
Application of the sextic oscillator potential together with
Mathieu and spheroidal functions for triaxial and X(5) type nuclei

A. A. Raduta1,2,a and P. Buganu1

1Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, RO-077125, Romania
2Academy of Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania

Abstract. The Bohr-Mottelson Hamiltonian is amended with a potential which depends
on both β and γ deformation variables and which allows us to separate the β variable from
the other variables. The equation for the β variable is quasi-exactly solved for a sextic os-
cillator with centrifugal barrier potential. Concerning the γ equation, its solutions are the
angular spheroidal and Mathieu functions for X(5) type and triaxial nuclei, respectively.
The models developed in this way are conventionally called the Sextic and Spheroidal
Approach (SSA) and the Sextic and Mathieu Approach (SMA). SSA and SMA was suc-
cessfully applied for several nuclei, details being presented below.

1 Introduction

A great interest in solving the eigenvalue problem of the Bohr-Mottelson Hamiltonian [1] having
a potential which depends on both β and γ variables appeared when nuclei being close to the critical
points of some shape phase transition were very well described by analytically solvable equations.
The E(5) [2] solution describes the critical point of the transition between spherical and γ−unstable
shape phases, while the one associated to the transition between spherical and axially symmetric
shape phases is called X(5) [3]. Other two solutions for critical points were proposed short after that,
namely Y(5) [4] and Z(5) [5], for the axial-triaxial shape phase transition and for the prolate-oblate
shape phase transition, respectively.

In the this paper, we present new interesting solutions for the Hamiltonian [1], namely, Sextic and
Mathieu Approach (SMA) [6–8] and Sextic and Spheroidal Approach (SSA) [9], respectively. SMA
represents a realistic tool for the description of triaxial nuclei having axial deformations close to π/6,
while SSA works very well for X(5) type and axial nuclei.

2 New solutions for the generalized Bohr-Mottelson Hamiltonian

The Bohr-Mottelson Hamiltonian [1],
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is amended with a potential which depends on both β and γ deformation variables and which allows
us to separate the β variable from the γ variable and the three Euler angles θ1, θ2 and θ3, which are
still coupled due to the rotational term. Here, with Qk are denoted the intrinsic angular momentum
components. Further, by performing a second order expansion of the rotational term around γ0 = 0
and γ0 = π/6 for X(5) type nuclei and triaxial nuclei respectively, and then averaging the resulting
terms with specific Wigner functions, a complete separation is achieved [6, 9]:[
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W̃(L,K,R) contains the terms coming from the rotational term expansion and L(L + 1), R and K are
the eigenvalues of the total intrinsic angular momentum Q̂ and of its projections on the axis 1 and 3.

Making the change of function f (β) = β−2φ(β) and considering a sextic oscillator potential,
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Eq. (2) is exactly solved. The meaning of the term quasi-exactly is given in Ref. [6]. Here, c is a
constat which has two different values, one for L even and other for L odd, while u±0 are constants that
are fixed such that the potential for L odd to have the same minimum energy with the potential for L
even. The solutions for the β variable are
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Concerning Eq. (3), its potential is chosen such that to exhibit minima in γ = 0 and γ = π/6,
namely, v2(γ) = u1 cos 3γ + u2 cos2 3γ. Performing a second order expansion around γ0 = 0 in sin 3γ
of v2(γ) and then substituting x = cos 3γ and S (x) ≡ ϕ(γ), we obtain the spheroidal equation [10]:(1 − x2)
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For triaxial nuclei, expanding v2(γ) around π6 , after some steps, we get the Mathieu equation [8]:(
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The γ functions are normalized to unity with the integration measure | sin 3γ|dγ:
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The total energy of the system is obtained by adding the eigenvalues of the β and γ equations.
The reduced E2 transition probabilities are determined using the following transition operator:
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For triaxial nuclei, in Eq. (12) γ is substituted with γ − 2π/3. The argument is justified by the
fact that γ − 2π/3 defines the axis 1 of the principal inertial ellipsoid. Indeed, the transformation
from the laboratory to the intrinsic frame is a rotation defined by the matrix DL

MR, where M and R are
eigenvalues of the operator Q̂1. The models developed in this way are conventionally called the Sextic
and Spheroidal Approach (SSA) [9] and the Sextic and Mathieu Approach (SMA) [6–8], respectively.

3 Numerical results

In Refs. [6–8], the SMA was successfully applied for several triaxial nuclei, 188,190,192Os, 228,230Th,
180Hf and 182W, chosen according to a certain signature of the rigid triaxial rotor. In Ref. [9],
a good agreement of the SSA results with experimental data of several X(5) candidate nuclei as
176,178,180,188,190Os, 150Nd, 170W, 156Dy and 166,168Hf, was obtained. In Ref. [9], the SSA results were
compared with those yielded by X(5), ISW [10], D [10] and Coherent State Model (CSM) [11]. From
space reasons we present here only one nucleus for each of the models, SMA and SSA. For SMA,
the numerical results for 192Os are shown in Fig. 1 and Table 1. Both, energy spectrum and reduced
probability transitions are very well explained by the SMA and CSM. Also, the staggering behavior
[15] of the γ band is reproduced by the SMA. Comparing the results for 188Os presented in Tables
2, 3, we can see that the best agreement with experimental data, for both energy spectrum and E2
transition probabilities, is obtained with SSA.
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Figure 1: Excitation energies, given in keV, for ground, β and γ
bands for 192Os, calculated with SMA and CSM, are compared with
the experimental data [12, 13].

B(E2; J+i → J+f ) Exp. SMA CSM
2+g → 0+g 0.424 0.424 0.236
4+g → 2+g 0.497 0.632 0.449
6+g → 4+g 0.660 0.858 0.611
8+g → 6+g 0.754 1.030 0.754
10+g → 8+g 0.688 1.175 0.887
4+γ → 2+γ 0.298 0.261 0.277
6+γ → 4+γ 0.336 0.352 0.595
8+γ → 6+γ 0.314 0.549 0.814
2+γ → 0+g 0.037 0.006 0.192
2+γ → 2+g 0.303 0.303 0.055
2+γ → 4+g 0.024 0.000 0.000
4+γ → 2+g 0.002 0.004 0.274
4+γ → 4+g 0.203 0.068 0.137
4+γ → 6+g 0.018 0.000 0.000
6+γ → 4+g 0.000 0.002 0.357
6+γ → 6+g 0.171 0.042 0.171

Table 1: E2 transition probabilities,
given in (eb)2, for 192Os, calculated
with SMA and CSM, are compared
with the experimental data [12, 13].
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188Os Exp. X(5) ISW D S S A CSM
2+g 155 179 179 151 152 150
4+g 478 519 519 479 476 468
6+g 940 970 970 945 935 934
8+g 1515 1516 1516 1512 1501 1535
10+g 2170 2149 2150 2156 2154 2264
12+g 2856 2867 2868 2860 2877 3116
0+β 1086 1009 1007 1120 1063 1164
2+β 1305 1331 1328 1270 1330 1305
4+β 1910 1907 1599 1808 1621
6+β 2636 2632 2064 2421 2096
8+β 3474 3470 2632 3132 2717
10+β 4412 4407 3276 3920 3475
2+γ 633 631 631 627 641 665
3+γ 790 786 785 773 791 790
4+γ 966 972 971 959 969 956
5+γ 1181 1185 1185 1180 1172 1157
6+γ 1425 1423 1423 1432 1434 1399
7+γ 1686 1685 1684 1709 1674 1669
8+γ 1969 1969 2009 2008 1983
9+γ 2275 2275 2329 2273 2318
10+γ 2602 2603 2666 2670 2701

r.m.s. [keV] 27 27 16 13 36

Table 2: The energy spectrum, given in keV, of the
ground, β and γ bands for 188Os yielded by the X(5),
ISW, D, SSA and CSM are compared with the ex-
perimental data taken from Ref. [14].

B(E2)(W.u.) Exp. X(5) ISW D SSA CSM
2+g → 0+g 79+2

−2 74 72 79 82 42
4+g → 2+g 133+8

−8 118 115 121 123 87
6+g → 4+g 138+8

−8 147 144 147 145 125
8+g → 6+g 161+11

−11 169 166 174 162 161
10+g → 8+g 188+25

−25 187 184 203 178 195
0+β → 2+g 0.95+0.08

−0.08 47 48 33 21 0.95
0+β → 2+γ 4.3+0.5

−0.5 5.2 5.2 1.9 1.5 44
4+γ → 2+γ 47+10

−10 47 50 52 56 14
4+γ → 3+γ 320+120

−120 112 117 120 132 43
6+γ → 4+γ 70+30

−30 107 111 114 118 31
2+γ → 0+g 5+0.6

−0.6 8.4 10.9 10.8 9.9 5
2+γ → 2+g 16+2

−2 13 17 16 14 10.4
2+γ → 4+g 34+5

−5 0.65 0.85 0.80 0.73 1.4
4+γ → 2+g 1.29+0.19

−0.19 5.7 7.1 6.7 6.1 1.7
4+γ → 4+g 19+3

−3 18 23 20 19 10.7
4+γ → 6+g 16+7

−7 2 2 2 2 5
6+γ → 4+g 0.21+0.11

−0.11 5.3 6.4 5.8 5.3 0.9
6+γ → 6+g >9.4 21 25 23 20 8.3

Table 3: The reduced E2 transition probabilities
determined with the X(5), ISW, D, SSA and CSM
models for 188Os are compared with the correspond-
ing experimental data taken from Ref. [14].

4 Conclusions
SSA and SMA represent realistic tools for the description of X(5) type and triaxial nuclei. The Math-
ieu and spheroidal functions are periodic, defined on bounded intervals and normalized to unity with
the integration measure | sin 3γ|dγ, preserving in this way the hermiticity of the initial γ Hamiltonian.
CSM works very well also for nuclei being in critical points of the shape phase transitions.
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