

Application of the sextic oscillator potential together with Mathieu and SPHEROIDAL FUNCTIONS FOR TRIAXIAL AND X(5) TYPE NUCLEI

Apolodor A. Raduta and Petricǎ Buganu

Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, RO-077125, Romania, EU

Introduction

The Bohr-Mottelson model [1] describes collective low-lying states of the quadrupole heavy nuclei in terms of vibrations and rotations of the nuclear surface:

$$
R_{k}=R_{0}\left[1+\frac{5}{4 \pi} \beta \cos \left(\gamma-\frac{2 \pi}{3} k\right)\right], \quad k=1,2,3 .
$$

(1)

Here, R_{k} are the radii of the ellipsoid, R_{0} is the radius of the spherical nucleus, while β and γ denote the intrinsic deformation coordinates. For $\beta=0$, in Eq.(1), we obtain a sphere while for $\beta \neq 0$ the shape is an ellipsoid as in Fig. 1 [2].

Figure 1: For $\gamma=0^{0}, 120^{0}, 240^{\circ}, 360^{\circ}$ and $\gamma=60^{\circ}, 180^{\circ}, 300^{\circ}$ we get prolate and oblate shapes, respectively. Between this γ values a triaxial shape appears.

The energy potential of the generalized Bohr-Mottelson Hamiltonian [3],
$\begin{aligned} \hat{H}= & -\frac{\hbar^{2}}{2 B}\left[\frac{1}{\beta^{4}} \frac{\partial}{\partial \beta} \beta^{\frac{4}{4}} \frac{\partial}{\partial \beta}+\frac{1}{\beta^{2}}\left(\frac{1}{\sin 3 \gamma} \frac{\partial}{\partial \gamma} \sin 3 \gamma \frac{\partial}{\partial \gamma}-\sum_{k=1}^{3} \frac{\hat{Q}_{k}^{2}}{4 \sin ^{2}\left(\gamma-\frac{2 \pi}{3} k\right)}\right)\right] \\ & +V(\beta, \gamma),\end{aligned}$
depends on both β and γ variables, in order to describe oscillations around deformed equilibrium shapes. Here, with Q_{k} are denoted the intrinsic angular momentum components. A great interest in solving the eigenvalue problem of the Hamiltonian given by Eq. (2) appeared when nuclei being close to the critical points of some shape phase transition were very well described by analytical solutions of it. The $\mathrm{E}(5)$ [4] solution describes the critical point of the transition between spherical and γ-unstable shape phase, while the one associated to the transition between spherical and symmetric shape phase is called X(5) [5]. Other two solutions for critical points were proposed short after that, namely $\mathrm{Y}(5)$ [6] and $\mathrm{Z}(5)$ [7], for the axial-triaxial shape phase transition and for the prolate-oblate shape phase transition, respectively.

In the present poster, we present new interesting solutions for the Hamiltonian (2), namely, Sextic and Mathieu Approach (SMA) $[8,9,10]$ and Sextic and Spheroidal Approach (SSA) [11], respectively. SMA represents a realistic tool for the description of triaxial nuclei having axial deformations close to $\pi / 6$, while SSA works very well for X(5) candidate nuclei.

New solutions for the generalized Bohr-Mottelson Hamiltonian

The separation of variables
The Bohr-Mottelson Hamiltonian [1] is amended with a potential which depends on both β and γ deformation variables [12,13],

$$
V(\beta, \gamma)=V_{1}(\beta)+\frac{V_{2}(\gamma)}{\beta^{2}}
$$

(3)
which allows us to separate the β variable from the γ variable and the three Euler angles θ_{1}, θ_{2} and θ_{3}, which are still coupled due to the rotational term:

$$
\hat{W}=\frac{1}{4} \sum_{k=1}^{3} \frac{\hat{Q}_{k}^{2}}{\sin ^{2}\left(\gamma-\frac{2 \pi}{3} k\right)}
$$

(4)

Further, by performing a second order expansion of the rotational term W around $\gamma_{0}=0$ and $\gamma_{0}=\pi / 6$ for $\mathbf{X}(5)$ type nuclei and triaxial nuclei respectively, and then averaging the resulting terms with specific Wigner functions, a complete separation of variables is achieved. The expansion is done such that the periodicity of the γ Hamiltonian to be preserved. The resulted equations are

When the rotational term is expanded around $\gamma_{0}=0$ we have
$\left.\left.W=2-\frac{2}{3} L(L+1)+\left(\frac{1}{\tan ^{2} 2}-\frac{1}{3}\right) K^{2}+\frac{2}{3}(L L+1)-k^{2}\right)^{2}\right\}$
while around $\gamma_{0}=\pi / 6$ we have
$\bar{i}=2-\frac{-3}{4} R^{2}+\left(\operatorname{tot}(L+1)-\frac{38}{4} R^{2}\right)\left(\gamma-\frac{\pi}{6}\right)^{2}$
$L(L+1), R$ and K are the eigenvalues of the total intrinsic angular momentul \hat{Q} and of its projections on the axis 1 and 3 , respectively

Solution of the β equation

The Schrödinger equation for the β variable is quasi-exactly solved. Making the change of funtion $f(\beta)=\beta^{-2} \varphi(\beta)$ we have:
of the SSA results with experimental data of several X(5) candidate nuclei as
$1760,1780 \mathrm{Os}, 180 \mathrm{Os}, 188 \mathrm{O},{ }^{190} \mathrm{Os},{ }^{150} \mathrm{Nd},{ }^{170} \mathrm{~W},{ }^{156} \mathrm{Dy}{ }^{166} \mathrm{Hf}$ and ${ }^{168} \mathrm{Hf}$, was

A sextic oscillator with centrifugal barrier potential is considered for the β equation, in order to realistically describe the experimental data of the well deformed nuclei:
$v_{1}^{ \pm}(\beta)=\left(b^{2}-4 a c^{ \pm}\right) \beta^{2}+2 a b \beta^{4}+a^{2} \beta^{6}+u_{0}^{ \pm}, c^{ \pm}=\frac{L}{2}+\frac{5}{4}+M$.
Here, c is a constat which has two different values, one for L even and other for L odd:

$$
\begin{aligned}
& (M, L):(k, 0) ;(k-1,2) ;(k-2,4) ; \ldots \Rightarrow c=k+\frac{5}{4} \equiv c^{+}(L \text {-even }), \\
& (M, L):(k, 1) ;(k-1,3) ;(k-2,5) ; \ldots \Rightarrow c=k+\frac{7}{4} \equiv c^{-}(L \text {-odd })
\end{aligned}
$$

The constants $u_{0}^{ \pm}$are fixed such that the potential for L odd to have the same minimum energy with the potential for L even. The solutions of Eq. (10), with the potential given by the Eq. (11), are

$$
\begin{equation*}
\varphi_{n_{\beta}, L}^{(M)}(\beta)=N_{n_{\beta}, L} P_{n_{\beta}, L}^{(M)}\left(\beta^{2}\right) \beta^{L+1} e^{-\frac{a}{4} \beta^{4}-\frac{b}{2} \beta^{2}}, n_{\beta}=0,1,2, \ldots M \tag{14}
\end{equation*}
$$

where $N_{n_{\beta}, L}$ are the normalization factor, while $P_{n_{\beta}, L}^{(M)}\left(\beta^{2}\right)$ are polynomials in x^{2} of n_{β} order. The corresponding excitation energy is:

$$
\begin{equation*}
E_{\beta}\left(n_{\beta}, L\right)=\frac{\hbar^{2}}{2 B}\left[b(2 L+3)+\lambda_{n_{\beta}}^{(M)}(L)+u_{0}^{ \pm}\right], n_{\beta}=0,1,2, \ldots, M \tag{15}
\end{equation*}
$$

where $\lambda_{n_{\beta}}^{(M)}=\varepsilon_{\beta}-u_{0}^{ \pm}-4 b s$ is the eigenvalue of the equation

$$
\left[-\frac{\partial^{2}}{\partial \beta^{2}}-\frac{4 s-1}{\beta} \frac{\partial}{\partial \beta}+2 b \beta \frac{\partial}{\partial \beta}+2 a \beta^{2}\left(\beta \frac{\partial}{\partial \beta}-2 M\right)\right] P_{n_{\beta}, L}^{(M)}=\lambda_{n_{\beta}}^{(M)} P_{n_{\beta}, L}^{(M)}
$$

Solutions of the γ equations

Concerning the γ equation, its solution depends if we consider axial symmetric or triaxial nuclei. The potential in γ is chosen such that to exhibit minima in $\gamma=0$ and $\gamma=\pi / 6$:

$$
\begin{equation*}
v_{2}(\gamma)=u_{1} \cos 3 \gamma+u_{2} \cos ^{2} 3 \gamma \tag{17}
\end{equation*}
$$

Performing a second order expansion around $\gamma_{0}=0$ in $\sin 3 \gamma$ of $v_{2}(\gamma)$ and of the terms coming from the rotational term and then making the change of variable $x=\cos 3 \gamma$ in Eq. (6) we obtain the spheroidal equation [14]:

$$
\begin{align*}
& {\left[\left(1-x^{2}\right) \frac{\partial^{2}}{\partial x^{2}}-2 x \frac{\partial}{\partial x}+\lambda_{m_{\gamma}, n_{\gamma}}-c^{2} x^{2}-\frac{m_{\gamma}^{2}}{1-x^{2}}\right] S_{m_{\gamma}, n_{\gamma}}(x)=0,} \tag{18}\\
& \lambda_{m_{\gamma}, n_{\gamma}}=\frac{1}{9}\left[\tilde{\varepsilon}_{\gamma}-\frac{u_{1}}{2}-\frac{11}{27} D+\frac{1}{3} L(L+1)\right]+\frac{2 L(L+1)}{27}, \\
& c^{2}=\frac{1}{9}\left(\frac{u_{1}}{2}+u_{2}-\frac{2}{27} D\right), \tag{19}\\
& m_{\gamma}=\frac{K}{2}, \quad D=L(L+1)-K^{2}-2 .
\end{align*}
$$

For triaxial nuclei, setting $u_{1}=0$ and expanding this time around $\pi / 6$, after some steps, we get the Mathieu equation [8]:

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial y^{2}}+a-2 q \cos 2 y\right) \mathcal{M}(y)=0, \quad y=3 \gamma \tag{20}
\end{equation*}
$$

$\left.=9=\frac{1}{56}\left(\frac{10}{9} L L L+1\right)-\frac{13}{12} R^{2}+\mu-\frac{9}{4}\right), a=\frac{1}{9}\left(\varepsilon_{2}+\frac{3}{4} R^{2}+\frac{5}{2}\right)-24 \cdot(21)$ The γ functions are normalized to unity with the integration measure $|\sin 3| \gamma d \gamma$ as the Bohr-Mottelson model requires:

$$
\begin{equation*}
\frac{3\left(2 n_{\gamma}+1\right)\left(n_{\gamma}-m_{\gamma}\right)!}{2\left(n_{\gamma}+m_{\gamma}\right)!} \int_{0}^{\frac{\pi}{3}}\left|S_{m_{\gamma}, n_{\gamma}}(\cos 3 \gamma)\right|^{2}|\sin 3 \gamma| d \gamma=1 \tag{22}
\end{equation*}
$$

$N_{L, R, n_{\gamma}}^{2} \int_{0}^{2 \pi}\left|\phi_{L, R, n_{\gamma}}(\gamma)\right|^{2}|\sin 3 \gamma| d \gamma=\frac{6}{\pi} \int_{0}^{\frac{\pi}{3}}\left|M_{L, R, n_{\gamma}}(3 \gamma)\right|^{2} d \gamma=1$ The total energy of the nuclear system is obtained by adding the contributions coming from the β and the γ equations.
Electromagnetic tranzitions
The reduced E2 transition probabilities are determined using the following formula:
$\left.B\left(E 2 ; L_{i} \rightarrow L_{f}\right)=\left|\left\langle L_{i} \| T_{2}^{(E 2)}\right|\right| L_{f}\right\rangle\left.\right|^{2}$

$$
\text { where } \quad \begin{array}{r}
T_{2 \mu}^{(E 2)}= \\
t_{1} \beta\left[\cos \gamma D_{\mu 0}^{2}+\frac{\sin \gamma}{\sqrt{2}}\left(D_{\mu 2}^{2}+D_{\mu,-2}^{2}\right)\right]+ \\
\\
\\
t_{2} \sqrt{\frac{2}{7}} \beta^{2}\left[-\cos 2 \gamma D_{\mu 0}^{2}+\frac{\sin 2 \gamma}{\sqrt{2}}\left(D_{\mu 2}^{2}+D_{\mu,-2}^{2}\right.\right.
\end{array}
$$

Comparing the results for ${ }^{188}$ Os presented in Tables, we can see that the
agreement with experimental data, for both energy spectrum and $E 2$ transi-
Comparing the results for ${ }^{188} \mathrm{Os}$ presented in Tables, we can see that the
best agreement with experimental data, for both energy spectrum and $E 2$ transition probabilities, is obtained with SSA.

Conclusions

The main contributions of this work are

SSA and SMA represent realistic tools for the description of X(5) candidate nuclei and of triaxial nuclei with equilibrium shapes close to $\gamma_{0}=\pi / 6$. A salient feature of our investigations consists of that the Mathieu and spheroidal functions are periodic, defined on bounded intervals and normalized to unity with the integration measure $|\sin 3 \gamma| d \gamma$, preserving in this way the her miticity of the initial γ Hamiltonian
Highlighting the fact that the Coherent State Model works very well also for nuclei being in critical points of the shape phase transitions

References

[1] A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26 (1952) no.14; A.Bohr and B.Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27 (1953) no. 16; [2] L. Fortunato , Eur. Phys. J. A 26, s01, 1-30 (2005). [3] A. Faessler and W. Greiner, Z Phys. 168 (1962) 425; 170 (1962) 105; 177 (1964) 190; A. Faessler, W. Greine and R. Sheline, Nucl. Phys. 70 (1965) 33. [4] F. Iachello, Phys. Rev. Lett. 85 (2000) 3580. [5] F. Iachello, Phys. Rev. Lett. 87 (2001) 052502. [6] F. Iachello Phys. Rev. Lett. 91132502 (2003). [7] D. Bonatsos, D. Lenis, D. Petrellis P.A. Terziev,Phys. Lett. B 588, 172 (2004). [8] A. A. Raduta and P. Buganu Phys. Rev. C 83, 034313 (2011). [9] P. Buganu, A. A. Raduta and A. Faessler J. Phys. G: Nucl. Part. Phys. 39, 025103 (2012). [10] P. Buganu and A. A Raduta, Rom. Journ. Phys. 57, 1103-1112 (2012). [11] A. A. Raduta and P Raduta, Rom. Journ. Phys. 57, 1103-1112 (2012). [11] A. A. Raduta and P
Buganu, J. Phys. G: Nucl. Part. Phys. 40, 025108 (2013). [12] L. Wilets and Buganu, J. Phys. G: Nucl. Part. Phys. 40, 025108 (2013). [12] L. Wilets and
M. Jean, Phys. Rev.102, 788 (1956). [13] L. Fortunato, Eur. J. Phys. A 26, s01 1 (2005). [14] A. A. Raduta, A. C. Gheorghe, P. Buganu and A. Faessler, Nucl Phys. A 819, 46 (2009). [15] A. A. Raduta, V. Ceausescu, A. Gheorghe and R M. Dreizler, Phys. Lett. 99B (1981) 444; Nucll. Phys. A381 (1982) 253. [16] C. Y. Wu et al.,Nucl. Phys. A A 607 (1996) 178. [17] Coral M. Baglin,Nuclear Data Sheets 84, 717 (1998). [18] Balraj Singh, Nuclear Data Sheets 95, 387 (2002). In Refs. [8,9,10], the SMA was successfully applied for several triaxial
nuclei, ${ }^{188} \mathrm{Os},{ }^{190} \mathrm{Os},{ }^{192} \mathrm{Os},{ }^{228} \mathrm{Th},{ }^{230} \mathrm{Th},{ }^{180} \mathrm{Hf}$ and ${ }^{182} \mathrm{~W}$, chosen according to a certain signature of the rigid triaxial rotor. In Ref. [11], a good agreement

For SMA, the numerical results for ${ }^{192}$ Os are shown in Fig. 2. Both, energetic spectrum and reduced probability transitions are very well explained by the SMA and CSM. Also, the staggering behavior of the γ band is reproduced by the SMA.

Figure 2: Excitation energies, given in keV , for ground, beta and gamma bands and E2 transition probabilities of ${ }^{192} \mathrm{Os}$, calculated with SMA and CSM, are compared with the corresponding experimental data $[16,17]$ Experimental and theoretical staggering $S(J)$.
Tables: Excitation energies (left side), given in keV units, for ground, beta and gamma bands and the reduced E2 transition probabilities of ${ }^{188} \mathrm{Os}$, calculated with SSA, CSM, X(5), ISW and D models. The experimental data are taken from Ref. [18].

or triaxial nuclei, in the expression of the transition operetor (25) γ is substi-

tuted with

The models developed in this way are conventionally called the Sextic and
Spheroidal Approach (SSA) and the Sextic and Mathieu Approach (SMA)

Numerical results

 ${ }^{176} \mathrm{Os},{ }^{178} \mathrm{Os},{ }^{180} \mathrm{Os},{ }^{188} \mathrm{Os},{ }^{190} \mathrm{Os},{ }^{150} \mathrm{Nd},{ }^{170} \mathrm{~W},{ }^{156} \mathrm{Dy},{ }^{166} \mathrm{Hf}$ and ${ }^{168} \mathrm{Hf}$, was obtained. In Ref. [11], the SSA results were compared with those yielded by X(5), ISW [14], D [14] and Coherent State Model (CSM) [15]. From space reasons we present here only an example of nucleus for each of the models, SMA
INTERNATIONAL NUCLEAR PHYSICS CONFERENCE, FLORENCE (ITALY), 2-7 June 2013

