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Deformed single particle energies obtained by averaging a particle–
core Hamiltonian with a projected spherical basis depend on a
deformation parameter and an arbitrary constant defining the
canonical transformation relating the collective quadrupole coor-
dinates and momenta with the boson operators. When the men-
tioned basis describes the single particle motion of either protons
or neutrons the parameters involved are isospin dependent. An al-
gorithm for fixing these parameters is formulated and then applied
for 194 isotopes covering a good part of the nuclide chart. Relation
with the Nilsson deformed basis is pointed out in terms of defor-
mation dependence of the corresponding single particle energies
as well as of the nucleon densities and their symmetries. The pro-
posed projected spherical basis provides an efficient tool for the
description of spherical and deformed nuclei in a unified fashion.
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1. Introduction

Nuclear structure formalisms describe the spectroscopic properties either in terms of single par-
ticle degrees of freedom [1–8] or by using phenomenological collective coordinates [9–22]. Many at-
tempts have been made to define the collective variables in terms of particle motion. The accuracy
in treating a many body Hamiltonian depends on the single particle basis which is used. For example
the essential features of the deformed nuclei cannot be describedwith a spherical single particle basis,
unless this is of very large dimension. The shape of the mean field which defines the single particle
motion should be consistent with the nuclear shape. In this context we should stress on the useful-
ness of the bases provided by the Nilsson model or the deformed Woods–Saxon interaction. Using a
deformed single particle basis in a many body treatment like, Hartree–Bogoliubov procedure, quasi-
particle random phase approximation (QRPA), higher QRPA methods, finally one obtains deformed
many body functions and energies. Further the deformed wave functions are used to calculate ma-
trix elements describing various physical processes. Since the experimental data to be described are
obtained in the laboratory frame, the rotational symmetries have to be restored [23–37]. The angular
momentum projection from a many body state is not an easy task, only few complicated codes being
available. To simplify the projection operation the variational principle is used to find the energies of
the ground band states. This approximation has the drawback that for high angularmomentumwhere
the angular momentum fluctuation is large, the description is of course unrealistic [38]. Moreover, it
is difficult to extend the procedure to the excited bands.

About two decades ago, one of the authors (A. A. R.) proposed, in collaboration, an alternative way
to describe the deformed nuclear systems [39]. Indeed, a projected spherical single particle basis has
been constructedwhich allows for a unified description of spherical and deformednuclei. It is amazing
that although the projected single particle states have good rotational symmetry, thematrix elements
of particle operators incorporate the deformation via a deformed core which is described by an axi-
ally symmetric coherent state definedwith one component of the quadrupole boson.Many interesting
properties have been described in several papers and moreover the basis has been successfully used
to treat various processes.

However nowhere the involved parameters were discussed in a systematic manner and moreover
a confident algorithm to fix them is not yet available. Also, it is interesting to see whether this basis
can be related in some way to the one yielded by the Nilsson model. Of course one expects to depict
certain fingerprints of deformation also in the nucleon density.

The above mentioned issues will be considered in next sections as follows: In Section 2, the pro-
jected spherical Nilsson’s states and the corresponding single particle energies are defined. A projected
spherical particle–core basis is introduced in Section 3. Therein one proves that such a basis could be
used as a basis in the particle space. The connection with the projected Nilsson’s basis is discussed
both numerically and analytically. The fitting procedure of the parameters involved is described in
detail in Section 4.

Numerical results regarding the fitting procedure are given in Section 5 for 194 isotopes. Here we
also compare the shell filling and thenucleondensities yieldedby theprojected spherical andNilsson’s
bases. The final conclusions are drawn in Section 6.

2. Projected Nilsson basis

To describe the single-particle motion in deformed nuclei one usually uses a quadrupole deformed
mean-field which is simulated by an anisotropic harmonic oscillator potential. Such a potential can
be understood as the average field describing the motion of a particle around an ellipsoidal core.
Therefore the shell model Hamiltonian is replaced by

H = − h̄2

2m
∆ + mω2

0

2
�
Ω2

⊥ρ2 + Ω2
z z

2� + C�l · �s + D�l2, (2.1)

where the cylindrical coordinates are used. The deformation of the spherical equipotential surface
to an ellipsoidal shape is performed with the restriction that the enclosed volume is preserved. This
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condition is automatically satisfied by few parameterizations of the frequencies Ω⊥ and Ωz . The one
adopted here:

Ω⊥ =
�
2 + δ

2 − δ

�1/3

, Ωz =
�
2 + δ

2 − δ

�−2/3

, (2.2)

is different from that used by the Nilsson model [3],

Ω2
⊥ = 1 + 2

3
δ, Ω2

z = 1 − 4
3
δ, (2.3)

which is actually the first order approximation of (2.2). Our choice is justified by the fact that in the
former case the oscillator frequency is the same as in the spherical limit, while the latter case requires
a renormalization through a deformation dependent term. Note that the deformation parameter δ can
be linked to the more popular deformation β through the relation δ =

�
45
16π β .

With the parameterization (2.2), the Hamiltonian (2.1) can be rewritten as:

HNilsson = h̄ω0

�
1
2

�
−∆�2 + r �2

�
+ 1

2
V1r �2 + V2r �2Y20

�
+ C�l · �s + D�l2, (2.4)

where one used the stretched coordinates r � = √
αr with α = mω0

h̄ and the notations:

V1 = −1 + 1
3
Ω2

z + 2
3
Ω2

⊥, (2.5)

V2 = −
�

π

5
2
3

�
Ω2

⊥ − Ω2
z
�
. (2.6)

The eigenvalues of this Hamiltonian, obtained by diagonalization, depend on deformation and so
do the eigenstates:

|Ωπα� =
�

N,l,j

Cα
Nlj(δ)|NljΩ�. (2.7)

HereΩ is the projection of the single-particle angular momentum j on the z axis, π is the parity while
N = 2n + l with n and l being the principal quantum number and the orbital angular momentum,
respectively. For a givenΩπ the solutions providedbydiagonalization are labeled by the completeness
quantum number α. If one neglects the ∆N = 2 interactionmatrix elements, then the eigenstates are

|NΩα� =
�

j

Cα
j (δ)|NljΩ�. (2.8)

Finally, projecting out the angularmomentum from the state defined above, one recovers the spherical
shell model state |NljΩ�. Therefore, in the angular momentum projected Nilsson model the single-
particle energies are given by the diagonal matrix elements of the Hamiltonian (2.4) corresponding to
the projected states |NljΩ�,

εNilss
nljΩ = �NljΩ|HNilsson|NljΩ�

= εnlj + h̄ω0V2

�
N + 3

2

� �
5
4π

Cj2j
Ω0ΩCj2j

1
2 0

1
2

+ 1
2
h̄ω0V1

�
N + 3

2

�

= εnlj − h̄ω0

�
N + 3

2

�
Cj2j

Ω0ΩCj2j
1
2 0

1
2

�
Ω2

⊥ − Ω2
z
�

3

+ 1
2
h̄ω0

�
−1 + 1

3
Ω2

z + 2
3
Ω2

⊥

� �
N + 3

2

�
. (2.9)

εnlj is the spherical shell model single-particle energy.
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3. The projected particle–core product basis

Themean field that defines the single-particlemotion approximates the interaction of a single par-
ticle with the rest of the particles which can be assimilated with a phenomenological core. Supposing
that the spherical limit of the mean field is the spherical shell model single-particle Hamiltonian HSM ,
the particle–core Hamiltonian is defined as:

Hpc = Hcore + HSM − mω2
0r

2
�

λ=0,2

λ�

µ=−λ

α∗
λµYλµ, (3.1)

where

Hcore = ωb

�

µ

bĎ2µb2µ (3.2)

is a harmonic quadrupole boson Hamiltonian associated with the phenomenological core. The
particle–core interaction represented by the last term, depends on the nuclear deformation through
themonopole and quadrupole shape coordinates, α00 and α2µ. The latter ones are related to the boson
operators bĎ2µ defining the harmonic oscillation of the core, through a canonical transformation

α2µ = 1√
2k

�
bĎ2µ + (−)µb2µ

�
, −2 ≤ µ ≤ 2, (3.3)

which is defined up to an arbitrary constant k, at our disposal. The restriction of volume conservation
provides a relation between the monopole and quadrupole coordinates:

α00 = − 1√
4π

�

µ

��α2µ
��2 , (3.4)

whose boson representation is

α00 = − 1
4
√

πk2

�

5 +
�

µ

�
2bĎ2µb2µ +

�
bĎ2µb

Ď
2−µ + b2−µb2µ

�
(−)µ

��

. (3.5)

Averaging Hpc on the eigenstates |nljm� of HSM one obtains a deformed boson Hamiltonian whose
ground state is described by a coherent state:

ψg = ed
�
bĎ20−b20

�

|0�b, (3.6)

where |0�b is the vacuum state of the boson operators, while d is a real parameter which simulates the
nuclear deformation. On the other hand, the average of Hpc with ψg is a single particle Hamiltonian,
similar to that of the Nilsson model [3]:

Hmf = �ψg |Hpc |ψg� = ωbd2 + HSM − h̄ω0r �2
�√

2d
k

Y20 − 1
8πk2

(5 + 4d2)

�

, (3.7)

where the stretched coordinates are used. Further, extracting from the above Hamiltonian the zero
point deformation energy

lim
d→0

(Hmf − HSM) = 5h̄ω0r �2

8πk2
, (3.8)

one arrives at a more recognizable form:

Hmf = ωbd2 + HSM − h̄ω0r �2
�√

2d
k

Y20 − 1
2πk2

d2
�

. (3.9)
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We note that the deformed terms involved in the Nilsson model Hamiltonian and the mean field Hmf
are identical provided the following equation holds:

d
k

= β√
2
. (3.10)

One recovers the original Nilsson Hamiltonian [3]:

HNilsson(β) = HSM − h̄ω0r �2βY20 (3.11)
if in (3.9) one ignores the constant terms i.e., those which are independent of the particle coordinates.

Concluding, once the coordinates associated to one of the particle–core factor functions are frozen, the
rotational symmetry is broken and amean field for themotion of the unfrozen degree of freedom is obtained.
We may use the mean field to define a new single particle basis which could further be involved in
a many body calculation. Since the measured data have the symmetries specific to laboratory frame,
we have to project out the good angular momentum from the many body state which, as a matter of
fact, is not an easy task.

Our proposal [39] was to treat the particle–core system, which is rotationally invariant, with the
projected states:

Φ IM
nlj (d) = N I

j P
I
MI

�
|nljI�Ψg

�
, (3.12)

which form a basis for the particle–core space. Note that the unprojected particle–core state involved
in (3.12) is a product function of the eigenstates of HSM and �nljm|Hpc |nljm�, respectively. In this way
we assume that the deformation is carried only by the core. At this level the single particle factor state
preserves the rotational symmetry, the deformation of the single particle motion being determined
due to the interaction with the core. The tensorial form of this state,

Φ IM
nlj (d) = N I

j

�

J

C j J I
I 0 I

�
N (c)

J

�−1 �
|nlj�φ(c)

J

�

IM
, (3.13)

is often used for analytical calculations. Here we used the notation

φ
(c)
JM = N (c)

J P J
M0ψg , (3.14)

for the angularmomentum projected coherent state, which is the ground bandmodel state within the
coherent state model (CSM) [19,20]. The norm of this state

�
N (c)

J

�−2
= (2J + 1)I(0)J e−d2 , (3.15)

as well as the corresponding matrix elements of any boson polynomial is expressed in terms of the
overlap integrals:

I(k)J =
dkI(0)J

dxk
, I(0)J (x) =

� 1

0
PJ(y)exP2(y)dy, x = d2, (3.16)

where PJ(y) denotes the Legendre polynomial of rank J . These integrals have been analytically
calculated in Refs. [19,20]. Knowing the norm of the core projected state, one can write down the
norm of the total particle–core state (3.12) as

�
N I

j
�−2 =

�

J

�
Cj J I
I 0 I

�2 �
N (c)

J

�−2
. (3.17)

We mention the fact that the limit of Φ IM
nlj when d → 0 exists even though the norms (3.17) for

j �= I , in the same limit, are indeterminate. Besides the orthogonality and other properties discussed in
Refs. [39,40], one of the most important property of the basis (3.12) is that for vanishing deformation
d it recovers the full spherical shell model basis described by the product state |nljM�|0�b.

In general, i.e. for any deformation parameter this basis, although defined in the particle–core space,
can be used as a single particle basis. This assertion is hinging on the fact that when the matrix element of
a particle-like operator is calculated, one integrates first on core’s coordinates, which results in generating
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a deformation of the matrix element corresponding to the spherical shell model state. An example, on this
line, concerns the single particle energies, which compared with those of projected Nilsson model proves
that the deformation induced in this process is the appropriate one.

3.1. Energies

Since the core contribution does not depend on the single-particle quantum numbers, the single-
particle energies of themean field defined by the particle–core Hamiltonian (3.1) are given in the first
order of perturbation by the average of Hpc − Hcore on the projected single-particle basis (3.12):

εI
nlj = �Φ IM

nlj (d)|
�
Hpc − Hcore

�
|Φ IM

nlj (d)�

= εnlj − h̄ω0

�
N + 3

2

� �
5
4π

Cj2j
I0IC

j2j
1
2 0

1
2

d
√
2

k

+ h̄ω0

�
N + 3

2

�


1 + 5
2d2

+

�
J

�
CjIJ
I−I0

�2
I(1)J

�
J

�
CjIJ
I−I0

�2
I(0)J




d2

4πk2
. (3.18)

Given the fact that the basis (3.12) recovers the spherical shell model basis in the vibrational limit, the
corresponding single-particle energies (3.18) have also to reproduce the spherical shell model energy
in the limit of d → 0. However the limit

lim
d→0

εI
nlj = εnlj + h̄ω0

�
N + 3

2

� �
5
2

+ 1
2

�
j − I + 1

2
�
1 − (−)j−I�

��
1

4πk2
, j �= I, (3.19)

is different from εnlj by the 1/k2 term in the above equationwhich is actually ameasure of the so called
zero point energy. The deviation is very small due to the constant kwhose usual value varies around 10.
However, at high j orbitals the correction becomes sizable and a split of the energy correction over the
quantum number I , shows up at vanishing deformation. In order to avoid this onemust normalize the
single-particle energies (3.18) by extracting a zero point deformation energy given by the correction
term from (3.19). Thus, the normalized single-particle energies are expressed as

εI
nlj(d; k) = εnlj − h̄ω0

�
N + 3

2

� �
5
4π

Cj2j
I0IC

j2j
1
2 0

1
2

d
√
2

k

+ h̄ω0

�
N + 3

2

�


1 +

�
J

�
CjIJ
I−I0

�2
I(1)J

�
J

�
CjIJ
I−I0

�2
I(0)J




d2

4πk2

− h̄ω0

�
N + 3

2

� �
j − I + 1

2
�
1 − (−)j−I�

�
1

8πk2
. (3.20)

Apart from deformation parameter d these single-particle energies depend on the canonical transfor-
mation constant k which can be fixed by fitting a collective observable as will be shown in the next
section. The dependence on the deformation of the proton and neutron single-particle energies (3.20)
for a fixed value of k is presented in Fig. 1. The shell model parameters κ and µ used there are taken
from Ref. [15] and correspond to the majority of the rare earth nuclei.

Few words about the role of the constant k are necessary. The plots of Fig. 1 are sensible to the
variation of k. Indeed, increasing k the energy curves approach straight lines. One can say that k plays
the role of a scaling parameter. Indeed, the leading term in deformation depend on the quantity d/k
rather on the deformation d alone. This is also true for the quadratic term, because the ratio of the
overlap integrals is a fractional quantity and thus a scalable one, at least in the extreme limits of
vibrational and asymptotic regimes.
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Fig. 1. Proton and neutron single-particle energies in the region of N = 5 and N = 6 shells respectively, given by Eq. (3.20)
where the shell model parameters κ = 0.0637 and µ = 0.60 for protons and µ = 0.42 for neutrons were used. The canonical
transformation constant is fixed to k = 10.

Fig. 2. The ratio d/k given as a function of the nuclear deformation β according to the linear dependence (3.10) and the more
complex one given by Eq. (3.21).

The averages (3.20) can be viewed as approximations of the single-particle energies in the de-
formed Nilsson orbits. As a matter of fact these are very close to the single-particle energies (2.9) of
the projected Nilsson model. In order to compare the two models one must first relate the nuclear
deformation with deformation parameter d defining the coherent state (3.6). By equating the leading
deformation terms of both expressions for the single-particle energies, one arrives at the relation:

d
k

=
�

2π
45

�
Ω2

⊥ − Ω2
z
�
, (3.21)

where Ω⊥ and Ωz can be expressed either in δ or β nuclear deformations. The dependence of the
above ratio on the nuclear deformation β is shown in Fig. 2, where it is also compared with the linear
correspondence (3.10). It is worth mentioning that the linear dependence is a fairly good approxima-
tion even for large values ofβ . Another interesting feature seen in Fig. 2 is that the relation (3.21) is not
symmetric when the sign of β is changed. Indeed, for higher values of β the deviation from linearity
is bigger for negative values.
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Fig. 3. The proton single-particle energies (2.9) of the projected Nilsson model (left) are compared with those provided by Eq.
(3.22) with k = 10 (right). The shell model parameters are the same as in Fig. 1.

In virtue of the correspondence (3.21), one can rewrite now the single-particle energies (3.20) as
a function of the nuclear deformation as

εI
nlj(β; k) = εnlj − h̄ω0

�
N + 3

2

�
Cj2j
I0IC

j2j
1
2 0

1
2

�
Ω2

⊥ − Ω2
z
�

3

+ h̄ω0

�
N + 3

2

�


1 +

�
J

�
CjIJ
I−I0

�2
I(1)J

�
J

�
CjIJ
I−I0

�2
I(0)J





�
Ω2

⊥ − Ω2
z
�2

90

− h̄ω0

�
N + 3

2

� �
j − I + 1

2
�
1 − (−)j−I�

�
1

8πk2
. (3.22)

These energies can be directly compared to those obtained in the framework of the projected Nilsson
model, due to the dependence on the same deformation variable. This is done in Fig. 3 for protons and
Fig. 4 for neutrons. The similarity between the two model single-particle energies is obvious. There
are of course some differences, mainly in the large deformation regime. The projected Nilsson model
energies aremore bent than the energies provided by Eq. (3.22). In the dependence on the deformation
parameter d of the latter, the canonical transformation constant k was responsible for the degree of
the lines’ bending. However, the energy dependence on the nuclear deformation β , as given in (3.22),
is almost insensible to the variation of k. It is worth mentioning that for a chosen nucleus and a given
value of β , the last occupied single-particle states in the twomodels differ from each other due to the
small displacement of the level crossing. This is an important difference between the two approaches,
given the fact that the valence nucleons play an important role in many phenomena.

Concluding, the projected spherical single particle and projected Nilsson model bases provide similar
single particle energies. Small differences are noticed for very large deformations where the Nilsson model
energy curves are more bent. Also, in that region of deformation some differences in the level crossings may
occur. This in turn generates differences in filling up the last occupied states which might be important for
those properties determined mainly by the valence nucleons.
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Fig. 4. The neutron single-particle energies (2.9) of the projected Nilsson model (left) are compared with those provided by
Eq. (3.22) with k = 10 (right). The shell model parameters are the same as in Fig. 1.

3.2. Nucleon density function

Another property of the spherical projected single-particle basis is the distribution of the nucleons
on the states associated to the energies (3.20). In the previous subsection one showed the similarity
of these single-particle energies with those of the projected Nilsson model. However, the quantum
numbers indexing the states are different in the two cases. From the comparison of the two schemes
it is obvious that the projection I of the spherical projected single-particle basis (3.12) plays the role
of the Ω quantum number from the Nilsson model, and moreover have the same domain of values.
Besides the double degeneracy coming from the K and −K invariances, common to both sets of
quantum numbers, the states of basis (3.12) are also 2I + 1 degenerate with respect to M . Since the
quantum number I is similar to Ω in the Nilsson model, the number of nucleons having the same I
must be at most 2. To fulfill this restriction, the function normalization should be changed to:

�Φ IM
nlj �2 = 1 →

�

M

�Φ IM
nlj �2 = 2.

Because the matrix elements of the particle-like operators depend only on the intrinsic quantum
number I , the mentioned normalization amounts to introduce an occupation-number probability
of 2/(2I + 1) for each state Φ IM

nlj . In particular, the density operator corresponding to the projected
spherical states can be written as:

ρ̂ =
�

nljIM

2
2I + 1

��Φ IM
nlj (d)

��2 . (3.23)

Using the tensorial form of the projected particle–core state (3.13), and replacing the product of the
projected core states and their corresponding complex conjugates by their scalar product, one obtains:

�ρ̂�coll = 2
�

nljm>0

||nljm�|2 , (3.24)

which is exactly the spherical shellmodel nucleon density. The consistencywith the projected Nilsson
states is then complete.
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Thus, although the projected spherical state carries the nuclear deformation through the projected core
states, the rotational symmetry, reclaimed by the projected spherical operation, prevails inwhat the nuclear
density function is concerned.

However, it is desirable to induce a deformation dependence of the particles distribution. Inspired
by the fact that the deformation dependence of the mean field is obtained by averaging the
particle–core Hamiltonian with the quadrupole boson coherent state (3.6), we extend the procedure
to the nucleon density (3.23) with the results:

�ψg |ρ̂|ψg� =
�

nljIM

2
2I + 1

���ψg |Φ IM
nlj (d)�

��2 . (3.25)

Similarly, the wave function associated to the deformed single particle mean field might be viewed as
the overlap of the projected spherical state with the core’s coherent state:

�ψg |Φ IM
nlj (d)� = N I

j

�

J

F jI
JM(d)|nljM�, (3.26)

where

F jI
JM(d) = Cj J I

I 0 IC
j J I
M 0M

�
N (c)

J

�−2
. (3.27)

At this point it is worth comparing the deformation effect provided by (3.25) with that calculatedwith
the unprojected Nilsson states:

ρNilss =
�

NΩα

||NΩα�|2 =
�

NΩα
jj�

Cα
j (δ)

�
Cα
j� (δ)

�∗
|NljΩ��Nlj�Ω|. (3.28)

Although the deformation is accounted for in different manners by the two approaches, one expects
however some similarities.

A direct connection between the k-pole transition densities defined by the projected spherical
single particle and the spherical shell model bases, can be obtained by using the second quantization
form of a one body operator, which is a tensor of rank k and projectionmwith respect to the rotation
transformations2:

T̂km =
� �

2
2I + 1

�Φ IM
nlj |T̂km|Φ I �M �

n� l�j� �
�

2
2I � + 1

cĎαIMcα�I �M �

=
� 2

Î Î �
�Φ I

nlj�T̂k�Φ I �
n� l�j� �CI �kI

M �mMcĎαIMcα�I �M �

=
�

αI;α�I �

2

Î Î �
�αI�T̂k�α�I ��ρ̂ps

km(αI; α�I �). (3.29)

For the sake of simplicity we have used the abbreviations and notations:

|αIM� = |Φ IM
nlj �, α = (nlj), Î =

√
2I + 1,

ρ̂
ps
km(αI; α�I �) = − Î

k̂

�
cĎαI c�α�I �

�

km
, c�αIM = (−1)I−McαI,−M . (3.30)

The upper index ‘‘ps’’ accompanying the density matrix indicate that it is associated to the ‘‘projected
spherical’’ single particle basis. Changing the single particle basis to that of spherical shell model and

2 Throughout this paper Rose’s convention [41] for the reduced matrix elements is used.
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following the same procedure one finds:

T̂km =
�

�nlj�T̂k�n�l�j��ρ̂sm
km(nlj; n�l�j�), with

ρ̂sm
km(nlj; n�l�j�) = − ĵ

k̂

�
cĎnljc �n� l�j�

�

km
. (3.31)

The connection of the reduced matrix elements in the two bases, projected spherical and spherical
shell models, was established in Ref. [39]:

�Φ I
nlj�T̂k�Φ I �

n� l�j� � = f j
�I �

jI;k(d)�nlj�T̂k�n�l�j��,

f j
�I �

jI;k(d) = N I
j N I �

j� ĵÎ �
�

J

C j J I
I 0 IC

j� J I �
I � 0 I �W (jkJI �; j�I)

�
Nc

J
�−2

. (3.32)

Using this equation and the linear independence of the nucleon transition densities for different pairs
of shell model states one obtains:

ρ̂sm
km(nlj; n�l�j�) =

�

I,I �

2

Î Î �
f j

�I �
jI;k(d)ρ̂

ps
km(nljI; n�l�j�I �). (3.33)

Taking into account the explicit expression of the norms N I
j and the analytical form of the Racah

coefficient with one vanishing index, it can be proved that for k = 0 the factor f is equal to
unity:

f j
�I �

jI;0(d) = δI,I �δj,j� . (3.34)

Consequently, we have:

ρ̂sm
00 (nlj; nlj) =

�

I

2
2I + 1

ρ̂
ps
00(nljI; nljI). (3.35)

Going back to the definition of ρ̂ in the two bases, (3.30) and (3.31), by a direct and simple calculation
one finds that Eqs. (3.24) and (3.35) are identical.

4. Deformed single-particle and collective motions

To study the particle–core interaction of the whole nucleus one has to consider separate cores and
single-particle orbits for protons and neutrons. To this purpose, the CSMhas been extended [21,22,42]
by assuming that the collective excitations of the proton and neutron systems are independent and
therefore described by distinct boson operators, bĎpµ and bĎnµ. The extended version is conventionally
called the generalized coherent statemodel (GCSM). In the framework of GCSM the phenomenological
core is described by a coherent state of the form (3.6) with the inclusion of the isospin degrees of
freedom:

ψGCSM
g = edn

�
bĎn0−bn0

�

edp
�
bĎp0−bp0

�

|0�p|0�n, (4.1)

where one considered different deformations for the proton and neutron systems, dp and dn. The
ground band state is defined as in CSM, through the angular momentum projection of the above
coherent state. The norm of the projected state

φ
g
JM(dn, dp) = NJ(dp, dn)P

J
M0ψ

GCSM
g (4.2)

and the corresponding matrix elements of the boson invariants can also be expressed in terms of the
overlap integrals (3.16), if one replaces ‘‘d’’ with ‘‘ρ’’ defined by

ρ2 = d2n + d2p. (4.3)
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Similarly, if one considers for the description of the phenomenological collective core a quadrupole
harmonic boson Hamiltonian,

HGCSM
core = ωb

�

τµ

bĎτµbτµ, (4.4)

then the ground band energies are also functions of the global deformation parameter ρ alone,

EJ(ρ) = �φg
JM(dn, dp)|HGCSM

core |φg
JM(dn, dp)�

= ωbρ
2 I

(1)
J (ρ2)

I(0)J (ρ2)
. (4.5)

Although the projected wave function depends on two independent deformation parameters, dp and
dn, the ground band energy depends only on ρ. Using this expression for the energy of the first two
excited states, one can easily find ρ for any nucleus by fitting the calculated ratio

R4/2 = E4+(ρ) − E0+(ρ)

E2+(ρ) − E0+(ρ)
(4.6)

to the corresponding experimental value. Even if the ground band energies depend only on ρ, this
is not a suitable deformation variable since there are observables, which depend explicitly on both
dp and dn. If one considers d = dn = dp then the single-particle and collective features of the
nuclear structure can be described through a single isospin independent deformation parameter d
and a unique canonical transformation constant k. ρ can be extracted from experiment, as explained
above, and then through the relation ρ =

√
2d, one gets d, while k can be fixed by using Eq. (3.21)

for a known nuclear deformation β . Of course this is an oversimplified case because in general the
deformation features of the proton and neutron subsystems are different even if not very much.
In order to determine the isospin differentiated deformation parameters dp and dn one must fit
besides the ratio (4.6) another observable which must be isospin dependent. Such a quantity is B(E2)
transition probability which is dominantly determined by the proton degrees of freedom. The E2
transition operator is given as [43]:

T2µ = 3Ze
4π

R2
0αpµ, (4.7)

whereαpµ is the proton quadrupole shape variable defined in terms of proton boson operators as in Eq.
(3.3) R0 denotes the nuclear radius. The reduced matrix element of αpµ between the GCSM projected
ground states is expressed as [22]

�φg
J (dn, dp)�αp�φg

J �(dn, dp)� = 1
2kp

CJ �2 J
0 0 0ρ

NJ

NJ �

�

1 + 2J � + 1
2J + 1

�
NJ �

NJ

�2
�

. (4.8)

In the Bohr–Mottelson parameterization [38], the rotational invariance of the nuclear potential leads
to

�
µ α2µα∗

2µ = β2, such that the E2 transition probability between J = 0 and J = 2 ground states
can be written as

B(E2; 0+ → 2+) =
���φg

0 (dn, dp)�T2µ�φg
2 (dn, dp)�

��2

=
�

3
4π

�2

e2Z2R4
0β

2. (4.9)

Using Eq. (4.8) in the above equation one obtains [43]:

β =
√
5
2

ρ

kp

�
N2

N0
+ 1

5
N0

N2

�
, (4.10)

which relates the nuclear deformation β with the global deformation parameter ρ and the proton
canonical transformation constant kp. The global deformation parameter ρ being fixed by fitting the
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Fig. 5. The theoretical ratio R4/2 given by Eq. (4.6) as a function of the global deformation parameter ρ. The mentioned ratio
reaches the absolute minimum at ρ = 0.930. The minimum value is 1.954.

experimental value of R4/2 and with nuclear deformation β taken from nuclear data tables, the above
expression becomes a determining equation for kp. Making use of Eqs. (3.21) and (4.3) alternatively
for protons and neutrons, one determines the complete set of parameters dp, dn, kp and kn which are
needed for a consistent description of the collective and single-particle degrees of freedom.

5. Numerical application and discussions

For a complete understanding of the formalism based on the spherical projected single-particle
basis, it would be useful to determine the domain of values for the deformation parameters d, dp and
dn as well as of the corresponding canonical transformation constants k, kp and kp. We chose to make
such a systematics for isotopic chains of medium and heavy nuclei whose occupied single-particle
states cover N = 4 and N = 5 proton shells but not fill them completely. Thus, one performed
calculations for the isotopic chains of Ge, Se, Zr, Mo, Cd, Te, Sm, Gd, Dy, Er, Hf, Os, Pt, Th and U. In
order to obtain the parameters describing each nucleus, one first determines its global parameter ρ
by fitting the experimental value of the ratio R4/2 with the theoretical expression (4.6). Before doing
this for all considered isotopes, it is instructive to investigate the behavior of the theoretical ratio R4/2
as a function of the global deformation parameter ρ, defined by Eq. (4.6). Using the asymptotic [44]
and vibrational limits [45] of the overlap integrals (3.16), one can easily check that for ρ → ∞ one
have R4/2 = 3.33 which is exactly the value provided by the axially symmetric rotor model, while
for ρ → 0 one obtains the spherical vibrator value R4/2 = 2. What happens between these two
limiting cases can be seen in Fig. 5, where the expression (4.6) of R4/2 is plotted as a function of ρ.
From there one notices that the function (4.6) acquires even values smaller than two. Moreover, it
exhibits a minimum value of 1.954 reached at ρ = 0.930, such that there exists an interval where
for two distinct ρ the ratio takes a common value. The ambiguity of R4/2 is removed by restricting
our considerations to the values ρ ≥ 0.930 where the function has a bijective character. Another fact
which is worth to be mentioned, is that starting from relatively small values of ρ(≈ 3.6) the ratio
R4/2 approaches asymptotically the rotational value R4/2 = 3.33. These findings allow us to define the
domain of accepted values for the global deformation parameter ρ, to be 0.930 < ρ < 5.

Note that the global deformation parameter can be fixed in the way described above only for
nuclei for which energies of the first two collective excited states are known. After fixing it one
can further get an isospin independent deformation parameter d = ρ/

√
2 which describes the

single-particle aspects of the corresponding nucleus. Using this value in Eq. (3.21) together with a
tabulated nuclear deformation [46] one obtains the canonical transformation constant k valid for
both proton and neutron single-particle degrees of freedom. In order to obtain isospin differentiated
deformation parameters dp and dn with corresponding scaling constants kp and kn, one first make use
of Eq. (4.10) where one plugs the value of ρ obtained before as well as the nuclear deformation taken
from Ref. [46] to obtain kp. The rest of the parameters are easily obtained by considering the relation
(3.21) for protons and neutrons taking also into account the relation (4.3) between the deformation
parameters. All of these quantities are listed in Tables 1–15 for each considered isotopic chain where
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Table 1
Numerical values of ρ, d, k, dp, kp, dn and kn obtained for the isotopic chain of Ge(Z = 32). The nuclear deformation β taken
from [46] and the experimental value of R4/2 taken from [50], are also listed. For nuclei with R4/2 < 1.7 the calculations were
not possible. For 74Ge we replaced β2 from Ref. [46] with the corresponding experimental value [51]. In this way one removes
the inconsistency with the sign of the quadrupole moment for the state 2+ .

Nucleus N β R4/2 ρ d k dp kp dn kn
64Ge 32 0.219 2.276 1.794 1.269 8.6855 1.228 8.4070 1.308 8.9554
66Ge 34 0.229 2.271 1.788 1.264 8.2965 1.222 8.0168 1.306 8.5671
68Ge 36 −0.275 2.233 −1.742 −1.232 5.7072 −1.409 6.5295 −1.024 4.7444
70Ge 38 −0.241 2.071 −1.497 −1.059 5.6803 −1.234 6.6225 −0.847 4.5468
74Ge 42 0.290∗ 2.457 1.979 1.399 7.3412 1.321 6.9291 1.474 7.7315
76Ge 44 0.143 2.505 2.025 1.432 14.7473 1.394 14.3528 1.469 15.1316
78Ge 46 0.153 2.535 2.053 1.452 14.0091 1.408 13.5871 1.494 14.4187
80Ge 48 0.144 2.644 2.153 1.522 15.5746 1.476 15.0968 1.568 16.0381
82Ge 50 0.053 1.505
84Ge 52 0.142 2.676 2.183 1.544 16.0059 1.496 15.5121 1.590 16.4849

Table 2
The same as in Table 1 but for the isotopic chain of Se(Z = 34). Here for nucleus 72Se, the experimental ratio R4/2 is not much
smaller than theminimum theoretical value 1.954 and one can adopt the correspondingminimum value. However, the yielded
value ρ = 0.930 would further produce dp > ρ, which contradicts Eq. (4.3). Due to this reason for this nucleus one takes that
ρ which corresponds to the tabulated β value and lies on the line obtained by fitting the rest of the points for this isotopic
chain (Fig. 6). Also, for 74,76Se we replaced β2 from Ref. [46] with the corresponding experimental value [52,53]. In this way one
removes the inconsistency with the sign of the quadrupole moment for the state 2+ .

Nucleus N β R4/2 ρ d k dp kp dn kn
68Se 34 0.240 2.275 1.792 1.267 7.9526 1.221 7.6640 1.311 8.2310
70Se 36 −0.307 2.158 −1.643 −1.162 4.7521 −1.363 5.5755 −0.917 3.7523
72Se 38 −0.283 1.899 −2.293 −1.621 7.2735 −1.819 8.1586 −1.396 6.2645
74Se 40 0.240∗ 2.148 1.628 1.151 7.2248 1.128 7.0805 1.174 7.3662
76Se 42 0.280∗ 2.380 1.904 1.346 7.3013 1.278 6.9292 1.412 7.6553
78Se 44 0.143 2.449 1.971 1.394 14.3541 1.359 13.9999 1.427 14.6998
80Se 46 0.153 2.554 2.070 1.464 14.1251 1.419 13.6921 1.507 14.5452
82Se 48 0.154 2.650 2.159 1.527 14.6404 1.476 14.1538 1.576 15.1112
84Se 50 0.053 1.459
86Se 52 0.125 2.227 1.735 1.227 14.3883 1.221 14.3163 1.233 14.4599

one also presented the nuclear deformation taken from [46] and the experimental value of the ratio
R4/2. The calculated values for the deformation parameter d are in agreement with those obtained
for some selected nuclei in Refs. [47–49] where the same parameter was determined by fitting all
experimentally available collective states including β and γ rotational states with a more complex
quadrupole boson Hamiltonian.

Although the calculations are straightforward for most of the considered nuclei, there are also
some special situations where a roundabout method is required to obtain consistent results. As can
be seen from Tables 1–15, the nuclei around a shell closure always exhibit a ratio R4/2 smaller than
two and sometimes even smaller than the theoretical minimumvalue predicted by Eq. (4.6), i.e. 1.954.
In these cases one cannot determine the global parameter ρ and consequently any other quantity of
interest. However, in some cases even if R4/2 < 1.954 but not much smaller, one can still consider
the value ρ = 0.930 corresponding to the minimum of Eq. (4.6). This approximation was made
for nuclei with 1.7 < R4/2 < 1.954 which are indicated in the captions of Tables 4–11 and 14.
Another difficulty arises when computing the deformation parameters and canonical transformation
constants for vanishing or very small values of the nuclear deformation β . Indeed, the calculation
algorithm explained above cannot be applied in the case of vanishing β , while for very small values of
β the results for the canonical constants are too large to be taken into account. In order to avoid this
problem and therewith to obtain a description of these nuclei, one uses different values for the nuclear
deformation β found by interpolating the linear fit of the remaining (ρ, β) data points for a certain
isotopic chain. In Tables 1–15 the interpolated values are replacing those taken from Ref. [46] and the
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Table 3
Same as in Table 1 but for the isotopic chain of Zr(Z = 40). For few nuclei, 82,84,86,88Zr, the nuclear deformation β is too small
to provide acceptable results. For these nuclei one considered the nuclear deformation β fit corresponding to the linear fit from
Fig. 6 performed for the rest of the data points.

Nucleus N β β fit R4/2 ρ d k dp kp dn kn
80Zr 40 0.433 2.858 2.365 1.672 6.0102 1.529 5.4944 1.804 6.4850
82Zr 42 0.053 0.299 2.557 2.073 1.466 7.4710 1.377 7.0158 1.550 7.9001
84Zr 44 0.053 0.269 2.339 1.862 1.317 7.4162 1.255 7.0705 1.375 7.7465
86Zr 46 0.053 0.249 2.217 1.723 1.218 7.3838 1.179 7.1454 1.256 7.6149
88Zr 48 0.053 0.200 2.024 1.386 0.980 7.3165 1.015 7.5793 0.944 7.0439
90Zr 50 0.053 1.407
92Zr 52 0.053 1.600
94Zr 54 0.062 1.600
96Zr 56 0.217 1.571
98Zr 58 0.330 1.674
100Zr 60 0.358 2.656 2.165 1.531 6.5834 1.420 6.1046 1.635 7.0296
102Zr 62 0.369 3.151 2.819 1.993 8.3309 1.833 7.6590 2.142 8.9526
104Zr 64 0.381 3.246 3.197 2.261 9.1672 2.072 8.4032 2.434 9.8723
106Zr 66 0.373 3.133 2.774 1.962 8.1150 1.803 7.4574 2.109 8.7233
108Zr 68 0.365 3.003 2.542 1.797 7.5899 1.656 6.9933 1.928 8.1429

Table 4
Same as in Table 1 but for the isotopic chain of Mo(Z = 42). For few nuclei, 84,86,88,90,94,96Mo, the nuclear deformation β is too
small to provide acceptable results. For these nuclei one considered the nuclear deformation β fit corresponding to the linear fit
from Fig. 6 performed for the rest of the data points. The experimental ratio R4/2 for 94Mo and 98Mo is not much smaller than
the minimum theoretical value 1.954 such that one adopted for them the corresponding minimum value ρ = 0.930.

Nucleus N β β fit R4/2 ρ d k dp kp dn kn
84Mo 42 0.053 0.299 2.517 2.036 1.440 7.3377 1.354 6.8990 1.521 7.7516
86Mo 44 0.053 0.274 2.343 1.866 1.319 7.3037 1.256 6.9547 1.380 7.6368
88Mo 46 0.053 0.256 2.235 1.745 1.234 7.2841 1.190 7.0242 1.276 7.5350
90Mo 48 0.053 0.231 2.112 1.571 1.111 7.2296 1.100 7.1572 1.122 7.3013
92Mo 50 0.035 1.512
94Mo 52 0.053 0.137 1.807 0.930 0.658 7.0587 0.864 9.2779 0.343 3.6839
96Mo 54 0.080 0.226 2.092 1.536 1.086 7.2171 1.083 7.1940 1.090 7.2402
98Mo 56 0.180 1.918 0.930 0.658 5.4296 0.855 7.0615 0.365 3.0158
100Mo 58 0.244 2.121 1.587 1.122 6.9332 1.105 6.8281 1.139 7.0367
102Mo 60 0.329 2.507 2.027 1.433 6.6748 1.341 6.2442 1.520 7.0794
104Mo 62 0.349 2.917 2.431 1.719 7.5718 1.590 7.0017 1.839 8.1020
106Mo 64 0.361 3.045 2.605 1.842 7.8593 1.698 7.2427 1.976 8.4309
108Mo 66 0.333 2.924 2.439 1.725 7.9405 1.599 7.3616 1.842 8.4800
110Mo 68 0.335 2.805 2.309 1.633 7.4749 1.516 6.9389 1.742 7.9750

corresponding nuclei are indicated in captions or are simply given in a separate column for isotopic
chains with more such cases. The linear fits used for interpolation are shown in Figs. 6 and 7 for the
lighter and heavier isotopic chains respectively, where the equation of the fitting line is indicated for
each one of them. It must be mentioned that due to the relation between β and d the linear fits are
restricted to have a vanishing intercept. The same fits are also used for interpolating values of ρ for
nuclei where this cannot be determined (240U) or where the value obtained in the usual way provides
results conflicting the relation (4.3) (72Se). The sign of the nuclear deformation β is carried towards
the deformation parameters d, dp and dn, but in the case of the vanishing β one choose by default the
positive values for the deformation parameters d, dp and dn.

The slope of the fits can be viewed as an average value of the k over the chosen isotopic chain.
As a matter of fact this result is consistent with the linear dependence (3.10) of d/k on the nuclear
deformation β given the fact that ρ =

√
2d.

A natural question concerning the consistency of the fitted deformation parameters with the
experimental quadrupole moment for the collective state 2+, QExp

2 , arises. According to Ref. [54] for
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Table 5
The same as in Table 1 but for the isotopic chain of Cd(Z = 48). For few nuclei, 100,102,104,124,126,128Cd, the nuclear deformation
β is zero or too small to provide acceptable results. For these nuclei one considered the nuclear deformation β fit corresponding
to the linear fit from Fig. 6 performed for the rest of the data points. The experimental ratio R4/2 for 100Cd is not much smaller
than the minimum theoretical value 1.954 such that one adopted for it the corresponding minimum value ρ = 0.930. For two
isotopes 98,130Cd the algorithm of this paper fails since the ratio R4/2 is too small.

Nucleus N β β fit R4/2 ρ d k dp kp dn kn
98Cd 50 0.027 1.493
100Cd 52 0.035 0.079 1.792 0.930 0.658 12.0608 0.878 16.1011 0.307 5.6288
102Cd 54 0.053 0.133 2.109 1.567 1.108 12.2373 1.123 12.4056 1.093 12.0667
104Cd 56 0.089 0.151 2.268 1.784 1.261 12.2945 1.241 12.0996 1.281 12.4863
106Cd 58 0.126 2.361 1.885 1.333 15.5122 1.311 15.2606 1.354 15.7598
108Cd 60 0.135 2.383 1.907 1.348 14.6811 1.322 14.3920 1.374 14.9646
110Cd 62 0.144 2.345 1.868 1.321 13.5129 1.295 13.2458 1.346 13.7748
112Cd 64 0.144 2.292 1.812 1.281 13.1078 1.261 12.8966 1.302 13.3157
114Cd 66 0.163 2.299 1.819 1.286 11.6795 1.259 11.4316 1.313 11.9224
118Cd 70 −0.241 2.388 −1.912 −1.352 7.2549 −1.506 8.0809 −1.178 6.3219
120Cd 72 0.135 2.379 1.903 1.346 14.6503 1.319 14.3649 1.371 14.9302
122Cd 74 0.108 2.334 1.857 1.313 17.7443 1.300 17.5690 1.326 17.9179
124Cd 76 0.000 0.151 2.260 1.775 1.255 12.2921 1.236 12.1084 1.274 12.4731
126Cd 78 0.000 0.150 2.250 1.763 1.247 12.2890 1.230 12.1205 1.263 12.4552
128Cd 80 0.000 0.146 2.215 1.721 1.217 12.2780 1.206 12.1672 1.228 12.3879
130Cd 82 0.000 1.407

Table 6
The same as in Table 1 but for the isotopic chain of Te(Z = 52). For few nuclei, 128−138Te, the nuclear deformation β is zero such
that for these nuclei one considered the nuclear deformation β fit corresponding to the linear fit from Fig. 6 performed for the
rest of the data points. The experimental ratio R4/2 for 130Te and 132Te is not much smaller than the theoretical minimum value
1.954 hence one adopted for them the corresponding minimum value ρ = 0.930. The horizontal line after 134Te indicates the
change of neutron shell model parameters κ and µ.

Nucleus N β β fit R4/2 ρ d k dp kp dn kn
106Te 54 0.099 2.035 1.416 1.001 14.7246 1.056 15.5232 0.944 13.8802
108Te 56 0.134 2.062 1.477 1.044 11.4526 1.076 11.7988 1.012 11.0957
110Te 58 0.152 2.133 1.605 1.135 11.0214 1.139 11.0564 1.131 10.9863
112Te 60 0.161 2.142 1.620 1.146 10.5259 1.144 10.5141 1.147 10.5376
114Te 62 0.161 2.094 1.539 1.088 9.9996 1.101 10.1129 1.076 9.8849
116Te 64 0.180 2.002 1.319 0.933 7.7006 0.990 8.1731 0.872 7.1972
118Te 66 −0.147 1.992 −1.279 −0.904 8.2657 −1.076 9.8359 −0.691 6.3166
120Te 68 −0.156 2.073 −1.499 −1.060 9.0970 −1.193 10.2405 −0.907 7.7873
128Te 76 0.000 0.141 2.014 1.358 0.960 10.0596 1.017 10.6537 0.900 9.4280
130Te 78 0.000 0.096 1.945 0.930 0.658 9.9430 0.874 13.2105 0.319 4.8176
132Te 80 0.000 0.096 1.716 0.930 0.658 9.9430 0.874 13.2105 0.319 4.8176
134Te 82 0.000 1.232
136Te 84 0.000 1.698
138Te 86 0.000 0.148 2.040 1.428 1.010 10.0779 1.048 10.4597 0.970 9.6811

50 nuclei considered here, there are experimental data for the quadrupole moment of the lowest 2+.
For 42 of them the signs of QExp.

2 and β as given in Ref. [46] are consistent with each other, i.e., they
are opposite. For three of the remaining eight, the sign prediction of Ref. [46] for β is different from
that of the experimental nuclear quadrupole deformation. Choosing β as given by experiment one
obtains agreement with the sign of QExp

2 also for 74Ge and 74,76Se. As for the remaining 5 nuclei we
slightly changed the algorithm of fixing the parameters due to the lack of experimental data for the
quadrupole deformation.
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Table 7
The same as in Table 1 but for the isotopic chain of Sm(Z = 62). For 142Sm and 146Sm the nuclear deformation β is zero such
that for these nuclei one considered and listed the nuclear deformation corresponding to the linear fit from Fig. 7 performed for
the rest of the data points. The experimental ratio R4/2 for 146Sm is not much smaller than theminimum theoretical value 1.954
hence one adopted for it the corresponding minimum value ρ = 0.930. The horizontal line indicates the change of neutron
shell model parameters κ and µ.

Nucleus N β R4/2 ρ d k dp kp dn kn
132Sm 70 0.323 3.183 2.913 2.060 9.7604 1.907 9.0383 2.202 10.4327
134Sm 72 0.312 2.939 2.457 1.737 8.5062 1.616 7.9137 1.850 9.0600
136Sm 74 0.237 2.692 2.199 1.555 9.8760 1.474 9.3591 1.632 10.3672
138Sm 76 0.190 2.571 2.086 1.475 11.5647 1.416 11.1056 1.531 12.0062
140Sm 78 −0.148 2.348 −1.871 −1.323 12.0053 −1.422 12.9062 −1.216 11.0310
142Sm 80 0.171 2.332 1.855 1.312 11.3755 1.278 12.9062 1.344 11.6581
144Sm 82 0.000 1.320
146Sm 84 0.086 1.849 0.930 0.658 11.0931 0.876 14.7800 0.312 5.2597
148Sm 86 0.161 2.145 1.624 1.148 10.5519 1.146 10.5344 1.150 10.5693
150Sm 88 0.206 2.316 1.837 1.299 9.4276 1.257 9.1235 1.340 9.7223
152Sm 90 0.243 3.009 2.551 1.804 11.1882 1.699 10.5408 1.903 11.8001
154Sm 92 0.270 3.255 3.261 2.306 12.9428 2.155 12.0937 2.448 13.7395
156Sm 94 0.279 3.290 3.666 2.592 14.1057 2.417 13.1502 2.757 15.0005
158Sm 96 0.279 3.301 3.880 2.744 14.9291 2.557 13.9155 2.918 15.8782
160Sm 98 0.290 3.291 3.668 2.594 13.6067 2.413 12.6583 2.763 14.4932

Table 8
The same as in Table 1 but for the isotopic chain of Gd(Z = 64). For 144Gd and 148Gd the nuclear deformation β is zero such
that for these nuclei one considered and listed the nuclear deformation corresponding to the linear fit from Fig. 7 performed
for the rest of the data points. The experimental ratio R4/2 for 148Gd is not much smaller than the minimum theoretical value
1.954 hence one adopted the corresponding minimum value ρ = 0.930. The horizontal line indicates the change of neutron
shell model parameters κ and µ.

Nucleus N β R4/2 ρ d k dp kp dn kn
138Gd 74 0.256 2.741 2.245 1.587 9.3712 1.497 8.8379 1.673 9.8759
140Gd 76 0.210 2.545 2.062 1.458 10.3901 1.395 9.9397 1.519 10.8219
142Gd 78 −0.156 2.346 −1.869 −1.322 11.3424 −1.425 12.2327 −1.209 10.3760
144Gd 80 0.160 2.348 1.871 1.323 12.2297 1.291 11.9382 1.354 12.5144
146Gd 82 0.000 1.324
148Gd 84 0.080 1.806 0.930 0.658 11.9051 0.878 15.8885 0.308 5.5696
150Gd 86 0.161 2.019 1.373 0.971 8.9210 1.019 9.3600 0.921 8.4592
152Gd 88 0.207 2.194 1.693 1.197 8.6486 1.173 8.4714 1.221 8.8223
154Gd 90 0.243 3.015 2.559 1.809 11.2232 1.705 10.5732 1.909 11.8376
156Gd 92 0.271 3.239 3.157 2.232 12.4863 2.086 11.6672 2.370 13.2548
158Gd 94 0.271 3.288 3.629 2.566 14.3531 2.396 13.4022 2.726 15.2447
160Gd 96 0.280 3.302 3.913 2.767 15.0052 2.578 13.9834 2.943 15.9618
162Gd 98 0.291 3.302 3.901 2.758 14.4240 2.565 13.4136 2.939 15.3681
164Gd 100 0.301 3.300 3.863 2.732 13.8348 2.536 12.8420 2.914 14.7609

Let us derive the expression of the quadrupole moment within the GCSM. The liquid drop model
(LDM) predicts for the quadrupole moment the expression:

Q2µ = 3ZeR2
0

4π

�
α2µ − 10√

70π
(α2α2)2µ

�
, R0 = 1.2A1/3fm. (5.1)

Within LDM the state 2+ is a one phonon state, bĎ2µ|0�, which yields for the quadrupole moment, with
the standard definition, the expression:

�22|Q20|22� = −3ZeR2
0

√
5

7πk2
√

π
. (5.2)
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Table 9
The same as in Table 1 but for the isotopic chain of Dy(Z = 66). For 146Dy and 150Dy the nuclear deformation β is zero such
that for these nuclei one considered and listed the nuclear deformation corresponding to the linear fit from Fig. 7, performed
for the rest of the data points. Also, the experimental ratio R4/2 for 150Dy is not much smaller than the minimum theoretical
value 1.954, hence for it one adopted the corresponding minimum value ρ = 0.930. The horizontal line indicates the change
of neutron shell model parameters κ and µ.

Nucleus N β R4/2 ρ d k dp kp dn kn
140Dy 74 0.267 2.800 2.304 1.629 9.2417 1.532 8.6879 1.721 9.7642
142Dy 76 0.219 2.529 2.047 1.447 9.9104 1.383 9.4665 1.510 10.3353
144Dy 78 −0.164 2.365 −1.889 −1.336 10.8707 −1.443 11.7468 −1.219 9.9175
146Dy 80 0.158 2.355 1.878 1.328 12.4247 1.296 12.1296 1.359 12.7131
148Dy 82 0.000 1.447
150Dy 84 0.078 1.813 0.930 0.658 12.2035 0.878 16.2959 0.306 5.6831
152Dy 86 0.153 2.055 1.461 1.033 9.9694 1.063 10.2564 1.002 9.6740
154Dy 88 0.207 2.234 1.743 1.232 8.9040 1.201 8.6786 1.263 9.1239
156Dy 90 0.235 2.934 2.451 1.733 11.0968 1.637 10.4816 1.824 11.6795
158Dy 92 0.262 3.206 3.000 2.121 12.2509 1.986 11.4723 2.248 12.9829
160Dy 94 0.272 3.270 3.400 2.404 13.4006 2.245 12.5137 2.553 14.2322
162Dy 96 0.281 3.294 3.723 2.633 14.2286 2.453 13.2589 2.800 15.1362
164Dy 98 0.292 3.301 3.872 2.809 14.6390 2.611 13.6104 2.993 15.6000
166Dy 100 0.293 3.310 4.173 2.951 15.3302 2.743 14.2488 3.145 16.3402
168Dy 102 0.304 3.313 4.278 3.025 15.1782 2.806 14.0782 3.229 16.2038
170Dy 104 0.295 3.264 3.338 2.360 12.1841 2.195 11.3287 2.515 12.9833

Table 10
The same as in Table 1 but for the isotopic chain of Er(Z = 68). For 152Er the nuclear deformation β is too small to provide
acceptable results such that one considered and listed for this nucleus the nuclear deformation corresponding to the linear
fit from Fig. 7 performed for the rest of the data points. Also the experimental ratio R4/2 for the same nucleus is not much
smaller than the minimum theoretical value 1.954 hence for it one adopted the corresponding minimum value ρ = 0.930. The
horizontal line indicates the change of neutron shell model parameters κ and µ.

Nucleus N β R4/2 ρ d k dp kp dn kn
148Er 80 −0.156 2.357 −1.881 −1.330 11.4153 −1.433 12.3026 −1.218 10.4529
150Er 82 −0.008 1.453
152Er 84 −0.074 1.832 −0.930 −0.658 12.2625 −0.921 17.1767 −0.128 2.3870
154Er 86 0.143 2.072 1.499 1.060 10.9167 1.085 11.1715 1.035 10.6558
156Er 88 0.189 2.314 1.836 1.298 10.2302 1.261 9.9394 1.334 10.5128
158Er 90 0.216 2.744 2.248 1.590 11.0274 1.512 10.4879 1.664 11.5417
160Er 92 0.253 3.099 2.702 1.911 11.4056 1.795 10.7129 2.020 12.0586
162Er 94 0.272 3.230 3.107 2.197 12.2457 2.053 11.4415 2.332 13.0004
164Er 96 0.273 3.277 3.471 2.454 13.6330 2.291 12.7270 2.607 14.4823
166Er 98 0.283 3.289 3.636 2.571 13.8032 2.395 12.8586 2.736 14.6872
168Er 100 0.294 3.309 4.131 2.921 15.1271 2.715 14.0577 3.114 16.1258
170Er 102 0.296 3.310 4.153 2.937 15.1106 2.728 14.0369 3.131 16.1129
172Er 104 0.287 3.312 4.228 2.990 15.8390 2.782 14.7381 3.184 16.8682

From here it results that for spherical nuclei the quadrupole moment is always negative. The GCSM
defines the state 2+ by the angular momentum projected state φ

g
JM(dn, dp) (see Eq. (4.2)) while the

quadrupole moment, in the boson representation, is:

Q20 = 3ZeR2
0

4π

�
1

kp
√
2

�
bĎb0 + bp0

�
− 5

k2p
√
70π

�
(bĎpb

Ď
p)20 + (bpbp)20 + (bĎpbp)20

�
�

. (5.3)

Averaging this operator with the projected state mentioned above one obtains:

�φg
22(dn, dp)|Q20|φg

22(dn, dp)� = −3ZeR2
0

7π

�
1√
2
dp
kp

+ 1
7

�
5
π

�
dp
kp

�2
�

1 + I(1)2 (ρ)

I(0)2 (ρ)

��

. (5.4)
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Table 11
The same as in Table 1 but for the isotopic chain of Hf(Z = 72). For 156Hf the nuclear deformation β is too small to provide
acceptable results such that one considered and listed for this nucleus the nuclear deformation corresponding to the linear fit
from Fig. 7 performed for the rest of the data points. Also the experimental ratio R4/2 for the same nucleus is not much smaller
than the minimum theoretical value 1.954 hence for it one adopted the corresponding minimum value ρ = 0.930.

Nucleus N β R4/2 ρ d k dp kp dn kn
156Hf 84 0.076 1.849 0.930 0.658 12.5176 0.879 16.7247 0.305 5.8023
158Hf 86 0.107 2.169 1.659 1.173 15.9962 1.182 16.1212 1.164 15.8702
160Hf 88 0.152 2.306 1.827 1.292 12.5458 1.267 12.3059 1.316 12.7813
162Hf 90 0.180 2.560 2.076 1.468 12.1202 1.413 11.6699 1.521 12.5543
164Hf 92 0.208 2.786 2.290 1.619 11.6447 1.542 11.0870 1.693 12.1770
166Hf 94 0.226 2.966 2.491 1.761 11.7043 1.666 11.0727 1.852 12.3036
168Hf 96 0.254 3.110 2.723 1.925 11.4514 1.808 10.7525 2.036 12.1100
170Hf 98 0.274 3.194 2.951 2.087 11.5505 1.950 10.7923 2.215 12.2620
172Hf 100 0.284 3.248 3.211 2.271 12.1492 2.116 11.3223 2.415 12.9233
174Hf 102 0.285 3.268 3.381 2.391 12.7500 2.227 11.8765 2.544 13.5673
176Hf 104 0.277 3.284 3.572 2.526 13.8379 2.356 12.9067 2.685 14.7102
178Hf 106 0.278 3.291 3.668 2.594 14.1614 2.418 13.2047 2.758 15.0575
180Hf 108 0.279 3.307 4.039 2.856 15.5409 2.662 14.4843 3.038 16.5301
182Hf 110 0.270 3.295 3.741 2.645 14.8479 2.470 13.8656 2.809 15.7691
184Hf 112 0.260 3.264 3.341 2.362 13.7428 2.212 12.8652 2.504 14.5677

Table 12
The same as in Table 1 but for the isotopic chain of Os(Z = 76). For 162Os the nuclear deformation β is too small to provide
acceptable results such that one considered and listed for this nucleus the nuclear deformation corresponding to the linear fit
from Fig. 7 performed for the rest of the data points.

Nucleus N β R4/2 ρ d k dp kp dn kn
162Os 86 0.104 1.990 1.273 0.900 12.6183 0.989 13.8670 0.801 11.2315
164Os 88 0.107 2.201 1.702 1.203 16.4108 1.207 16.4600 1.200 16.3615
166Os 90 0.134 2.363 1.887 1.334 14.6318 1.310 14.3631 1.358 14.8956
168Os 92 0.162 2.513 2.032 1.437 13.1245 1.391 12.7101 1.481 13.5263
170Os 94 0.171 2.616 2.127 1.504 13.0435 1.449 12.5678 1.557 13.5025
172Os 96 0.190 2.661 2.170 1.534 12.0303 1.470 11.5276 1.596 12.5129
174Os 98 0.226 2.743 2.247 1.589 10.5579 1.508 10.0196 1.666 11.0700
176Os 100 0.246 2.927 2.444 1.728 10.5948 1.629 9.9851 1.822 11.1713
178Os 102 0.247 3.017 2.562 1.812 11.0637 1.705 10.4139 1.912 11.6773
180Os 104 0.238 3.093 2.689 1.901 12.0285 1.792 11.3341 2.005 12.6849
182Os 106 0.239 3.155 2.828 2.000 12.6000 1.883 11.8623 2.110 13.2969
184Os 108 0.229 3.203 2.985 2.111 13.8507 1.990 13.0604 2.225 14.5982
186Os 110 0.220 3.165 2.856 2.019 13.7673 1.909 13.0129 2.124 14.4825
188Os 112 0.192 3.083 2.671 1.889 14.6604 1.798 13.9570 1.975 15.3316
190Os 114 0.164 2.934 2.452 1.734 15.6518 1.664 15.0254 1.801 16.2540
192Os 116 0.155 2.376 1.900 1.344 12.8041 1.311 12.4937 1.375 13.1072
194Os 118 0.145 2.750 2.255 1.595 16.2040 1.542 15.6701 1.645 16.7209
196Os 120 −0.156 2.533 −2.051 −1.450 12.4469 −1.551 13.3137 −1.342 11.5151
198Os 122 −0.096 2.307 −1.828 −1.293 18.4353 −1.367 19.4936 −1.214 17.3124

Recalling that ρ is determined by fitting the ratio R4/2 and replacing the l.h.s. of the above equation
with the corresponding experimental value one obtains a second degree algebraic equation for the
ratio dp/kp. Considering Eq. (3.21) for protons with the value of dp/kp just determined, one gets an
equation for β . From here determining dn and kn is an obvious procedure. Results obtained with this
method for the already mentioned set of 5 nuclei are collected in Table 16.

Another issue addressed in this paper regards the ability of themodel proposed to describe the shell
filling and how that compares with what we know from the Nilsson model. To this aim we calculated
the second order binding energy difference

∆ETot = − 3
16

[2E(N) − E(N + 2) − E(N − 2)] , (5.5)
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Table 13
The same as in Table 1 but for the isotopic chain of Pt(Z = 78). For 200Pt and 202Pt the nuclear deformation β is too small to
provide acceptable results such that for these nuclei one considered and listed the nuclear deformation corresponding to the
linear fit from Fig. 7 performed for the rest of the data points.

Nucleus N β R4/2 ρ d k dp kp dn kn
168Pt 90 −0.096 2.249 −1.761 −1.245 17.7596 −1.324 18.8764 −1.162 16.5677
170Pt 92 0.107 2.301 1.822 1.288 17.5679 1.279 17.4395 1.298 17.6953
172Pt 94 0.126 2.338 1.861 1.316 15.3147 1.296 15.0878 1.335 15.5383
174Pt 96 0.153 2.262 1.777 1.257 12.1257 1.237 11.9356 1.276 12.3129
176Pt 98 0.171 2.137 1.611 1.139 9.8792 1.137 9.8563 1.142 9.9020
178Pt 100 0.254 2.510 2.029 1.435 8.5328 1.361 8.0953 1.505 8.9489
180Pt 102 0.265 2.681 2.188 1.547 8.8392 1.458 8.3303 1.631 9.3203
182Pt 104 0.255 2.708 2.213 1.565 9.2720 1.477 8.7514 1.648 9.7649
184Pt 106 0.247 2.675 2.182 1.543 9.4227 1.460 8.9140 1.622 9.9053
186Pt 108 0.239 2.560 2.076 1.468 9.2495 1.395 8.7890 1.538 9.6881
188Pt 110 −0.164 2.526 −2.044 −1.445 11.7627 −1.551 12.6240 −1.331 10.8331
190Pt 112 −0.156 2.492 −2.012 −1.423 12.2103 −1.524 13.0785 −1.314 11.2753
192Pt 114 −0.156 2.479 −2.000 −1.414 12.1374 −1.515 13.0065 −1.305 11.2011
194Pt 116 −0.148 2.470 −1.992 −1.409 12.7817 −1.505 13.6591 −1.305 11.8394
196Pt 118 −0.139 2.465 −1.987 −1.405 13.6218 −1.497 14.5099 −1.307 12.6716
198Pt 120 −0.139 2.419 −1.943 −1.374 13.3202 −1.466 14.2161 −1.279 12.3595
200Pt 122 −0.180 2.347 −1.870 −1.322 9.7430 −1.440 10.6067 −1.194 8.7949
202Pt 124 −0.180 2.344 −1.867 −1.320 9.7274 −1.437 10.5916 −1.191 8.7785

Table 14
The same as in Table 1 but for the isotopic chain of Th(Z = 90). For few nuclei, 214,218,220Th, the nuclear deformation β is too
small to provide acceptable results. For these nuclei one considered the nuclear deformation, β fit , corresponding to the linear
fit from Fig. 7 performed for the rest of the data points. The experimental ratio R4/2 for 218Th is not much smaller than the
minimum theoretical value 1.954 hence one adopted for it the corresponding minimum value ρ = 0.930. The horizontal line
indicates the change of neutron shell model parameters κ and µ.

Nucleus N β β fit R4/2 ρ d k dp kp dn kn
214Th 124 −0.052 −0.111 2.332 −1.855 −1.312 16.0918 −1.392 17.0779 −1.226 15.0411
216Th 126 0.008 1.227
218Th 128 0.008 0.056 1.732 0.930 0.658 16.8913 0.884 22.6978 0.290 7.4458
220Th 130 0.030 0.085 2.035 1.416 1.001 17.0840 1.060 18.0800 0.939 16.0263
222Th 132 0.111 2.399 1.923 1.360 17.8927 1.340 17.6360 1.379 18.1457
224Th 134 0.164 2.896 2.407 1.702 15.3645 1.635 14.7567 1.767 15.9492
226Th 136 0.173 3.136 2.782 1.967 16.8710 1.880 16.1244 2.051 17.5860
228Th 138 0.182 3.235 3.130 2.213 18.0814 2.108 17.2250 2.313 18.8990
230Th 140 0.198 3.271 3.408 2.410 18.1638 2.286 17.2308 2.528 19.0512
232Th 142 0.207 3.284 3.563 2.519 18.2014 2.385 17.2280 2.647 19.1253
234Th 144 0.215 3.291 3.669 2.594 18.0777 2.451 17.0786 2.730 19.0245

Table 15
The same as in Table 1 but for the isotopic chain of U(Z = 92). For 240U the experimental ratio R4/2 exceeds its asymptotic
value 3.33, such that for this nucleus one considered and listed the value of ρ interpolated by the linear fit from Fig. 7 for the
corresponding β .

Nucleus N β R4/2 ρ d k dp kp dn kn
230U 138 0.199 3.274 3.436 2.430 18.2252 2.304 17.2844 2.549 19.1197
232U 140 0.207 3.291 3.670 2.595 18.7480 2.456 17.7435 2.727 19.7014
234U 142 0.215 3.296 3.762 2.660 18.5360 2.513 17.5101 2.800 19.5080
236U 144 0.215 3.304 3.958 2.799 19.5017 2.643 18.4198 2.946 20.5266
238U 146 0.215 2.303 3.950 2.793 19.4623 2.638 18.3827 2.940 20.4850
240U 148 0.229 3.347 4.004 2.831 18.5790 2.666 17.4942 2.987 19.6038

with E(N) denoting the total sum of proton and neutron single particle energies for a nucleus with
N neutrons. This quantity is plotted for the isotopic chains of Cd and Te in Fig. 8. We notice that
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Table 16
Results for deformation parameters and canonicity constants obtainedwith a different algorithm than that used in the previous
tables: The ratio dp/kp is fixed such that the experimental value of the quadrupolemoment of the state 2+ ,QExp

2 , is reproducedby
Eq. (5.4). ρ is determined by fitting the ratio R4/2 and then Eq. (3.21) provides β2. The remaining parameters are fixed following
the same path as for the other nuclei.

Nucleus QExp
0 [eb] R4/2 β2 ρ d k dp kp dn kn

72Ge −0.13(6) 2.072 0.237 1.498 1.059 6.7358 1.061 6.7460 1.058 6.7257
116Cd −0.42(4) 2.375 0.368 1.899 1.343 5.6322 1.255 5.2655 1.425 5.9765
122Te −0.57(5) 2.094 0.441 1.540 1.089 3.8476 1.046 3.6950 1.131 3.9945
124Te −0.45(5) 2.072 0.348 1.497 1.059 4.6786 1.038 4.5896 1.078 4.7659
126Te −0.20(9) 2.043 0.155 1.435 1.015 9.6735 1.050 10.005 0.979 9.3297

Table 17
With the nuclear deformation β taken for Ref. [46] and the deformation parameters as well as the canonicity constants
determined as discussed in the text we determined the quantum numbers [NljI] of the last occupied (Locc), the second last
occupied (Slocc) and the first unoccupied (Funocc) neutron states of several even–odd isotopes. Presuming that the Fermi sea
is close to one of the mentioned states we can get information upon the spin of the ground state of the odd system whose
experimental values (see [15] p. 78) are listed on the last column. Indeed in the region of the last occupied state the level
density is high which results that the odd nucleon position is sensitive to the residual interaction.

Nucleus β2 ρ d k dp kp dn kn Locc Slocc Funocc IExp
155Gd 0.252 2.939 2.078 12.4534 1.951 11.6878 2.199 13.1745 [66 13
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Fig. 6. Linear fits with vanishing intercept of the tabulated nuclear deformation β as a function of the global deformation
parameter ρ obtained by reproducing the experimental value of the R4/2 ratio, by means of Eq. (4.6), are presented for the
lightest isotopic chains. The data points with β = 0 or very small are excluded from the fit.

both models show two major peaks corresponding to the magic number 82 and the shell filling at
N = 68 for Cd and N = 70 for Te. The distributions of peaks for Te isotones obtained with the
projected spherical single particle basis (PSSPB) and the Nilssonmodel respectively, are similar. Some
differences appear in the case of Cd’s. In the case of Nilsson plot there is a peak for N = 76 which
is missing in our case. On the other hand the plot with PSSPB exhibits a peak for N = 56 which is
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Fig. 7. Linear fits with vanishing intercept of the tabulated nuclear deformation β as a function of the global deformation
parameter ρ obtained by reproducing the experimental value of the R4/2 ratio, by means of Eq. (4.6), are presented for the
heavier isotopic chains. The data points with β = 0 or very small and with R4/2 > 3.33 (240U) are excluded from the fit.

Fig. 8. The binding energy second order difference, ∆ETot for the isotopes of Cd (left panel) and Te (right panel) is represented
as a function of the number of neutrons, N . For Nilsson model calculations we included also the ∆N = 2 matrix elements with
Ncutoff = 10.

missing in the case of the plot madewith the Nilssonmodel. Themajor peak atN = 70 for the Nilsson
model is shifted to N = 68 for our method.

The order of the shell filling is, of course, depending on the quadrupole deformation. A test for
this feature is to identify the levels around the last occupied one and compare their spin with the
experimental value for the ground state spin, in an even–odd nucleus. The results are compared with
the data for a few odd nuclei in Table 17. Among the identified angular momenta for the last and
the second last occupied as well as for the first unoccupied levels one finds the angular momenta
characterizing the ground state according to the experimental data. The reasonwe listed all three spins
is that in the region of the Fermi sea the level density is high and a small uncertainty in determining
the deformation may change the position of the level crossing and thus the filling order. Moreover
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our estimation does not take into consideration the effect of the residual interaction which may also
shift the position of the Fermi level. We note that the agreement is reasonably good suggesting that
the ground state has the spin of the first unoccupied level for 155Gd, 167Er, 177Hf, 179Hf and that of the
second last occupied state for 187Os, 189Os, 157Gd.

The results concerning the canonicity parameters k, kp and kn for the 194 isotopes can be interpo-
lated by linear functions of the atomic mass number A.

k = 0.0513471 · A + 4.28957, rms = 2.59477, (5.6)
kp = 0.0488292 · A + 4.61187, rms = 2.71376, (5.7)

kn = 0.0538922 · A + 3.80843, rms = 3.17185. (5.8)

Given the large number of the isotopes considered, the interpolation accuracy is reasonably good.
This can however be improved if an additional dependence on Z is introduced. The above equations
can be used for the isotopes not included in Tables 1–15 to determine the deformation parameters d,
dp and dn following a shortcut of the algorithm described above.

Knowing the deformation d for a chosen nucleus, one can investigate its shape by calculating the
total nucleon density as a function of the stretched radial coordinate r � and the azimuthal angle θ .
Note that due to the assumed axial symmetry of the nucleus, the nucleon density is independent of
the polar angle ϕ. For illustration, one considers two isotopes of Gd which are sizeable distinguished
by the values of both the nuclear deformation β and the isospin independent deformation parameter
d. The chosen isotopes are 150Gd with β = 0.161 and d = 0.971, and 156Gd with β = 0.271 and
d = 2.232, the deformation parameters being those from Table 8.

Keeping in mind our declared aim of comparing the spherical projected single-particle basis with
the projected Nilsson states, the total nuclear density in the spherical shell model is the common
feature of the two projected spherical bases. This quantity is plotted in Fig. 9 for the two nuclei 150Gd
and 156Gd. In order to fully represent an axial section of the nuclei, the domain for θ was extended
from [0, π] to [0, 2π ].

Since the density in the spherical shell model does not depend on deformation, being rotationally
symmetric, the graphs shown in Fig. 9 for the two nuclei are almost identical. The only difference is
caused by the additional occupied single-particle states, whose contribution stays in the outer layers
of the nucleus 156Gd, around r � = 1.5 − 2.5.

In Fig. 10 one depicted the projected total nuclear density given by Eq. (3.25) normalized to its
maximum value for the two considered Gd isotopes as functions of the same variables as in Fig. 9.
Such a normalization is necessary in order to have the same scale for both nuclei given the fact that the
absolute values for the two nuclei are different due to the nonorthogonality of the involved projected
state (3.26). Now the difference between the two nuclei is conspicuous. Indeed, for the less deformed
nucleus 150Gd, the density probability (3.25) is mostly distributed in the center with a small extension
radius, while in the case of the more deformed nucleus 156Gd, the same density covers a broader
spacewhich does not have a spherical symmetry, approximately satisfied in the first case. The specific
manner of inducing the deformation effect seems to determine a slight hexadecapole deformation due
to squaring the expression (3.26) which already includes the quadrupole deformation.

In Fig. 11 the nucleon density corresponding to the Nilsson model and determined by Eq. (3.28),
is plotted as a function of r � cos θ and r � sin θ . Comparing it with the density averaged with the
quadrupole coherent state, given by Eq. (3.25), onemay detect the nuclear deformation effect. Indeed,
the two sets of pictures resemble with each other in many respects the differences regarding the
inner part corresponding to a high density which in the case of Fig. 11 is more deformed along the
axis r � cos θ . Thus, we may say that the deformation affects mainly the nuclear core, the outer shells
keeping the spherical symmetry. If you look carefully to the section of the nucleon density presented
in Fig. 11 one notices a slight distortion of equidensity levels, in the high density region, along the
axis r � sin θ . The slight hexadecapole distortionmight be caused by the inclusion of the∆l = 2matrix
elements in the diagonalization procedure used for determining the eigenstates. A similar effect, but
in a more pronounced manner, is seen in the density plotted in Fig. 10 by means of Eq. (3.25).

Studying some contour lines made at very high values of the nucleon density for both nuclei, in
Fig. 12 it is found that the elongated oval shape is preserved when the density is increased, in the case
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Fig. 9. Total nuclear density given by Eq. (3.24) is represented as a function of x = r � sin θ and z = r � cos θ in units of α
3
2 in 3D

plots (up) and contour plots (down) for 150Gd (left) and 156Gd (right). In both cases the densities corresponding to two adjacent
curves differ from each other by 0.21α3/2.

of the less deformed nucleus 150Gd, while for 156Gd the presence of the two peaks shown in the upper
right part of Fig. 11 is reflected in Fig. 12 by a neck which is more pronounced for higher density. The
full separation of the two peaks for very high density is translated in the contour line plot by two
disconnected drops.

Concluding, herewe studied the nucleon density described by the projected spherical single particle basis
and compared the results with those corresponding to the Nilsson model. Also, the effect of deformation on
the nucleon density was pointed out by comparing the results for a near spherical isotope, 150Gd, and a well
deformed one 156Gd.

Before closing this section it isworthmentioning two approaches to treat amany body systemwith
a projected spherical basis. One is called the projected shell model (PSM) [55] and treats a many body
Hamiltonian consisting in a Nilssonmean field term, the pairing and the QQ interactions. The first two
terms define, through the BCS approach, the space of 0, 2, 4, . . . , quasiparticles. For a given angular
momentum, the Hamiltonian was diagonalized in the basis of projected states corresponding to the
deformed quasiparticle states. The applicationwasmade not only formedium nuclei like 48Cr but also
for some heavy isotopes, 178Hf, 254No. A similar approach, but for a different deformedmean field was
employed in Refs. [56,57] to study the single and multi-backbending phenomena. Note that while
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Fig. 10. Total nuclear density projected on the quadrupole boson coherent state defined by Eq. (3.24) and normalized to its
maximum value is represented as a function of x = r � sin θ and z = r � cos θ in 3D plots (up) and contour plots (down) for 150Gd
(left) and 156Gd (right). Contour plots are made with a step of 0.062/ρmax .

in the quoted papers a projected spherical basis is obtained from a deformed many body basis, we
propose a projected single particle basis to treat, in a unified fashion, the spherical and the deformed
many body systems. According to the arguments presented here our procedure seems to be simpler
than the PSM. Moreover, the system angular momentum described by PSM is limited and depends on
the input data for the number of particles involved. By contrast, here the core angular momentum is
unlimited being carried by bosons. Alternatively, starting with a many body Hamiltonian [58], one
defines a body fixed reference frame which allows to separate two subsystems, a collective core
described by an axially symmetric rotor and a set of intrinsic single particle states. The approximated
Hamiltonian was treated in a product particle–core basis where the angular momentum is carried
exclusively by the core’s factor function. The ansatz for the particle factor function is an axially
symmetric Hartree–Fock state plus a two quasiparticle excitation of it. System energies are obtained
by averaging the particle–rotor Hamiltonian with an arbitrary component of the product basis. It
is interesting to note that inserting the asymptotic expression for the core projected function φ

(c)
J ,

as given in Ref. [19], the particle–core basis (3.13) resembles the particle–rotor basis used in [58].
Moreover, when the space of intrinsic functions is restricted to one state, the particle–rotor method
can be used to define a mean field for the particle motion and moreover a projected spherical basis.
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Fig. 11. Total nuclear density in theNilssonmodel given by Eq. (3.28) is represented as a function of x = r � sin θ and z = r � cos θ

in units of α
3
2 in 3D plots (up) and contour plots (down) for 150Gd (left) and 156Gd (right). Contour plots are made with a step

of 0.21α3/2.

Actually these are only two examples of many others, which attempt to define the optimal ba-
sis for treating complex systems like many body or particle–core systems. The examples prove the
importance of the treated subject as well as the simplicity of the proposed solution.

6. Conclusions

Results of the present work can be summarized as follows. Besides the nuclear shell model param-
eters, the projected single particle basis involves another two, namely the deformation parameter d
and the constant k entering the canonical transformation relating the quadrupole coordinates with
the boson operator. When some tuning properties which are isospin dependent are concerned, the
single particle projected basis for protons and neutrons should be different and consequently differ-
ent parameters d and k are to be used. The isospin dependence of these parameters is underlined by
using different notations for them, when they are involved in the equation for protons, dp and kp, and
neutrons, dn and kn, respectively. The algorithm of fixing these parameters is defined by several steps:
(a) By equating the theoretical result for the ratio R4/2 to the experimental value, one obtains a rela-
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Fig. 12. Contour lines of constant and very high density in the Nilsson model, given by Eq. (3.28), is represented as a function
of x = r � sin θ and z = r � cos θ in units of α

3
2 for 150Gd (up) and 156Gd (down).

tion determining the global deformation ρ(= d
√
2) (4.3); (b) Inserting d in Eq. (3.21) the parameter k

is readily obtained; (c) From the expression of the B(E2) value associated to the transition 0+ → 2+

the parameter kp is obtained; (d) Using again Eq. (3.21) corresponding to the proton system, the de-
formation parameter dp is calculated; (e) From Eq. (4.3) we determine dn; (f) Eq. (3.21) for neutrons
finally determines kn.

This procedure was applied to 194 isotopes and the resulting parameters are listed in Tables 1–15.
For 186 isotopes, the quadrupole deformation involved in Eq. (3.21) is taken from Ref. [46]. For the
remaining eight isotopes the quadrupole deformation from Ref. [46] provides a wrong sign for the
quadrupole moment of the lowest state 2+. In order to correct for this drawback we slightly changed
the procedure of fixing the involved parameters. Indeed, for three isotopes, 74Ge, 74Se and 76Se, we
inserted for β the corresponding experimental values from Refs. [51–53], otherwise kept the same
algorithm as before. As for the last five nuclides, 72Ge, 116Cd, 122,124,126Te, the fitting procedure is as
follows: (a) Inserting ρ, fixed by fitting the ratio R4/2, in the defining equation ofQ2 (5.4), this becomes
an equation for dp/kp; (b) Considering Eq. (3.21) for protons with the ratio dp/kp just determined, one
obtains an equation for β; (c) Knowing ρ, one calculates d and from (3.21), k; (d) With d and dp, the
deformation dn is readily obtained; (e) Again, Eq. (3.21) for neurons determines kn. In this way the
signs of 50 experimental values for Q2 [54] are reproduced.

The specific behavior of the neutron system when either a magic number or a single shell filling
are approached is studied by plotting the second order difference of the system binding energy as
a function of the neutron number for Cd and Te isotopes. Identifying the quantum numbers for the
last and second last occupied as well as the first unoccupied states for an even–odd nucleus, one may
say what the ground state spin could be. The comparison with experimental data may indicate the
correctness of the shell filling order. For the selected nuclei in Table 17 the agreement obtained is
quite good.

The ratio R4/2 represented as a function of ρ exhibits a flat minimum in the beginning of the
considered interval then a transitional region and finally a plateau is reached in the asymptotic region
of the deformation. For isotopes where the experimental mentioned ratio is below the calculated
minimum as well as for those characterized by experimental values larger than the rotational limit
of 3.33, this algorithm cannot be applied. The domain of ρ where the ratio is unambiguously defined
and employed in solving the equation determining ρ is [0.930, 5].

The results of ρ for fifteen isotopic chains are plotted as a function of the nuclear deformation β
and then the bulk of points interpolated by a straight line. There are few isotopes where the nuclear
deformation is very close to zero and consequently Eq. (3.21) cannot be used. In these cases the
linear interpolation is used to determine a new deformation parameter called β fit considered to be
the deformation which corresponds to the known ρ.
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One aim of this paper consists of making explicit the relationship between the projected spherical
single particle basis and the basis of the Nilsson model. The comparison is made in terms of the
predicted single particle energies and nucleon density. The detailed comparison supply us with
the results: (i) If one diagonalizes the Nilsson Hamiltonian in a spherical shell model basis with
∆N = 0 then projecting out the good angular momentum, the spherical shell model state is obtained.
Averaging now the Hamiltonian with the resulting projected spherical Nilsson’ s state one obtains
an analytical expression for energies denoted by �Nilss

nljΩ (2.9). These energies are compared with those
characterizing the projected spherical single particle basis (3.22) in Figs. 3 and 4. As may be seen
the two sets of energies are almost identical; (ii) The projected spherical single particle basis (3.13)
and the projected Nilsson basis yield identical nucleon density with that associated to the spherical
shell model (see Fig. 9). This was actually expected due to the common rotational symmetries; (iii)
However, the deformation can be implemented by averaging the result on the coherent state of the
core (3.25). This is represented as both a 3D and a contour plot for two isotopes of Gd, 150Gd and
156Gd, in Fig. 10. Since the density is obtained by squaring the modulus of the wave function which
includes already a quadrupole deformation a high order like hexadecapole deformation effect is seen.
Similar plots are performed in Fig. 11 for the density provided by the Nilsson states (3.28). The effect
of hexadecapole deformation is seen in the 3D plot by the split of the peak seen for high density
as well as in the contour plot where some equidensity curves are stretched along both the r �cosθ
and the r �sinθ axes. For inner shells the stretching along the r �sinθ axis is changed to a compressing
effect. This is shown in Fig. 12 where the contour lines are plotted for very high density. For the more
deformed isotope, i.e. 156Gd, the effect is more evident, the contour shape resembling that of a lens
grain. Increasing the density, the neck is shrunk ending by the extreme shape of two disconnected
drops. An equation relating the k-pole transition densities defined by the spherical shell model and
the projected spherical basis respectively, is analytically derived (3.33).

In several places it is commented why the particle–core projected basis can be used as a single
particle basis. Indeed, it was underlined the fact that the role of the core factor function is to generate
the deformation. Thus, the matrix elements of a particle-like operator between two states of the new
basis are factorized, one factor carrying the deformation while the other one being just the matrix
element between the corresponding spherical shell model states. It is amazing that the projected
spherical basis can be used also for many body calculations, although each particle has its own core.
In Ref. [40] we have proved that the matrix elements of a two body interaction between two pairs
of projected states are very close to the matrix elements of the same interaction between two states,
each of them consisting of two single particle shell model states and a common core wave function.
Due to this property the present procedure might be compared with some powerful many body
formalisms like the PSM [55] and the particle–rotor model [58]. As a matter of fact this basis was
used to microscopically describe the scissor like and spin-flip states [40] as well as for calculating the
transition rate of a double beta decay [59–62].

Concluding, the results of this paper prove that the projected spherical single particle basis is an
efficient tool for describing, in a unified fashion, the spherical and deformed nuclei.
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