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Abstract. The even-even triaxial nuclei are described by amending the Bohr-Mottelson
Hamiltonian with an energy potential consisting of two terms: a sextic oscillator with centrifugal
barrier in the β variable and a periodic function in the γ variable. After the variable separation
is performed, the β equation is quasi-exactly solved, while the γ equation is satisfied by the
Mathieu function. The reduced E2 transition probabilities are determined using an anharmonic
transition operator. The formalism is conventionally called the Sextic and Mathieu Approach
(SMA). Numerical applications concerned seven non-axial nuclei: 188Os, 190Os, 192Os, 228Th,
230Th, 182W and 180Hf. SMA results are compared with the experimental data as well as with
those yielded by the Coherent State Model (CSM).

1. Introduction
The field of the nuclear shape phase transitions received a considerable attention when it was
noticed that the critical points may be described by differential equations which are exactly
solvable. In some of the situations the solutions of these equations achieve the irreducible
representations of a certain symmetry group. For example the E(5) symmetry [1] describes
the critical point for the transition U(5)→O(6) while the one associated to the transition
U(5)→SU(3) is not yet known and thereby referred to as X(5) [2]. Since the proposal for
the two critical points showed up, on that matter a huge number of papers were published,
many of them being reviewed in Refs. [3, 4]. In the mean time other two critical symmetries
were proposed, namely Y(5) [5] and Z(5) [6], for the axial-triaxial shape phase transition and for
the prolate-oblate shape phase transition, respectively. All these critical point symmetries are
analytical solutions of the Bohr-Mottelson Hamiltonian [7, 8] amended with a potential which
depends on both β and γ variables.

Here, we present a new solution of the Bohr-Mottelson Hamiltonian equation which seems to
be suitable for the description of the even-even triaxial nuclei having an axial deformation close
to γ0 = 300. In order, to improve the agreement between the theoretical predictions and the
corresponding experimental data, we used for the β variable a sextic oscillator with centrifugal
barrier potential. The β equation with sextic potential is quasi-exactly solvable, which means
that is still exactly solvable but for a finite number of states. For the γ equation, choosing
a periodic potential with a minimum in γ0 = 300 and avoiding the approximations made in
the previous models, we obtained as solutions the Mathieu functions which are periodic in the
interval [0, 2π]. In this way, the hermiticity of the γ Hamiltonian in respect with the integration
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measure | sin 3γ|dγ is preserved. The reduced E2 transition probabilities were determined using
a transition operator written in the intrinsic reference frame and which contains two terms, a
harmonic part and an anharmonic part, respectively. The formalism developed in this way was
conventionally called the Sextic and Mathieu Approach (SMA). More details about the SMA
and its numerical applications may be found in the Refs. [9, 10, 11]. Here, we present only
its main ingredients and some numerical examples. The SMA results were also compared with
those yielded by the Coherent State Model (CSM) [12]. Numerical analysis of the two models
results suggested a possible relationship between the two approaches. The connection between
SMA and CSM was analytically established in Refs. [10, 11], where the SMA equations were
obtained through a semi-classical treatment of the CSM Hamiltonian.

The description of the results presented in this communication is organized as follows. In
Section II, the main ingredients of the SMA model are given, while in Section III an illustrative
example of 192Os is discussed. In Section IV we show how the SMA equations were obtained
from the CSM Hamiltonian and finally, in Section IV, the main conclusions are summarized.

2. The Sextic and Mathieu Approach
In order to describe the critical nuclei of the prolate-oblate shape phase transition, we invoke
the Bohr-Mottelson Hamiltonian with a potential depending on both the β and γ variables:

Hψ(β, γ,Ω) = Eψ(β, γ,Ω), where, (1)

H = − h̄2
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Here, β, γ and Ω are the intrinsic deformation variables and the Euler angles, respectively, while
with Qk are denoted the angular momentum projections in the intrinsic reference frame. After
the separation of variables [9], the following equations are obtained:[
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where the following notations are used:
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Eq. (3) is reduced to the sextic oscillator equation if we change the function f(β) = β−2φ(β)
and take the β potential in the form:

vπ1 (β) = (b2 − 4ac±)β2 + 2abβ4 + a2β6 + u±0 c± =
L

2
+

5

4
+M, M = 0, 1, 2, ..., (6)

where, c± and u±0 are constants with the signs + and − for L even and L odd, respectively. The
solutions of Eq. (3), with the above specified potential are

φ
(M)
nβ ,L

(β) = Nnβ ,LP
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a
4
β4− b

2
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, nβ = 0, 1, 2, ...M, (7)
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where Nnβ ,L are the normalization factor, while P
(M)
nβ ,L

(β2) are polynomials in x2 of nβ order.

The corresponding excitation energies are:

Eβ(nβ, L) =
h̄2
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Considering the periodic γ potential, v2(γ) = µ cos2 3γ (4), which exhibits a minimum in
γ0 = π/6 and then changing the function ϕ(γ) = M(3γ)/

√
| sin 3γ| one arrives at a differential

equation for the Mathieu functions. The expression for the excitation energy of the γ equation
is:

Eγ(nγ , L,R) =
h̄2

2B
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[
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The Mathieu functions have the advantage that are periodic and defined on a bounded interval
[0, 2π], preserving the hermiticity of the initial γ Hamiltonian in respect with the integration
measure | sin 3γ|dγ. The total energy of the system is obtain by adding the contributions coming
from both β and γ equations.

Using the Rose’s convention [15], the reduced E2 transition probabilities are determined by:

B(E2, Li → Lf ) = |⟨Li||T (E2)
2 ||Lf ⟩|2, (11)

where the transition operator has the following expression:
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3. Numerical results
SMA was successfully applied for several non-axial nuclei: 188Os, 190Os, 192Os, 228Th, 230Th,
182W and 180Hf [9, 10, 11]. For the sake of saving the space here we shall present only the case
of 192Os. This nucleus is a good candidate for a triaxial deformation close to γ0 = 300. Indeed,
its equilibrium value predicted by Leander [16] is γ0 = 250. On the other hand one signature
of the triaxial rigid rotor is △E = |E2+1

+ E2+2
− E3+1

| = 0. In the chosen case this equality

is obeyed with a good accuracy having △E = 5keV. Moreover, its γ band has a pronounced
staggering behavior (Fig.1). As seen in Fig. 1 and Fig. 2, the staggering and the spectrum of
192Os are quite well described by SMA. The agreement with the data is appraised by the value
of the r.m.s. value associated to the predicted energy deviation, which in the mentioned case
amounts of 16 keV. The calculated E2 properties regard the intraband transitions of the ground
and γ bands, as well as the interband γ → g. Results are compared with the corresponding
experimental data in Table 1. Comparing the SMA results with those of CSM, we noticed
that they are quantitatively close to each other, although the two approaches have apparently
different grounds. The connection between SMA and CSM was explained in details in Refs.
[10, 11].
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Figure 1. The staggering behavior
of 192Os (Exp) compared with the
SMA and CSM predictions.
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Figure 2. The experimental spectrum of 192Os [17, 18]
for the first three bands, given in keV units, is compared
with the results yielded by the SMA (Present) and CSM.

Table 1. Some B(E2) values for 192Os obtained with SMA and CSM, are compared with the
corresponding experimental data [17].

B(E2)[e2b2] Exp SMA CSM

2+g → 0+g 0.424 0.424 0.236
4+g → 2+g 0.497 0.632 0.449
6+g → 4+g 0.660 0.858 0.611
8+g → 6+g 0.754 1.030 0.754
10+g → 8+g 0.688 1.175 0.887
4+γ → 2+γ 0.298 0.261 0.277
6+γ → 4+γ 0.336 0.352 0.595
8+γ → 6+γ 0.314 0.549 0.814
2+γ → 0+g 0.037 0.006 0.192
2+γ → 2+g 0.303 0.303 0.055
2+γ → 4+g 0.024 0.000 0.000
4+γ → 2+g 0.002 0.004 0.274
4+γ → 4+g 0.203 0.068 0.137
4+γ → 6+g 0.018 0.000 0.000
6+γ → 4+g 0.000 0.002 0.357
6+γ → 6+g 0.171 0.042 0.171

4. The connection between the SMA and CSM formalisms
Aiming at obtaining the SMA equations starting with CSM, first the CSM boson Hamiltonian
is dequantized using a two parameter coherent state function as a trial variational function:

H = ⟨ψ|HCSM|ψ⟩, |ψ⟩ = exp
[
z0b

†
0 + z2b

†
2 + z−2b

†
−2 − z∗0b0 − z∗2b2 − z∗−2b−2

]
|0⟩, (13)
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The basic property of the coherent state is:

bµ|ψ⟩ = (δµ,0z0 + δµ,2z2 + δµ,−2z−2) |ψ⟩. (14)

New coordinates which bring the classical equations to the Hamilton canonical form are desirable.
Such coordinates are obtained by the restriction z2 = z−2 and the transformation q0 =

√
2Re[z0],

p0 =
√
2Im[z0] , q2 = 2Re[z2], p2 = 2Im[z2]. In the expression of the classical Hamilton energy

function, the terms which couple the coordinate with momentum and also those which are not
quadratic in momenta are neglected. The resulting Hamiltonian is quantized in polar coordinates
which results in obtaining:

Ĥ = −
(
11A1 + 3A2 +A1d

2 +
3
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d4A3

)(
1

r

∂

∂r
+

∂2

∂r2
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∂2

∂γ2

)
+ V1(r) + V2(γ), (15)
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[
11A1 + 3A2 −
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r2 +

[
A1

4
+

9A3
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r4 +

A3

280
r6, V2(γ) =

A3r
6
0

280
cos 6γ.

(16)
Finally, the SMA equations are obtained after the separation of variables r = kβ and γ through
Taylor expansions around the equilibrium values, β0 and γ0.

5. Conclusions
A new formalism, called the Sextic and Mathieu Approach (SMA), aimed at describing the even-
even triaxial nuclei was proposed. The β equation is that of a sextic oscillator with centrifugal
barrier, while that of the γ variable is reduced to a Mathieu equation. The comparison between
the SMA results and experimental data of seven nuclei 188,190,192Os, 228,230Th, 180Hf and 182W
showed a good agreement. Also, a connection between the SMA and CSM formalism was pointed
out. The closeness of the SMA and CSM results was explained by obtaining the SMA equations
through a semi-classical treatment of the CSM Hamiltonian. With this demonstration, the
SMA potentials get a theoretical support in contrast with their intuitive choice when the SMA
equations emerge from the BohrMottelson Hamiltonian.
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