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Abstract
A semi-microscopic model to study the neutron- and proton-

induced backbending phenomena in some deformed even-even nu-
clei from the rare earth region is proposed. The backbending phe-
nomena are described by mixing four rotational bands, defined by
a set of angular momentum projected states with a specific single-
particle factor [1], and a model Hamiltonian describing a set of
paired particles moving in a deformed mean field and interacting
with a phenomenological deformed core. Due to the specific con-
struction, the wave function acquires a complex structure which
allows a quantitative description of the yrast states in the region
of the two backbendings.

The model Hamiltonian
The particle-core system is studied using the following Hamil-

tonian [2]:
H = Hc +Hsp +Hpair +Hpc. (1)

The core Hamiltonian Hc is a harmonic quadrupole boson o-
perator:

Hc = ωb0N̂ + ωb1N̂
2, where N̂ =

∑
µ

b†2µb2µ, (2)

described by a phenomenological quadrupole coherent state ψc =

ed(b
†
20−b20)|0〉b [3]. As for the single-particle Hamiltonian Hsp, this

is a sum of two terms corresponding to neutrons and protons, each
of them describing a set of particles in an intruder spherical shell
model orbital |nljm〉:

Hsp =
∑
i=ν,π

(εniliji − λi)
∑

mi=all

c†nilijimi
cnilijimi

. (3)

The alike nucleons interact among themselves also through a pair-
ing force.

The particle-core interaction consists of two terms:

Hpc = HqQ +HJfJc ,

HqQ = −AC
∑
i=ν,π

∑
µ,mim′

i

〈nilijimi|r2Y2µ|nilijim′i〉

×c†nilijimi
cnilijim′

i

[
(−)µb†2−µ + b2µ

]
, (4)

HJfJc = C ~Jf · ~Jc, with ~Jf = ~Jn + ~Jp.

The mean field is defined by averaging H̃(= Hsp +HqQ) with
the coherent state for the boson operators. In the first order of
perturbation, its energies are given by

εnljm = εnlj − 4dXC(2n+ 3)Cj 2 j1
2 0

1
2

Cj 2 jm0m, with XC =

√
5~AC

8
√
πMω0

.

(5)
The sum of the mean field term and the pairing interaction for
alike nucleons is then treated within the BCS formalism.

The particle-core space
The restricted particle-core space of angular momentum pro-

jected states with 0qp, 2qp and 4qp is defined by:

Ψ
(1)
JM = N (1)

J PJM0|nBCS〉d|pBCS〉dψc

Ψ
(2)
JM ;1(jnν) = N (2)

J1 (jnν)PJM1

[
J+α

†
jnν

α†jn−ν |nBCS〉d
]
|pBCS〉dψc

Ψ
(3)
JM ;1(jpπ) = N (3)

J1 (jpπ)PJM1|nBCS〉d
[
J+α

†
jpπ

α†jp−π |pBCS〉d
]
ψc

Ψ
(4)
JM ;2(jnν; jpπ) = N (4)

J2 (jnν; jpπ)PJM2

[
J+α

†
jnν

α†jn−ν |nBCS〉d
]

×
[
J+α

†
jpπ

α†jp−π |pBCS〉d
]
ψc. (6)

When applied on a K = 0 pair of quasiparticles, the operator J+
simulates the breaking of the corresponding pair which acquire a
projection K = 1. The projection of the core coherent state is
completely described within the Coherent State Model [3]. While
for angular momentum projection of the many-body fermion states
one used the procedure of Ref.[4] taking into account the fact that
Pauli principle restrains the maximal angular momentum of a given
configuration to

Jmaxτ = Nτj
pair

(
2jτ − 2Nτj

pair + 1
)
, (7)

where Nτj
pair pairs of τ particles occupy the states of angular mo-

mentum jτ .

Band mixing
The set of projected states mentioned above is not orthogonal.

Denoting by αJm the eigenvalues and by V Jim the eigenvectors of
the overlap matrix, it can be checked that the set of functions

ΦJMm =
1√
αJm

4∑
i=1

Ψ
(i)
JMV

J
im, m = 1, 2, 3, 4, (8)

is orthogonal. The lowest eigenvalues of the total Hamiltonian
H in this orthogonal basis defines the yrast band and the total
wavefunction is then defined as an expansion in the same basis

ΦJMTot =
4∑

m=1

XJ
mΦJMm . (9)

E2 transition operator
We suppose that the collective transition is due to the core

component of the wavefunction, such that the B(E2) transition
probabilities are calculated by truncating the transition operator
to the boson part [5],

Q2µ = q1α2µ + q2 (αα)2µ (10)

where α2µ denotes the quadrupole collective coordinate

α2µ =
1√
2

[
b†2µ + (−)µb2−µ

]
. (11)

The microscopic structure of the yrast states have however an in-
direct contribution through the single-particle factor state.

Numerical results
Four rare earth even-even nuclei which present the second

anomaly in the observed moments of inertia are treated within
the proposed model which involves seven parameters. Six of them,
namely the neutron and proton pairing constants Gn and Gp, the
strengths of the qQ and spin-spin interactions, i.e. XC and C, and
the strengths ωb0 and ωb1 of the two boson terms, are the structure
coefficients defining the model Hamiltonian. The remaining pa-
rameter d defines the coherent state ψc and plays the role of the
deformation parameter.

• Energies

If one adopts for the moment of inertia the following expres-
sion:

I =
4J + 6

E(J + 2)− E(J)
, E(J)−Yrast energies, (12)

and defines the rotational frequency as

~ω(J) =
dE(J)

dJ
≈ 1

2
[E(J + 2)− E(J)] , (13)

one readily obtains the Th.(�) and Exp.(•) backbending curves.
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• Angular momentum alignment

The averages of the involved angular momenta:

J̃i(J̃i + 1) = 〈ΦJMTot | ~J2
i |ΦJMTot 〉, i = n, p, f, c, (14)

and the deviation ∆J =
∣∣∣J − (J̃c + J̃f )

∣∣∣ which is a measure of the

departure from the full alignment between the fermionic and core
angular momenta are plotted below as functions of total angular
momentum J . The dependence of these quantities on J provides a
lot of information regarding the rotational dynamics of the system.
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• Electric quadrupole transitions

The transitions along the yrast band directly reflect the struc-
tural changes of the total wavefunction in the band crossing region.
In the figure below, one compared the theoretical predictions for
B(E2) with experimentally available data and the rigid rotor limit.
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• Gyromagnetic factor

The structure of the total wavefunction also dictates the be-
havior of the total gyromagnetic factor (figure below)

gJ = gc +
gf − gc

2

[
1 +

J̃f (J̃f + 1)− J̃c(J̃c + 1)

J(J + 1)

]
. (15)

The fermionic g-factor is given similarly as function of the proton
and neutron g-factors and average angular momenta J̃n,p, while
the core g-factor by its rotational value Zc/Ac.
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Conclusions
The present model provides a consistent explanation for the

pair-breaking process in connection with the rotational alignment
of the angular momenta involved in the system. Based on the
energy spectrum and the electromagnetic properties of the yrast
states, one identified the major differences between the neutron
and the proton induced backbendings. The theoretical results sug-
gest that the proton pair breaking is a slower process than the
neutron pair breaking. Concerning the rotational alignment, it is
found that the proton and neutron angular momenta first align
to each other and only after that they align to the core angular
momentum.

As a final conclusion, one can say that the present formal-
ism is able to quantitatively describe the double backbending phe-
nomenon.
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