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Introduction

The Bohr-Mottelson model [1] describes collective low-lying states of
the quadrupole heavy nuclel in terms of vibrations and rotations of the nuclear
surface:

2
R = Ry 1—|—36€OS 7——7Tk , k=1,2,3. (1)
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Here, RR;. are the radui of the ellipsoid, 1R 1s the radius of the spherical nucleus,
while £ and v denote the intrinsic deformation coordinates. For 5 = 0, in Eq.(1),
we obtain a sphere while for 3 # 0 the shape is an ellipsoid as in Fig.1 [2].
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FIGURE 1: For~v = 0, 120", 240", 360" and v = 60", 180", 300” we get pro-
late and oblate shapes, respectively. Between this « values a triaxial shape
appears.

The energy potential of the generalized Bohr-Mottelson Hamiltonian [3],
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depends on both £ and ~ variables, in order to describe oscillations around de-
formed equilibrium shapes. Here, with ();. are denoted the intrinsic angular
momentum components. A great interest in solving the eigenvalue problem of
the Hamiltonian given by Eq. (2) appeared when nuclei being close to the criti-
cal points of some shape phase transition were very well described by analytical
solutions of it. The E(5) [4] solution describes the critical point of the transi-
tion between spherical and v—unstable shape phase, while the one associated to
the transition between spherical and symmetric shape phase is called X(5) [3].
Other two solutions for critical points were proposed short after that, namely
Y(S) [6] and Z(5) [7], for the axial-triaxial shape phase transition and for the
prolate-oblate shape phase transition, respectively.

In the present poster, we present new interesting solutions for the Hamil-
tonian (2), namely, Sextic and Mathieu Approach (SMA) [8,9,10] and Sextic
and Spheroidal Approach (SSA) [11], respectively. SMA represents a realistic
tool for the description of triaxial nuclei having axial deformations close to 7 /6,
while SSA works very well for X(5) candidate nuclei.

New solutions for the generalized Bohr-Mottelson Hamiltonian

The separation of variables

The Bohr-Mottelson Hamiltonian [1] 1s amended with a potential which
depends on both 5 and v deformation variables [12,13],
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RN
which allows us to separate the [ variable from the -y variable and the three Euler
angles 61,05 and 63, which are still coupled due to the rotational term:

V(B,7) = Vi(B) + (3)
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Further, by performing a second order expansion of the rotational term W around
v = 0 and v9 = 7/6 for X(5) type nuclei and triaxial nuclei respectively, and
then averaging the resulting terms with specific Wigner functions, a complete
separation of variables 1s achieved. The expansion is done such that the period-
icity of the v Hamiltonian to be preserved. The resulted equations are:
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where the following notations are used:
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When the rotational term 1s expanded around vy = 0 we have

. 2 1 1 2
W:2——L(L+1)+< — ——)K2+—[L(L+1)—k2]72, (8)
3 4sincy 3 3

while around vy = 7/6 we have
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L(L + 1), R and K are the eigenvalues of the total intrinsic angular momentul
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() and of its projections on the axis 1 and 3, respectively.

Solution of the 3 equation
The Schrodinger equation for the S variable is quasi-exactly solved. Mak-
ing the change of funtion f(5) = 8~ y(/3) we have:
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A sextic oscillator with centrifugal barrier potential is considered for the 5 equa-
tion, in order to realistically describe the experimental data of the well deformed
nuclei:

4+ + L 5

fuf(ﬁ) — (b2 - 4aci)62 +2abB* + a0 + Uy, € =5 + 1 + M. (11)

Here, c is a constat which has two different values, one for L even and other for
L odd:

(M,L): (k,0):(k—1,2);(k—2,4);... >c=k+-=c" (L-even), (12)

(M,L): (k,1);(k—1,3);(k—2,5);...>c=k+-=c¢ (L-odd). (13)

The constants u(jf are fixed such that the potential for L. odd to have the same

minimum energy with the potential for L even. The solutions of Eq. (10), with
the potential given by the Eq. (11), are

oM (8) = Ny, PN ()0 e 0 g =012 M, (14)
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where N, 1 are the normalization factor, while Png, 7 (%) are polynomials in

z?of n s order. The corresponding excitation energy 1s:
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where AE{K) = €45 — uOi — 4bs 1s the eigenvalue of the equation:
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(16)
Solutions of the v equations
Concerning the v equation, its solution depends 1f we consider axial sym-
metric or triaxial nuclei. The potential in v is chosen such that to exhibit minima
iny=0and vy = 7/6:

va(7) = uq cos 3y + ug cos® 3. (17)

Performing a second order expansion around ~y = 0 in sin 37 of vo(y) and of the
terms coming from the rotational term and then making the change of variable
x = cos 3y In Eq. (6) we obtain the spheroidal equation [14]:
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For triaxial nuclei, setting u; = 0 and expanding this time around 7 /6, after
some steps, we get the Mathieu equation [8]:

(92
(2 + a — 2q cos 2y> M(y) =0, y=3v, (20)
dy
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The ~ functions are normalized to unity with the integration measure | sin 3|yd-y
as the Bohr-Mottelson model requires:
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The total energy of the nuclear system is obtained by adding the contributions
coming from the 5 and the v equations.

Electromagnetic tranzitions

The reduced E2 transition probabilities are determined using the following
formula:

E?
B(E2: L — Ly) = (LTS IL )P, (24)
where TQ(/?Q) = 118 [cos WD/%O + 81\3;(1)32 + D2,2)] +
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For triaxial nuclei, in the expression of the transition operetor (25) v 1s substi-
tuted with v — 270 /3.

The models developed in this way are conventionally called the Sextic and
Spheroidal Approach (SSA) and the Sextic and Mathieu Approach (SMA).

Numerical results

In Refs. [8,9,10], the SMA was successfully applied for several triaxial
nuclei, 18808, 19003, 19203, 228Th, 2?’OTh, I80Hf and 182W, chosen according to
a certain signature of the rigid triaxial rotor. In Ref. [11], a good agreement
of the SSA results with experimental data of several X(5) candidate nucle1 as
17608, 17808, 18008, 18808, 19008, 150Nd, 17OW, 156Dy, 166Hf and 168Hf, Was
obtained. In Ref. [11], the SSA results were compared with those yielded by
X(5),ISW [14], D [14] and Coherent State Model (CSM) [15]. From space rea-
sons we present here only an example of nucleus for each of the models, SMA
and SSA.
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For SMA, the numerical results for 19205 are shown in Fig. 2. Both, en-
ergetic spectrum and reduced probability transitions are very well explained by
the SMA and CSM. Also, the staggering behavior of the v band is reproduced
by the SMA.
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FIGURE 2: Excitation energies, given in keV, for ground, beta and gamma
bands and E2 transition probabilities of 1720s, calculated with SMA and
CSM, are compared with the corresponding experimental data [16,17] .
Experimental and theoretical staggering S(.J).

Tables: Excitation energies (left side), given in keV units, for ground, beta and
gamma bands and the reduced E2 transition probabilities of 18305, calculated
with SSA, CSM, X(5), ISW and D models. The experimental data are taken
from Ref. [18].
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Comparing the results for 18505 presented in Tables, we can see that the
best agreement with experimental data, for both energy spectrum and E2 transi-
tion probabilities, 1s obtained with SSA.

Conclusions

The main contributions of this work are:

SSA and SMA represent realistic tools for the description of X(5) candi-
date nuclei and of triaxial nuclei with equilibrium shapes close to v = /6.

A salient feature of our investigations consists of that the Mathieu and
spheroidal functions are periodic, defined on bounded intervals and normalized
to unity with the integration measure | sin 3-y|d-y, preserving in this way the her-
miticity of the initial v Hamiltonian.

Highlighting the fact that the Coherent State Model works very well also
for nuclei being in critical points of the shape phase transitions.
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