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Abstract

The Generalized Coherent State Model, proposed previously for a unified description of magnetic

and electric collective properties of nuclear systems, is extended to account for the chiral like

properties of nuclear systems. To a phenomenological core described by GCSM a set of interacting

particles are coupled. Among the particle core states one identifies a finite set which have the

property that the angular momenta carried by the proton and neutron quadrupole bosons and

the particles respectively, are mutually orthogonal. All terms of the model Hamiltonian satisfy th

chiral symmetry except for the spin-spin interaction. The magnetic properties of the particle-core

states, where the three mentioned angular momenta are orthogonal, are studied. A quantitative

comparison of these features with the similar properties of states where the three angular momenta

belong to the same plane is performed.

PACS numbers: 21.60.Er, 21.10.Ky, 21.10.Re

1



I. INTRODUCTION

The rotational spectra appear to be a reflection of a spontaneous rotational symmetry

breaking when the nuclear system acquires a static nuclear deformation. The fundamental

nuclear properties like nuclear shape, the nucleon mass and charge distributions inside the

nucleus, electric and magnetic moments, collective spectra may be evidenced through the

system interaction with an electromagnetic field. The two components of the field, electric

and magnetic, are used to explore the properties of electric and magnetic nature, respectively.

At the end of last century the scissors like states [3? ] as well as the spin-flip excitations [? ]

have been widely treated by various groups. Some of them were based on phenomenological

assumptions while the other ones on microscopic considerations. The scissors like excitations

are excited in (e,e’) experiments at backward angles and expected at energy about 2-3 MeV,

while the spin-flip excitations are seen in (p,p’) experiments at forward angles and are located

at about 5-10 MeV. The scissors mode describes the angular oscillation of proton against

neutron system and the total strength is proportional to the nuclear deformation squared

which reflects the collective character of the excitation. Many papers haveen written on

this subject and therefore it is difficult to quote all of them. We mention however two

review papers [5, 6]. It was shown that the total M1 strength is proportional to the nuclear

deformation squared which in fact proves the collective character of the mode. This picture

generated the idea that the magnetic collective properties are associated in general with

deformed systems. This is not true due to the magnetic dipole bands, where the ratio

between the moment of inertia and the B(E2) value for exciting the first 2+ from the ground

state 0+, I(2)/B(E2), takes large values, of the order of 100(eb)−2MeV −1. These large

values can be justified by a large transverse magnetic dipole moment (perpendicular to the

total angular momentum) which induces dipole magnetic transitions, but almost no charge

quadrupole moment [1]. Indeed, there are several experimental data showing that the dipole

bands have large values for B(M1) ∼ 3−6µ2
N and very small values of B(E2) ∼ 0.1(eb)2 (see

for example Ref.[2]). The states are different from the scissors mode, they being rather of

shears character. A system with a large transverse magnetic dipole moment (the component

of the magnetic moment perpendicular to the total angular momentum) which was studied

in many publications, may consist of a triaxial core to which a proton prolate and a neutron

oblate hole orbital are coupled. The interaction of particle and hole like orbitals is repulsive,
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which keeps the two orbits apart from each other. In this way the orthogonal angular

momenta carried by the proton particles and neutron holes are favored. The maximal

transverse dipole momentum is achieved, for example, when jp is oriented along the small axis

of the core, jn along the long axis and the core rotates around the intermediate axis. Suppose

the three orthogonal angular momenta form a right trihedral frame. If the Hamiltonian

describing the interacting system of protons, neutrons and the triaxial core is invariant to

the transformation which changes the orientation of one of the three angular momenta, i.e.

the right trihedral frame is transformed to a left type, one says that the system exhibits a

chiral symmetry. As always happens, such a symmetry is identified when that is broken and

consequently to the two trihedrals correspond distinct energies, otherwise close to each other.

Thus, a signature for a chiral symmetry characterizing a triaxial system is the existence of

two ∆I = 1 bands which are close in energies. Increasing the total angular momentum the

gradual alignment of jp and jn to the total ~J takes place and a magnetic band is developed.

The question addressed in this paper is whether the picture of the three angular momenta

system, carried by a phenomenological core, a prolate and an oblate single particle orbitals,

with respect to which the chiral symmetry is defined is unique for determining states con-

nected with large M1 transitions. Note that the nuclear system which accomodate the chiral

frame is odd-odd.

In the past, the magnetic states of orbital or of spin-flip nature were considered by our

group in several publications [7–16]. We studied also the dipole bands with Kπ = 1± using

a quadrupole and octupole boson Hamiltonian and a set of model states obtained by parity

and angular momentum projections from a quadrupole deformed ground state without space

reflection symmetry [17]. We pointed out that the band 1+ has a magnetic character while

the dipole band 1− is of an electric type. In another publication [18] we pointed out that the

parity partner bands have the property that starting from a critical angular momentum, the

states have the property that the angular momenta carried by the quadrupole and octupole

bosons respectively are mutually orthogonal. Therefore one may expect that adding to the

phenomenological Hamiltonian a set of interacting particles one could achieve a configuration

where the angular momentum carried by nucleons is perpendicular on the quadrupole and

octupole angular momenta which are already orthogonal. The first attempt was already

made in Ref.[19].

Here we attempt another chiral system consisting of one phenomenological core with two
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components one for protons and one for neutrons and a two quasiparticle whose angular

momentum is oriented along the symmetry axis of the core due to the particle core interac-

tion. We investigate where states of total angular momentum ~I, where the three components

mentioed above carry angular momenta, ~Jp, ~Jn, ~J , which are mutually orthogonal, may ex-

ist. We believe that if such configuration exists it is optimal for defining large transverse

magnetic moment which determine large M1 transitions.

II. THE GENERALIZED COHERENT STATE MODEL

The description of magnetic properties in nuclei has always been a central issue. The

reason is that the two systems of protons and neutrons respond differently when they interact

with an external electromagnetic field. Differences are due to the fact that by contrast to

neutrons, protons are charged particles, the proton and neutron magnetic moments are

different from each other and, finally, the proton and neutron numbers in a given nucleus

are, in general, different.

Many papers have been devoted to explaining various features of the collective dipole

mode called, conventionally, scissors mode. The name of the mode was suggested by Lo

Iudice and Palumbo who interpreted the dipole mode, within the Two Rotor Model [? ], as

a scissors like oscillation of proton and neutron systems described by two axially symmetric

ellipsoids, respectively.

The Coherent State Model (CSM), proposed by Raduta et al. to describe the lowest three

collective interacting bands [20], was extended by including the isospin degrees of freedom

in order to account for the collective properties of the scissors mode [21]. This extension is

conventionally called “The Generalized Coherent State Model”(GCSM).

CSM starts with the construction of a restricted collective space, by projecting out the

components of good angular momentum from three orthogonal quadrupole boson states.

These states are chosen such that they are orthogonal before and after projection. One of

the three deformed states, the intrinsic ground state, is a coherent state of Glauber type

with respect to the zero component of the quadrupole boson, b†20, while the other two are

obtained by acting with elementary boson polynomials on the ground state. In choosing the

intrinsic excited states we take care that the projected states considered in the vibrational

limit have to provide the multi-phonon vibrational spectrum, while for the large deformation
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regime their behavior coincides with that predicted by the liquid drop model.

In contrast to the CSM, which uses only one boson for the composite system of protons

and neutrons, within the GCSM the protons are described by quadrupole proton-like bosons,

b†pµ while the neutrons by quadrupole neutron-like bosons, b†nµ . Since one deals with two

quadrupole bosons instead of one, one expects to have a more flexible model and to find a

simpler solution satisfying the restrictions required by CSM. The restricted collective space

is defined by the states describing the three major bands, ground, beta and gamma, as well

as the band based on the isovector state 1+. Orthogonality conditions, rquired for both

intrinsic and projected states, are satisfied by the following 6 functions which generate by

angular momentum projection, 6 rotational bands:

φ
(g)
JM = N

(g)
J P J

M0ψg, ψg = exp[(dpb
†
p0 + dnb

†
n0) − (dpbp0 + dnbn0)]|0〉,

φ
(β)
JM = N

(β)
J P J

M0Ωβψg,

φ
(γ)
JM = N

(γ)
J P J

M2(b
†
n2 − b†p2)ψg,

φ̃
(γ)
JM = Ñ

(γ)
J P J

M2(Ω
†
γ,p,2 + Ω†

γ,n,2)ψg,

φ
(1)
JM = N

(1)
J P J

M1(b
†
nb

†
p)11ψg,

φ̃
(1)
JM = Ñ

(1)
J P J

M1(b
†
n1 − b†p1)Ω

†
βψg. (2.1)

Here, the following notations have been used:

Ω†
γ,k,2 = (b†kb

†
k)22 + dk

√
2

7
b†k2, k = p, n,

Ω†
β = Ω†

p + Ω†
n − 2Ω†

pn,

Ω†
k = (b†kb

†
k)0 −

√
1

5
d2

k, k = p, n,

Ω†
pn = (b†pb

†
n)0 −

√
1

5
d2

p.

N̂pn =
∑

m

b†pmbnm, N̂np = (N̂pn)†, N̂k =
∑

m

b†kmbkm, k = p, n. (2.2)

Note that a priory we cannot select one of the two sets of states φ
(γ)
JM and φ̃

(γ)
JM for gamma

band, although one is symmetric and the other asymmetric against proton neutron permu-

tation. The same is true for the two isovector candidates for the dipole states. In Ref.[22],

results obtained by using alternatively a symmetric and an asymmetric structure for the

gamma band states were presented. Therein it was shown that the asymmetric structure for

the gamma band does not conflict any of the available data. By contrary, considering for
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the gamma states an asymmetric structure and fitting the model Hamiltonian coefficients

in the manner described in Ref.[22], a better description for the beta band energies is ob-

tained. Moreover, in that situation the description of the E2 transition becomes technically

very simple. For these reasons, here we make the option for a proton neutron asymmetric

gamma band.

All calculations performed so far considered equal deformations for protons and neutrons.

The deformation parameter for the composite system is:

d =
√

2dp =
√

2dn. (2.3)

The factors N involved in the expressions of wave functions are normalization constants

calculated in terms of some overlap integrals.

We seek now an effective Hamiltonian for which the projected states (2.1) are, at least in a

good approximation, eigenstates in the restricted collective space. The simplest Hamiltonian

fulfilling this condition is:

H = A1(N̂p + N̂n) + A2(N̂pn + N̂np) +

√
5

2
(A1 + A2)(Ω

†
pn + Ωnp)

+A3(Ω
†
pΩn + Ω†

nΩp − 2Ω†
pnΩnp) + A4Ĵ

2. (2.4)

The Hamiltonian given by Eq.(2.4) has only one off-diagonal matrix element in the basis

(2.1). That is 〈φβ
JM |H|φ̃(γ)

JM〉. However, our calculations show that this affects the energies

of β and γ̃ bands by an amount of a few keV. Therefore, the excitation energies of the six

bands are in a very good approximation, given by the diagonal element:

E
(k)
J = 〈φ(k)

JM |H|φ(k)
JM〉 − 〈φ(g)

00 |H|φ(g)
00 〉, k = g, β, γ, 1, γ̃, 1̃. (2.5)

It can be easily checked that the model Hamiltonian does not commute with the components

of the F̂ spin operator:

F̂0 =
1

2
(N̂p − N̂n), F̂+ = N̂pn, F̂− = N̂np. (2.6)

Hence, the eigenstates of H are F0 mixed states. However, the expectation values of the

F0 operator on the projected model states are equal to zero. This is caused by the fact that

the proton and neutron deformations are considered to be equal. In this case the states are

of definite parity, with respect to the proton-neutron permutation, which is consistent with

the structure of the model Hamiltonian which is invariant with respect to such a symmetry
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transformation. To conclude, by contrast to the IBA2 Hamiltonian, the GCSM Hamiltonian

is not F̂ spin invariant. Another difference to the IBA2, the most essential one, is that the

GCSM Hamiltonian does not commute with the boson number operators. Due to this feature

the coherent state approach proves to be the most adequate one to treat the Hamiltonian

in Eq.(2.4). The asymptotic behavior of the magnetic state 1+, derived in Ref.[21], shows

clearly that the phenomenological description of two liquid drops and two rigid rotors are

just particular cases of GCSM, defined by specific restrictions.

The GCSM seems to be the only phenomenological model which treats simultaneously

the M1 and E2 properties. Indeed, in Refs.[22, 23] the ground, beta and gamma bands are

considered together with a Kπ = 1+ band built on the top of the scissor mode 1+. By

contrast to the other phenomenological and microscopic models, which treat the scissors

mode in the intrinsic reference frame, here one deals with states of good angular momentum

and therefore there is no need to restore the rotational symmetry. As shown in Ref.[24] the

GCSM provides for the total M1 strength an expression which is proportional to the nuclear

deformation squared. Consequently, the M1 strength of 1+ and the B(E2) value for 2+

are proportional to each other, although the first quantity is determined by the convection

current while the second one by the static charge distribution.

One weak point of most phenomenological models is that they use expressions for tran-

sition operators not consistent with the structure of the model Hamiltonian. Thus, the

transition probabilities are influenced by the chosen Hamiltonian only through the wave

functions. By contradistinction in Refs. [22, 23] the E2 transition operator, as well as the

M1 form-factor are derived analytically, by using the equation of motion of the collective

coordinates determined by the model Hamiltonian. In this way a consistent description of

electric and magnetic properties of many nuclei was attained.

Here we study the angular momentum projection of following dipole excitation of the

intrinsic ground state

φ
(1)
JM = N

(1)
J P J

M1(b
†
nb

†
p)11ψg

= N
(1)
J

∑

J ′=even

N
(g)
J ′ C

J ′ 1 J
0 1 1

[(
b†nb

†
p

)
ϕ

(g)
J ′

]

JM
. (3.1)

with the norm having the expression:

(
N

(1)
J

)−2

=
∑

J ′=even

(
N

(g)
J ′

)−2 (
CJ ′ 1 J

0 1 1

)2

(3.2)
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In the above equations the standard notation for the Clebsch-Gordan coefficients has been

used. We start by mentioning few properties for the intrinsic ground state wave function.

Ψg ≡ ΨpΨn =
∑

Jp=even

CJp
|Jp0〉CJn

|Jn0〉

=
∑

JpJnJ

CJp
CJn

C
Jp Jn J
0 0 0 |J, 0〉. (3.3)

The angular momentum projected state is defined by:

ϕ
(g)
JM = N

(g)
J P J

M0Ψg = N
(g)
J

∑

JpJn

CJp
CJn

C
Jp Jn J
0 0 0 |J,M〉

= N
(g)
J

∑

JpJn

(
N

(g)
Jp

)−2 (
N

(g)
Jn

)−2

C
Jp Jn J
0 0 0

[
ϕ

(g)
Jp
ϕ

(g)
Jn

]

JM
(3.4)

The average value of the angular momentum carried by the proton bosons is given by:

〈ϕ(g)
JM |Ĵ2

p |ϕ(g)
JM =

(
N

(g)
J

)2 ∑

Jp,Jn

(
N

(g)
Jp

)−2 (
N

(g)
Jn

)−2

Jp(Jp + 1)
(
C

Jp Jn J
0 0 0

)2

. (3.5)

It is worth calculating the separate contributions of proton and neutron bosons to building

up the total angular momentum of a given magnetic dipole state. The effective angular

momentum J̃ is defined as:

J̃p;J(J̃p;J + 1) = 〈ϕ(1)
JM |Ĵ2

p |ϕ(1)
JM〉

= 6 +
(
N

(1)
J

)2 ∑

Jp,Jn,J ′

(
N

(g)
Jp

)−2 (
N

(g)
Jn

)−2

Jp(Jp + 1)
(
C

Jp Jn J ′

0 0 0

)2 (
CJ ′ 1 J

0 1 1

)2

(3.6)

Since the ground state is symmetric with respect to the p−n permutation one expects that

the effective neutron angular momentum defined by averaging the operator Ĵ2
n;J with the

ground state projected function is equal to the effective proton angular momentum, i.e.

J̃n;J = J̃p;J (3.7)

Denoting angular ground state momentum by

~J (pn) = ~Jp + ~Jn, (3.8)

then for the average value one obtains:

J̃
(pn)
J (J̃

(pn)
J + 1) ≡ 〈ϕ(1)

JM |Ĵ ′2|ϕ(1)
JM〉 =

(
N

(1)
J

)2 ∑

J ′′

(
N

(g)
J ′′

)−2 (
CJ ′′ 1 J

0 1 1

)2

(J ′′(J ′′ + 1) + 12) .

(3.9)
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Squaring Eq.3.8 and averaging the results with the dipole projected state J one can calculate

the angle between the angular momenta Jp and Jn:

cos( ~Jp, ~Jn)J =
J̃

(pn)
J (J̃

(pn)
J + 1) − J̃p;J(J̃p;J + 1) − J̃n;J(J̃n;J + 1)

2

√
J̃p;J(J̃p;J + 1)J̃n;J(J̃n;J + 1)

. (3.10)

III. A POSSIBLE EXTENSION OF THE GCSM

Here we shall consider a particle-core interacting system described by the following Hamil-

tonian:

H = HGCSM +
∑

α

ǫac
†
αcα − G

4
P †P

− Xpc

∑

m

q2m

(
b†2,−m + (−)mb2m

)
(−)m −XsS

~JF · ~Jc (4.1)

with the notation for the particle quadrupole operator:

q2m =
∑

a,b

Qa,b

(
c†ja
cjb

)
2m
,

Qa,b =
ĵa

2̂
〈ja||r2Y2||jb〉 (4.2)

Here HGCSM denotes the phenomenological Hamiltonian described in previous section, asso-

ciated to a proton and neutron bosonic core. The next two terms stand for a set of particles

moving in a spherical shell model mean-field and interacting among themselves through pair-

ing interaction. The low indices α denote the set of quantum numbers labeling the spherical

single particle shell model states, i.e. |α〉 = |nljm〉 = |a,m〉 The last two terms denoted

hereafter as Hpc expresses the interaction between the satelite particles and the core through

a quadrupole-quadrupole and a spin-spin force, respectively. The angular momenta carried

by the core and particles are denoted by ~Jc and ~JF , respectively. These mean field and the

pairing terms are quasi-diagonalized by means of the Bogoliubov-Valatin transformation:

a†α = Uac
†
α − Vasαc−α, sα = (−)jα−mα

aα = Uacα − Vasαc
†
−α, (−α) = (a,−mα). (4.3)
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The free quasiparticle term is
∑

αEaa
†
αaα while the qQ interaction preserves the above

mentioned form, with the factor q2m changed to:

q2m = η
(−)
ab

(
a†ja
ajb

)
2m

+ ξ
(+)
ab

(
(a†ja

a†jb
) − (aja

ajb
)2m

)
, where

η
(−)
ab =

1

2
Qab (UaUb − VaVb) , ξ

(+)
ab =

1

2
Qab (UaVb + VaUb) . (4.4)

We restrict the simgle particle space to a single-j state where two particles are placed. In

the space of the particle-core states we, therefore, consider the basis defined by:

|BCS〉 ⊗ ϕ
(1)
JM ,

Ψ
(2qp;1)
JI;M = NJI

∑

J ′

CJ J ′ I
J 1 J+1

(
N

(1)
J ′

)−1 [
(a†ja

†
j)J |BCS〉 ⊗ ϕ

(1)
J ′

]

IM
. (4.5)

where |BCS〉 denotes the quasiparticle vacuum while NJI is the norm given by

(NJI)
−2 =

∑

J ′

2
(
N

(1)
J ′

)−2 (
CJ J ′ I

J 1 J+1

)2

. (4.6)

The matrix elements of the model Hamiltonian H are given analytically in Appendix A.

Now let us analise the angular proton and neutron angular momentum composition for

the two quasiparticle components of the particle-core basis. The effective angular momenta

can be easily calculated:

J̃τ ;JI(J̃τ ;JI + 1) = 〈Ψ(2qp;1)
JI |Ĵτ |Ψ(2qp;1)

JI 〉

= N2
JI

∑

J ′

2
(
CJ J ′ I

J 1 J+1

)2 (
N

(1)
J ′

)−2

J̃τ ;J ′(J̃τ ;J ′ + 1), τ = p, n,

J̃
(pn)
JI (J̃

(pn)
JI + 1) = 〈Ψ(2qp;1)

JI |(Ĵp + Ĵn)2|Ψ(2qp;1)
JI 〉

= N2
JI

∑

J ′

2
(
CJ J ′ I

J 1 J+1

)2 (
N

(1)
J ′

)−2

J̃
(pn)
J ′ (J̃

(pn)
J ′ + 1). (4.7)

The angle btween proton and neutron angular momenta can be obtained from the equation:

cos( ~Jp, ~Jn)JI =
J̃

(pn)
JI (J̃

(pn)
JI + 1) − J̃p;JI(J̃p;JI + 1) − J̃n;JI(J̃n;JI + 1)

2
√
J̃p;JI(J̃p;JI + 1)J̃n;JI(J̃n;JI + 1)

. (4.8)

IV. ABOUT THE CHIRAL SYMMETRY

The two quasiparticle-dipole state components of the particle-core basis involve three

angular momenta, ~Jp, ~Jn, ~J
(pn) = ~Jp + ~Jn which could be, in certain states, mutually orthogo-

nal. The relative angle of the proton and neutron angular momenta in the pure boson dipole
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J [ h ]

 J
 Jp orthogonal on Jn

FIG. 1: The angle between ~Jp and ~Jn within the boson dipole state ϕ
(1)
JM . The deformation

parameter d is taken equal to 0.2

state ϕ
(1)
JM is presented in Fig.1. One notices that the angle is 900 in the first three dipole

states of angular momenta 1,2 and 3. Increasing the total spin the corresponding angles

decrease monotonically. A step structure for the states J and J + 1 with J-even shows up.

Note that the unprojected state ψg is defined for equal deformation parameters for the

proton and neutron systems. However since the number of protons and neutrons are different

and moreover the two kinds of nucleons occupy different shells it is reasonable to suppose

different deformation parameters for protons and neutrons respectively. The corresponding

projected states are denoted by Φ
(1)
JM(dp, dn). The dependence of the (Jp, Jn) angle on the

total angular momentum is presented in Fig. 2.

When the deformation for protons is different from that of neutrons the step structure is

estompated and the total angular momenta where the relative angle is about 900 are shifted

to 5,6 and 7. The angle decreases with angular momentum but with a much lower slope.

11



0 2 4 6 8 10 12 14 16 18 20 22
82

84

86

88

90

92

94

96

98

an
gl

e 
( J

p, J
n ) 

[ 0  ]

J [ h ]

 K=1 boson states
 Jp orthogonal on Jn

FIG. 2: The angle between ~Jp and ~Jn within the boson dipole state Φ
(1)
JM (dp, dn). The deformation

parameters are dp = 0.2 and dn = 2.4.

Indeed, in the considered angular momentum interval the angle varies between 91.50 and

870

Now let us see how this picture modifies when we add to the boson dipole states the

two quasiparticle state factor. As shown in Fig. 3, the case of common small deformation

for protons and neutrons is similar to that from Fig. 1 where the two quasiparticle factor

is missing. By contrast here we have seven sets of states distinguished by the angular

momentum J carried by the quasiparticle component. Otherwise the step function structure

as well as the decreasing behavior as function of the total angular momentum are preserved

by any of the seven sets. The same remark holds also for Fig. 4 when compared with

the situation from Fig.2. Indeed, it seems that the larger the difference between proton

and neutron deformations, the smaller the departure of the (Jp, Jn) angle from 900. The
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FIG. 3: The angle between ~Jp and ~Jn within the boson dipole state ϕ
(2qp;1)
JI;M (d). The deformation

parameter is equal to 0.2.

above mentioned features as the diminishing the step structure and the small interval for

the (Jp, Jn) angle around 900. From Fig. 3 it is clear that each value of the two quasiparticle

angular momentum there are three states, the lowest angular momenta, characterized by

orthogonal ( ~Jp, ~Jn). Since the K quantum number for proton and neutron systems included

in the core are small, the total K being equal to unity, it is reasonable to suppose that ~Jp and

~Jn are both perpendicular to the intrinsic symmetry axis, that is OZ. The symmetry axis of

the particle motion is determined the mean field caused by the particle core interaction of

the qQ type. On the other hand the quasiparticle angular momentum angular momentum

projection on the symmetry axis is maximal. Therefore, ~J is oriented along the OZ axix

which results in having an orthogonal thriedrum ( ~Jp, ~Jn, ~J). Invoking the arguments of

Ref.[1], one expects for such states a large transverse dipole moment which may induce a large

M1 transition rate.If one ignores the spin-spin interaction term the resulting Hamiltonian
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FIG. 4: The angle between ~Jp and ~Jn within the boson dipole state Φ
(2qp;1)
JI;M (dp, dn). The deforma-

tion parameters are dp = 0.2 and dn = 2.4.

is invariant to changing the orientation of one othe thriedrum component which means

that that hamiltonian exhibits a chiral symmetry.The spin-spin interaction breaks the chiral

symmetry and therefore lifts the associated degeneracy. Two bands emerge therefore with

different chirality. These features are in detail studied in what follows.

However before doing that let us consider the states with the quasiparticle factor state

with angular momentum and projection (J, 0):

Ψ
(2qp;1)
JI;M = N (2qp;1)

JI

∑

J ′

CJ J ′ I
0 1 1

[
(ajaj)Jϕ

(1)
J ′

]

IM

(
N

(1)
J ′

)−1

. (5.1)

In such a state, the three angular momenta, ~Jp, ~Jn, ~J are in the same plane. Hence one

expects the magnetic properties are different from those characterizing the state where

the mentioned vectors are mutually orthogonal. For comparison these states will be also
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considered.

V. MAGNETIC DIPOLE TRANSITIONS

The magnetic moment of the bosonic core is defined by:

~µc = gp
~Jp + gn

~Jn ≡ gc
~J (pn). (4.1)

where gp, gn and gc denote the gyromagnetic factors for proton neutrons and the core.

Multiplying this with ~Jc and averaging the result with the function Ψ
(2qp;1)
JI;M one obtains an

equation determining gc:

gc;JI =
gp + gn

2
+
gp − gn

2

J̃p;JI(J̃p;JI + 1) − J̃n;JI(J̃n;JI + 1)

J̃
(pn)
JI (J̃

(pn)
JI + 1)

. (4.2)
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Denoting by gF the gyromagnetic factor for the two quasiparticle factor state and following

a similar procedure as above we get for the whole system the following gyromagnetic factor:

gJI =
gF + gc

2
+
gc − gF

2

J̃
(pn)
JI (J̃

(pn)
JI + 1) − J(J + 1)

I(I + 1)
. (4.3)

We note that both gyromagnetic factors for the core and for the whole system depend on

the angular momenta J and I.

In order to calculate the M1 transition probability we need the following reduced matrix

elements:

〈Ψ(2qp;1)
JI ||JF ||Ψ(2qp;1)

JI′ 〉 = 2Î ′Ĵ
√
J(J + 1)NJINJI′

∑

J1

(
N

(1)
J1

)−2 (
CJ J1 I

J 1 J+1

)2
W (I ′J11J ; JI), (4.4)

〈Ψ(2qp;1)
JI ||gpJp + gnJn||Ψ(2qp;1)

JI′ 〉 = (gp + gn)NJINJI′ Î ′1̂
∑

J1

CJ J1 I
J 1 J+1C

J J1 I′

J 1 J+1

(
N

(1)
J1

)−2 √
J1(J1 + 1).
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The M1 transition operator is defined by:

M1,m =

√
3

4π
µ1,m. (4.5)

In Refs.[7–9] we pointed out a drawbak of the phenomenological descriptions of the magnetic

states consisting of that the transition operator does not take care of the Hamiltonian model

structure,i.e. is independent of the states participating at transition. Therein we proposed

a possible solution for correcting the mentioned drawback.

Indeed using the classical expression for the magnetic moment:

~µk =
1

2c

∫
ρp(~R × ~v)kd~r, (4.6)

whith ρp and ~v denoting the proton charge density and the velocity of an elementary volume

of proton matter having the coordinate ~r, and integrating on a liquid drope volume whose

surface is expressed in terms of the quadrupole coordinates αµ, one arrives at a quadratic

expressions in coordinates and their time derivatives. Quantizing the coordinates and their

conjugate momenta by:

αpµ =
1

kp

√
2
(b†pµ + (−)µbp,−µ,

·αpµ =
1

i~
[H,αpµ] . (4.7)

In this way a simple boson expression for the transition operator was obtained:

M1k =
√

2
Mc

~
R0µNFk, R0 = 1.2A1/3. (4.8)

where M denotes the proton mass, µN the nuclear magneton and C the light velocity. The

reduced formfactor Fkp
has the expression:

qFk = − i

~ck2
p

[
(A1 + 6A4)Ĵpk +

A3

5
Ĵnk +

√
(10)

4
(A2 − A1)[(b

†
nb

†
p)1k + (b†nbp)1k + (b†pbn)1k − (bnbp)1k]

+
√

2A3

[
− 1√

10
(Ω†

nĴpk + ĴpkΩn) − Ω†
pn[−(b†pbn)1k + (bnbp)1k] + [(b†nb

dag
p )1k + (b†nbp)1k]Ωnp

]]
. (4.9)

Here q stands for the momentum transfer when a transition from an initial state of energy

Ei to a final state of enrgy Ef takes place:

q =
Ei −Ef

~c
. (4.10)
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From the above equations we note that even in the second order in bosons, the gyromagnetic

factors have components different of the angular momenta Ĵp and Ĵn which are proportional

to the proton neutron dipole operators. Alhough the present formalism is purely a phe-

nomenological one and therefore the magnetic moments of neutrons are not included, due to

the proton neutron coupling terms from the model Hamiltonian the neutron gyromagnetic

factor is not vanishing. Actually restricting the expression for the transition operator to

the angular momenta the above equation provides analytical expressions for the proton and

neutron system.
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VI. APPENDIX A

Here we give the analytical expression of the model Hamiltonian’s matrix elements cor-

responding to the basis states 4.5:

〈Ψ(2qp;1)
JI |H|Ψ(2qp;1)

J1I 〉 = 42̂Ĵ Ĵ1XpcNJINJ1Iη
(−)
jj W (JjJ1j; j2)

×
∑

J ′J ′′

Ĵ ′CJ J ′I
J 1 J+1C

J1 J ′′ I
J1 1 J1+1W (J12IJ

′; JJ ′′)W (JjJ1j; j2)〈ϕ(1)
J ′ ||b† + b||ϕ(1)

J ′′ 〉

− XsSδJ,J1

[
I(I + 1) − J(J + 1) −N2

IJ

∑

J ′

2J ′(J ′ + 1)
(
CJ J ′ I

J 1 J+1

)2 (
N

(1)
J ′

)2
]
,

〈ϕ(1)
IM |H|Ψ(2qp;1)

JI;M 〉 = 4Xpcξ
(+)
jj NJIδJ,2

∑

J ′

(−)J ′−I (NJ ′)−1CJ J ′ I
J 1 J+1〈ϕ(1)

I ||b† + b||ϕ(1)
J ′ 〉,

〈Ψ(2qp;1)
JI;M |H|ϕ(1)

IM = −4
Ĵ ′

Î
ξ

(+)
jj NJIδJ,2

∑

J ′

(NJ ′)−1CJ J ′ I
J 1 J+1〈ϕ(1)

J ′ ||b† + b||ϕ(1)
I 〉. (A.1)

The notation W(abcd;ef) stands for the Racah coefficients. Also the reduced matrix elements

involved in the above equations are given in Ref.[21]
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