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Abstract. A many body Hamiltonian involving the mean field for a progtspherical single particle basis, the
pairing interactions for alike nucleons, a repulsive dgdlpole proton-neutron interaction in the particle-hole
(ph) channel and an attractive dipole-pairing interactiorrésited by a gauge restored and fully renormalized
proton-neutron quasiparticle random phase approximdtionalism. Application to the 233 decay rate show a
good agreement with the corresponding data. The Ikeda slanisrabeyed.

1 Introduction symmetry breaking. Consequently, a method of restoring
this symmetry was formulated in Ref. [7].

The 288 process is interesting by its own but is also very Recently [8, 9], the results of Ref.[7] were improved in

attractive because it constitutes a test for the nuclear ma-two respects: a) aiming at providing a unitary description

trix elements (m.e.) which are used for the process8B0  of the process for the situations when the involved nuclei

decay. The discovery of this process may provide an an-are spherical or deformed, here we use a projected spher-

swer to the fundamental question, whether neutrino is aical single particle basis; b) the space of proton-neutron

Mayorana or a Dirac particle. The subject development dipole configurations is split in three subspaces, one being

is described by several review papers [1,2]. The presentassociated to the singe decay, one to the singlg pro-

talk refers to the 888 process, which is conceived as con- cess, and one spanned by the unphysical states. A set of

sisting of two consecutive and virtual single decays. =~ GRFRpnQRPA equations is written down in the first two

The formalism yielding closest results to the experimen- subspaces mentioned above, by linearizing the equations

tal data is the proton-neutron random phase approxima-of motion of the basic transition operators corresponding

tion (pnQRPA) which includes the particle-holelf) and to the two coupled processes.

particle-particle pp) as independenttwo body interactions. Results are described according to the following plan.

The second leg of thevBB process is very sensitive to  The approach is described in Section 2. Numerical appli-

changing the relative strength of the later interaction, de cations and discussions are given in Section 3, while the

noted hereafter bypp. It is worth mentioning that theh final conclusions are drawn in Section V.

interaction is repulsive while thep one is attractive. Con-

sequently, there is a critical value @f,, for which the first

root of thepnQRPA equation vanishes. Actually, this is the ) . .

signal that theonQRPA approach is no longer valid. More- 2 Approximations and the main

over, thegp, value which corresponds to a transition am- ingredients

plitude which agrees with the corresponding experimental

data is close to the mentioned critical value. That means

that the result is not stable to adding corrections to the RPA

picture. An improvement for thenQRPA was achieved by

one of us (AAR), in collaboration, in Refs.[3], by using a

boson expansion (BE) procedure. Another procedure, pro-

posed in Ref.[4], renormalizes the dipole two quasiparti-

cle operators by replacing the scalar components of their

commutators with their average values. Such a renormal-

ization is, however, inconsistently achieved since thé-sca

We suppose that the Gamow-Teller transitions dominate
the Fermi ones which seems to be a reasonable hypothesis
in medium and heavy nuclei. In the exact expression for the
transition probability, the leptons energy is replacedHsy t
average valuetE = mc? + 2Qg, where m denotes the rest
mass of the emitted electron whil@; the reaction heat of

the process. Consequently, the half life is factorized:

-1

tering operators do not participate at the renormalization [Tf/vz(0+ - 0+)] = FIMcr/%, 1)
process. This lack of consistency was removed in Refs.[5] {OB* Imbii{min )i ¢ (Y| |8+ 110) ¢
where a fully renormalizegnQRPA (FRpnQRPA) is pro- Mt = ‘/52 el ”E +AIE B )
posed. Unfortunately, all higher pnQRPA procedures men- m m 1

tioned above have the common drawback of violating the )
lkeda sum rule(SR) by an amount of about 20-30% [6]. Where4E; = 4E + E;. andEn are thepnQRPA energies.

It is believed that such a violation is caused by the gauge E1- denotes the experimental energy of the firststate.
The GT transition operators for the single beta transitions

@ e-mail:raduta@nipne.ro are denoted bg*.
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The model proposed by our group has two main ingre- whereﬁL(k) is equal togL,(k’) or B, (k) depending on
dients:i) The single particle basis is obtained from a de- whetherfy is + or -. The phonon amplitudes are determined
formed basis by projecting out the good angular momen- by the equations:
tum:

, H,C! | =wCl , [Cy,Cl | =6, (8)
DM (d) = Ny P LIl D 7] = Ny N (d), o | T] o | 1*‘|]_ d“" -
_ v nfortunately both the renormalized and fully renor-
¥, = exp[d(b3, — b20)]0)p. 2) malized pnQRPA violates thé&SR by an amount of about
The single particle energies are described by the average?0-30%. The boson expansion procedure overestimate ISR,
values of a particle-core Hamiltonian on the projected ba- While the standard renormalized pnQRPA underestimate it.
sis. b)To describe the states involved in Eq.2 we used theln Ref.[6] we have used a boson expansion formalism on

following many body Hamiltonian: the top of a renormalized pnQRPA. The result was that the
5 departure of our predictions from ISR was diminished up
H= — (€ral = A2a)Cl 1 Cra 3 to about 10%.
T,;M 20+ 1( rol = ) Crai Crt ) e believethat such a deviation fromthe | SRis caused
G by the fact that the renormalized ground state is not eigen-
- Z TT PIM Proir + 2¢ Z ﬁ;(pn)ﬂiﬂ(p'n')(—)*‘ state of the nucITeon total numbgr operator.
na,l,l’ pn;p’ N s The stateCly|O>, wherel0) is the vacuum state for the

_ - — + + ) (W phonon operator defined by the FRpnQRPA approach, with
2Xap Z (,B#(pn)ﬁ_#(p )+ 4. (PAz,(pn ))( Y. both theph and pp interactions included, is a superposi-
tion of components describing the neighboring nudiei(
In the gp representation the Hamiltonian is expressed1,Z + 1), N+ 1,Z-1), N+1,Z+1),(N-1,Z-1).
in terms of the dipole 2gp and dipole density operators: ~ The first two components conserve the total number of nu-
cleons (N+Z) but violate the third component of isospin,

pn;p’ s

Al (pn) = Z Ciﬁp'ﬁ:ﬁ,aglpmpa;,m, (4)  Ts. By contrast, the last two components violate the to-
i bl i b tal number of nucleons but preserve. Actually, the last
By.(pn) = Z Crrp 2my 1 8pj,m, Bl (=) two components are those which contribute to SR vi-
: ¥ i ¥ olation. However, one can construct linear combinations
Awu(pn) = (Alﬂ(p”)) » Bu(pn) = (Blp(pn)) : of the basic operator’, A, Bf, Bwhich excite the nucleus

(N, Z)tothe nucleilN-1,Z+1), (N+1,Z-1),(N+1,Z+1),

Linearized equations of motion of the above operators de'(N 1,7 - 1), respectively. These operators are:

termine the dipole excitations of the many body system.
Such equations are obtained by the mutual commutators: T
a Y AL, (pn) = = [chen],, » Ara(pr) = = [chnl, .

r ~ ~ 1u
, No N f
AR, AL ()] % e | 1= 5 = 55| AL = [chel], . Asdpn) =[cia], . ()
L n p
[BL(k)’ Al ,(k')] ~ [BL(k), Alﬂ/(k')] ~ 0, {grtl(ia;nmissgf the new operators, the many body model Hamil-
: N, N '
[Blﬂ(k)’ B} (K )] ~ Okk O IT; - IA_Zp} » k=(lp,In), H= Z E‘rja-j-jmarjm + 2y Z O'pn:p’n'ﬂL,(pn)ﬂlp(plnl)
-np 7jm PPV 4
with N, denoting the quasiparticle number operator of type — Xdp Z T pprr (<)
7(=p,n). There are three distinct approximations for these prp' N’
equations: 1pnQRPA, 2) Standard renormalized pnQRPA o ¥ , ,
[4] 3) Fully renormalized pnQRPA [5]. X (ﬂlu(pn)ﬂl,—ﬂ(p M)+ Ar(p'n )ﬂlﬂ(pn))’ (10)
i (1) 2 i 2
Der_10t|ng b_yC|p,|n andC,p’,n_the averages of the right Tonprt = el o).
hand sides, with the renormalized pnQRPA vacuum state, 3lnlw

the renormalized operators defined as The equations of motion of the operators involved in the

_ 1 _ phonon operator are determined by the commutation rela-
Au(K) = TAl,J, Bu(k) = ——

By, (5) tions:
e VIc?) Y | —
[ﬂl}l(pn)’ﬂlﬂ'(p n )] ~ 6ﬂ,ﬂ/6ip,jp’6jn,in’ (11)

obey boson-like commutation relations: 2 > 2 _\j2
2 2 Un - Vn i UD Vi o
_ x|UZ-U24 SR, - TP PR
[ A (K), A, (K)] = Gk (6) 2 2
[BLu(K), B, (K)]| = SkkeSyuge i fic = sign(CP). The quasi-boson approximation replaces the r.h. side of

i the above equation by its average with GRF RpnQRPA
Further, these operators are used to define the phonon opyacuum state denoted by:

erator:
1

Chu = D [X(AL K +Z(D, (K ) Da(pn) = U5 - UZ + 5= (U7 - V)R (12)
‘ 1 A
- YA () - W(KD1, ()] ~ 2, 1p T V)
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Equations of motion show that the twp energies are also
renormalized:

E"(pn) = Ep(U3 - V3) + Eq(Vi - U2).  (13)

The space of then dipole statessS, is written as a sum
of three subspaces defined as:

S; = {(p.n)[Dy(pn) > 0, E™(pn) >0,},
S_ = {(p.n)[Dy(pn) <0, E™(pn) <0,},
Ssp =S- (S+ +S—)’

Ny = dim(S.), Nep = dim(Ssp),

N:N+ +N_+Nsp. (14)
In S, one defines the renormalized operators:
1
A (Pn) = ——=A](pn), (15)
]*‘ VDi(pm)
A, (pn) ! A, (pn)
lu = —=—\PN),
y/D1(pn)
while in S_ the renormalized operators are:
75, (Pr) = ——— Ay (P1) (16)
= —— l,u .
i D1 (pn)]
— 1
Fru(pn) = ——=7A} (pn).
VIDa(pn)i

An pnQRPA treatment withis, would yield either van-
ishing or negative energies. The corresponding states ar
therefore spurious.

FRpnNQRPA with the gauge symmetry projected de-
fines the phonon operator as:

ry, = ; [ XA () + 27, ()

= YR AL, (K = WRFLK)() ], (17)

2.1 The gauge symmetry and the pp interaction

At this stage we have to explain why the pp interaction
is not effective, i.e. does not contribute at all within our
approach. Indeed, within the gauge preserved picture the
operators Ay, and AL commute with each other. Conse-
quently, the gauge projected phonon operator cannot com-
prise terms like AL since they violate the total number of
nucleons. If the mentioned commutator would befidirent
from zero, but equal to the average with the new vacuum
state of its scalar part, then the equations of motion for the
operatorsAy, andﬂL would be linear not only in the nu-
cleon number conserving operators, but also in those which
do not conserve the total number operator. In order that the
equations of motion constitute a closed algebra, we have
to add the equations corresponding to the number non-
conserving operators. Consequently, the phonon operator
is a linear combination of both nucleon number conserving
and non-conserving terms. Itis conspicuous now that in or-
der to conserve the nucleon total number it is necessary to
accept that the operataf®,, andAL commute with each
other. In this context th@p interaction is becoming inef-
ficient for properties described by gauge preserving wave
functions and therefore we have to ignore it. In this respect
our formalism contrasts the picture of Ref. [11] where the
phonon operator is commuting with the nucleon total num-
ber operator and at a time thpg interaction contributes to
the renormalizegnQRPA equations.

However, aiming at a quantitative description of the
double beta process, the presence of an attractive proton-

heutron interaction is necessary. Due to this reason we re-

place thepp interaction, which is inffective anyway, with
a dipole-pairing interaction:

AH = ~Xap ) (B, (PNBZ(P'M) + B2, (P'M)BL(PN)) (1)

prip’
nu
(21)
We remark that the two terms afH are changing the

with the amplitudes determined by the GRFRpnQRPA equacharge by+2 and -2 units respectively, and therefore one

tions:

[H.r}] =l My}, = 64 (18)

In order to solve the GRFRpnQRPA equations we need to

know D1 (pn) and, therefore, the averages of tfigs num-

ber operatorsN, andN,. These are written first in parti-
cle representation and then the particle number conserv
ing term is expressed as a linear combinatiotAfA and
F'F chosen such that their commutators with, A and

7T, are preserved. The final result is:

(Np) = V32l + 1)+ 3U3 - V2) (19)
x (Y DupM)(Y(p. )P = > Da(p.m)WP)),

(s, (b)es.

(Nn) = V321, + 1) + 3(U2 - V2) (20)
x (Y D mOKP, M= > Du(p, mWP)).

o Kk ok
(p'.n)eS, (p'.n)eS-

may think that it is not justified within the meson-dynamic
theory of nuclear forces. That is not true, having in mind
the isospin charge independence property of the nuclear
forces. Also, we note thatH is Hermitian and invariant

to rotation. This Hamiltonian should be looked at as an
effective Hamiltonian in the same manner as the standard

pairing Hamiltonian is. Indeed, within the BCS approxi-
mation the initial pairing Hamiltonian is replaced by an ef-
fective oned(c’c')g + 4*(cc)o, with ¢t (c) denoting the sin-

gle particle creation (annihilation) operator. This Hetonil
nian does not preserve the charge too, but this is consistent
with the trial variational stat¢BCS) which is a mixture

of components with dierent even number of particles. In
the present case thEnQRPA state is built on the top of
the BCS ground state which is a product of tBES states

for protons and neutrons respectively, which results in ob-
taining a linear superposition of components witfietient
isospin third component;s. Of course, at théCS level

T3 is preserved in the average. Therefore, in the quasipar-
ticle picture the condition that the Hamiltonian commutes

GRFRpnQRPA equations, the average qp numbers and theeparately with the proton and neutron number operators is

normalization factor equations are to be simultaneously
considered and solved iteratively.

anyway not fulfilled by any of the composing terms from
the model Hamiltonian. Note thatH commutes with the
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total number of nucleons and preserves this feature after — GRFRpnaRPA ¢ — GRFRpnaRPA
the linearization procedure is performed, contributing to

-

“ca 1.0 Ti
the equations of motion of the basic operators with the e ¢ o
gauge restored. Concerning thesymmetry let us denote " T o
by N thet (=p, n) particle number operators respectively, 10 0s
and calculate the commutator: os 02
[A H, Np — Nn] = 4Xdp (22) . —GRFanQR::p. o — GRFRpnQRPA

76,
Se

X > (B (PBZ(P'M) = BL, (P85 (pm) (-1)M.
o

B(GT"

Note that the right hand side of the above equation is an
anti-Hermitian operator. Consequently, its average value
with any state is vanishing. In particular it is vanishing if
the chosen state is trHBCS ground state or the vacuum
state of theaGPFRpnQRPA phonon operator. Concluding,

in the present formalism the third isospin component is
conserved in the average. Clearly, this happens since while

—— GRFRpnQRPA
Exp. 0.020

—— GRFRpnQRPA

82,
0015 Kr

0.010
0.005 A
0.000.

B{(GT)
B(GT"

one term offH increasing the charge by two units the other —— 0 — GRFRpnQRPA
term is decreasing it by the same amount. Note that this 4 ol .
isospin non-conserving term shows up even at the level of o "z ' Mo

B(GT)
B(GT))

the standarcpnQRPA. Indeed, within this formalism the
two-body interaction is approximated by a linear combina-
tion of the operators

0.4

0.2}

0.0.
5 10 15 5 10 15

E [MeV] E[MeV]

AL, (Pn)Ag,(pn), 23) _ o _
Fig. 1. One third of the singlg™ (left column) and one third of the
(1)t (AL(DH)AI_M(DH) + A1,—,1(pn)AJ#(Dn)) .(24) B* (right column) strengths, denoted B/(GT-) and B'(GT*),
for the mother ,*8Ca, "5Ge, 82Se and®®Zr, and daughter?Ti,
Writing these terms in the particle representation one finds 76Se, 8Kr and *®Mo, nuclei respectively, folded by a Gaussian
that the &ective two-body interaction comprises, among function with a width of 1 MeV, are plotted as functions of the
other terms, a term which is proportional #H. There- corresponding energies yielded by the present formalishe T
fore in a formalism using approximations which violates experimental data for the~ strengths of *Ge and®’Se are also
the T3 symmetry, the use of a HamiltoniatH which is presented [14].
not preserving th@'s component does not produce a spe-
cial inconsistency.
and'8n respectively, are available, the paramejeend
x1 were fixed such that the mentioned data are reproduced.
3 Numerical application and discussions E%r]the_ls:et;asles, the results are compared with the data from
in Table 1.

The approach presented in the previous sections was ap- Let us just enumerate the results obtained with the for-
plied for the transitions of fourteen double beta emitters. malism described above) The ISR is satisfiedb) We
The parameters defining the single particle energies arecalculated the singlg* strength distributions. For some
those of the spherical shell model, the deformation pa- of them experimental data are available. For example,
rameterd and the parametek are fixed as described in  strength for the transition€Ge— "°Se and®?Se— 82Kr
Ref.[10]. The proton and neutron pairing strengths arétlljly Was extracted from the reactioff&e(p,nf°As, andSe(p,n)
different from those from the quoted reference since the #Br, respectively. The agreement of the calculated strength
dimension of the single particle basis used in the presentdistribution and the corresponding experimental dataitequ
paper is diferent from that from Ref.[10]. The strength good. For illustration, four cases are presented in Fig. 1.

was taken to be: cAlso, the summed sing}g andB* strengths, denoted
Y= 52 MeV. (5.1) conventionally byy, B(GT~) and Y, B(GT ™) respectively,
A07 were calculated and compared with the available experi-

This expression was obtained by fitting the positions of the mental data. These singdedecay total strengths quenched
GT resonances ifPCa, °°Zr and?°Pb [13]. The strength ~ with a factor of 0.6 [12], accounting for the polarization
for the attractivepn two-body interaction was chosen such effects on the singlg-transition operator, ignored in the
that the result for the logft value associated to one of the present paper, are listed in Table 1. Actually, the quenched
single beta decay of the intermediate odd-odd nucleus, bevalues are to be compared with the experimental data, since
close to the corresponding experimental data. If the exper-the measured B(GT) strength represents about 60%-70%
imental data are missing, the restriction refers to the-exis Of the strength corresponding to the ISR.

tent data in the neighboring region. Since t8Mo and The experimental value for the summB(GT ~) of “8Ca
118Cd, experimental data for the loft values associated is taken from Ref.[15], where from the total strength, which
to thes* decays of the intermediate odd-odd nuéféirc amounts about 15:2.2, the contribution of isovector spin
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Table 1. The calculated summed strengths for grestrength
associated to the mother nuclei and the sumpgtestrengths for
the daughter nuclei, quenched by a factor 0.6, are are cadpar
with the corresponding available data. Experimental datéotal
B(GT") are taken from Refs. [15P), [14] (),[18] (9), [21] ().

culations for the summegt strength and the correspond-
ing experimental data.

The experimental data for the summGT *) transi-
tion of “8Ti, was taken from Ref.[15]. This result was ob-
tained after extracting the contribution of the isovectains

Nucleus | 0.63 B(GT)™ | > [B(GT) Top monopole states from the total strength of2083. The re-
B4 14.54 144225 action*®Ti(n,p)*®Sc was used to study tfB{GT*) strength
5Ge 23.037 23.39 for excitation energies up to 30 MeV. This value for the to-
825e 25.372 246" tal strength is larger than that reported by Alfatcal ., in
%7y 29.163 - Ref. [17]

104

g | e eas ] > B(GT*) =142+ 02. (5.2)
f,TTg 23'222 jg'ggg where only contribution of_states with excitgtion energies
L8N g 51'_74 - up to 15 MQV are taken into account. Thls comparison
150\ g 54.11 ) shows_, that, indeed, tht_e B(GT) streng_th is sensitive to the
1545y 5468 ) maghnitude of the considered energy interval. In this con-
160G g 57.03 ) text we mention the results obtained th{gugh thfg charge

Nucleus | 0.65 BGT) | S [BGT) Tog exchange reactionsHe,t) and (dHe) on "Ca and*Ni
78T, 3.666 1.9:05 3 respectively [19], foiB(GT ") and B(GT*) with an excita-
7650 1.125 1.45:0.079 tion energy intervakEy < 5 MeV: 1.43(38), 0.45.
82y 0.079 - The GT strength from thé&°Se(n,pJ®As reaction [18]
%Mo 2.537 0.29:0.08 9 is 145 + 0.07 and corresponds to and excitation energy
104pg 3.990 - Ex < 10MeV. The authors used the multipole decompo-
110cd 7.239 - sition method. In Ref.[20] th&(GT*) strength was mea-
128Xe 2.917 - sured in a derent reaction’®Se(d?He) ®As, and diferent
130e 13.040 - excitation energy intervaky < 4MeV. The result reported

148Sm 1.29 - is Yo_amey B(GT) = 0.54+0.1, which is smaller than that

iism 0.02 - from Ref.[18]. The length of the energy intervals justifies

o 0.54 - the mentioned dierences. We remark that the results for
Dy 0.21 - the summeg* strength inf®Ti and75Se are in reasonable

good agreement with the corresponding experimental data.
Table2. The strengths B(GT) of the singfe transitions from the The last strength mentioned in Table 2 refezrs tOGthe
mother nuclei to the intermediate odd-odd nuclei exciteth  daughter nucleu¥Mo. Throughthe reactio?fMo(d,*He)**Nb
states of the two components, GTR1 and GTR2, of the GT giant the strength taken mainly by a single state, placed at 0.69
resonance are listed. The experimental [23] (Exp.) andttieal MeV, was measured. However, from Fig.1 we note that, in-
(Th.) values for the centroid energies are also specified. deed, there is a state at 0.69 Mev which catch a ceftain
strength, but that strength is smaller than that distrithute

10
;XC' Ex "Te 5 among the states lying in the energy interval of 1.8 to 7.5
' MeV. More complete measurement throughpan) reac-
[MeV] - 96 i
Exp. Th. EXp. i tion on Mo and an energy range of_O-lO I\_/IeV IS neces-
Gl 1133 1116 23538 1563 sary in order to make a fair comparison with the results
G2 |80 805 |2905 587 presented here.

T The quenched values of the togalstrength of-2813%Te

Ex B are compared with the experimental data since the mea-
[MeV] suredB(GT ") strength, as we already mentioned before,
Exp. Th. Exp. Th. represents about 56% and 59% respectively, of the strength
Gl | 145 12.37| 25.84.1 189 corresponding to the ISR. There are some claims [16] say-

G2 |89 7.87 | 6.6:1.1 7.2 ing that adding the strength carried by the states from the
continuum, the total B(GT) strength are corrected up to
90% of the simple sum rule. We remark the good agree-
ment between the calculated and experimental total stnengt
monopole states was extracted. The result was obtainedNote that if we replace the quenching factor by 0.56 for
with the reactiorf®Ca(p,n¥2Sc, and corresponds to a large 128Te and by 0.59 fot3°Te the results for the total strength
energy excitation interval, from 0 to 30 MeV. would be 40.586 and 46.56 respectively which are closer
In Ref.[14] the total GT strength, fo¥Ge and®?Se, to the experimental data. Unfortunately for the last four

consists of the sum of the strength observed in the peaksmOther and for the last four daughter nuclei, there are no
plus the estimated contribution from the background. The data available for the singJé” and singles™ strengths, re-
experimental results correspond to 65 and 59% of the 3(N- SPECtIVely. _ -

Z) sum rule. According to Ref.[16], by adding to the GT d) The experimental value [23] of the transitiop 6»
cross section in discrete states the contribution from the 1" m.e. describing thg~ strength of-°®Mo and!'*Cd was
background and that of continuum, the total strength mag- derived from the reactions outpti®™Mo(®He,t}"°°Tc, and
nitude is much improved to a better obey of the sum rule. ***CdCHe,t)"*%In até; ~ 0° while the m.e. 1 — 0} was

We note a good agreement between the results of our cal-derived from the corresponding experimental lbigvalue.
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Table 3. The Gamow-Teller amplitude for they23 decay, in
units of MeV-1, and the corresponding half life{,,), in units
of yr, are listed. The references list for experimental datavieri
in Ref.[25,22].

Tay2lyr]
Mgt present Exp. Klapdor
etal

48Ca | 0.045]| 4.72<10° | 4.2+1.2)x 10% 3.2x10%°
%Ge | 0.177 | 0.938107 | 1.5+0.1x 107 2.61x10%°
82Se | 0.083| 1.29310%° | 1.1°38 x 10%° 0.85<10%°
%Zr 0.115| 1.5910™° (1.4753) x 10 5.2x10"
00Mo | 0.221 | 8.79<10™ (8.0£0.16) x 10™® | 2.9x10'®
%Ru | 0.453 ] 2.26x10° | - 1.8x1071
pd | 0.188 | 3.11x10°° | - 1.2x1071
T18Cd | 0.160 | 2.02<10™° (3.2+0.3)x 10" | 5.1x10%
28Te | 0.056 | 1.43«10°* | (7.2+0.3)x 10** | 1.2x10%
T0Te | 0.023 | 1.56x107 (1.5-2.8x10% 1.9x10™°
Nd | 0.422] 2.00<10° | - 1.19%107"
TONd | 0.042 | 2.50<10™° > 18x10%° 1.66<10%°
4Sm | 0.303 | 2.0%10?* | - 1.49%10%
0Gd | 0.111] 1.0«<10?* | - 2.81x10%*

Table 4. The logft values characterizing th&/EC andB8~ pro-
cesses associated to the intermediate odd-odd nuclested.li

Mother odd-odd Daughter
“8Ca Th. 8.44 43¢ 4.63 48T
®Ge Th. 4.57 ®As 6.13 7®Se
82Se Th. 8.11 82Br 7.18 82Kr
9%67r Th. 5.67 %Nb 7.00 %Mo
10Mo | Exp. 4.450%8 | 1%°Tc | 4.66 | '"Ru
Th. 4.65 4.1

Ru | Exp. 4.32 1%9Rh 4.55 109pd
Th. 4.71 6.47

0pd | Exp. 4.08 oag 4.66 110Cd
Th. 4.14 6.32

T6Cd | Exp. 44508 [ ™in | 466 | Sn
Th. 4.65 4.1

28Te | Exp. 5.049 128 6.061| ™Xe
Th. 5.87 6.06

0Te Th. 6.08 130 5.80 B0xe

8Nd Th. 6.8 8pm 7.33 98Sm

ONd Th. 5.55 pPm 8.46 B0Sm

4Sm Th. 5.52 ey 5.13 ¥4Gd

180Gd Th. 5.25 180T 4.20 180Dy

These quantities were compared with the results of our cal-
culations in Table 2.

€) Transition amplitudes and half lives were calculated
for 14 double beta emitters and the results are shown in
Table 3.

f) We calculated the lofit value associated with the
single beta transitions of the intermediate odd-odd niscleu
towards the daughter and mother nuclei respectively. Re-
sults are given in Table 4.

4 Conclusions

Summarizing the results of this paper, one may say that
restoring the gauge symmetry from the fully renormalized

pPnNQRPA provides a consistent and realistic description of
the transition rate and, moreover, tH8R is obeyed.

As shown in this paper, it seems that there is no need
to include thepp interaction in the many body treatment
of the process. Indeed, in the framework girrQRPA ap-
proach this interaction violates the total number of parti-
cles and consequently the gauge projection process makes
it ineffective. The proton-neutron correlations in the ground
state are however determined by an attractive dipole pair-
ing interaction. The results of our calculations are com-
pared with those obtained byftérent methods as well as
with the available experimental data. Here the strength of
the phinteraction was taken as given by Eq.(5.1), while the
one for the dipole-pairing interaction was approximately
fixed such that one decay branch of the intermediate odd-
odd nucleus has the Idg value close to those known for
the given nuclei or for the nuclei belonging to the neigh-
boring region. Small deviations of the predicted and ex-
perimentalGT resonance centroids suggest that the pa-
rametery should be fixed by fitting the centroids within
the GRFRpnNQRPA. By contrast to the standaghQRPA
models where the strength of thpp interaction is not af-
fecting the position of the GT resonance centroids, here the
attractive interaction contributes to the distributiontio
B~ strength. Therefore, the two strengths should be fixed
at a time by fitting two data, either the GT resonance cen-
troid and the logft value of one decay of the intermediate
odd-odd nuclei or by fixing the lodt values correspond-
ing to the single beta decays of the odd-odd intermediate
nucleus.
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