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Introduction

The Bohr-Mottelson model [1] describes collective low-lying states of
the quadrupole heavy nuclei in terms of vibrations and rotations of the nuclear
surface:
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, k = 1, 2, 3. (1)

Here, Rk are the radii of the ellipsoid, R0 is the radius of the spherical nucleus,
while β and γ denote the intrinsic deformation coordinates. For β = 0, in Eq.(1),
we obtain a sphere while for β "= 0 the shape is an ellipsoid as in Fig.1 [2].

FIGURE 1: For γ = 00, 1200, 2400, 3600 and γ = 600, 1800, 3000 we get pro-
late and oblate shapes, respectively. Between this γ values a triaxial shape
appears.

The energy potential of the generalized Bohr-Mottelson Hamiltonian [3],
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depends on both β and γ variables, in order to describe oscillations around de-
formed equilibrium shapes. Here, with Qk are denoted the intrinsic angular
momentum components. A great interest in solving the eigenvalue problem of
the Hamiltonian given by Eq. (2) appeared when nuclei being close to the criti-
cal points of some shape phase transition were very well described by analytical
solutions of it. The E(5) [4] solution describes the critical point of the transi-
tion between spherical and γ−unstable shape phase, while the one associated to
the transition between spherical and symmetric shape phase is called X(5) [5].
Other two solutions for critical points were proposed short after that, namely
Y(5) [6] and Z(5) [7], for the axial-triaxial shape phase transition and for the
prolate-oblate shape phase transition, respectively.

In the present poster, we present new interesting solutions for the Hamil-
tonian (2), namely, Sextic and Mathieu Approach (SMA) [8,9,10] and Sextic
and Spheroidal Approach (SSA) [11], respectively. SMA represents a realistic
tool for the description of triaxial nuclei having axial deformations close to π/6,
while SSA works very well for X(5) candidate nuclei.

New solutions for the generalized Bohr-Mottelson Hamiltonian

The separation of variables

The Bohr-Mottelson Hamiltonian [1] is amended with a potential which
depends on both β and γ deformation variables [12,13],

V (β, γ) = V1(β) +
V2(γ)

β2
, (3)

which allows us to separate the β variable from the γ variable and the three Euler
angles θ1,θ2 and θ3, which are still coupled due to the rotational term:
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Further, by performing a second order expansion of the rotational termW around
γ0 = 0 and γ0 = π/6 for X(5) type nuclei and triaxial nuclei respectively, and
then averaging the resulting terms with specific Wigner functions, a complete
separation of variables is achieved. The expansion is done such that the period-
icity of the γ Hamiltonian to be preserved. The resulted equations are:
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where the following notations are used:

v1(β) =
2B

!2
V1(β), v2(γ) =

2B

!2
V2(γ), εβ =

2B

!2
Eβ, ε̃γ = 〈β2〉

2B

!2
Eγ. (7)

When the rotational term is expanded around γ0 = 0 we have
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while around γ0 = π/6 we have
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L(L + 1), R and K are the eigenvalues of the total intrinsic angular momentul
Q̂ and of its projections on the axis 1 and 3, respectively.

Solution of the β equation
The Schrödinger equation for the β variable is quasi-exactly solved. Mak-

ing the change of funtion f (β) = β−2ϕ(β) we have:
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ϕ(β) = εβϕ(β). (10)

A sextic oscillator with centrifugal barrier potential is considered for the β equa-
tion, in order to realistically describe the experimental data of the well deformed
nuclei:
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Here, c is a constat which has two different values, one for L even and other for
L odd:
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4
≡ c− (L-odd). (13)

The constants u±0 are fixed such that the potential for L odd to have the same
minimum energy with the potential for L even. The solutions of Eq. (10), with
the potential given by the Eq. (11), are
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where Nnβ,L are the normalization factor, while P
(M)
nβ,L

(β2) are polynomials in
x2 of nβ order. The corresponding excitation energy is:
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where λ(M)
nβ = εβ − u±0 − 4bs is the eigenvalue of the equation:
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Solutions of the γ equations
Concerning the γ equation, its solution depends if we consider axial sym-

metric or triaxial nuclei. The potential in γ is chosen such that to exhibit minima
in γ = 0 and γ = π/6:

v2(γ) = u1 cos 3γ + u2 cos
2 3γ. (17)

Performing a second order expansion around γ0 = 0 in sin 3γ of v2(γ) and of the
terms coming from the rotational term and then making the change of variable
x = cos 3γ in Eq. (6) we obtain the spheroidal equation [14]:
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, D = L(L + 1)−K2 − 2.

For triaxial nuclei, setting u1 = 0 and expanding this time around π/6, after
some steps, we get the Mathieu equation [8]:
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The γ functions are normalized to unity with the integration measure | sin 3|γdγ
as the Bohr-Mottelson model requires:
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The total energy of the nuclear system is obtained by adding the contributions
coming from the β and the γ equations.

Electromagnetic tranzitions
The reduced E2 transition probabilities are determined using the following

formula:
B(E2;Li → Lf ) = |〈Li||T
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For triaxial nuclei, in the expression of the transition operetor (25) γ is substi-
tuted with γ − 2π/3.
The models developed in this way are conventionally called the Sextic and
Spheroidal Approach (SSA) and the Sextic and Mathieu Approach (SMA).

Numerical results

In Refs. [8,9,10], the SMA was successfully applied for several triaxial
nuclei, 188Os, 190Os, 192Os, 228Th, 230Th, 180Hf and 182W, chosen according to
a certain signature of the rigid triaxial rotor. In Ref. [11], a good agreement
of the SSA results with experimental data of several X(5) candidate nuclei as
176Os, 178Os, 180Os, 188Os, 190Os, 150Nd, 170W, 156Dy, 166Hf and 168Hf, was
obtained. In Ref. [11], the SSA results were compared with those yielded by
X(5), ISW [14], D [14] and Coherent State Model (CSM) [15]. From space rea-
sons we present here only an example of nucleus for each of the models, SMA
and SSA.

For SMA, the numerical results for 192Os are shown in Fig. 2. Both, en-
ergetic spectrum and reduced probability transitions are very well explained by
the SMA and CSM. Also, the staggering behavior of the γ band is reproduced
by the SMA.
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FIGURE 2: Excitation energies, given in keV, for ground, beta and gamma
bands and E2 transition probabilities of 192Os, calculated with SMA and
CSM, are compared with the corresponding experimental data [16,17] .
Experimental and theoretical staggering S(J).

Tables: Excitation energies (left side), given in keV units, for ground, beta and
gamma bands and the reduced E2 transition probabilities of 188Os, calculated
with SSA, CSM, X(5), ISW and D models. The experimental data are taken
from Ref. [18].

Comparing the results for 188Os presented in Tables, we can see that the
best agreement with experimental data, for both energy spectrum and E2 transi-
tion probabilities, is obtained with SSA.

Conclusions

The main contributions of this work are:
SSA and SMA represent realistic tools for the description of X(5) candi-

date nuclei and of triaxial nuclei with equilibrium shapes close to γ0 = π/6.
A salient feature of our investigations consists of that the Mathieu and

spheroidal functions are periodic, defined on bounded intervals and normalized
to unity with the integration measure | sin 3γ|dγ, preserving in this way the her-
miticity of the initial γ Hamiltonian.

Highlighting the fact that the Coherent State Model works very well also
for nuclei being in critical points of the shape phase transitions.
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