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(Dated: November 7, 2014)

An analytical solution for the Davydov-Chaban Hamiltonian with a sextic oscillator potential for
the variable β and γ fixed to 30◦, is proposed. The model is conventionally called Z(4)-Sextic. For
the considered potential shapes the solution is exact for the ground and β bands, while for the γ
band an approximation is considered. Due to the scaling property of the problem the energy and
B(E2) transition ratios depend on a single parameter apart from an integer number which limits
the number of allowed states. For certain constraints imposed on the free parameter, which lead to
simpler special potentials, the energy and B(E2) transition ratios are parameter independent. The
energy spectra of the ground and first β and γ bands as well as the corresponding B(E2) transitions,
determined with Z(4)-Sextic, are studied as function of the free parameter and presented in detail
for the special cases. Numerical applications are done for the 128,130,132Xe and 192,194,196Pt isotopes,
revealing a qualitative agreement with experiment and a closeness to the Z(4) model predictions.

I. INTRODUCTION

Soon after the Bohr-Mottelson Model (BMM) [1, 2]
was proposed for nuclear structure together with its first
solution [1] for spherical nuclei, many attempts were done
to improve and extend it by taking into account ax-
ial and non axial deformation, coupling between β and
γ vibrations or various anharmonicities. Most of these
approaches were reviewed in Refs.[3–5]. A new phase
in the field begun with the proposal of the Interact-
ing Boson Model (IBM) [6–9], whose relationship with
the BMM [10, 11] established the nature of the shape
phase transitions [11] between its dynamical symmetries,
namely, U(5) (spherical vibrator), O(6) (γ-unstable) and
SU(3) (axial rotor). The start of a long series of studies,
both theoretical and experimental, was given mainly by
two papers in which approximate solutions of the BMM
were offered for the critical points of the shape phase
transitions U(5)-O(6) and U(5)-SU(3), called E(5) [12]
and X(5) [13], respectively. Other two important mod-
els which are worth mentioning here are Y(5) [14] and
Z(5) [15] associated with the transitions between the ax-
ial and triaxial shapes and respectively between prolate
and oblate shapes. The critical point approaches men-
tioned above have the advantage to be parameter free
solutions except for a scaling factor, making them eas-
ily verifiable reference points for the experimental data.
This is actually a general trait of the exactly solvable
models of nuclei [16]. Other efforts were also directed
to special realisations of the BMM in the view of some
constraints imposed on the shape variables or inertial pa-
rameters. For example ”freezing” the γ variable to a
certain value in the classical BMM, leads after quantifi-
cation in curvilinear coordinates to simpler Hamiltonians
suitable to describe the special case of the γ rigid collec-

∗ buganu p@yahoo.com

tive motion. The first study in this direction brought to
light the Davydov-Chaban model for rotation-vibration
interaction in non-axial nuclei [17]. Later on, an exact
solution for this model was proposed [18] in the case of
γ = 30◦, where instead of a displaced harmonic oscilla-
tor in β shape variable an infinite square well potential
was used. The solution called Z(4) due to the similarity
to the Z(5) model, inspired other studies of the γ rigid
solutions [19–21].

In this paper we propose an analytical solution for the
Davydov-Chaban Hamiltonian [17] with γ = 30◦ and a
sextic potential for the only shape variable, i.e. β. The
model is conventionally called Z(4)-Sextic. In this frame-
work, the separation of the angular variables from the β
shape variable is exact. The differential equation involv-
ing Euler angles is solved as in Ref.[22], while that for β
is brought to a Schrödinger form with a sextic potential
and a centrifugal-like term. The problem of the sextic po-
tential is not an exactly solvable one because its spectral
problem is reduced to the diagonalization of an infinite-
dimensional Hamiltonian matrix. However, for a family
of potentials whose coefficients satisfy certain relations
between them and the factor of the centrifugal term, the
problem becomes quasi-exactly solvable [23, 24], i.e. its
infinite Hamiltonian matrix acquire a block diagonal form
allowing thus an algebraic treatment for a finite subset
of eigenstates. For a physically meaning description, the
above mentioned constraints must be corroborated also
with the condition of constant potential. Despite these
restrictions, the Z(4)-Sextic eigenvalue problem is exactly
solved for the ground and β bands. Concerning the γ
band, an approximation is involved in the centrifugal
term in order to accommodate all the above restrictions.
Due to the scaling property of the exactly solvable sextic
potential with an associated centrifugal term, the energy
and the B(E2) transitions depend on a single parameter
up to an overall scaling factor. Moreover, for particu-
larly interesting shapes of the potential, parameter free
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expressions are possible for the normalized energies and
B(E2) transition probabilities.
The use of such an involved potential is supported

by the fact that it is the simplest shape which through
continuous variation of its parameters can have either a
spherical minimum, a deformed minimum or both. It
is worth to mention that exact [25, 26] and approxima-
tive [27, 28] solutions by using a sextic potential were
also given, in five dimensions, for E(5) and respectively
X(5) and Z(5) related approaches. Other solutions in
the vicinity of γ = 30◦, but with γ soft can be found in
Refs.[29–33].
The present work has the following plan. The Z(4)-

Sextic model Hamiltonian is presented in Section II, while
its associated β differential equation is treated in Section
III. In Section IV, one gives the model wave functions and
calculate the B(E2) transition probabilities. Extensive
numerical results and few model fits to experimental data
are given in Section V. The main conclusions are drawn
in Section VI.

II. THE MODEL HAMILTONIAN

The model Hamiltonian, when the nucleus is γ−rigid,
has the following form [17]:
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where B is the mass parameter, β, γ and Q̂k are the in-
trinsic deformation coordinates and respectively the op-
erators of the total angular momentum projections in the
intrinsic reference frame, while with Ω are denoted the
rotation Euler angles (θ1, θ2, θ3). Here, γ is considered a
parameter and not a variable, such that when the kinetic
energy of the classical BMM is quantified in curvilinear
coordinates one arrives at the Hamiltonian (2.1) which
depends only on four variables (β,Ω). When γ = π/6,
two moments of inertia in the intrinsic reference frame
become equal and then the rotational term reads:
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The separation of variables is achieved by considering
the wave function Ψ(β,Ω) = φ(β)ψ(Ω) which leads to
the following equation in β variable:
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φ(β) = εφ(β), (2.3)

where the following notations are used v(β) = 2B
h̄2 V (β)

and ε = 2B
h̄2 E, while W is the eigenvalue for the equation

of the angular part,
(
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4
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)
ψ(Ω) = Wψ(Ω). (2.4)

The above equation was solved in Ref.[22] with the re-
sults:

W = WLR = L(L+ 1)− 3

4
R2, (2.5)

and
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]
. (2.6)

Here D(L)
µ,R(Ω) are the Wigner functions associated to the

total angular momentum L and its projections on the
body fixed x-axis and laboratory fixed z-axis, R and re-
spectively µ. For the energy spectrum it is more advanta-
geous to use instead of R the wobbling quantum number
nω = L−R which for the ground and β bands is nω = 0,
while for the γ band it takes the values nω = 1 for L
odd and nω = 2 for L even. Within this convention the
eigenvalue of the angular part of the problem is written
as

WLR = WLnw = L(L+ 1)− 3

4
(L− nw)

2. (2.7)

III. SOLUTION FOR THE β PART OF THE
HAMILTONIAN

It is convenient to bring Eq. (2.3) to a Schrödinger
form. This is realized by changing the function with
φ(β) = β− 3

2ϕ(β) [17]:

[
− d2

dβ2
+

WLnw + 3
4

β2
+ v(β)

]
ϕ(β) = εϕ(β). (3.8)

Further, Eq. (3.8) is compared with the exactly solv-
able case of the sextic potential [24] which leads to the
following correspondences:
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)
, (3.9)

v(β) =

[
b2 − 4a

(
s+

1

2
+M

)]
β2 + 2abβ4 + a2β6.

(3.10)
The potential (3.10) depends on two parameters, a and
b, and on L and nw quantum numbers through s. M is
a natural number which establishes the number of states
that can be determined. This implication will be ex-
plained later when discussing the wave functions. The
number of parameters is reduced to a single one by chang-
ing the variable with β = ya−

1
4 . Then by introducing the

notations α = b√
a
and εy = ε√

a
one gets:

[
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4

y2
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]
η(y)

= εyη(y), (3.11)
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where

c ≡ s+
1

2
+M. (3.12)

Because s depends on L and nw, the potential of Eq.
(3.11) is state dependent. For the ground and β bands
nw = 0, such that

s =
L

4
+ 1, c = M +

L

4
+

3

2
. (3.13)

In order to have a state invariant potential for this case of
ground and β band states, the following condition must
be satisfied:

c = M +
L

4
+

3

2
= const. (3.14)

It can be easily checked that the above condition is satis-
fied if M is decreased with one unit when L is increased
with four. This means that for L/2 even and L/2 odd
there are two different constants c:

(M,L) : (K, 0), (K − 1, 4), ... ⇒ K +
3

2
= cK0 ,(3.15)

(M,L) : (K, 2), (K − 1, 6), ... ⇒ K + 2 = cK2 , (3.16)

which differ from each other just by 1/2. Note that the
value of K = Mmax puts a limit on the number of states
which might be determined. For example if K = 1, the
maximum angular momentum state which could be an-
alytically described would be the L = 6 state, while for
K = 2, the L = 10 state and so on. This is actually
a direct consequence of the condition (3.14). In case of
the γ band, when nw = 1 and 2, s becomes irrational
such that the Eq.(3.11) cannot be solved anymore for M
integer and with constant potential condition fulfilled. A
possible way to handle this problem is to extract from
the centrifugal term the quantities 3(L − 1/2)/2y2 and
3(L−1)/y2 for L odd and respectively L even, and to re-
place y2 with its average 〈y2〉 on η(y) eigenstates of the
remaining Hamiltonian for each angular momentum L.
With these approximations, s and c from the γ band will
have the same expressions (3.13) as in the case of ground
and β bands. Moreover, for L even states of the γ band,
c will have the same two values as for the ground and β
bands. While for L odd, c will have other two values:

(M,L) : (K, 1), (K − 1, 5), ... ⇒ K +
7

4
= cK1 ,(3.17)

(M,L) : (K, 3), (K − 1, 7), ... ⇒ K +
9

4
= cK3 ,(3.18)

corresponding to (L−1)/2 even and respectively (L−1)/2
odd. Finally, the four values of the constant c can be
summarized by the formula:

cKm = cK0 +
1

4
m = K +

3

2
+

1

4
m, m = 0, 1, 2, 3. (3.19)

The condition of the constant potential is then exactly
satisfied for four distinct sets of states, which correspond

to slightly different potentials. This picture is improved
by considering for the general potential the following
form:

vKm(y) = (α2 − 4cKm)y2 + 2αy4 + y6 + uK
m(α). (3.20)

For a fixed K, uK
m are constants depending on α, which

are fixed such that the minimum energy of the potentials
vKm to be the same. Choosing uK

0 = 0, the other constants
are given by:

uK
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(
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) (
yK0,0

)2 −
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α2 − 4cKi

) (
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)2
(3.21)

+2α
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)4]
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(
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,

with i = 1, 2, 3 and yK0,m being the minimum points:

(yK0,m)2 =
1

3
(−2α±

√
α2 + 12cKm). (3.22)

Taking the ansatz function [24]

ηM (y) ∼ PM (y2)y2s−
1
2 e−

y4

4 −αy2

2 , (3.23)

the Eq. (3.11) is then reduced to the following differential
equation,

[
−
(

d2

dy2
+

4s− 1

y

d

dy

)
+ 2αy

d

dy

+2y2
(
y
d

dy
− 2M

)]
PM (y2) = λPM (y2), (3.24)

where PM (y2) are polynomials in y2 of order M . The
eigenvalues λ are obtained for each M using the analyt-
ical procedure given in Appendix of Ref.[28]. For each
value of M there are M + 1 solutions which are differen-
tiated by the β vibrational quantum number nβ in the
following way: The lowest eigenvalue λ corresponds to
nβ = 0, while the highest to nβ = M + 1. For the
present physical problem only the solutions with nβ = 0
and nβ = 1 will be considered, which correspond to
the ground and γ bands and respectively to the β band
states. λ also depends on L through s and one must
remind that at this point L and M are interdependent
through the condition (3.14), the actual relationship be-
ing dictated by the value of K. Thus, the M indexing of
λ will be replaced from here by K. Following all the alge-
braic manipulations which lead to Eq.(3.24) and taking
into account the above considerations, λ can be alterna-
tively expressed as:

λ = λKnβL = εy − uK
m − 4αs

−
3
2

(
L− 1

2

)

〈y2〉KL
δnω,1 −

3(L− 1)

〈y2〉KL
δnω,2. (3.25)

From the above relation one finally extracts the total
energy of the system:
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]
,(3.26)
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which is indexed by the β vibration and wobbling quan-
tum numbers nβ and nw, as well as by the intrinsic angu-
lar momentum L. The index m is completely determined
only by L. Although the above energy also depends on
the integer K, this is not a true quantum number but
rather a special kind of parameter. Similarly to the eigen-
value λ, the associated eigenfunctions of Eq.(3.24) also
depend on K and L. Such that due to the orthogonal-
ity of the angular wave functions (2.6), the average of y2

entering in the definition of the total energy are only K
and L dependent. From Eq.(3.26) one can see that the
energy spectrum normalized to the energy of the first
excited state depends only on the parameter α and the
integerK. For further calculations one defines the energy
ratios:

R(nβ , nω, L, α) =
Enβ ,nω,L − E0,0,0

E0,0,2 − E0,0,0
, (3.27)

for a fixed value of K.

IV. TOTAL WAVE FUNCTIONS AND B(E2)
TRANSITION RATES

As was explained in Section II, the total wave func-
tion is factorized into an angular part and a β depending
factor function:

ΨM
nβLR(β,Ω) = ψL

µR(Ω)φ
M
nβL(β), (4.28)

where the angular factor state was defined by Eq.(2.6)
keeping the notation with R instead of nw for convenience
in calculating angular matrix elements. In what concerns
the β wave function, it has the following form:

φM
nβL(β) =

√
aφM

nβL(y)

=
√
aNM

nβL(α)PMnβ (y
2)y

L
2 e−

y4

4 −αy2

2 ,(4.29)

with y = βa1/4 and NM
nβL

(α) being the normalization

constant with respect to the y3dy integration measure.
As was already mentioned when the expression of the to-
tal energy was discussed, M is uniquely determined by L
for a fixed value of K. Thus, a more natural dependence
of the total wave function would be on K instead of M .
However M express more intuitively the analytical form
of the β factor state.
Having the analytical expression of the total wave func-

tion, one can readily compute the B(E2) transition prob-
abilities. The quadrupole operator for Z(4)-Sextic has
the same form as for the Z(4) solution [18],

T (E2)
µ = − 1√

2
tβ

(
D(2)

µ,2(Ω) +D(2)
µ,−2(Ω)

)
. (4.30)

The reduced E2 transition probabilities are defined as:

B(E2, Li → Lf ) = |〈ΨM
nβiLi

||T (E2)
2 ||ΨM

nβfLf
〉|2, (4.31)
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FIG. 1. The shapes of the energy potential for γ fixed at π/6
and with K = 1, corresponding to α = −10, ±2

√
c0(±3.22),

0, 10 are plotted as function of y.

where the Rose’s convention [34] was used for the reduced
matrix elements. The matrix elements over the β can be
rewritten in terms of y with the following result:

〈φM
nβiLi

(β)|β|φM
nβfLf

(β)〉

= a−
1
4

∫ ∞

0
φM
nβiLi

(y)yφM
nβfLf

(y)y3dy. (4.32)

V. NUMERICAL RESULTS

As its construction is suggesting, the Z(4)-Sextic
model, introduced in the previous sections, is adequate
for the description of triaxial nuclei having a γ rigid-
ity of 30◦. The model depends on a single parame-
ter α, apart from a scaling factor and the integer num-
ber K which gives the extension of the exactly solvable
subspace. Depending on the free parameter α and re-
gardless of the K value, the sextic potential (3.20) may
have a spherical minimum (α > 2

√
cK3 ), a deformed one

(−2
√
cK0 < α < 2

√
cK0 ) and simultaneously spherical

and deformed minima (α < −2
√
cK3 ) for all considered

states. These situations are depicted in Fig. 1 for K = 1
where one also showed the particular cases of α = 0,
α = −2

√
c10 and α = 2

√
c10 with the latter one corre-

sponding to a potential shape close to that of the infinite
square well. The different constants cKm used for the four
distinct sets of states depending on the parity of L/2 or
(L−1)/2, define some small extension intervals where few
of the above solutions coexists for different states. If all
the constants cKm would be equal, the coexisting intervals
would shrink to a single point value of α.

The advantage of the present model’s dependence on
a single parameter is that one can study how its char-
acteristics are changed between the pictures discussed
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FIG. 2. (Color online) The energy spectrum given by Eq. (3.27) is shown as function of α in the interval [−10, 10] for K = 1, 2, 3
and 4. On the left side are plotted the energy curves of the ground band and β band which go to infinity when α = −∞. While
on the right side are those corresponding to the γ band, with the continuous and dashed curves representing L even and L odd
states, respectively.
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FIG. 3. (Color online) The B(E2) transitions 4+g → 2+g , 2
+
β → 0+β , 0

+
β → 2+g (left panel) and 3+γ → 2+γ , 2

+
γ → 2+g , 3

+
γ → 4+g ,

4+γ → 2+γ , 2
+
β → 2+γ (right panel), normalized to B(E2, 2+g → 0+g ) are plotted as function of α in the same interval [−10, 10].

The continuous, dashed, dot-dashed and dotted lines correspond to K = 1, 2, 3 and 4, respectively.

above by continuously varying the free parameter. In
order to do this and cover all the above mentioned cases,
the energy ratios (3.27) and few interband and intra-
band B(E2) transitions (4.31) normalized to the tran-
sition 2+g → 0+g are presented in Fig. 2 and Fig. 3, re-
spectively, for a sufficiently large interval of α in order to
achieve convergence at both sides. The numerical results
visualized in Figs. 2 and 3 are performed for K = 1, 2, 3
and 4. For each K there is a limited number of avail-
able states which are exactly determined in the present
model. The number of such states in the ground, β, γ
with L even and γ with L odd bands increases with two
when K is increased with one unit. The common parts of
the energy spectra corresponding to different K are very
similar. However, there are some clear differences, such
as the width and the position of the coexistence inter-
vals identified in Fig. 2 by the gray area where for a set
of states the potential shape has a spherical minimum
while for another set it has a deformed minimum. For
the ground and β bands the interval is [2

√
cK0 , 2

√
cK2 ],

while for the γ band the interval is bigger [2
√
cK0 , 2

√
cK3 ].

Indeed, as K increases, the grey band becomes thinner
and its position moves to higher values of α. As a matter
of fact in this existence interval, one observes a discon-
tinuity in the energy curves which happens at a critical
value αc. This value corresponds to the absolute maxi-
mum of the signature ratio R4/2(α) = R(0, 0, 4, α) and is
interpreted as the critical point for the phase transition
between spherical and deformed shapes in the framework
of presently adopted sextic potential. Contrary to the en-
ergy spectra, the B(E2) transition probabilities shown in
Fig. 3 have a smooth behaviour as function of α. While
the K variation, induce only a small shift to the right of
the curves from Fig. 3. The common feature of the all

considered transitions is that their corresponding proba-
bilities become ”K degenerate” for α → ±∞ and more
sooner for the interband transitions.

As was mentioned before, in the coexistence region,
and especially at the critical value αc, the shape of the
potential approximated by v ≈ 2αcy4 + y6 is the flat-
test one, which is consistent with critical point behavior.
Moreover, the potential at αc simulates quite well an in-
finite square well, supported also by the fact that the
corresponding energy spectrum is very close to that of
Z(4) model. Another interesting aspect of the present
model is that some energy ratios curves of the ground
and β bands are intersecting each other for α = 0 and
becoming thus degenerate. This can be seen only start-
ing from K = 2, where the last two ground band states
LMax and LMax − 2 are degenerate with LMax − 8 and
LMax−10 from the β band when α = 0. This degeneracy
may reveal some symmetry properties associated with
the resulting simple potential shape vKm ∼ −4cKmy2 + y6.
The low lying energy spectrum with a complete set of E2
transition probabilities for this special case is graphically
represented in Fig. 4 for each considered value of K. A
similar representation is provided in Fig. 5 for the other
special case corresponding to αc where one also given its
numerical value. The parameter free results presented
in Figs. 4 and 5 can be used in a first step as reference
points for finding candidate nuclei and then to vary α for
a better agreement with the experimental data.

Another important touchstone of the present formal-
ism represents the exact reproduction of the Z(4)-β2

model [35] spectra when α → ∞. This means that the
ground and β bands are degenerated and have a harmonic
oscillator type spectrum, while the even and odd angu-
lar momentum states of the γ band deviate from this
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behavior. In what concerns the other limit, α → −∞,
the ground and γ band spectra achieve a convergence at
a noncollective value of R4/2 < 2. While the β band
energy curves go to infinity. The limiting value R4/2 is
reached at α = −0.964,−0.804,−0.666 and −0.545 for
K = 1, 2, 3 and 4 respectively.
A particular signature which is often used as a char-

acteristic of structure and its evolution is the staggering
in the γ band energies [36] usually given in terms of the
quantity S(4) which is defined as:

S(J) =
[E(Lγ)− E(Lγ − 1)]− [E(Lγ − 1)− E(Lγ − 2)]

E(2+g )
,

(5.33)
where E stands for the absolute energy with respect to
the ground state. In Ref.[35] was shown that for triaxial
γ rigid cases S(4) > 0.56, with the limiting value corre-
sponding to Z(4)-β2 model. Studying Fig. 6, where S(4)
calculated in present model is visualized as function of α,
one ascertains that the Z(4)-Sextic predictions fall in the
aforementioned class for α > −2. Moreover, comparing
present calculations with the value S(4) = 0.93 of the
Z(4) solution one can see that it is doubly achievable in
the α > −2 interval. In the rest of the α interval, S(4)
decreases to negative values as α → −∞, but not low
enough to reach the U(5)-O(6) transition region values.
The highest value of S(4) obviously corresponds to αc

and which is very close to that of the Davydov’s triaxial
rigid rotor model [37]. The phenomenon described above
is known as the ∆J = 1 or even-odd staggering. Taking
another look at the α dependent spectra of Fig. 2, one
can observe in the ground and γ bands another interest-
ing phenomenon known as ∆J = 2 staggering or ∆J = 4
bifurcation which although very small was reported in the
ground bands of actinide and rare earth nuclei [38, 39].
There are many theoretical approaches dedicated to this
topic which are briefly mentioned in Ref.[39]. In the
present model, this anomalous behaviour has a clear an-
alytical origin which resides in the ∆L = 4 grouping of
the states defined by the rules (3.16) and (3.18). It is in-
teresting that the reciprocal closeness of the consecutive
states is rearranged when going from negative to positive
values of α. This theoretical result hints to the fact that
the ∆J = 2 staggering in the ground band of some nu-
clei can be due to higher order anharmonicities in their
collective motion.
It is worth to mention that the similarities with the

Z(4) and Z(4)-β2 models enumerated so far reveal the fact
that the approximation 〈y2〉 used to solve the eigenvalue
problem for the γ band is a good one. The advantage
of the Z(4)-Sextic, comparing with the Z(4) and Z(4)-
β2 models, is that its potential can be varied smoothly,
accommodating different deformation situations and cre-
ating in this way the possibility to cover intermediate
cases between the Z(4)-β2 and Z(4) or even beyond their
boundaries.
As in Ref.[18], Z(4)-Sextic is applied in Fig. 7 for

128,130,132Xe isotopes which were considered as candi-

TABLE I. Some B(E2) transitions, given by Eq. (4.31) and
normalized to the transition B(E2; 2+g → 0+g ), are compared
with the experimental data [40–42] for the 128,130,132Xe iso-
topes and with the Z(4) model predictions.

B(E2, L+
i → L+

f )
128Xe 130Xe 132Xe

B(E2; 2+g → 0+g ) Exp. Z(4)-Sa Z(4)-S Exp. Z(4)-S Z(4)

2+g → 0+g 1 1 1 1 1 1

4+g → 2+g 1.468 1.806 1.966 1.238 2.048 1.707

6+g → 4+g 1.940 2.549 2.972 3.273 2.414

2+γ → 2+g 1.194 1.771 1.888 1.775 1.947 1.737

2+γ → 0+g 0.016 0.000 0.000 0.003 0.000 0.000

a S is an abbreviation for Sextic.

TABLE II. The same as in Table I but for the experimental
data [43–45] of the 192,194,196Pt isotopes.

B(E2, L+
i → L+

f )
192Pt 194Pt 196Pt

B(E2; 2+g → 0+g ) Exp. Z(4)-Sa Exp. Z(4)-S Exp. Z(4)-S Z(4)

2+g → 0+g 1 1 1 1 1 1 1

4+g → 2+g 1.556 1.750 1.728 1.690 1.478 1.895 1.706

6+g → 4+g 1.224 2.424 1.362 2.296 1.798 2.770 2.414

8+g → 6+g 3.078 1.016 2.880 1.921 3.622 2.913

10+g → 8+g 3.493 0.691 3.238 4.219 3.293

2+β → 0+β 0.868 0.810 0.123 1.047 0.769

2+β → 4+g 0.351 0.275 0.003 0.590 0.422

2+β → 0+g 0.001 0.001 0.000 0.000 0.005

2+β → 2+γ 0.099 0.088 0.006 0.126 0.184

0+β → 2+g 1.362 0.013 1.159 0.069 1.852 1.151

0+β → 2+γ 0.000 0.171 0.000 0.443 0.000 0.000

6+γ → 4+γ 1.028 0.974 1.207 1.175 1.142

4+γ → 2+γ 0.750 0.427 0.724 0.714 0.812 0.801

3+γ → 2+γ 1.783 2.251 2.183 2.415 2.365

6+γ → 6+g 0.224 0.211 0.394 0.262 0.218

6+γ → 4+g 0.000 0.000 0.012 0.000 0.000

4+γ → 4+g 0.365 0.285 0.347 0.415 0.381

4+γ → 2+g 0.000 0.007 0.000 0.014 0.000 0.000

3+γ → 4+g 0.664 1.339 1.280 1.489 1.360

3+γ → 2+g 0.012 0.000 0.000 0.000 0.000

2+γ → 2+g 1.730 1.809 1.684 1.837 1.737

2+γ → 0+g 0.010 0.000 0.006 0.000 0.000 0.000

a S is an abbreviation for Sextic.

dates for Z(4) model and additionally in Fig. 8 for
192,194,196Pt isotopes. The best fits were obtained for
K = 4, but not very different from K = 2 and 3, while
the K = 1 case obviously has only theoretical impor-
tance. The experimental data of these nuclei are slightly
better described by Z(4)-Sextic comparing to Z(4), ex-
cept for the 130Xe nucleus. If the ground and β bands
are quite well described by both models for all considered
isotopes, the staggering of the γ band is relatively well
reproduced only for 194Pt. Concerning the B(E2) tran-
sitions, the agreement of Z(4)-Sextic is very good with
all the available data for the 128,130,132Xe isotopes. In
what concerns the 192,194,196Pt isotopes, in the ground
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FIG. 4. (Color online) Energy spectra and some B(E2) transitions, normalized to the energy of the state 2+g and respectively
to the transition probability B(E2, 2+g → 0+g ), are visualized for each K = 1, 2, 3 and 4 when α = 0.

band the Z(4)-Sextic and Z(4) numerical results provide
a good agrement with experiment only for the 4+g → 2+g
transition, the rest of the transition probabilities being
overestimated in both calculations. A possible way to
improve the agreement is to add anharmonicities to the
transition operator. For transitions in the γ band and
from the γ band to the ground band both approaches
give good results, while for transitions from the β band
to the ground and γ bands the agreement is only par-
tially good. These applications show that these isotopes

can be considered partial candidates for Z(4)-Sextic and
Z(4). The good agreement for all three bands of the iso-
tope 194Pt proves that these solutions can describe real
situations and opens the question if there are better can-
didates.
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FIG. 5. (Color online) The same as in Fig. 4, but for α = αc.

VI. CONCLUSIONS

The main result of the present work consists in the pro-
posal of a new solution for the Davydov-Chaban Hamil-
tonian, with a sextic oscillator potential for the variable
β and γ ”frozen” to 30◦. The solution is convention-

Z!4"-Β2

Z!4"

— K " 1
– – K " 2
– !– K " 3
! ! ! ! K " 4

#10 #5 0 5 10
#0.4
#0.2

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

Α

S!
4"

FIG. 6. (Color online) The staggering S(4) given by Z(4)-
Sextic for α ∈ [−10, 10] is compared with the values yielded
by the Z(4) and Z(4)-β2 models.

ally called Z(4)-Sextic, in connection with the precedent
Z(4) solution where an infinite square well potential was
considered. Choosing a quasi-exactly solvable form for
the sextic potential, a finite set of states was analyti-
cally determined. The corresponding eigenvalue prob-
lem is exactly solved in the case of ground and β bands,
while for the γ band states an approximation is involved.
The difference from the former quasi-exactly solvable sex-
tic potential approaches [25–28], is the introduction of a
completely different scheme for angular momentum attri-
bution which satisfy the condition of constant potential.
Also it is the first time when the scaling property of the
problem is employed to describe the properties of the
quasi-exactly solvable sextic potential. Indeed, as was
shown in Section III, the model depends up to a scaling
factor on a single parameter. Taking advantage of this
property, one studied the evolution of the energy spec-
tra and the corresponding transition probabilities when
the free parameter is varied through different shapes of
the associated sextic potential. For two values of the free
parameter, the potential has one vanishing term. The
spectra normalized to the energy of the first exited state
and the B(E2) transitions normalized to the transition
between the first excited state and the ground state cal-
culated with the present model for these special cases,
constitute parameter independent realizations of the as-
sociated simplified sextic potentials.

A detailed comparison to the Z(4) and Z(4)-β2 models,
especially in terms of the energy spectrum, revealed that
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the present formalism approximate quite well the former
in its critical point, and exactly reproduces the latter in
the asymptotic limit of the free parameter. These facts
suggest the consistency of the approximation used for the
treatment of the γ band states.
Numerical applications were performed for

128,130,132Xe and 192,194,196Pt isotopes. The results
of the fits have a qualitative character, showing that
the experimental realization of triaxial γ rigidity is very
much possible. Especially encouraging in this sense is
the reproduction of the 194Pt spectrum.
Concluding, one should say that the theoretical value

of the proposed model resides in the fact that it adds to

the few exactly solvable solutions of the collective model
concerning only the ground and β bands, while its spe-
cial cases contribute to the even more restrained set of
parameter free models.
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FIG. 7. The theoretical energy spectra, given by Eq. (3.27), are compared with the experimental data [40–42] of the 128,130,132Xe
isotopes and with the Z(4) model predictions
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FIG. 8. The same as in Fig. 7, but for the experimental data [43–45] of the 192,194,196Pt isotopes.


