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Abstract
The generalized coherent state model (GCSM), proposed previously for a
unified description of magnetic and electric collective properties of nuclear
systems, is extended to account for the chiral-like properties of nuclear systems.
To a phenomenological core described by the GCSM, a set of interacting
particles is coupled. Among the particle–core states, one identifies a finite
set which has the property that the angular momenta carried by the proton
and neutron quadrupole bosons and the particles, respectively, are mutually
orthogonal. All terms of the model Hamiltonian satisfy the chiral symmetry
except for the spin–spin interaction. The magnetic properties of the particle–
core states, where the three mentioned angular momenta are orthogonal, are
studied. A quantitative comparison of these features with the similar properties
of states, where the three angular momenta belong to the same plane, is
performed.

Keywords: coherent states, chiral symmetry, twin bands, chiral properties,
magnetic bands

(Some figures may appear in colour only in the online journal)

1. Introduction

The rotational spectra appear to be a reflection of a spontaneous rotational symmetry breaking
when the nuclear system acquires a static nuclear deformation. The fundamental nuclear
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properties like nuclear shape, the nuclear mass and charge distribution inside the nucleus,
electric and magnetic moments, collective spectra may be evidenced through the system
interaction with an electromagnetic field. The two components of the field, electric and
magnetic, are used to explore the properties of electric and magnetic nature, respectively.
At the end of the last century, the scissors-like states [1, 2] as well as the spin-flip excitations
[3] have been widely treated by various groups. Some of them were based on phenomenological
assumptions while the other ones on microscopic considerations. The scissors-like excitations
are excited in (e,e′) experiments at backward angles and expected at an energy of about
2–3 MeV, while the spin-flip excitations are seen in (p,p′) experiments at forward angles and
are located at about 5–10 MeV. The scissors mode describes the angular oscillation of the
proton against neutron system and the total strength is proportional to the nuclear deformation
squared which reflects the collective character of the excitation. Many papers have been
written on this subject, and therefore it is difficult to quote all of them. We mention however
two reviews given in [3, 4].

Since the total M1 strength of the scissors mode is proportional to the nuclear deformation
squared, it was believed that the magnetic collective properties are in general associated with
deformed systems. This is not true due to the magnetic dipole bands, where the ratio between
the moment of inertia and the B(E2) value for exciting the first 2+ from the ground state
0+, I (2)/B(E2), takes large values of the order of 100(eb)−2MeV−1. These large values can
be justified by a large transverse magnetic dipole moment (perpendicular to the total angular
momentum) which induces dipole magnetic transitions, but almost no charge quadrupole
moment [5]. Indeed, there are several experimental data showing that the dipole bands have
large values for B(M1) ∼ 3–6µ2

N and very small values of B(E2) ∼ 0.1(eb)2 (see for example
[6]). The states are different from the scissors mode, they being rather of a shears character.
A system with a large transverse magnetic dipole moment (the component of the magnetic
moment perpendicular to the total angular momentum) which was studied in many publications
may consist of a triaxial core to which a proton prolate and a neutron oblate hole orbital are
coupled. The interaction of particle- and hole-like orbitals is repulsive, which keeps the two
orbits apart from each other. In this way, the orthogonal angular momenta carried by the proton
particles and neutron holes are favored. The maximal transverse dipole momentum is achieved,
for example, when jp is oriented along the small axis of the core, jn along the long axis and
the core rotates around the intermediate axis. Suppose the three orthogonal angular momenta
form a right trihedral frame. If the Hamiltonian describing the interacting system of protons,
neutrons and the triaxial core is invariant to the transformation which changes the orientation
of one of the three angular momenta, i.e., the right trihedral frame is transformed to a left type,
one says that the system exhibits a chiral symmetry. As always happens, such a symmetry
is identified when that is broken and consequently to the two trihedrals correspond distinct
energies, otherwise close to each other. Thus, a signature for a chiral symmetry characterizing
a triaxial system is the existence of two !I = 1 bands which are close in energies. Increasing
the total angular momentum, the gradual alignment of jp and jn to the total J takes place and
a magnetic band is developed.

The question addressed in this paper is whether the picture of the three angular momenta
system, carried by a phenomenological core, a prolate and oblate single-particle orbitals, with
respect to which the chiral symmetry is defined, is unique for determining states connected
with large M1 transitions. Note that the nuclear system which accommodates the chiral frame
is odd–odd.

In the past, the magnetic states of orbital or of spin-flip nature were considered by
our group in several publications [7–16]. We also studied the dipole bands with Kπ = 1±

using a quadrupole and octupole boson Hamiltonian and a set of model states obtained by

2



J. Phys. G: Nucl. Part. Phys. 41 (2014) 035105 A A Raduta et al

parity and angular momentum projections from a quadrupole-deformed ground state without
space reflection symmetry [17]. We pointed out that the band 1+ has a magnetic character
while the dipole band 1− is of an electric type. In another publication [18], we pointed out
that the parity partner bands have the property that starting from a critical angular momentum,
the states have the property that the angular momenta carried by the quadrupole and octupole
bosons, respectively, are mutually orthogonal. Therefore, one may expect that adding to the
phenomenological Hamiltonian a set of interacting particles, one could achieve a configuration
where the angular momentum carried by nucleons is perpendicular on the quadrupole and
octupole angular momenta which are already orthogonal. The first attempt was already made
in [19].

Here we attempt another chiral system consisting of one phenomenological core with two
components, one for protons and one for neutrons, and two quasiparticles whose total angular
momentum is oriented along the symmetry axis of the core due to the particle–core interaction.
We investigate whether states of total angular momentum I, where the three components
mentioned above carry angular momenta, Jp, Jn, JF , which are mutually orthogonal, may
exist. We believe that if such a configuration exists, it is optimal for defining large transverse
magnetic moment inducing large M1 transitions.

2. The generalized coherent state model

The description of magnetic properties in nuclei has always been a central issue. The reason
is that the two systems of protons and neutrons respond differently when they interact with
an external electromagnetic field. Differences are due to the fact that by contrast to neutrons,
protons are charged particles, the proton and neutron magnetic moments are different from
each other and, finally, the proton and neutron numbers in a given nucleus are, in general,
different.

Many papers have been devoted to explaining various features of the collective dipole
mode called, conventionally, the scissors mode. The name of the mode was suggested by Lo
Iudice and Palumbo who interpreted the dipole mode, within the two-rotor model [1], as a
scissors-like oscillation of proton and neutron systems described by two axially symmetric
ellipsoids, respectively.

The coherent state model (CSM), proposed by Raduta et al to describe the lowest three
collective interacting bands [20], was extended by including the isospin degrees of freedom
in order to account for the collective properties of the scissors mode [21]. This extension is
conventionally called ‘the generalized CSM’ (GCSM).

The CSM starts with the construction of a restricted collective space by projecting out
the components of good angular momentum from three orthogonal quadrupole boson states.
These states are chosen such that they are orthogonal before and after the projection. One of
the three deformed states, the intrinsic ground state, is a coherent state of Glauber type with
respect to the zero component of the quadrupole boson, b†

20, while the other two are obtained
by acting with elementary boson polynomials on the ground state. In choosing the intrinsic
excited states, we take care that the projected states considered in the vibrational limit have to
provide the multi-phonon vibrational spectrum, while for the large deformation regime, their
behavior coincides with that predicted by the liquid drop model.

In contrast to the CSM, which uses only one boson for the composite system of protons
and neutrons, within the GCSM, the protons are described by quadrupole proton-like bosons,
b†

pµ, while the neutrons by quadrupole neutron-like bosons, b†
nµ. Since one deals with two

quadrupole bosons instead of one, one expects to have a more flexible model and to find a
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simpler solution satisfying the restrictions required by CSM. The restricted collective space
is defined by the states describing the three major bands, ground, beta and gamma, as well as
the band based on the isovector state 1+. Orthogonality conditions, required for both intrinsic
and projected states, are satisfied by the following six functions which generate by angular
momentum projection six rotational bands:

φ
(g)
JM = N(g)

J PJ
M0$g, $g = exp

[(
dpb†

p0 + dnb†
n0

)
− (dpbp0 + dnbn0)

]
|0〉,

φ
(β)
JM = N(β)

J PJ
M0&β$g,

φ
(γ )
JM = N(γ )

J PJ
M2

(
b†

n2 − b†
p2

)
$g,

φ̃
(γ )
JM = Ñ(γ )

J PJ
M2

(
&†

γ ,p,2 + &†
γ ,n,2

)
$g,

φ(1)
JM = N(1)

J PJ
M1

(
b†

nb†
p

)
11$g,

φ̃(1)
JM = Ñ(1)

J PJ
M1

(
b†

n1 − b†
p1

)
&†

β$g. (2.1)

Here, the following notations have been used:

&†
γ ,k,2 =

(
b†

kb†
k

)
22 + dk

√
2
7

b†
k2, k = p, n,

&†
β = &†

p + &†
n − 2&†

pn,

&†
k =

(
b†

kb†
k

)
0 −

√
1
5

d2
k , k = p, n,

&†
pn =

(
b†

pb†
n

)
0 −

√
1
5

d2
p. (2.2)

Note that apriori we cannot select one of the two sets of states φ
(γ )
JM and φ̃

(γ )
JM for the gamma

band, although one is symmetric and the other asymmetric against proton–neutron permutation.
The same is true for the two isovector candidates for the dipole states. In [22], results obtained
by using alternatively a symmetric and an asymmetric structure for the gamma band states
were presented. Therein, it was shown that the asymmetric structure for the gamma band
does not conflict any of the available data. By contrast, considering for the gamma states an
asymmetric structure and fitting the model Hamiltonian coefficients in the manner described
in [22], a better description for the beta band energies is obtained. Moreover, in that situation,
the description of the E2 transition becomes technically very simple. For these reasons, here
we make the option for a proton–neutron asymmetric gamma band.

All calculations performed so far considered equal deformations for protons and neutrons.
The deformation parameter for the composite system is

ρ =
√

2dp =
√

2dn ≡
√

2d. (2.3)

The factors N involved in the wavefunctions are normalization constants calculated in terms
of some overlap integrals.

We seek now an effective Hamiltonian for which the projected states (2.1) are, at least in
a good approximation, eigenstates in the restricted collective space. The simplest Hamiltonian
fulfilling this condition is

HGCSM = A1(N̂p + N̂n) + A2(N̂pn + N̂np) +
√

5
2

(A1 + A2)
(
&†

pn + &np
)

+A3
(
&†

p&n + &†
n&p − 2&†

pn&np
)
+ A4Ĵ2. (2.4)

Here N̂i with i = p, n, pn denotes the boson number operators:

N̂pn =
∑

m

b†
pmbnm, N̂np = (N̂pn)

†, N̂k =
∑

m

b†
kmbkm, k = p, n. (2.5)
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The Hamiltonian given by equation (2.4) has only one off-diagonal matrix element in the basis
(2.1), that is, 〈φβ

JM|H|φ̃(γ )
JM 〉. However, our calculations show that this affects the energies of

the β and γ̃ bands by an amount of a few keV. Therefore, the excitation energies of the six
bands are in a very good approximation, given by the diagonal element

E (k)
J =

〈
φ(k)

JM

∣∣H
∣∣φ(k)

JM

〉
−

〈
φ

(g)
00

∣∣H
∣∣φ(g)

00

〉
, k = g, β, γ , 1, γ̃ , 1̃. (2.6)

It can be easily checked that the model Hamiltonian does not commute with the components
of the F̂ spin operator:

F̂0 = 1
2 (N̂p − N̂n), F̂+ = N̂pn, F̂− = N̂np. (2.7)

Hence, the eigenstates of H are F0 mixed states. However, the expectation values of the
F0 operator on the projected model states are equal to zero. This is caused by the fact that
the proton and neutron deformations are considered to be equal. In this case, the states are
of definite parity with respect to the proton–neutron permutation, which is consistent with
the structure of the model Hamiltonian which is invariant with respect to such a symmetry
transformation. To conclude, in contrast to the IBA2 Hamiltonian, the GCSM Hamiltonian
is not F̂ spin invariant. Another difference to the IBA2, the most essential one, is that the
GCSM Hamiltonian does not commute with the boson number operators. Due to this feature,
the coherent state approach proves to be the most adequate one to treat the Hamiltonian in
equation (2.4). The asymptotic behavior of the magnetic state 1+, derived in [21], shows
clearly that the phenomenological descriptions of two liquid drops and two rigid rotors are
just particular cases of the GCSM, defined by specific restrictions.

The GCSM seems to be the only phenomenological model which treats simultaneously the
M1 and E2 properties. Indeed, in [22, 23], the ground, beta and gamma bands are considered
together with a Kπ = 1+ band built on the top of the scissors mode 1+. In contrast to the
other phenomenological and microscopic models, which treat the scissors mode in the intrinsic
reference frame, here one deals with states of good angular momentum, and, therefore, there
is no need to restore the rotational symmetry. As shown in [24], the GCSM provides for the
total M1 strength an expression which is proportional to the nuclear deformation squared.
Consequently, the M1 strength of 1+ and the B(E2) value for 2+ are proportional to each other,
although the first quantity is determined by the convection current while the second one by
the static charge distribution.

One weak point of most phenomenological models is that they use expressions for
transition operators not consistent with the structure of the model Hamiltonian. Thus,
the transition probabilities are influenced by the chosen Hamiltonian only through the
wavefunctions. By contradistinction in [22, 23], the E2 transition operator and the M1 form-
factor are derived analytically by using the equation of motion of the collective coordinates
determined by the model Hamiltonian. In this way, a consistent description of electric and
magnetic properties of many nuclei was attained.

3. Proton and neutron angular momenta composition of the ground and dipole
magnetic bands

We start by mentioning few properties for the intrinsic ground state wavefunction, $g. Note
that $g can be written in a factorized form:

$g ≡ $p$n, (3.1)

where the factor functions are

$p = exp
[
dpb†

p0 − dpbp0
]
|0〉p, $n = exp

[
dnb†

n0 − dnbn0
]
|0〉n. (3.2)
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The τ functions, with τ = p, n, are eigenstates of the z projection of the angular momentum
and therefore can be expanded in the basis |Jτ 0〉 defined by the eigenstates of J2

τ , Jτ0:

$τ =
∑

Jτ

CJτ
|Jτ 0〉, τ = p, n. (3.3)

Denoting by

ϕ
(g)
Jτ Mτ

= N(g)
Jτ

PJτ

Mτ 0$τ (3.4)

the angular momentum projected state associated with $τ and then inserting the expression
(3.3) on the right-hand side of (3.4), one finds that the expansion coefficients CJτ

are related
to the projected state norms by

CJτ
=

(
N(g)

Jτ

)−1
. (3.5)

Here N(g)
Jp

and N(g)
Jn

denote the norms of the angular momentum projected states associated with
$p and $n, respectively. These have been analytically expressed in [20], where the projected
states ϕ

(g)
Jτ Mτ

are used as model states for the rotational ground band.
The above analysis can be easily extended to the intrinsic ground state describing the

composite proton–neutron system:

$g = $p$n =
∑

Jp,Jn=even

CJp |Jp0〉CJn |Jn0〉 =
∑

Jp,Jn,J

CJpCJnC
Jp Jn J
0 0 0 |J, 0〉. (3.6)

The angular momentum projected state is defined by

φ
(g)
JM = N(g)

J PJ
M0$g = N(g)

J

∑

JpJn

CJpCJnC
Jp Jn J
0 0 0 |J, M〉

= N(g)
J

∑

JpJn

(
N(g)

Jp

)−1(N(g)
Jn

)−1CJp Jn J
0 0 0

[
ϕ

(g)
Jp

ϕ
(g)
Jn

]
JM, (3.7)

with the norm
(
N(g)

J

)−2 =
∑

Jp,Jn

(
N(g)

Jp

)−2(N(g)
Jn

)−2(CJp Jn J
0 0 0

)2
. (3.8)

In the above equations, the standard notation for the Clebsch–Gordan coefficients has been
used.

The average value of the angular momentum carried by the proton bosons is given by
〈
φ

(g)
JM

∣∣Ĵ2
p

∣∣φ(g)
JM

〉
=

(
N(g)

J

)2 ∑

Jp,Jn

(
N(g)

Jp

)−2(N(g)
Jn

)−2Jp(Jp + 1)
(
CJp Jn J

0 0 0

)2 ≡ J̃(g)
pJ

(
J̃(g)

pJ + 1
)
. (3.9)

Similarly, one calculates the average angular momentum carried by the neutron bosons, J̃(g)
nJ .

The two angular momenta, J̃(g)
pJ , J̃(g)

nJ , define the relative angle which obey the equation

cos(Jp, Jn)
(g)
J =

J(J + 1) − J̃(g)
pJ

(
J̃(g)

pJ + 1
)
− J̃(g)

nJ

(
J̃(g)

nJ + 1
)

2
√

J̃(g)
pJ

(
J̃(g)

pJ + 1
)
J̃(g)

nJ

(
J̃(g)

nJ + 1
) . (3.10)

Let us consider now the angular momentum projection of following dipole excitation of
the intrinsic ground state:

φ(1)
JM = N(1)

J PJ
M1

(
b†

nb†
p

)
11ψg

= N(1)
J

∑

J′=even

(
N(g)

J′

)−1CJ′ 1 J
0 1 1

[(
b†

nb†
p

)
1ϕ

(g)
J′

]
JM, (3.11)

with the norm having the expression
(
N(1)

J

)−2 =
∑

J′=even

(
N(g)

J′

)−2(CJ′ 1 J
0 1 1

)2
. (3.12)
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It is worth calculating the separate contributions of proton and neutron bosons in building
up the total angular momentum of a given magnetic dipole state. The effective angular
momentum J̃ is defined as

J̃(1)
p;J

(
J̃(1)

p;J + 1
)

=
〈
φ(1)

JM

∣∣Ĵ2
p

∣∣φ(1)
JM

〉

= 6 +
(
N(1)

J

)2 ∑

Jp,Jn,J′

(
N(g)

Jp

)−2(N(g)
Jn

)−2Jp(Jp + 1)
(
CJp Jn J′

0 0 0

)2(CJ′ 1 J
0 1 1

)2
. (3.13)

Since the ground state is symmetric with respect to the p− n permutation, one expects that the
effective neutron angular momentum defined by averaging the operator Ĵ2

n;J with the ground
state projected function is equal to the effective proton angular momentum, i.e.,

J̃(1)
n;J = J̃(1)

p;J . (3.14)

Denoting the ground state angular momentum by

Jpn = Jp + Jn, (3.15)

then for the average value one obtains

J̃(1)
pn;J

(
J̃(1)

pn;J + 1
)

≡
〈
φ(1)

JM

∣∣Ĵ2
pn

∣∣φ(1)
JM

〉
=

(
N(1)

J

)2 ∑

J′′

(
N(g)

J′′

)−2(CJ′′ 1 J
0 1 1

)2
(J′′(J′′ + 1) + 12). (3.16)

Squaring equation (3.15) and averaging the result with the dipole projected state J, one can
calculate the angle between the angular momenta Jp and Jn:

cos(Jp, Jn)
(1)
J =

J̃(1)
pn;J

(
J̃(1)

pn;J + 1
)
− J̃(1)

p;J
(
J̃(1)

p;J + 1
)
− J̃(1)

n;J
(
J̃(1)

n;J + 1
)

2
√

J̃(1)
p;J

(
J̃(1)

p;J + 1
)
J̃(1)

n;J
(
J̃(1)

n;J + 1
) . (3.17)

4. A possible extension of the GCSM

Here we shall consider a particle–core interacting system described by the following
Hamiltonian:

H = HGCSM +
∑

α

εac†
αcα − G

4
P†P

−
∑

τ=p,n

X (τ )
pc

∑

m

q2m
(
b†

τ,−m + (−)mbτm
)
(−)m − XsSJF · Jc, (4.1)

with the notation for the particle quadrupole operator

q2m =
∑

a,b

Qa,b
(
c†

ja c jb

)
2m,

Qa,b = ĵa
2̂

〈 ja||r2Y2|| jb〉. (4.2)

Here HGCSM denotes the phenomenological Hamiltonian described in the previous section,
associated with a proton and neutron bosonic core. The next two terms stand for a set of particles
moving in a spherical shell model mean field and interacting among themselves through pairing
interaction. The low indices α denote the set of quantum numbers labeling the spherical single-
particle shell model states, i.e., |α〉 = |nl jm〉 = |a, m〉. The last two terms denoted hereafter as
Hpc express the interaction between the satellite particles and the core through a quadrupole–
quadrupole and a spin–spin force, respectively. The angular momenta carried by the core and
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particles are denoted by Jc(= Jpn) and JF , respectively. The mean field plus the pairing term
is quasi-diagonalized by means of the Bogoliubov–Valatin transformation:

a†
α = Uac†

α − Vasαc−α, sα = (−) jα−mα ,

aα = Uacα − Vasαc†
−α, (−α) = (a,−mα ). (4.3)

The free quasiparticle term is
∑

α Eaa†
αaα , while the qQ interaction preserves the above

mentioned form, with the factor q2m changed to

q2m = η(−)
ab

(
a†

ja a jb

)
2m + ξ (+)

ab

((
a†

ja a†
jb

)
2m − (a ja a jb )2m

)
, where

η(−)
ab = 1

2 Qab(UaUb − VaVb), ξ (+)
ab = 1

2 Qab(UaVb + VaUb). (4.4)

We restrict the single-particle space to a single- j state where two particles are placed. In the
space of the particle–core states, we, therefore, consider the basis defined by

|BCS〉 ⊗ ϕ(1)
JM,

$
(2qp;J1)
JI;M = N(2qp;J1)

JI

∑

J′

CJ J′ I
J 1 J+1

(
N(1)

J′

)−1[(a†
ja

†
j

)
J|BCS〉 ⊗ φ(1)

J′

]
IM, (4.5)

where |BCS〉 denotes the quasiparticle vacuum, while NJI is the norm given by
(
N(2qp;J1)

JI

)−2 =
∑

J′

2
(
N(1)

J′

)−2(CJ J′ I
J 1 J+1

)2
. (4.6)

The matrix elements of the model Hamiltonian H are given analytically in the appendix.
Now let us analyze the proton and neutron angular momentum composition for the two

quasiparticle components of the particle–core basis. The effective angular momenta can be
easily calculated:

J̃(1)
τ ;JI

(
J̃(1)
τ ;JI + 1

)
=

〈
$

(2qp;J1)
JI

∣∣Ĵ2
τ

∣∣$(2qp;J1)
JI

〉

=
(
N(2qp;J1)

JI

)2 ∑

J′

2
(
CJ J′ I

J 1 J+1

)2(N(1)
J′

)−2J̃τ ;J′ (J̃τ ;J′ + 1), τ = p, n,

J̃(1)
pn;JI

(
J̃(1)

pn;JI + 1
)

=
〈
$

(2qp;J1)
JI

∣∣(Ĵp + Ĵn)
2
∣∣$(2qp;J1)

JI

〉

=
(
N(2qp;J1)

JI

)2 ∑

J′

2
(
CJ J′ I

J 1 J+1

)2(N(1)
J′

)−2J̃(1)
pn;J′

(
J̃(1)

pn;J′ + 1
)
. (4.7)

The angle between proton and neutron angular momenta can be obtained from the equation

cos(Jp, Jn)
(1)
JI =

J̃(1)
pn;JI

(
J̃(1)

pn;JI + 1
)
− J̃(1)

p;JI

(
J̃(1)

p;JI + 1
)
− J̃(1)

n;JI

(
J̃(1)

n;JI + 1
)

2
√

J̃(1)
p;JI

(
J̃(1)

p;JI + 1
)
J̃(1)

n;JI

(
J̃(1)

n;JI + 1
) . (4.8)

5. About the chiral symmetry

It is worth studying the separate contribution of protons and neutrons to the total angular
momentum of a state belonging to the ground band, to the pure phenomenological dipole band
and to two quasiparticle-dipole band, respectively. For the three bands, this was analytically
given by equations (3.9), (3.13) and (4.7) and plotted in the upper, middle and bottom panels
of figure 1, respectively. Therein, the notations 〈Jτ 〉 stay for J̃(g)

τJ , J̃(1)
τ ;J and J̃(1)

τ ;JI , respectively.
Note that for ground-band states, when the proton and the neutron deformations are equal and
large, the two angular momenta are aligned to each other in states of high angular momentum.
Indeed, as seen from the upper panel for large J, we have J ≈ 2〈Jp〉. If the two deformations
are very different, then, by far, the largest contribution is brought by the most deformed system,
the weakly deformed subsystem bringing an almost vanishing average angular momentum.

8
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Figure 1. Proton and neutron angular momentum composition of the states from the
ground band (upper panel), the pure phenomenological dipole band (middle panel)
and the two quasiparticle-dipole band (bottom panel). The curves with the symbols of
full circles and triangle up respectively, in the upper and middle panels, correspond to
dp = 0.2 and dn = 2.4.

9
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Figure 2. The angle between Jp and Jn within the ground-band states φ
(g)
JM for three sets

of deformations (dp, dn).

As for the pure phenomenological dipole band, represented in the middle panel of figure 1, we
note an even–odd staggering for small and moderate deformation. Such a structure is washed
out for large deformation. These features are also met for the case of two quasiparticle-dipole
states when the two quasiparticles’ total angular momentum is equal to zero. Due to the large
K quantum number of the two quasiparticle components, when the angular momentum carried
by the two quasiparticles is equal to 12, the dipole band starts with the angular momentum 13.

The two quasiparticle-dipole state components of the particle–core basis involve three
angular momenta, Jp, Jn, and the quasiparticles total angular momentum denoted by JF ,
which, in certain states, could be mutually orthogonal. Under this circumstance, suppose that
the vectors set Jp, Jn, JF form a right trihedral.

The transformation which changes the orientation of one component of the set, i.e., the
right trihedral is transformed into a left one, is conventionally called chiral. Obviously, such a
transformation may be written as a product of a rotation of angle π around a chosen trihedral
axis and the space reversal transformation. Excepting the spin–spin term, the Hamiltonian
introduced in the previous section is invariant to any chiral transformation. In fact, the chiral
symmetry breaking mentioned above is generating the so-called chiral bands characterized,
first of all, by a large intra-band M1 transition probability.

The goal of this section is to identify states $
(2qp;J1)
JI;M characterized by an orthogonal

trihedral (Jp, Jn, JF ).
The angle between the angular momenta carried by protons and neutrons in a ground-band

projected state is represented as a function of the angular momentum J for different sets of
proton and neutron deformations in figure 2. Irrespective of the deformations magnitude, for
J = 0, the angular momenta Jp and Jn are anti-aligned. For J = 2, the angle jumps down
to 90◦ and 98◦ when both deformations are small or one is small while the other one only
moderately small, respectively. Increasing the angular momentum, the angle characterizing
the system of small deformations is smoothly decreasing, approaching the aligned picture for
very large angular momentum. By contrast, when the proton and neutron deformations are
very different, the angle is smoothly but slowly decreasing keeping close to 90◦. In the case
of equal and large proton and neutron deformations, the angle is continuously decreasing the
rotation, gradually aligning the two angular momenta, Jp and Jn.

10
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Figure 3. The angle between Jp and Jn within the boson dipole state φ(1)
JM . The

deformation parameter d (see equation (2.3)) is equal to 0.2.

The relative angle of the proton and neutron angular momenta in the pure boson dipole
state φ(1)

JM is presented in figure 3. One notes that the angle is 90◦ in the first three dipole states
of angular momenta 1, 2 and 3. Increasing the total spin, the corresponding angles decrease
monotonically. A step structure for the states J and J + 1 with J even shows up. We recall
that in our previous applications of the GCSM [7], the unprojected state $g was considered
for equal deformation parameters for the proton and neutron systems. However, since the
number of protons and the number of neutrons are different and, moreover, the two kinds of
nucleons occupy different shells, it is reasonable to suppose different deformation parameters
for protons and neutrons, respectively. The corresponding projected dipole states are denoted
by 0(1)

JM(dp, dn). For this situation, the dependence of the (Jp, Jn) angle on the total angular
momentum is presented in figure 4.

When the deformation for protons is different from that of neutrons, the step structure is
washed out and the total angular momenta, where the relative angle is about 90◦, are shifted to
5, 6 and 7. The angle decreases with angular momentum but with a much lower slope. Indeed,
in the considered angular momentum interval, the angle varies between 91.5◦ and 87◦.

Remarkable is the fact that the angle of the proton and neutron angular momenta in the
dipole states given in figures 3 and 4 is different from that characterizing the ground-band
states and shown in figure 2 for three sets of the proton and neutron deformation parameters,
(dp, dn). Note that for the state 0+, heading the ground band, the two angular momenta, Jp, Jn,
are equal in magnitude and have the same direction but different orientation. This property
holds irrespective of the deformation parameters dp, dn. From the value of 180◦, the angle
is decreasing when the total angular momentum is increased. When the proton and neutron
deformations are equal, the angle tends to zero for very large J . The alignment is reached
faster for small deformations than for large ones. If the deformations are different, namely
one is small and the other moderately large, the angle is very slowly decreasing for J ! 2,
otherwise keeping close to 90◦, reflecting the fact that for small deformation, the rotational
axis is almost indefinite. As for the dipole band, to build up the dipole state 1+, one gets
contribution not only from the ground-band state 0+, but also from the state 2+ which results,
for small deformations, an angle between proton and neutron angular momenta close to 90◦

11
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Figure 4. The angle between Jp and Jn within the boson dipole state φ(1)
JM (dp, dn). The

deformation parameters are dp = 0.2 and dn = 2.4.

Figure 5. The angle between Jp and Jn within the boson dipole state $
(2qp;J1)
JI;M (d). The

deformation parameter d (see equation (2.3)) is equal to 0.2.

(see figure 3). By contrast, when the deformation is large, the above-mentioned angle should
be between 180◦ and 160◦ and, moreover, closer to one or another extreme depending on the
rate of the mixture of the states 0+

g and 2+
g in the structure of the dipole state 1+. According

to this picture, the state 1+ is not a typical scissors state, where the angle between the proton
and neutron symmetry axes is very small, but rather a shear mode.

Let us see now how this picture modifies when we add to the boson dipole states the
two-quasiparticle state factor. As shown in figure 5, the case of common small deformation
for protons and neutrons is similar to that from figure 3 where the two-quasiparticle factor is
missing. By contrast, here we have seven sets of states distinguished by the angular momentum
J carried by the quasiparticle component. Otherwise, the step function structure and the
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Figure 6. The angle between Jp and Jn within the boson dipole state $
(2qp;J1)
JI;M (dp, dn).

The deformation parameters are dp = 0.2 and dn = 2.4.

decreasing behavior as a function of the total angular momentum, I, are preserved by any of
the seven sets. The seven curves differ from each other by the angular moment I, where the
proton and neutron angular momenta are orthogonal. Thus, for a given J(=0, 2, 4, . . . , 12),
the total angular momenta for which the proton neutron angle is 90◦ are I = J +1, J +2, J +3.
The same remark also holds for figure 6, when compared with the situation from figure 4.
Indeed, it seems that the larger the difference between proton and neutron deformations, the
smaller the departure of the (Jp, Jn) angle from 90◦ and the less pronounced the step structure
of the angle I-dependence.

From figure 5, it is clear that for each value of the two-quasiparticle angular momentum,
there are three states, the lowest angular momentum states being characterized by an orthogonal
configuration (Jp, Jn). Since the K quantum numbers for proton and neutron systems included
in the core are small and, moreover, the total K being equal to unity, it is reasonable to suppose
that Jp and Jn are both perpendicular to the intrinsic symmetry axis, that is OZ. The symmetry
axis of the particle motion is determined by the mean field caused by the particle–core
interaction of the qQ type. On the other hand, the quasiparticle angular momentum projection
on the symmetry axis is, by construction, maximal. Therefore, JF is oriented along the axis
OZ, which results in having an orthogonal trihedral (Jp, Jn, JF ). Invoking the arguments of
[5], for such states, a large transverse dipole moment is expected, which may induce a large
M1 transition rate. If one ignores the spin–spin interaction term, the resulting Hamiltonian is
invariant to changing the orientation of one of the trihedral components, which means that this
Hamiltonian exhibits a chiral symmetry. The spin–spin interaction breaks the chiral symmetry
and, therefore, lifts the associated degeneracy. By successively changing the orientation of
one trihedral component, one obtains four distinct Hamiltonians and therefore one expects
four bands. Each of these bands may be related to the remaining three bands by specific chiral
transformation, respectively. These features are studied in detail in what follows.

However, before doing that, let us consider the states with the quasiparticle factor state
with angular momentum and projection (J, 0):

$
(2qp;01)
JI;M = N (2qp;01)

JI

∑

J′

CJ J′ I
0 1 1

[(
a†

ja
†
j

)
Jϕ

(1)
J′

]
IM

(
N(1)

J′

)−1
. (5.1)
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Figure 7. The angle between Jp and Jn within the boson dipole state $
(2qp;01)
JI;M (d). The

deformation parameter for protons is equal to that for neutrons and d = 0.2 (see equation
(2.3)).

Figure 8. The angle between Jp and Jn within the boson dipole state $
(2qp;01)
JI;M (dp, dn).

The deformation parameters are dp = 0.2 and dn = 2.4.

In such a state, the three angular momenta Jp, Jn, JF are in the same plane. Hence, one expects
the magnetic properties to be different from those characterizing the state where the mentioned
vectors are mutually orthogonal. For comparison, these states are also considered in figures 7
and 8.

6. Magnetic dipole transitions

The magnetic moment of the phenomenological core is defined by

µc = gpJp + gnJn ≡ gcJpn, (6.1)
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where gp, gn and gc denote the gyromagnetic factors for proton neutrons and the core.
Multiplying this with Jc = Jpn, and averaging the result with the function $

(2qp;J1)
JI;M , one

obtains an equation determining gc:

gc;JI = gp + gn

2
+ gp − gn

2

J̃(1)
p;JI

(
J̃(1)

p;JI + 1
)
− J̃(1)

n;JI

(
J̃(1)

n;JI + 1
)

J̃(1)
pn;JI

(
J̃(1)

pn;JI + 1
) . (6.2)

Note that since the deformation parameters for the proton and neutron are equal to each other,
the average values of proton and neutron angular momenta are the same, J̃(1)

p;JI = J̃(1)
n;JI , which

results in having a simple expression for the core gyromagnetic factor:

gc = gp + gn

2
. (6.3)

Expression (6.2) can be easily derived by expressing first the core magnetic moment as a linear
combination of the sum and the difference of proton and neutron angular momenta:

µc = gp + gn

2
(Jp + Jn) + gp − gn

2
(Jp − Jn). (6.4)

Since the scissors state, 1+, is antisymmetric with respect to the proton–neutron permutation,
while the ground state, 0+, is symmetric, only the second term from the above equation
contributes to the transition 0+ → 1+. This feature is not preserved when we treat the intra-
transitions of the chiral band, the states participating to the transition behaving similarly at the
proton–neutron permutation.

Denoting by gF the gyromagnetic factor for the two-quasiparticle factor state and following
a similar procedure as above we obtain for the whole system the following gyromagnetic factor:

gJI = gF + gc

2
+ gc − gF

2

J̃(1)
pn;JI

(
J̃(1)

pn;JI + 1
)
− J(J + 1)

I(I + 1)
. (6.5)

We note that both gyromagnetic factors for the core and for the whole system depend on the
angular momenta J and I.

In order to calculate the M1 transition probability, we need the following reduced matrix
elements:
〈
$

(2qp;J1)
JI ‖JF‖$(2qp;J1)

JI′

〉
= 2Î′Ĵ

√
J(J+1)N(2qp;J1)

JI N(2qp;J1)
JI′

∑

J1

(
N(1)

J1

)−2(CJ J1 I
J 1 J+1

)2W(I′J11J; JI),

〈
$

(2qp;J1)
JI ‖gpJp + gnJn‖$(2qp;J1)

JI′

〉

= N(2qp;J1)
JI N(2qp;J1)

JI′ Î′1̂
∑

J1

CJ J1 I
J 1 J+1C

J J1 I′

J 1 J+1

(
N(1)

J1

)−2W (JJ1I1; I′J1)

×
(

gp

√
J̃p;J1 (J̃p;J1 + 1) + gn

√
J̃n;J1 (J̃n;J1 + 1)

)
. (6.6)

Using the previous results regarding the average value of Ĵ2
τ , the last expression of the above

equations considered for the case I′ = I simplifies to
〈
$

(2qp;J1)
JI

∥∥gpJp + gnJn
∥∥$

(2qp;J1)
JI

〉
= gp

√
J̃p;JI(J̃p;JI + 1) + gn

√
J̃n;JI (J̃n;JI + 1). (6.7)

The M1 transition operator is defined by

M1,m =
√

3
4π

µ1,m. (6.8)

In [7–9], we pointed out a drawback of the phenomenological descriptions of the magnetic
states consisting of that the transition operator does not take care of the Hamiltonian model
structure, i.e., is independent of the states participating at transition. Therein, we proposed a
possible solution for correcting the mentioned drawback.
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Indeed, using the classical expression for the magnetic moment

µk = 1
2c

∫
ρp(r × v)k db f r, (6.9)

with ρp and v denoting the proton charge density and the velocity of an elementary volume of
proton matter having the coordinate r and integrating on a liquid drop volume whose surface
is expressed in terms of the quadrupole coordinates αµ, one arrives at a quadratic expression
in coordinates and their time derivatives. The coordinates and their conjugate momenta are
quantized by

αpµ = 1

kp
√

2

(
b†

pµ + (−)µbp,−µ

)
,

α̇pµ = 1
i!

[H, αpµ], (6.10)

where ‘ ˙ ’ denotes the time derivative operation. In this way, a simple boson expression for the
transition operator was obtained:

M1µ =
√

2
Mc
!

R0µNFµ, R0 = 1.2A1/3, (6.11)

where M denotes the proton mass, µN the nuclear magneton and c the light velocity. The
reduced form-factor Fkp has the expression

qFµ = − i
!ck2

p

[
(A1 + 6A4)Ĵpµ + A3

5
Ĵnµ +

√
10
4

(A2 − A1)
[(

b†
nb†

p

)
1µ

+
(
b†

nbp
)

1µ

+
(
b†

pbn
)

1µ
− (bnbp)1µ

]
+

√
2A3

[
− 1√

10

(
&†

nĴpµ + Ĵpµ&n
)

−&†
pn

[
−

(
b†

pbn
)

1µ
+ (bnbp)1µ

]
+

[(
b†

nb†
p

)
1µ

+
(
b†

nbp
)

1µ

]
&np

]]
. (6.12)

where Ais are the structure coefficients involved in equation (2.4). Here q stands for the
momentum transfer when a transition, from an initial state of energy Ei to a final state of
energy E f , takes place:

q = Ei − E f

!c
. (6.13)

From the above equations we note that, even in the second order in bosons, the gyromagnetic
factors have components different from the angular momenta Ĵp and Ĵn, which are
proportional to the proton–neutron dipole operators. Although the present formalism is purely
a phenomenological one and therefore the magnetic moments of neutrons are not included, due
to the proton–neutron coupling terms from the model Hamiltonian, the neutron gyromagnetic
factor is not vanishing.

Actually, restricting the expression for the transition operator to the angular momenta, the
above equation provides analytical expressions for the proton and neutron system gyromagnetic
factors. For illustration, in table 1, we give the results of our calculations for the reduced
magnetic dipole transitions between two adjacent states from a two-quasiparticle band for
two sets of the deformation parameters. These are chosen such that to correspond to a near
vibrational regime. We recall that a rotational picture is reached for a deformation parameter
larger than 3 [20]. We note that for J ! 6, where J denotes the quasiparticle total angular
momentum and system angular momentum I larger than 10, the transitions might be considered
of collective nature. Although we truncated the angular momentum I to 20, from table 1, it is
conspicuous that the larger I, the larger is the M1 strength.
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Table 1. The BM1 values, given in units of µ2
N, of the transitions I → (I − 1) calculated with the wavefunctions $

(2qp;J1)
JI;M given by equation (4.5), for two sets of

deformation parameters (dp, dn). The magnetic dipole transition operator is determined by the following gyromagnetic factors: gF = 1.3527 µN; gp = 0.666 µN;
gn = 0.133 µN. The single particle angular momentum is j = 13/2.

I → (I − 1) (dp, dn) = (1.0, 1.0) (dp, dn) = (0.2, 2.4)

I J = 0 2 4 6 8 10 12 J = 0 2 4 6 8 10 12

2 0.929 0.691
3 0.720 0.535
4 0.765 0.057 0.468 0.112
5 0.669 0.158 0.409 0.248
6 0.773 0.216 0.169 0.393 0.346 0.367
7 0.704 0.287 0.438 0.361 0.415 0.786
8 0.832 0.297 0.648 0.280 0.362 0.463 1.110 0.656
9 0.773 0.358 0.833 0.722 0.340 0.500 1.353 1.402

10 0.913 0.335 0.950 1.104 0.376 0.350 0.524 1.538 2.011 0.939
11 0.858 0.400 1.073 1.437 0.979 0.333 0.547 1.679 2.491 2.014
12 1.004 0.352 1.131 1.692 1.531 0.459 0.346 0.557 1.789 2.877 2.938 1.204
13 0.951 0.427 1.224 1.921 2.023 1.206 0.332 0.575 1.876 3.184 3.681 2.593
14 1.102 0.359 1.242 2.087 2.429 1.916 0.531 0.348 0.576 1.945 3.432 4.301 3.811 1.447
15 1.050 0.446 1.322 2.250 2.787 2.565 1.404 0.335 0.593 2.000 3.635 4.814 4.845 3.130
16 1.204 0.359 1.313 2.356 3.078 3.124 2.259 0.352 0.585 2.044 3.802 5.242 5.721 4.641
17 1.152 0.459 1.388 2.478 3.341 3.622 3.057 0.340 0.603 2.082 3.941 5.601 6.464 5.955
18 1.308 0.356 1.356 2.544 3.550 4.047 3.766 0.359 0.589 2.110 4.057 5.905 7.099 7.094
19 1.257 0.470 1.434 2.641 3.748 4.428 4.406 0.348 0.614 2.140 4.155 6.164 7.644 8.080
20 1.415 0.354 1.383 2.677 3.899 4.751 4.968 0.368 0.609 2.161 4.235 6.382 8.113 8.938
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Table 2. The structure coefficients of the model Hamiltonian (4.1) determined as
described in the text are given in units of keV. The deformation parameter ρ is
a-dimensional. The parameter X ′

pc is that defined by equation (7.2).

ρ = d
√

2 A1 A2 A3 A4 X ′
pc XsS

2.0 555.4 −25.4 −12.8 7.7 −23.4 1.0

7. Numerical results and discussions

The formalism described in the previous sections was applied for 192Pt. Unfortunately, there
are no available data concerning the magnetic bands for even–even nuclei. In choosing the
nucleus of 192Pt, we had in mind that the Pt isotopes around A = 192 are gamma soft nuclei
and a phase transition from prolate to oblate through a triaxial shape is expected to occur for
192Pt. Indeed, the signature for a triaxial rotor

E2+
g

+ E2+
γ

= E3+
γ

(7.1)

is satisfied with a good accuracy by the chosen nucleus. The left-hand side of the above
equation amounts to 929 keV, which should be compared with the value of the right-hand
side, which is 921 keV. As noticed by many authors, the triaxial shapes favor the occurrence
of chiral configurations.

We calculated first the excitation energies for the bands described by the angular
momentum projected functions φ

(g)
JM|BCS〉, φ(β)

JM |BCS〉, φ(γ )
JM |BCS〉, φ(1)

JM |BCS〉, φ̃(1)
JM |BCS〉 (2.1)

and $
(2qp;J1)
JI;M (4.5) and the particle–core Hamiltonian H (4.1). Several parameters like the

structure coefficients defining the model Hamiltonian and the deformation parameters are to
be fixed. Since in the present application, the proton and neutron deformations are equal, we
need only one ‘global’ deformation, ρ =

√
2d. For a given ρ, we determine the parameters

involved in HGCSM by fitting the excitation energies in the ground, β and γ bands, through a
least-squares procedure. We then varied ρ and kept that value which provides the minimal root
mean square of the result deviations from the corresponding experimental data. The excitation
energies of the phenomenological magnetic bands described by φ(1)

JM and φ̃(1)
JM , respectively,

are free of any adjusting parameters. The strengths of the pairing and Q.Q interaction were
taken close to the values used in [25], where the spectra of some Pt even–even isotopes were
interpreted with a particle core Hamiltonian, the core being described by the CSM. Thus, the
quasiparticle energy is 1.25 MeV while the strength X ′

pc defined by

X ′
pc = 6.5η(−)

11
2

11
2

!
Mω0

X (p)
pc (7.2)

is taken to be −0.023 MeV. The notations M and ω0 are used for nucleon mass and the
shell model single-particle frequency. Since the considered outer particles are protons, the
neutron particle–core coupling term is ineffective. Therefore, we put X (n)

pc = 0. The parameters
mentioned above have the values listed in table 2.

Excitation energies calculated with these parameters are compared with the corresponding
experimental data in figure 9. One notes a reasonable agreement of results with the
corresponding experimental data. The weak feature of our formalism is that it does not
reproduce the right staggering in the γ band. Actually, the experimental energy spacings in
this band are almost constant up to the state 5+, increase for 6+ and then a smaller spacing
for the pair of states 6+, 7+ is recorded. Since one has only one staggering situation, one
cannot conclude upon a staggering (J+, (J + 1)+) with J even. It may happen that the state
6+ does not really belong to the γ band. Thus, to draw a definite conclusion, one needs data
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Figure 9. Experimental and calculated excitation energies in ground, β and γ bands for
192Pt. They correspond to the fitted parameters listed in table 2. The rms value of the
deviation of the theoretical results and the corresponding experimental data is equal to
67 keV.

Figure 10. The excitation energies for the dipole bands described by φ(1)
JM (lower-left

column) and φ̃(1)
JM (lower-right column), respectively. The bands T1 (upper-left column)

and T2 (upper-right column), conventionally called twin bands, are also shown. The T1
and T2 bands were obtained with X ′

pc = −0.023 MeV and XsS = 0.001 MeV for the left
column and XsS = −0.001 MeV for the right column.

for excitation energies of the higher spin states. On the other hand, the GCSM formalism [7]
predicts for small deformation a staggering (3+, 4+); (5+, 6+); (7+, 8+), etc, while for large
deformation, the doublet structure is changed to (2+, 3+); (4+, 5+); (6+, 7+), etc. The results
shown in figure 9 are compatible with the first-level clustering, which reflects the regime of
a small deformation. Indeed, the energy spacings, given in keV, are 224; 230; 289; 278; 349;
315; 402; 346. As seen in the list, except for the spacing (3+, 4+) which is almost the same as
(2+, 3+), the rule for the doublet structure (J+, (J + 1)+) with J odd is obeyed.

Results for the magnetic dipole bands are plotted in figure 10. Excitation energies shown
there are those from table 3. The lower bands exhibit a pronounced doublet structure. Indeed,
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Table 3. Excitation energies, given in MeV, for the four magnetic bands denoted by 1+,
1̄+, T1 and T2, respectively. The twin bands T1 and T2 have K = 11.

J+ 1+-band 1̄+-band T1-band T2-band

1+ 1.874 2.010
2+ 2.033 1.983
3+ 2.183 2.291
4+ 2.519 2.289
5+ 2.676 2.763
6+ 3.127 2.783
7+ 3.287 3.364
8+ 3.832 3.413
9+ 3.994 4.065

10+ 4.623 4.147
11+ 4.785 4.852 4.757 4.765
12+ 5.492 4.969 5.201 5.218
13+ 5.651 5.718 5.638 5.662
14+ 6.436 5.868 6.073 6.106
15+ 6.589 6.655 6.512 6.553
16+ 7.450 6.840 6.957 7.008
17+ 7.596 7.661 7.409 7.469
18+ 8.535 7.881 7.868 7.938
19+ 8.670 8.735 8.330 8.410
20+ 9.689 8.989 8.788 8.878

in the band 1+, we note the staggering 4+, 5+; 6+, 7+; 8+, 9+; etc, while in the band 1̄+, the
states are grouped in a different manner: 1+, 2+; 3+, 4+; 5+, 6+; 7+, 8+; etc. The first three
states of the 1+ band are close in energy, while in the band 1̄+, the first two doublets have
an unnatural spin ordering. The experimental data [26] show two states of uncertain spin
assignment which decay by M1 to 2+

g , 2+
γ and 0+

g and lie close to the band heads of the
two dipole bands having the energies of 1.881 MeV and 2.048 MeV, respectively. According
to our calculations, these states might have the spins 1 and 2, respectively, the mentioned
energies being comparable with those associated with the first two states of the band T1. The
lowest dipole states of magnetic nature are identified as having the energies 2.149 MeV and
2.319 MeV, respectively, which are not too far from the calculated energies of the states 1+.
In order to decide with which of the two experimental sets of data could be associated the
results of our calculations, additional investigations are necessary from both theoretical and
experimental sides.

In the upper part of figure 10, we give the excitation energies of the bands T1 and T2,
which are tentatively called twin bands. They have some specific properties. First of all, both
are K = 11 bands. The meaning of this statement is as follows. Since the unprojected state,
generating the bands T1 and T2 through angular momentum projection, is a K = 11, after
projection, the wavefunction is a superposition of different K components, among which the
one having K = 11 prevails over the others [20]. The energies of states of the same angular
momentum are close to each other. Indeed, their difference ranges from 8 to 90 keV. It is
worth noting that energy spacing varies very little in the two twin bands. Indeed, in T1, it
goes from 435 keV reached for 13+ to 462 keV met at 19+. As for the T2 band, the minimum
energy spacing is of 444 keV met for three states, 12+, 13+, 14+, while the maximum spacing
is 472 keV for 19+. These spacings are plotted in figure 11 as a function of the angular
momentum. The curves for the two twin bands are almost parallel to each other and behave
as a polynomial in J, of rank 3. These spacings are used to calculate the so-called signature
energy staggering defined by
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Figure 11. Energy spacings in the two twin bands T1 and T2.

Figure 12. The signature energy staggering S(J), defined by equation (7.3), is
represented as a function of the angular momentum J in the bands T1 and T2.

S(J) = E(J) − E(J − 1)

2J
. (7.3)

This function, plotted in figure 12, exhibits no staggering and is decreasing monotonically and
very slowly with J. Indeed, the e-cart of maximum and minimum value is only of about 7 keV.
For an ideal chiral band, this parameter should be independent of J. Both twin bands intersect
the lower dipole bands at the energy level 11+. Due to this feature, we would expect that a
backbending takes place at this angular momentum. However, due to the doublet structure
in the lower dipole bands, it is difficult to define consistently the moment of inertia for the
!J = 1 states. Despite the mentioned encountered difficulties, the plot of the moment of
inertia versus the rotational frequency squared starts with a backbending, continues, from
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Figure 13. The double moment of inertia calculated for the angular momenta 12+ −20+

with equation (7.4) is represented as a function of the corresponding rotational frequency
given by (7.5).

14+, with a forward bending and again a backbending from 19+. This picture is common for
both twin bands. For illustration, in figure 13, we present the situation of the T1 band. Denoting
by J , E(J) and ω the double moment of inertia, the energy of the state J+ belonging to the T1

band and the rotational frequency respectively, for the chosen !J = 1 band, one obtains

J = 2(J + 1)

E(J + 1) − E(J)
, (7.4)

!ω = E(J + 1) − E(J). (7.5)

From figure 13, we see that, indeed, the moment of inertia exhibits a double backbending
when it is represented as a function of the rotational frequency squared. If we also consider
the energy levels of the band 1+ before its crossing with the band T1, the graph of figure 13
would be continued to the left by a saw teeth-like curve.

Finally, the M1 transition probabilities have been calculated with equations (6.6)–(6.8).
The gyromagnetic factors for the collective core, denoted by gp and gn, were determined from
equations predicted by the GCSM model,

gc = gp + gn

2
, gn = 1

5
gp, (7.6)

and taking gc = Z
A . The results are represented in figure 14 as a function of J. The J dependence

seems to be quadratical, the B(M1) value increasing from 0.847 µ2
N to 7.204 µ2

N. We remark
that the states used for the description of the excitation energies exhibit a moderate deformation,
ρ = 2. We recall that the application of the GCSM to a wide region of nuclei suggests that the
well-deformed nuclei are characterized by ρ ! 3. This implies that the large M1 transition
probabilities for the states of the twin bands are not caused by a large nuclear deformation as
happens in the case of the scissors mode, but by the specific angular momenta geometry of
the chiral bands. Note that in the present calculations, we considered the term of the model
Hamiltonian breaking the chiral symmetry only for energies but not for the corresponding
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Figure 14. The B(M1) values associated with the dipole magnetic transitions between
two consecutive energy levels in the T1 band. The gyromagnetic factors employed in our
calculations are µp = 0.666 µN, µn = 0.133 µN and µF = 1.289 µN. As usual, the spin
gyromagnetic factor was quenched by a factor 0.75 in order to account for the influence
of the proton excited states on the magnetic moment.

wavefunctions. This feature leads to the fact that the two partner bands are described by
identical functions which results in having the same B(M1) values for both.

Note that the bands T1 and T2 correspond to two reference frames of the three angular
momenta JF , Jp, Jn which are related by a chiral transformation which changes the sign of
JF . The matrix elements of the XsS term in the two reference frames differ from each other
by sign. Therefore, for one band, T1, the interaction sS is attractive while for the other band,
T2, repulsive. However, there are other two chiral transformations which change the signs
of Jn and Jp, respectively, of the right-handed frame associated with the band T1, F1. Each
of the corresponding bands is therefore a partner band for T1. The additional bands will be
denoted hereafter by T3 and T4, respectively. They are also partner bands for T2 since their
frames, F3 and F4, are obtainable from that defining T2, F2, by simple transformations. Indeed,
F3 can be obtained from F2 by a rotation of angle π around Jp, while F4 is obtainable from
F2 by a rotation of an angle equal to π around Jn. T3 and T4 are themselves partner to each
other, the associated frames being related by a π -rotation. Indeed, F4 is obtainable from F3

by rotating it with the angle π around JF . However, the sS interaction is not invariant to the
mentioned rotations, which results that the bands T2, T3 and T4 are different from each other.
Note that each of the π rotations, mentioned above, is a product of two chiral transformations
and therefore a chiral transformation, given the fact that chiral transformations form a group.

We mention again that so far the chiral symmetry has been studied for odd–odd and
odd–even nuclei around A = 130 [27, 28] and A = 100 [29]. Only recently, the investigation
was extended to some heavy nuclei with A ≈ 190 [30]. Although the first interpretation of the
twin bands in terms of a spontaneous chiral symmetry breaking was given by Frauendorf [31],
the first measurement was made already one year earlier [27]. Several approaches devoted to
the chiral band description have been proposed. Among these, the particle-asymmetric rotor
(PAR) model is the most popular. It is interesting to mention that the PAR was developed, both
analytically and numerically, by one of the authors (AF, in collaboration), and, moreover, the
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nuclei studied belong to the regions mentioned above [32–35]. The experimental systematics
established the criteria upon which one could decide whether a pair of bands might be
considered of a chiral nature. Briefly, these are as follows. (1) The partner bands are almost
degenerate. (2) The energy staggering parameter must be angular momentum independent. (3)
The staggering behavior of the ratios B(M1)/B(E2) and B(M1)in/B(M1)out, where B(M1)in

and B(M1)out denote the intra-band and inter-band reduced M1 transition probabilities for
the partner bands. In [36], it was shown that these criteria are necessary but sometimes not
sufficient, the partner bands corresponding to nuclear shapes which are not close to each other.

Note that our procedure is based on angular momentum projection from proton–neutron
boson states. Until now this has been overlooked, since boson Hamiltonians invariant to the
rotation transformation were treated with basis states of good angular momentum. Due to this
feature, people focused on angular momentum projection from a many-body deformed state
(see for example [40–43]). Our procedure has the advantage, over the other boson formalisms,
of not having redundant components caused by using different sets of Euler angles for protons
and neutrons, respectively.

To our knowledge, this paper is the first one devoted to the description of the chiral bands
in even–even nuclei.

8. Conclusion

In this paper, we have formulated a semi-phenomenological model to describe the magnetic
bands for even–even nuclei which are almost spherical or moderately deformed.

The main steps performed toward achieving the goal of this paper can be summarized as
follows.

The phenomenological Hamiltonian specific to the GCSM, previously used to describe
the magnetic scissors-like states, is amended with a particle–core quadrupole–quadrupole and
a spin–spin interaction term. The pure single-particle term describes a set of nucleons moving
in a spherical shell model mean field and interacting among themselves with pairing force. The
particle–core space is generated by a set of particle–core product functions. The first subset
has the GCSM functions for the ground, β, γ , 1+ and 1̄+ bands as core components, while
the particle factor function is the quasiparticle vacuum state denoted by |BCS〉. The second
subset of the particle–core basis consists of a quasiparticle component which is a state of two
quasiparticles from the shell h11/2 of total angular momentum J, with J = 0, 2, 4, . . . , 10, and
a core component which might be any state of the magnetic band 1+. Angular momentum
composition of the projected states suggests that the two quasiparticle-core states may favor a
chiral configuration for the angular momenta carried by the three subsystems, i.e., JF , Jp, Jn.
Moreover, the reduced M1 intra-band transition probabilities acquire large values, although
the nuclear deformation places the nuclear system in the region either of near vibrational or
of a transitional region.

Energies are defined by averaging the model Hamiltonian with the basis states. The model
Hamiltonian involves a term which breaks the chiral symmetry. Due to this term, there are
four bands which are related by specific chiral transformations. Energies for these bands are
obtained by averaging, alternatively, the four Hamiltonians related by chiral transformations,
with the two-proton-quasiparticle-core states (4.5). We note that the chiral bands cross the
phenomenological boson dipole band, and therefore we expect that several backbendings will
show up.

The parameters involved in the model Hamiltonian were fixed by fitting the experimental
energies in the ground, β and γ bands. The application was made for 192Pt, the choice being
justified by its triaxial features which might favor a chiral geometry for the already mentioned
three angular momenta.
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The bands denoted by T1 and T2 respectively exhibit a set of properties which certify their
quality of partner bands of a chiral nature. (1) The two bands are almost degenerate. (2) The
moment of inertia considered as a function of the rotational frequency squared presents two
backbendings. (3) The signature energy staggering is almost angular momentum independent.
(4) The B(M1) values associated with the intra-band transitions are large despite the fact that
the deformation is typical for a transitional spherical-deformed region.

In conclusion, this paper proposes a formalism to quantitatively describe the properties of
the chiral magnetic bands in even–even nuclei. This was positively tested by the application
to the case of 192Pt.

Our work proves that the mechanism for chiral symmetry breaking which also favors
a large transversal component for the dipole magnetic transition operator is not unique. As
a matter of fact, there are arguments recommending the mixed systems of quadrupole and
octupole bosons and a set of valence nucleons as a good candidate for achieving a chiral
configuration [37–39]. Such a solution will be studied in detail in a subsequent paper.

Our description is different from the ones from the literature in the following respects.
While the previous formalisms dealt with odd–odd nuclei, here we treated even–even nuclei.
While until now there were only two magnetic bands related by a chiral transformation, here we
found four magnetic bands having this property. Here we considered two-proton-quasiparticle
bands but alternatively we could choose two-neutron-quasiparticle and one-proton-plus-one-
neutron-quasiparticle bands. Of course, the last mentioned bands would describe an odd–odd
system. We already checked that a two-neutron-quasiparticle band is characterized by a non-
collective M1 transition rate. This feature suggests that, indeed, the orbital magnetic moment
carried by protons plays an important role in determining a chiral magnetic band. The core
is described by angular momentum projected states from a proton and a neutron coherent
state as well as from its lowest order polynomial excitations. Among the three chiral angular
momentum components, two are associated with the core and one to a two-quasiparticle
system. By contradistinction, the previous descriptions, devoted to odd–odd systems, use a
different picture. The core carries one angular momentum and moreover its shape structure
determines the orientation of the other two angular momenta associated with the odd proton
and odd neutron, respectively.

Experimental data for chiral bands in even–even nuclei are desirable. These would
encourage us to extend the present description to a systematic study of the chiral features
in even–even nuclei.
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Appendix

Here we give the analytical expression of the model Hamiltonian matrix elements,
corresponding to the basis states 4.5:
〈
$

(2qp;J1)
JI

∣∣H
∣∣$(2qp;J1)

J1I

〉
= −42̂ĴĴ1X (τ )

pc N(2qp;J1)
JI N(2qp;J11)

J1I η(−)
j j W (J jJ1 j; j2)

×
∑

J′J′′

Ĵ′CJ J′I
J 1 J+1C

J1 J′′ I
J1 1 J1+1W (J12IJ′; JJ′′)

〈
φ(1)

J′

∥∥b†
τ + bτ

∥∥φ(1)
J′′

〉
− XsSδJ,J1

×
[

I(I + 1) − J(J + 1) −
(
N(2qp;J1)

JI

)2 ∑

J′

2J′(J′ + 1)
(
CJ J′ I

J 1 J+1

)2(N(1)
J′

)2
]
,
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〈
φ(1)

IM

∣∣H
∣∣$(2qp;J1)

JI;M
〉
= 4X (τ )

pc ξ (+)
j j N(2qp;J1)

JI δJ,2

∑

J′

(
N(1)

J′

)−1CJ′ J I
1 J;J+1

〈
φ(1)

I

∥∥b†
τ + bτ

∥∥φ(1)
J′

〉
, τ = p, n

〈
$

(2qp;J1)
JI;M

∣∣H
∣∣φ(1)

IM

〉
=

〈
φ(1)

IM

∣∣H
∣∣$(2qp;J1)

JI;M
〉
. (A.1)

The notation W (abcd;ef) stands for the Racah coefficients. The isospin quantum number τ

takes the values p or n depending on whether the two-quasiparticle component is of proton or
of neutron nature and, moreover, the model Hamiltonian describes the coupling of the τ -like
particles to the core.

We note that the matrix elements of the model Hamiltonian are expressed in terms of
the reduced matrix elements of the quadrupole operators between states belonging to the
phenomenological dipole band. These are given analytically below:

〈
φ(1)

I′

∥∥bτ

∥∥φ(1)
I

〉
= d

2I + 1
2I′ + 1

CI 2 I′

1 0 1
N(1)

I

N(1)
I′

+ 3dÎN(1)
I N(1)

I′

∑

I1I2

FI′I
I1I2

CI1 1 I′

0 1 1

(
N(g)

I1

)−2
,

FI′I
I1I2

= Î2C
2 1 I2
0 1 1 CI1 I2 I′

0 1 1 W (22I22; 11)W (I′2I1I2; I1),

〈
φ(1)

I

∥∥b†
τ

∥∥φ(1)
I′

〉
= Î′

Î
(−1)I−I′ 〈

φ(1)
I′

∥∥bτ

∥∥φ(1)
I

〉
, τ = p, n. (A.2)
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