
=

1
2

(
1 ∓ Ēα

eα

)
. (3.16)

The quantity eα has the significance of the second-order quasiparticle energy, i.e.,
the energy corresponding to the deformed quasiparticle state |α〉 = d†α|B̃CS〉. Fur-
ther, we shall define a phonon operator

Γ† =
∑

ab,mα

(Xab
mα

d†αd†b,−mα
− Y ab

mα
db,−mαdα), (3.17)

such that it obeys the equations

[H, Γ†] = ωΓ†, [Γ, Γ†] = 1. (3.18)

In terms of the new quasiparticles, the model Hamiltonian is

H =
∑

α

eαd†αdα − X

4

∑
a,b,mα

Qab
mα

(d†αd†b,−mα
+ db,−mαdα)

×
∑

a′,b′,mα′

Qa′b′
m′

α
(d†α′d

†
b′,−mα′ + db′,−mα′dα′) (3.19)

with the notation

Qab
mα

= Cja jb 2
mα−mα0qab[ξab(uαub,−mα − (−1)ja−jbv−αvb,mα)

+ ηab(u−αvb,−mα + vαub,mα)]. (3.20)

The amplitudes Xab
mα

and Y ab
mα

are determined by the QRPA equations, which are
of a similar form as those given by Eq. (2.10), and the normalization condition:

2
∑

a,b,mα

[(Xab
mα

)2 − (Y ab
mα

)2] = 1. (3.21)

The matrices involved in the QRPA equations have the expressions

Aab;a′b′
mα;mα′ = (eα + eb,mα)δaa′δbb′δmαmα′ − XQab

mα
Qa′b′

mα′ ,

Bab;a′b′
mα;mα′ = −XQab

mα
Qa′b′

mα′ .
(3.22)
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Since the two body interaction involved in H is separable, the compatibility condi-
tion for the QRPA equations may be brought to the form of a dispersion equation,
while the phonon amplitudes are analytically expressed. Now, it is worth noting
that both the QRPA and the deformed BCS equations involve the factors ηab. This
reflects the fact that the terms B†

2µ and B2−µ(−)µ of the Hamiltonian expressed
in terms of spherical quasiparticles, contribute to the mentioned equations. This
feature contrasts the standard QRPA equations, which ignore the scattering terms.

4. The Case of a Single j-Shell

The essential features of the QRPA formalism with a multi-shell calculations can
be recovered by restricting the single particle space to a single j. Since here we
are not interested in quantitative details, but rather in underlying the main virtues
of the proposed formalism, we consider the numerical application for the single j

case. Thus, one considers a system of N = 10 nucleons moving in the spherical shell
model state j = i13/2 and described by the corresponding many body Hamiltonian
(2.1). We present separately the spherical and deformed QRPA results.

4.1. Results for QRPA built on the top of the first order BCS

The occupation probabilities are

V 2 =
N

2Ω
, U2 = 1 − N

2Ω
. (4.1)

For the sake of simplifying the notation, the low indices of U and V , specifying the
chosen single j are omitted. The state semi-degeneracy is denoted by Ω. Neglecting
the term GΩV 4 accounting for the renormalization of the single particle energy due
to the residual interaction, the BCS ground state energy is

E = 2εΩV 2 − ∆2

G
= 2εΩV 2 − GΩ2V 2(1 − V 2). (4.2)

We recall that G is defined by Eq. (2.1) as the strength of the pairing interaction.
Here, the Fermi level energy is set equal to zero. The condition of minimum energy
leads to:

V 2 =
1
2

(
1 − 2ε

GΩ

)
. (4.3)

This expression is consistent with Eq. (4.1) if the single particle energy is

ε =
GΩ
2

(
1 − N

Ω

)
. (4.4)

Equation (4.3) gives for the quasiparticle energy

Eq =
GΩ
2

. (4.5)
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In our application, we took G = 0.4MeV, which results of having Eq = 1.4MeV.
The compatibility condition for the QRPA equations reads

ω2 = 4E2
q − 2Xq2

jjξ
2
jj . (4.6)

The positive root of this equation is

ω =
[
G2Ω2 − 8

5
ΩX(〈j||r2Y2||j〉)2 N

2Ω

(
1 − N

2Ω

)]1/2

. (4.7)

The QRPA energy is plotted in Fig. 1 as function of X . From this figure, we notice
that for X = 0 the mode energy is equal to twice the quasiparticle energy, while
for X ≈ 1.82 10−3 MeV fm−4 this is vanishing. Within this interval the function
is monotonically decreasing. The vanishing mode energy reclaims a breaking down
for the QRPA approach. In next section, we describe a method of recovering the
validity of the QRPA approach.

4.2. The study of QRPA for the quadrupole pairing correlated

quasiparticles

Switching on the quadrupole pairing correlations for the spherical quasiparticles,
we have

Ēm = Eq − X

2
q0(U2 − V 2)〈j||r2Y2||j〉Cj2j

m0m,

δm = Xq0

√
2UV 〈j||r2Y2||j〉Cj2j

m0m, (4.8)

em =
√

Ē2
m + δ2

m,

v2
m =

1
2

(
1 − Ēm

em

)
, u2

m = 1 − v2
m. (4.9)

Fig. 1. The spherical QRPA energy as function of the quadrupole–quadrupole interaction
strength for the case of a single shell, j = i13/2.
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Fig. 2. The deformed quasiparticle energies for the j = i13/2 multiplet.

Numerical results correspond to q0 = 30 fm2. One notices that the newly defined
quasiparticle energy depends on the magnetic quantum number “m”. The split,
caused by the quadrupole moment of the single particle state |jm〉, is shown in
Fig. 2 as function of X , the strength of the QQ interaction. Another peculiarity for
the second-order BCS ground state is that the average number of quasiparticles is
not vanishing.

〈B̃CS|N̂q|B̃CS〉 =
∑
m

v2
m, (4.10)

where the quasiparticle number operator is denoted by

N̂q =
∑
α

a†
αaα. (4.11)

Fig. 3. The average number of quasiparticles in the second-order BCS state, | gBCS〉.
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The dependence of the quasiparticle average number on the interaction strength is
shown in Fig. 3. Note that the larger the strength X , the larger the quasiparticle
averaged number. This result also implies the presence of quasiparticles in the
QRPA ground state. Indeed, denoting by |RQRPA〉 the RQRPA ground state, one
can prove that

〈|N̂q|〉 =
∑
m

v2
m + 2

∑
m,k

(u2
m − v2

m)((Xm(k))2 + (Ym(k))2), (4.12)

where the argument k of the amplitudes X and Y labels the roots of the RQRPA
equations. In Fig. 3, the average number of quasiparticles is calculated by restricting
the second sum of the above equation to k = 1. This is consistent with the fact that
the other calculations referred to the first excited states. Adding the contributions
of the higher roots amplitudes would increase the average quasiparticle number.
The nonmonotonic structure in the interval [0,7.5]MeV of 〈N̂q〉 corresponds to the
first branch of the first excited RQRPA energy shown in Fig. 4.

In order to write the QRPA equation, we need to know the matrix Qab
mα

defined
by Eq. (3.20). In the case of a single j-shell one obtains:

Qjj
m = (−)j−mCj2j

m0m〈j||r2Y2||j〉(
√

2UV (u2
m − v2

m) + (U2 − V 2)umvm). (4.13)

The compatibility condition for the QRPA equations can be written under the
form of a dispersion equation:

1 = X
∑
m>0

(Qjj
m)24em

4e2
m − ω2

. (4.14)

For the chosen value of j, there are seven solutions for ω denoted by ω(m) and
ordered as

ω(1) < ω(2) < · · · < ω(7). (4.15)

Fig. 4. The first QRPA equation root as a function of the QQ interaction strength. The minimal
two quasiparticle energies are also presented as a function of X.
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The first root has a collective character since several quasiparticle pairs contribute
to the phonon operator. Note that ω(1) is smaller, in magnitude, than the minimal
two quasiparticle energy, min(2em). The two afore-compared quantities are repre-
sented as function of the long range interaction strength X , in Fig. 4. We note that
ω(1) is no longer a monotonic function of X . There are, however, two intervals of
different monotony. On the first interval ω(1) is decreasing, reaches a minimum and
then it increases in the second interval. The minimum value is reached for X close
to the value where the spherical phonon energy is vanishing. Due to this behavior,
in the second interval there is no breaking down for the QRPA approach. Due to
the specific dependence of the terms 2em and Qjj

m on the strength X , ω(1) behaves
as if from the minimum point on, the effective two body interaction changes its
attractive nature to a repulsive one. Also, it is worth noting that in the region
around the minimum X the difference min(2em) − ω(1) is large comparing it with
the values corresponding to the X from the complementary interval. This feature
reflects the collective property30 of the corresponding phonon state. We may say
that the maximal collectivity is reached for the critical value of X. Around this
point the spherical and deformed systems might be described in a unified fashion
by using a spherical single particle basis.

Now, we would like to mention that in Ref. 29 a similar approach was used as to
treat the many body Hamiltonian with a spherical shell model mean field, a pairing
plus a Q · Q interaction. However, between our approach and that proposed in the
quoted reference, there are several essential differences which will be listed below:

(1) The second BV used in Ref. 29 is specific to a spherical BCS formalism, the new
quasiparticle operators being tensors of definite rank and definite projection on
the axis OZ. Such a transformation preserves the rotational symmetry and
consequently the transformed Hamiltonian behaves like a scalar under rotation
transformations. The new BCS ground state is a function of vanishing angu-
lar momentum and the corrected quasiparticle energy does not depend on the
magnetic quantum number. By contrast, in our case the BV transformation
characterizes the quasiparticle quadrupole pairing interaction, which results in
having a deformed quasiparticle operator with the u and v coefficients baring
the indices α and not only a. The vacuum state for the newly defined quasi-
particle operators is a deformed wave function. Since the BV transformation
breaks the rotation symmetry the Hamiltonian written in terms of the new
operators is not a scalar operator.

(2) The quasiparticle states are deformed in our formalism, while in Ref. 29, they
have definite angular momentum and angular momentum projection on the
axis OZ.

(3) The second BCS equations (3.13) and the consistency condition (3.6) are to be
simultaneously considered, which allows us to have the occupation probabilities
fully determined before passing to the QRPA treatment. Thus, the phonon
amplitudes are involved neither in the BCS equations nor in the consistency
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restriction. However, in the case that the strength of the Q ·Q interaction, X , is
fixed by fitting the lowest QRPA root to the experimental energy for the lowest
2+ state, then the two sets of equations, BCS and QRPA, are coupled by the
interaction strength.

(4) In Ref. 29, the renormalization is caused by the so called “attached field”.
Indeed, the Hamiltonian terms not included in the standard QRPA but taken
into account within the renormalization procedure are involved in the equa-
tion relating the amplitudes of the scattering (“attached” term) and the two
quasiparticle terms, composing the phonon operator. In our method, the renor-
malization is produced due the deformation induced by the BV transformation
and moreover there is no need of an “attached” field.

(5) The QRPA treatment is defined within a large single-quasiparticle deformed
space while in Ref. 29 within a space of spherical single-quasiparticle space, of
much lower dimension.

(6) The features mentioned above are reflected in the results for the single j space.
Indeed, the energy for the new quasiparticles are split over the quantum number
m; see Fig. 2.

(7) The QRPA dispersion equation has Ω solutions and not only one as happens
in Ref. 29.

(8) The energy eigenvalue for the case when the full self-consistency problem is
solved, is a continuous decreasing function of the interaction strength while in
our case the mentioned curve exhibits a minimum.

(9) The QRPA states described in Ref. 29 are eigenstates of Ĵ2 and Jz, while in our
case only “K” is a good quantum number. If an angular momentum projection
is subsequently performed, then to each state one associates a finite rotational
band. On the other hand, the formalism of Ref. 29 cannot be used for rotational
bands which, as a matter of fact, is an attribute of deformed systems. Here,
the renormalized QRPA states have K = 0. However, Eqs. (3.17)–(3.22) can be
easily extended to an arbitrary K.

Concluding, the two renormalization procedures are applicable to different
nuclear systems, one with and one without rotational symmetry.

4.3. Exact results

The application to a single j case is justified by the fact that the main features
of the low lying states provided by a multi-shell calculation are recovered with
small computational efforts. As a matter of fact, this is clearly shown by the results
described above. On the other hand, the eigenvalues of a PP+ QQ Hamiltonian in a
single j-shell can be exactly calculated. Therefore, comparing the exact results with
those obtained through sophisticated many body approaches one can judge upon
the correctness of the employed approximations.31 Of course, recalling the relation
between single and multi-shell reflected in their common features, one hopes that
the conclusion regarding the approximation validity drawn for single j-shell may
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Fig. 5. The first excited state energies predicted by the renormalized QRPA are compared with
the energy of the first 2+ state, given by the exact calculation in the case of two nucleons moving
in the single shell j = 13/2. The minimal two quasiparticle energies are also presented. The three
sets of energies are plotted as function of the QQ interaction strength, X. The RQRPA results
correspond to q0 = 56 fm2.

Fig. 6. The first excited state energies predicted by the renormalized QRPA are compared with
the energy of the first 2+ state, given by the exact calculation in the case of four nucleons moving
in the single shell j = 13/2. The minimal two quasiparticle energies are also presented. The three
sets of energies are plotted as function of the QQ interaction strength, X. The RQRPA results
correspond to q0 = 40 fm2.

be extended also to the realistic multi-shell case. Having this in mind, we compare
the results obtained with our method with the exact ones in Figs. 5 and 6. To
simplify the calculations, we consider the cases of two and four particles in the
shell i13/2 correlated with pairing, of strength G = 0.4MeV, and the long QQ
interaction. Details about the exact calculations can be found in Refs. 33–36. As
shown in Fig. 5, the exact result for two particles exhibits a linear dependence on
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X. The linear dependence on X is determined by the fact that the J = 2 matrix
elements of the QQ interaction are linear function of X and moreover, they do not
feel the pairing force. The RQRPA result depends on the magnitude of q0, involved
in the restriction concerning the average value of the quadrupole moment. We fixed
q0 such that the energies of the first excited state predicted by the RQRPA and
exact calculations are close to each other, at the end of the considered interval.
The two energies are close to each other also for small values of X . The largest
deviation from the exact result, about 1MeV, is met for that strength X , where
the RQRPA excitation energy is minimum. After reaching the minimum value, the
energy of the first excited state is increasing with X , passes through a maximum,
at X ≈ 15 · 10−3 MeV fm−4, then slowly decreases, exhibits a flat minimum at
X ≈ 23 · 10−3 MeV fm−4 and then continuously increases.

The case of four particles exhibits a more complex structure. The exact energy
is a decreasing function of X, meets a flat minimum and then slowly increases.
The largest deviation of the RQRPA result from the exact one is about 1 MeV
but in most of the considered interval the deviation keeps with 500keV. Note that,
in both cases of two and four particles the exact result is closer to the minimal
2 quasiparticle energies than to the RQRPA result. That means that the RQRPA
overestimate the state collectivity. The curves of 2qp and RQRPA energies look
similarly with those corresponding to two particles calculations.

It seems that the agreement between the RQRPA and exact results is better for
larger number of particles. We explain this feature in the following manner. The QQ

interaction has a contribution not only in the ph channel but also in the pp channel.
The contribution in the pp channel is negligible small for a large number of particles
but important for a low particle number. The contribution in both channels is fully
taken into account by the exact method. Although our procedure, to some extent,
includes both effects it seems that for a small number of particles a good portion
of the pp contribution is lost. Since the long range interaction in the pp channel
is repulsive, it is obvious that adding the missing terms the energy would increase
and consequently the agreement with the exact result is substantially improved.

Note that the final results in the present approach are obtained with a succession
of three approximations, two BCS-like and one of QRPA type. Since one cannot
separate the effects of each of the three approximations, the deviation from the exact
result could not be attributed separately to each of the three approaches. Moreover,
while the exact calculation yields states of good angular momentum the second-
order BCS and RQRPA states are deformed. Therefore, the comparison between
the two procedures assumes that the angular momentum of the state predicted by
the exact calculation is the dominant component of the RQRPA state.

Having these features in mind, a more fair comparison would be between the
standard and renormalized QRPA. One notices that the RQRPA extends the QRPA
beyond the critical value of the QQ strength where the standard QRPA breaks
down. The RQRPA takes into account all terms of the quasiparticle Hamiltonian
which are ignored by the standard QRPA. This is possible due to the BCS treatment
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of the quadrupole pairing correlations. A similar effect is induced in Ref. 29 by
the attached field. Although the standard QRPA includes the QQ interaction, the
resulting states have the angular momentum and its projection on the z-axis as
good quantum numbers. By contrast, here the RQRPA states are deformed for
any interaction strength. While in the standard QRPA, starting from the critical
interaction strength the single particle basis should be deformed, here both spherical
and deformed nuclei are described in an unified fashion with a sole single particle
basis. As mentioned in introduction, several authors used deformed QRPA methods.
Without exception they use a deformed single particle mean field or a consistent
deformed HFB + QRPA. Here, the starting single particle basis is spherical and
deformation is induced at the quasiparticle representation level. A procedure similar
to that presented here was used to study the double beta Fermi transition.32 In the
quoted paper, after the first BV transformation for nucleons of similar charge the
two body interaction describes the proton–neutron quasiparticle pairing interaction.
Therefore, the second BV transformation mixes protons with neutrons. The first
root of the pnQRPA approach for the newly defined quasiparticles, represented as
function of the attractive interaction strength looks similarly with the harmonic
energy dependence on the QQ interaction strength, described in this paper. As
shown by Fig. 8 of the mentioned reference, the proposed formalism approximates
very well the exact result obtained through diagonalization.

For the sake of simplicity, the proposed method was applied to the case of a
separable two body interaction but can be used for any interaction as well. In
particular, that is also true for Skyrme or Gogny HFB+QRPA approaches without
much computational efforts.

5. Comparison with the HFB Formalism

The HFB approach is based on defining a set of quasiparticle operators as being
a generalized unitary and linear transformation of the creation and annihilation
operators of particles in spherical shell model states.37 The vacuum state for such
operators is a function |Φ〉 depending on the transformation coefficients, which are
to be determined variationally, in order to describe the ground state. Applying
the HFB transformation to the many body Hamiltonian with paring + quadrupole
interaction (2.1), one obtains the single particle Hamiltonian

HHFB =
∑
α

(εa − λ)c†αcα − 1
4

2∑
µ=−2

qµ(Qµ + Q+
µ ) − 1

4
p0(P + P+), with (4.16)

qµ =
X

2
〈Φ|Qµ|Φ〉, p0 =

G

2
〈Φ|Qµ|Φ〉, (4.17)

where we assumed that qµ and p0 are real numbers. According to the Bloch–
Messiah theorem,38 the unitary HFB transformation can be written as a product
of three successive transformations. The first transformation is of a Hartree–Fock
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type, performed within a canonical single particle basis defined by diagonalizing
the Nilsson Hamiltonian

h =
∑
α

(εa − λ) − 1
2
q0Q0 − 1

2
q2(Q2 + Q−2). (4.18)

The second factor is a BV transformation, depending on the occupation probabili-
ties v2

i , with the gap parameter ∆ = p0. By this transformation, one distinguishes
between the “paired” levels and “blocked” levels, which could be either occupied
(vi = 1; ui = 0) or empty (vi = 0; ui = 1). Further, the newly defined quasiparticles
are linearly transformed with a Hartree–Fock like transformation, determined such
that the total energy

E(q0, q2, ∆) = 〈Φ|H |Φ〉 =
∑

i

ε̃iv
2
i +

1
X

(q2
0 + q2

2) −
∆2

G
(4.19)

is minimized. Here ε̃i denotes the energy of the Nilsson state |i〉. Equations (4.19)
and (4.17) are to be simultaneously solved, by an iterative procedure. The small
oscillations around the stationary values of the deformation q0, q2 and the gap
energy ∆, corresponding to the minimum energy, are described by the QRPA
equations.

Let us now enumerate the differences between our approach and the HFB
method. By contrast to the HFB approach, which consists of a product of two
Hartree–Fock and one Bogoliubov transformation, in our case the transformation
of the spherical single particle basis is a product of two Bogoliubov type trans-
formations. While the first factor is a standard Bogoliubov transformation, which
preserves the rotation symmetry, the second one mixes the quasiparticles and quasi-
holes and moreover the coefficients depend on the magnetic quantum number.
Therefore, the new quasiparticles are deformed. While the first Bogoliubov trans-
formation treats the spherical mean field and the pairing, the second transformation
accounts for a piece of the QQ interaction.

It is well-known, that for treating the collective motion of a many body sys-
tem, it is very important to choose the optimal single particle basis. If the nucleus
under consideration is only weakly deformed or spherical, the pairing interaction
dominates and defines the quasiparticle representation, the long range interaction
being treated at the QRPA level. When the nucleus is well deformed, the long range
interaction is treated first, i.e., a deformed single particle basis is defined, and then
the pairing correlation are switched on. The new representation is used within the
QRPA formalism to determine the collective effects.

We note that our procedure achieves a compromise of the two paths. The
deformation is, indeed, taken into consideration in the quasiparticle representa-
tion and afterwards the residual interaction is treated by the QRPA. The Nilsson
states defined within the HFB approach, do not have j as good quantum num-
ber, while the deformed quasiparticles used in the present work have a definite j,
which reflects the fact that deforming the quasiparticles only a small part of the
quadrupole interaction is involved. As a matter of fact that picture might be a
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good approximation for small nuclear deformation. Actually, the main effect of the
QQ interaction is introduced as the QRPA effect. Here, the deformed quasiparti-
cle energies depend linearly on the deformation despite the complex deformation
dependence of the composing terms Ēα and δα. This is again due to the small
magnitude of the nuclear deformation.

There are some differences between our approach and the HFB when the QRPA
is defined. In the case of HFB the first QRPA energy is a decreasing function of
the nuclear deformation. Therefore, in the region of level crossing, the minimal
two quasiparticle energies are very small and one expects that the approximation
collapses. Of course, such a situation does not show up in our case due to the
quasiparticle energy dependence on the deformation. The QRPA, built on the top
of the HFB ground state, takes into account only the quasiparticle long range
correlations due to the bi-quasiparticle operators and their Hermitian conjugate.
By contrast, as we have already mentioned, the RQRPA described here includes
also the quasiparticle density operators. The first energy solution of the RQRPA
equations does not collapse irrespective the magnitude of the long range interaction
strength. Moreover, beyond the strength where the first excitation energy reaches
a minimum value, this is an increasing function of X. This reflects the fact that
beyond the critical strength the repulsive component of the long range interaction
in the deformed quasiparticle representation, prevails over the attractive one.

6. Summary and Conclusions

In the previous sections, we formulated an approach of renormalizing the QRPA
such that no breaking down shows up. Indeed, the first QRPA energy, instead of
vanishing, it becomes minimum and then, by increasing the long range interaction
strength, is increasing. Things happen as if the effective interaction changes its
character, from attractive to an repulsive one. The formalism redefines first the
system ground state by accounting for the quasiparticle quadrupole pairing inter-
action. Moreover, on the top of the newly defined ground state a QRPA description
is constructed. It turns out that the drawback of the standard QRPA of collapsing
for a critical value of the interaction strength, is removed. In the new picture some
higher QRPA dynamics is included. Indeed, the scattering terms are effectively
participating in building up the new phonon operator.

We note that the new quasiparticles are not tensors of definite rank and projec-
tion. They have however, a definite j. This makes the difference with the picture
where first one defines a deformed mean field and then the pairing correlations are
considered. In this case j is not a good quantum number, but Ω is. This differ-
ence favors the present approach, when the QRPA is supplemented by an angular
momentum projection operation of the many body states.

The states considered in the present work are characterized by K = 0 and
therefore by the total angular momentum projection, finite bands of K = 0 can be
defined.
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