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A many body Hamiltonian involving the mean field for a projected spherical sin-
gle particle basis, the pairing interactions for alike nucleons, a repulsive dipole-dipole
proton-neutron interaction in the particle-hole (ph) channel and an attractive dipole-
pairing interaction is treated by a gauge restored and fully renormalized proton-neutron
quasiparticle random phase approximation (GRFRpnQRPA) formalism. The result-
ing wave functions and energies for the mother and the daughter nuclei are used to
calculate the 2νββ decay rate and the process half life for the emitters: 48Ca, 76Ge,
82Se, 96Zr, 100Mo, 104Ru, 110Pd, 116Cd, 128,130Te, 148,150Nd, 154Sm, and 160Gd.
The results of our calculations are compared with the corresponding experimental data
as well as with those obtained through other methods. The Ikeda sum rule (ISR) is
obeyed.
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1. INTRODUCTION

The 2νββ process is interesting by its own but is also very attractive because
it constitutes a test for the nuclear matrix elements (m.e.) which are used for the
process of 0νββ decay. The discovery of this process may provide an answer to
the fundamental question, whether neutrino is a Majorana or a Dirac particle. The
subject development is described by several review papers [1–7]. The present paper
refers to the 2νββ process, which is conceived as consisting of two consecutive and
virtual single β− decays. The formalism yielding closest results to the experimental
data is the proton-neutron random phase approximation (pnQRPA) which includes
the particle-hole (ph) and particle-particle (pp) as independent two body interactions.
The second leg of the 2νββ process is very sensitive to changing the relative strength
of the later interaction, denoted hereafter by gpp. It is worth mentioning that the ph
interaction is repulsive while the pp one is attractive. Consequently, there is a critical
value of gpp for which the first root of the pnQRPA equation vanishes. Actually,
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2 FRpnQRPA approach with the gauge symmetry restored 443

this is the signal that the pnQRPA approach is no longer valid. Moreover, the gpp
value which corresponds to a transition amplitude which agrees with the correspond-
ing experimental data is close to the mentioned critical value. That means that the
result is not stable to adding corrections to the RPA picture. An improvement for
the pnQRPA was achieved by one of us (AAR), in collaboration, in Refs. [8, 9], by
using a boson expansion (BE) procedure. Another procedure, proposed in Ref. [10],
renormalizes the dipole two quasiparticle operators by replacing the scalar compo-
nents of their commutators with their average values. Such a renormalization is,
however, inconsistently achieved since the scattering operators do not participate at
the renormalization process. This lack of consistency was removed in Refs. [11, 12]
where a fully renormalized pnQRPA (FRpnQRPA) is proposed.

Unfortunately, all higher pnQRPA procedures mentioned above have the com-
mon drawback of violating the Ikeda sum rule (ISR) by an amount of about 20-
30% [13]. It is believed that such a violation is caused by the gauge symmetry break-
ing. Consequently, a method of restoring this symmetry was formulated by two of us
(A. A. R. and C. M. R.) in Ref. [14].

Recently [15, 16], the results of Ref. [14] were improved in two respects: a)
aiming at providing a unitary description of the process for the situations when the
involved nuclei are spherical or deformed, here we use the projected spherical single
particle basis defined in Ref. [17] and used for double beta decay in Refs. [18,19]; b)
the space of proton-neutron dipole configurations is split in three subspaces, one be-
ing associated to the single β− decay, one to the single β+ process, and one spanned
by the unphysical states. A set of GRFRpnQRPA equations is written down in the
first two subspaces mentioned above, by linearizing the equations of motion of the
basic transition operators corresponding to the two coupled processes.

In the present paper we apply the equations derived by the GRFRpnQRPA
for the 2νββ processes 48Ca→48Ti, 76Ge→76Se, 82Se →82Kr and 96Zr →96Mo,
104Ru →104Pd, 110Pd →110Cd, 128Te →128Xe, 130Te →130Xe, 148Nd →148Sm,
150Nd →150Sm, 154Sm →154Gd and 160Gd →160Dy. New arguments supporting
the formalism are given. Moreover due to the specific experimental available data a
new procedure for fixing the strengths of the two body pn interactions is presented.
A detailed comparison to other models aiming at being realistic and at the same time
at fulfilling the Ikeda sum rule is mentioned.

Results are described according to the following plan. The model Hamiltonian
is given in Section II where, also, The FRpnQRPA approach is shortly discussed.
The projected gauge of FRpnQRPA (GRFRpnQRPA) is the objective of Section
III. The Gamow-Teller (GT) amplitude for the 2νββ process is given in Section
IV. Numerical applications are shown in Section IV, while the final conclusions are
drawn in Section V.
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2. THE MODEL HAMILTONIAN

In Ref. [17], one of us, (A.A.R., in collaboration), introduced an angular mo-
mentum projected single particle basis which seems to be appropriate for the de-
scription of the single particle motion in a deformed mean field generated by the
particle-core interaction. This single particle basis has been used to study the col-
lective M1 states in deformed nuclei [17, 20, 21] as well as the rate of double beta
process [18, 22, 23]. The basis is defined by projecting out the angular momentum
from a product state:

ΦIM
nlj (d) =N I

nljP
I
MI [|nljI〉Ψg]≡N I

nljΨ
IM
nlj (d), (1)

with |nljI〉 denoting a spherical shell model state and Ψg an axially symmetric de-
formed function which is the coherent state defined with the zeroth component of a
quadrupole boson operator:

Ψg = exp[d(b+20− b20)]|0〉b. (2)

The quadrupole boson operators are related with the quadrupole shape coordinates
by the canonical transformation:

α2µ =
1

k
√

2

(
b†2µ+ (−)µb2,−µ

)
, (3)

where k is an arbitrary C number.
The projected states defined above can be used as single particle basis, as

proved in our previous publications. To the projected spherical basis, one associates
a set of deformed single particle energies, εInlj(d), defined as average values of a
single particle-core Hamiltonian. The deformation dependence of the new single
particle energies is similar to that shown by the Nilsson model [24] energies. There-
fore, the average values εInlj may be viewed as approximate single particle energies
in deformed Nilsson orbits [24]. We may account for the deviations from the exact
eigenvalues by considering, at a later stage when a specific treatment of the many
body system is performed, the exact matrix elements of the two body interaction.

We suppose that the states describing the nuclei involved in a 2νββ process
are described by a many body Hamiltonian which may be written in the projected
spherical basis as:

H =
∑

τ,α,I,M

2

2I+ 1
(εταI −λτα)c†ταIMcταIM −

∑
τ,α,I,I

′

Gτ
4
P †ταIPταI′

+ 2χ
∑

pn;p′n′ ;µ

β−µ (pn)β+
−µ(p′n′)(−)µ−2χ1

∑
pn;p′n′ ;µ

P−µ (pn)P+
−µ(p′n′)(−)µ, (4)

where c†ταIM (cταIM ) denotes the creation (annihilation) operator of one nucleon
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of the type τ(= p,n) in the state ΦIM
α , with α being an abbreviation for the set

of quantum numbers nlj. The Hamiltonian H contains the mean field term, the
pairing interactions for alike nucleons whose strengths are denoted by Gτ and the
Gamow-Teller dipole-dipole interaction in the ph and pp channels, characterized by
the strengths χ and χ1, respectively.

In order to simplify the notations, hereafter the set of quantum numbers α(=
nlj) will be omitted. Note that the two body interactions are separable, with the
factors defined by the following expressions:

P †τI =
∑
M

2

2I+ 1
c†τIMc

†
τ̃ IM

,

β−µ (pn) =
∑
M,M ′

√
2

Î
〈pIM |σµ|nI ′M ′〉

√
2

Î ′
c†pIMcnI′M ′ ,

P−1µ(pn) =
∑
M,M ′

√
2

Î
〈pIM |σµ|nI ′M ′〉

√
2

Î ′
c†pIMc

†
ñI′M ′

.

(5)

The other operators from Eq.(4) can be obtained from the above expressions, by
Hermitian conjugation.

In the quasiparticle representation, defined by the Bogoliubov-Valatin transfor-
mation:

a†τIM =UτIc
†
τIM −sIMVτIcτI−M ,sIM = (−)I−M , τ = p,n, U2

τI +V 2
τI = 1, (6)

the first two terms of H are replaced by the independent quasiparticles term,
∑
EτI

a†τIMaτIM , while the ph and pp interactions are expressed in terms of the dipole two
qp and the qp dipole density operators:

A†1µ(pn) =
∑

C
Ip In 1
mp mn µa

†
pIpmp

a†nInmn , A1µ(pn) =
(
A†1µ(pn)

)†
,

B†1µ(pn) =
∑

C
Ip In 1
mp −mn µa

†
pjpmp

anInmn(−)In−mn , B1µ(pn) =
(
B†1µ(pn)

)†
,

(7)
As shown in [11], all these operators can be renormalized by making use of the

commutation equations:[
A1µ(k),A†1µ′(k

′)
]
≈ δk,k′δµ,µ′

[
1− N̂n

Î2
n

− N̂p

Î2
p

]
,[

B†1µ(k),A†1µ′(k
′)
]
≈
[
B†1µ(k),A1µ′(k

′)
]
≈ 0,[

B1µ(k),B†1µ′(k
′)
]
≈ δk,k′δµ,µ′

[
N̂n

Î2
n

− N̂p

Î2
p

]
, k = (Ip, In).

(8)
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with N̂τ denoting the quasiparticle number operator of type τ (=p,n). Indeed, denot-
ing by C(1)

Ip,In
and C(2)

Ip,In
the averages of the right hand sides of (8) with the renor-

malized pnQRPA vacuum state, the renormalized operators defined as

Ā1µ(k) =
1√
C

(1)
k

A1µ, B̄1µ(k) =
1√
|C(2)
k |

B1µ, (9)

obey the boson-like commutation relations:[
Ā1µ(k), Ā†1µ′(k

′)
]

= δk,k′δµ,µ′ ,[
B̄1µ(k), B̄†1µ′(k

′)
]

= δk,k′δµ,µ′fk, fk = sign(C
(2)
k ).

(10)

Further, these operators are used to define the phonon operator:

C†1µ=
∑
k

[
X(k)Ā†1µ(k)+Z(k)D̄†1µ(k)−Y (k)Ā1−µ(k)(−)1−µ−W (k)D̄1−µ(k)(−)1−µ

]
, (11)

where D̄†1µ(k) is equal to B̄†1µ′(k
′) or B̄1µ(k) depending on whether fk is + or -. The

phonon amplitudes are determined by the equations:[
H,C†1µ

]
= ωC†1µ,

[
C1µ,C

†
1µ′

]
= δµµ′ . (12)

Interesting properties for these equations and their solutions were discussed in our
previous publications [11, 12]. The formalism defined above was named as Fully
Renormalized proton-neutron Quasiparticle Random Phase Approximation (FRpn-
QRPA).

3. GAUGE PROJECTION OF THE FULLY RENORMALIZED PNQRPA

The ground state of a (N,Z) nucleus can be excited by the phonon operator, de-
fined above, to a state which is a superposition of components describing the neigh-
boring nuclei (N − 1,Z + 1),(N + 1,Z − 1),(N + 1,Z + 1),(N − 1,Z − 1). The
first two components conserve the total number of nucleons (N+Z) but violate the
third component of isospin, T3. By contrast, the last two components violate the to-
tal number of nucleons but preserve T3. Actually, the last two components are those
which contribute to the ISR violation. However, one can construct linear combi-
nations of the basic operators A†,A,B†,B which excite the nucleus (N,Z) to the
nuclei (N − 1,Z + 1),(N + 1,Z − 1),(N + 1,Z + 1),(N − 1,Z − 1), respectively.
These operators are:

A†1µ(pn) = UpVnA
†
1µ(pn) +UnVpA1,−µ(pn)(−)1−µ+UpUnB

†
1µ(pn)−VpVnB1,−µ(pn)(−)1−µ,

A1µ(pn) = UpVnA1µ(pn) +UnVpA
†
1,−µ(pn)(−)1−µ+UpUnB1µ(pn)−VpVnB†1,−µ(pn)(−)1−µ,

A†1µ(pn) = UpUnA
†
1µ(pn)−VpVnA1,−µ(pn)(−)1−µ−UpVnB†1µ(pn)−VpUnB1,−µ(pn)(−)1−µ,

A1µ(pn) = UpUnA1µ(pn)−VpVnA†1,−µ(pn)(−)1−µ−UpVnB1µ(pn)−VpUnB†1,−µ(pn)(−)1−µ.
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6 FRpnQRPA approach with the gauge symmetry restored 447

Indeed, in the particle representation these operators have the expressions:

A†1µ(pn) =−
[
c†pcñ

]
1µ
, A1µ(pn) =−

[
c†pcñ

]†
1µ
,

A†1µ(pn) =
[
c†pc
†
n

]
1µ
, A1µ(pn) =

[
c†pc
†
n

]†
1µ
.

(13)

Thus, the operators from the first row excite the nucleus (N,Z) to the nuclei (N-1,Z+1)
and (N+1,Z-1) respectively, while the operators A†1µ(pn) and A1µ(pn) bring (N,Z)
to (N+1,Z+1) and (N-1,Z-1), respectively. In terms of the new operators, the many
body Hamiltonian is:

H =
∑
τjm

Eτja
†
τjmaτjm+ 2χ

∑
pn,p′n′;µ

σpn;p′n′A†1µ(pn)A1µ(p′n′)

−2χ1

∑
pn,p′n′;µ

σpn;p′n′A
†
1µ(pn)A1µ(p′n′),

σpn;p′n′ =
2

3ÎnÎn′
〈Ip||σ||In〉〈Ip′ ||σ||In′〉,

(14)

where EτI denotes the quasiparticle energy.
At this stage we have to explain why the pp interaction is not effective, i.e.

does not contribute at all within our approach. Indeed, within the gauge preserved
picture the operators A1µ and A†1µ commute with each other. Consequently, the

gauge projected phonon operator cannot comprise terms like A†1µ since they violate
the total number of nucleons.

Indeed, if the mentioned commutator would be different from zero, but equal
to the average of its scalar part with the new vacuum state, then the equations of mo-
tion for the operators A1µ and A†1µ would be linear not only in the nucleon number
conserving operators, but also in those which do not conserve the total number oper-
ator. In order that the equations of motion constitute a closed algebra, we have to add
the equations corresponding to the number non-conserving operators. Consequently,
the phonon operator is a linear combination of both nucleon number conserving and
non-conserving terms. It is conspicuous now that in order to conserve the nucleon
total number it is necessary to accept that the operators A1µ and A†1µ commute with
each other. In this context the pp interaction is becoming inefficient for properties
described by gauge preserving wave functions and therefore we have to ignore it.
In this respect our formalism contrasts the picture of Ref. [48] where the phonon
operator is commuting with the nucleon total number operator and at a time the pp
interaction contributes to the renormalized pnQRPA equations.

However, aiming at a quantitative description of the double beta process, the
presence of an attractive proton-neutron interaction is necessary. Due to this reason
we replace the pp interaction, which is ineffective anyway, with a dipole-pairing
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448 A. A. Raduta 7

interaction:

∆H =−Xdp

∑
pn;p
′

n′ ;µ

(
β−µ (pn)β−−µ(p′n′) +β+

−µ(p′n′)β+
µ (pn)

)
(−1)1−µ. (15)

We remark that the two terms of ∆H are changing the charge by +2 and -2 units
respectively, and therefore one may think that it is not justified within the meson-
dynamic theory of nuclear forces. That is not true, having in mind the isospin charge
independence property of the nuclear forces. Also, we note that ∆H is Hermitian
and invariant to rotation. This Hamiltonian should be looked at as an effective Hamil-
tonian in the same manner as the standard pairing Hamiltonian is. Indeed, within the
BCS approximation the initial pairing Hamiltonian is replaced by an effective one
∆(c†c†)0 + ∆∗(cc)0, with c† (c) denoting the single particle creation (annihilation)
operator and ∆ the energy gap. This Hamiltonian also does not preserve the charge,
but this is consistent with the trial variational state |BCS〉which is a mixture of com-
ponents with different even number of particles. In the present case the pnQRPA
state is built on the top of the BCS ground state which is a product of the BCS
states for protons and neutrons respectively, which results in obtaining a linear su-
perposition of components with different isospin third component, T3. Of course, at
the BCS level T3 is preserved in the average. Therefore, in the quasiparticle picture
the condition that the Hamiltonian commutes separately with the proton and neutron
number operators is anyway not fulfilled by any of the composing terms from the
model Hamiltonian. Note that ∆H commutes with the total number of nucleons and
preserves this feature after the linearizing procedure is performed, contributing to the
equations of motion of the basic operators with the gauge restored. Concerning the
T3 symmetry let us denote byNτ the τ (=p,n) particle number operators respectively,
and calculate the commutator:

[∆H,Np−Nn]=4Xdp

∑
pn;p
′

n′ ;µ

(
β−µ (pn)β−−µ(p′n′)−β+

−µ(p′n′)β+
µ (pn)

)
(−1)1−µ. (16)

Note that the right hand side of the above equation is an anti-Hermitian opera-
tor. Consequently, its average value with any state is vanishing. In particular it is
vanishing if the chosen state is the BCS ground state or the vacuum state of the
GPFRpnQRPA phonon operator. Concluding, in the present formalism the third
isospin component is conserved in the average. Clearly this happens since while one
term of ∆H is increasing the charge by two units the other term is decreasing it by the
same amount. Note that this isospin non-conserving term shows up even at the level
of the standard pnQRPA. Indeed within this formalism the two-body interaction is
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8 FRpnQRPA approach with the gauge symmetry restored 449

approximated by any linear combination of the operators

A†1µ(pn)A1µ(pn), (−1)1−µ
(
A†1µ(pn)A†1−µ(pn) +A1,−µ(pn)A1µ(pn)

)
. (17)

Writing these terms in the particle representation one finds that the effective two-
body interaction comprises, among other terms, a term which is proportional to ∆H .
Therefore in a formalism using approximations which violates the T3 symmetry, the
use of a Hamiltonian ∆H which is not preserving the T3 component does not produce
a special inconsistency.

Writing the model Hamiltonian in the quasiparticle representation, one obtains:

H =
∑
τjm

Eτja
†
τjmaτjm+ 2χ

∑
pn,p′n′;µ

σpn;p′n′A†1µ(pn)A1µ(p′n′)

−Xdp

∑
pn;p′n′;µ

σpn;p′n′

(
A†1µ(pn)A†1,−µ(p′n′) +A1,−µ(p′n′)A1µ(pn)

)
(−)1−µ.

The equations of motion of the operators defining the phonon operator are de-
termined by the commutation relations:[
A1µ(pn),A†1µ′(p

′n′)
]
≈ δµ,µ′δjp,jp′ δjn,jn′×[

U2
p −U2

n +
U2
n−V 2

n

Î2
n

N̂n−
U2
p −V 2

p

Î2
p

N̂p

]
. (18)

The quasi-boson approximation replaces the r.h. side of the above equation by its
average with the GRFRpnQRPA vacuum state, denoted by:

D1(pn) = U2
p −U2

n +
1

2In+ 1
(U2

n−V 2
n )〈N̂n〉−

1

2Ip+ 1
(U2

p −V 2
p )〈N̂p〉. (19)

The equations of motion show that the two qp energies are also renormalized:

Eren(pn) = Ep(U
2
p −V 2

p ) +En(V 2
n −U2

n). (20)

Here an important difference with respect to the FRpnQRPA equations should be
pointed out. There, the quasiparticle energies defining the poles in the dispersion
equation for the FRpnQRPA roots are of the types Ep +En and Ep−En. They
show up due to the commutation relations of the basic operators involved in the
phonon operator with the independent quasiparticle term of the model Hamiltonian.
The difference is caused by the gauge projection operation. The space of pn dipole
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450 A. A. Raduta 9

states, S, is written as a sum of three subspaces defined as:

S+ = {(p,n)|D1(pn)> 0, Eren(pn)> 0,} ,
S− = {(p,n)|D1(pn)< 0, Eren(pn)< 0,} ,
Ssp = S − (S+ +S−) ,

N± = dim(S±), Nsp = dim(Ssp),
N =N+ +N−+Nsp.

(21)

The third line of the above equations specifies the dimensions of these subspaces. In
S+ one defines the renormalized operators:

Ā†1µ(pn) =
1√

D1(pn)
A†1µ(pn), Ā1µ(pn) =

1√
D1(pn)

A1µ(pn), (22)

while in S− the renormalized operators are:

F̄†1µ(pn) =
1√

|D1(pn)|
A1µ(pn), F̄1µ(pn) =

1√
|D1(pn)|

A†1µ(pn). (23)

Indeed, the operator pairs A1µ,A†1µ and F1µ,F†1µ satisfy commutation relations of
boson type. An pnQRPA treatment within Ssp would yield either vanishing or
negative energies. The corresponding states are therefore spurious. FRpnQRPA
with the gauge symmetry projected defines the phonon operator as:

Γ†1µ=
∑
k

[
X(k)Ā†1µ(k)+Z(k)F̄†1µ(k)−Y (k)Ā1−µ(k)(−)1−µ−W (k)F̄1−µ(k)(−)1−µ

]
, (24)

The summation in the defining equation (24) is restricted to the the existence domain
of the operators to which is applied. Thus, when the term is containing one of the
operators Ā†1µ(k),Ā1−µ(k)(−)1−µ, then k ∈ S+. Also, for the terms involving the

operators F̄1µ, F̄†1µ the summation is restricted to k ∈ S−.
The phonon amplitudes are determined by the equations:[

H,Γ†1µ

]
= ωΓ†1µ,

[
Γ1µ,Γ

†
1µ′

]
= δµ,µ′ . (25)

Thus, the phonon amplitudes are obtained by solving the GRFRpnQRPA
equations:

A11 A12 B11 B12

A21 A22 B21 B22

B11 −B12 −A11 −A12

−B21 −B22 −A21 −A22



X(pn)
Z(pn)
Y (pn)
W (pn)

= ω


X(p1n1)
Z(p1n1)
Y (p1n1)
W (p1n1)

 , (26)

where the involved matrices are analytically given in Appendix A.
Matrix dimension for A11 and B11 is N+ ×N+, while for A22 and B22 is

N−×N−. The off diagonal sub-matricesA12 andB12 have the dimensionN+×N−,
while A12 and B12 are of the N−×N+ type.
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10 FRpnQRPA approach with the gauge symmetry restored 451

In order to solve Eqs.(26) we need to know D1(pn) and, therefore, the aver-
ages of the qp’s number operators, N̂p and N̂n. These are written first in particle
representation and then the particle number conserving term is expressed as a linear
combination of A†A and F†F chosen such that their commutators with A†,A and
F†,F are preserved. The final result is:

〈N̂p〉= V 2
p (2Ip+ 1) + 3(U2

p −V 2
p ) ∑

n′,k
(p,n′)∈S+

D1(p,n′)
[
Yk(p,n

′)
]2− ∑

n′,k
(p,n′)∈S−

D1(p,n
′
)
[
Wk(p,n

′)
]2
 ,

〈N̂n〉= V 2
n (2In+ 1) + 3(U2

n−V 2
n ) ∑

p′,k
(p′,n)∈S+

D1(p′,n)
[
Yk(p

′,n)
]2− ∑

p′,k
(p′,n)∈S−

D1(p′,n)
[
Wk(p

′,n)
]2
 .

(27)

Eqs.(26), (27) and (19) are to be simultaneously considered and solved iteratively. It
is worth mentioning that using the quasiparticle representation for the basic operators
A†1µ, F†1µ, A1,−µ(−1)1−µ, F1,−µ(−)1−µ – see Eqs.(13), (22) and (23) – one obtains

for Γ†1µ an expression which involves the scattering pn operators. Thus, the present
approach is, indeed, the GRFRpnQRPA.

4. THE 2νββ PROCESS

The formalism presented above was used to describe the 2νββ process. If the
energy carried by leptons in the intermediate state is approximated by the sum of
the rest energy of the emitted electron and half the Q-value of the double beta decay
process

∆E =
1

2
Qββ +mec

2, (28)

the reciprocal value of the 2νββ half-life can be factorized as:

(T 2νββ
1/2 )−1 = F |MGT (0+

i → 0+
f )|2, (29)

where F is an integral on the phase space, independent of the nuclear structure, while
MGT stands for the Gamow-Teller transition amplitude and has the expression:

MGT =
√

3
∑
k,k′

i〈0||β+
i ||1k〉ii〈1k|1k′〉f f 〈1k′ ||β

+
f ||0〉f

Ek + ∆E+E1+
. (30)
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In the above equation, the denominator consists of three terms: a) ∆E, which was al-
ready defined, b) the average value of the k-th GRFRpnQRPA energies in mother
and daughter nuclei respectively, normalized to the particular value corresponding to
k=1, and c) the experimental energy for the lowest 1+ state. The indices carried by
the β+ operators indicate that they act in the space spanned by the GRFRpnQRPA
states associated to the initial (i) or final (f ) nucleus. The overlap m.e. of the sin-
gle phonon states in the initial and final nuclei respectively, are calculated within
GRFRpnQRPA. In Eq.(30), the Rose convention for the reduced m.e. is used [25].

Note that if we restrict the pn space to S+ and, moreover, the dipole-pairing
interaction is ignored, MGT vanishes due to the second leg of the transition. Indeed,
the m.e. associated to the daughter nucleus is of the type f 〈0|(c†ncp)1µ(c†ncp)1µ|o〉f ,
which is equal to zero due to the Pauli principle restriction. In this case the equations
of motion are of Tamm-Dankoff type and, therefore, the ground state correlations are
missing. In order to induce the necessary correlations we have either to extend the
formalism in the space S−, or to allow the ph excitations to interact via a pairing
like force. Also, we remark that the operator Ā†1µ plays the role of a β− transition

operator, while when F̄†1µ or A1µ is applied on the ground state of the daughter
nucleus, a β+ transition is induced. Therefore, the 2β decay cannot be described by
considering the β− transition alone.

5. NUMERICAL APPLICATION AND DISCUSSIONS

The approach presented in the previous sections was applied for the transitions
of fourteen double beta emitters: 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 104Ru, 110Pd, 116Cd,
128,130Te, 148,150Nd, 154Sm, and 160Gd. We present first the parameters involved in
our calculations.

5.1. PARAMETERS

The parameters defining the single particle energies are those of the spherical
shell model, the deformation parameter d and the parameter k relating the quadrupole
coordinate with the quadrupole bosons, as shown in Eq.(3). These are fixed as de-
scribed in Ref. [19]. The proton and neutron pairing strengths are slightly different
from those from the quoted reference since the dimension of the single particle basis
used in the present paper is different from that from Ref. [19]. The strength of the
dipole pn two-body interaction was taken to be

χ=
5.2

A0.7
MeV. (31)

This expression was obtained by fitting the positions of the GT resonances in 40Ca,
90Zr and 208Pb [26]. The strength for the attractive pn two-body interaction was
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chosen so that the result for the log ft value associated to one of the single beta decay
of the intermediate odd-odd nucleus, be close to the corresponding experimental data.
If the experimental data are missing, the restriction refers to the existent data in the
neighboring region. Since for 100Mo and 116Cd, experimental data for the log ft
values associated to the β± decays of the intermediate odd-odd nuclei 100Tc and
116In respectively, are available, the parameters χ and χ1 were fixed such that the
mentioned data are reproduced. The results for the fitted parameters are given in
Table I. There, we give also the result for the Ikeda Sum Rule (ISR).

The BCS calculations are performed by using a certain number of states outside
an inert core. The core system for the fourteen decays is defined by the (Z,N),
listed in Table II. Therein, one may find also the number of single particle double
degenerate states used in our calculations. In order to perform the GRFRpnQRPA
we have to divide the space of proton-neutron dipole states, S, into three subspaces
(S+,S−,Ssp), according to the definition given by Eq. (21). The dimensions for
the spaces (S+,S−,S) for the mother (D1) and daughter (D2) nuclei are also listed.
As explain in the body of the previous sections, the GRFRpnQRPA equations
together with the constraint equations are to be solved iteratively. In Table II, we
give the number of iterations which are necessary in order to achieve the process
convergence.

5.2. SINGLE BETA TRANSITION STRENGTHS B(GT±)

Since the double beta matrix elements are expressed as a product of two re-
duced matrix elements, one associated to the β− transition of the mother nucleus,
while the second one to the β+ transition of the daughter nucleus, it is worthwhile
to study the strength distribution over the GRFRpnQRPA energies, for the two
transitions. Using the data shown in Tables I and II as input, we calculated the dis-
tribution of the β± strengths with the result shown in Figs.1-4. The energy intervals
where both strengths are large, contribute significantly to the double beta transition
amplitude. The β− strength is fragmented among the GRFRpnQRPA states re-
flecting the fact that the single particle states are deformed. The β− strengths for
the emitters considered in Fig. 1 exhibit three major peaks. 48Ca and 76Ge have one
additional small bump, close to the last and intermediate major peaks, respectively.
The β− strength of 48Ca has been studied in Ref. [39] where the GT resonance has
been populated in the reaction 48Ca(p,n)48Sc. It was shown that the GT resonance
is spread over an energy interval between 4.5 and 14.5 MeV. As seen from Fig.1, the
results of our calculations concerning the width of the GT resonance agree with the
mentioned experimental data. In 76Ge and 82Se the strength distribution has been
studied in the reactions 76

32Ge(p,n)76
33As and 82

34Se(p,n)82
35Br [41], respectively. The

B(GT) values have been extracted from the excitation energy spectrum. These values

(c) RJP 57(Nos. 1-2) 442–471 2012



454 A. A. Raduta 13

Table 1.

The deformation parameter d, the pairing interaction strengths for protons (Gp) and neutrons (Gn), the

GT dipole (χ) and dipole-pairing (Xdp) interaction strengths used in our calculations. We also give the

parameter k relating the quadrupole coordinates and bosons (this is involved in the expression of the

single particle energies). Results for ISR/3 are to be compared with the corresponding N −Z values.

d k Gp[MeV] Gn[MeV] ISR/3 χ[MeV ] Xdp[MeV ]
48Ca 0.3 8. 0.42 0.43 8.04 0.346 0.253
48Ti 0.05 8. 0.46 0.36 4.04 0.346 0.253
76Ge 1.6 10. 0.22 0.382 11.99 0.250 0.609
76Se 1.9 10. 0.24 0.325 7.99 0.250 0.609
82Se 0.2 9. 0.261 0.344 14.00 0.238 0.143
82Kr 0.2 9. 0.24 0.268 10.01 0.238 0.143
96Zr 1.5 12. 0.18 0.343 16.08 0.213 0.106

96Mo 1.2 10. 0.22 0.338 11.99 0.213 0.106
100Mo -1.5 5.5 0.18 0.288 15.995 0.232 1.406
100Ru -0.6 5.5 0.15 0.255 12.002 0.232 1.406
104Ru -1.55 12. 0.18 0.35 16.00 0.201 0.502
104Pd -1.35 9. 0.18 0.275 12.00 0.201 0.502
110Pd -1.6 10. 0.16 0.306 18.05 0.194 0.775
110Cd -0.8 10. 0.16 0.3105 13.97 0.194 0.775
116Cd -1.8 12. 0.15 0.282 20.07 0.2 1.308
116Sn -1.2 12. 0.12 0.2458 16.007 0.2 1.308
128Te 0.5 8. 0.12 0.266 24.05 0.450 0.436
128Xe 1.7 8. 0.12 0.2518 20.02 0.450 0.436
130Te 0.493 12. 0.10 0.292 26.00 0.7 0.840
130Xe 1.4 12. 0.11 0.286 21.94 0.7 0.840
148Nd 1.555 14. 0.11 0.2516 28.02 0.157 0.142
148Sm 0.1555 14. 0.11 0.225 24.04 0.157 0.142
150Nd 1.952 16. 0.10 0.254 30.05 0.156 0.016
150Sm 1.952 16. 0.11 0.235 26.08 0.156 0.016
154Sm 2.29 16. 0.10 0.316 30.08 0.153 0.138
154Gd 2.29 14. 0.11 0.27 26.01 0.153 0.138
160Gd 2.714 10. 0.11 0.3 32.07 0.149 0.298
160Dy 2.714 8. 0.11 0.2578 28.02 0.149 0.298
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Table 2.

The number of single particle proton states lying above the (Z,N) core is given. The single parti-

cle space for neutrons is identical to that for protons. D1 and D2 are the dimensions of the spaces

S+,S−,S defined in the text, for the mother and daughter nuclei, respectively. The dimension of the

GRFRpnQRPA matrix is equal to the sum of the S+ and S− dimensions. Also, the number of steps

necessary for the iterative procedure convergence, are listed.

Nucleus core’s (Z,N) Number D1 D2 Number of
of states iterations

48Ca (0,0) 31 (96,0,103) (79,7,103) 7
76Ge (20,20) 31 (96,0,119) (83,0,119) 5
82Se (20,20) 37 (107,0,135) (95,0,135) 4
96Zr (20,20) 39 (116,0,141) (105,8,141) 15

100Mo (20,20) 46 (137,1,163) (139,2, 175) 8
104Ru (26,26) 39 (118,1,140) (111,2,140) 7
110Pd (26,26) 43 (146,0,162) (125,7,162) 6
116Cd (20,20) 55 (189,0,219) (182,4,219) 8
128Te (28,28) 60 (191,0,228) (185,1,232) 5
130Te (42,42) 67 (204,0,242) (182,0,244) 6
148Nd (40,40) 51 (158,3,203) (168,1,203) 5
150Nd (40,40) 57 (203,2,246) (197,1,246) 4
154Sm (40,40) 57 (203,0,249) (204,3,249) 9
160Gd (40,40) 59 (216,1,253) (215,0,253) 14

have been folded with a Gaussian with a width of 1 MeV and plotted in Fig. 1 to be
compared with the results of our calculation. We notice that the centroids of the large
peaks from 76Ge lie close to those shown by the experimental data. Concerning 82Se,
the large peak is nicely described. The centroids of the two smaller peaks lie close
to the peaks predicted by our calculations. It is worth mentioning that it is hard to
make a fair comparison between the magnitudes of the peaks in our calculations and
those extracted from the experimental data. Indeed, the total experimental B′(GT−)
strengths for 76Ge and 82Se represent only 65 and 59% respectively, from the (N-Z)
value [41]. We notice that the β− strength has a little bump below 2.5 MeV which is
specific to the fully renormalized formalism, this strength being carried by the scat-
tering terms amplitude. The new terms in the phonon operator manifest even more
clearly in the β+ strength where in three cases a peak close to zero shows up. Note
that while in the β− case there is no strength beyond the last major peak, for the β+

case small peaks show up after the major peak. This feature is most evident in 76Se
and 82Kr. Due to the overlap of their energy spread with that of the major peak in
the distribution of the β− strength, they contribute significantly to the GT transition
amplitude.

The distribution of the β± strengths for 100Mo and 116Cd is shown in Fig.2.
Again, the β∓ strengths are fragmented among the pnQRPA states, reflecting the
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fact that the single particle states are deformed. Note that the first peak for the β−

strength is the highest one, while the one centered at higher energy has a large width
and a fine substructure. The low energy peak is mainly determined by the attractive
two-body interaction while the broad peak, i.e. the GT giant resonance, by the ph
interaction. The β+ strength is small in magnitude and less fragmented than the β−

strength. Also we note that the highest energy peak is the largest one.
The β− strengths shown in Fig. 3 exhibit some specific features. 104Ru and

110Pd have a low energy peak centered at about 1 MeV, while the GTR is spread
over a wide interval ranging from 2.5 to 12.8 MeV with the strength shared mainly
by three peaks. The β− strength distributions for 128Te and 130Te start with a wide
peak spread over the interval 0 to 5 MeV and continue with the GTR located between
5 and 14 MeV. The experimental β− strength for these nuclei were extracted from
the excitation energy spectrum at 0.3 deg and 134.4 MeV, measured in the reactions
128Te(p,n)128I and 130Te(p,n)130I, respectively [41]. Our calculations confirm the
three peak and four peak structure in the two nuclei. However, the highest peak in
our calculations is the first one while the experimental dominant peak is the last one,
located at 13.14 MEV in 128Te and 13.59 MeV in 130Te [41]. Also, we note that
the theoretical peaks are not sharply separated as suggested by the experimental data
after eliminating the background contribution to the GTR.

Again, the relevance of comparing the results with the corresponding exper-
imental data is dictated by the fact that the total experimental B′(GT−) strengths
for 128Te and 130Te, accounting also for the contribution of the background, rep-
resent only 72 and 71% respectively, from the (N-Z) value [41]. Eliminating the
background contribution to the total strength, as happens in Fig. 3, the total mea-
sured strength amounts about 56 and 59%, respectively. The β− strength seen below
2.5MeV, which is specific to the fully renormalized formalism, seems to be carried
by the scattering terms amplitude. The new terms in the phonon operator manifest
also in the β+ strength distribution where in three cases a peak close to zero shows
up. While for the first two nuclei the dominant peaks in the β+ strength are in the
low energy region for the two isotopes of Te the peak centroid energies are almost
identical to the corresponding GTR centroid energies.

The β− strength distributions for the double beta emitters 148,150Nd, 154Sm
and 160Gd are presented in Fig. 4. For the first two transitions the β− strength has a
dominant peak, which is just the GT resonance. For 154Sm and 160Gd, one and two
additional peaks show up at lower energy and with a height comparable to that of the
GT resonance. The β+ strength is also fragmented but exhibits a single dominant
peak located at an energy close to the GT resonance centroid. For the transitions of
154Gd and 160Dy an important amount of strength is accumulated in the low part of
the spectrum. Actually this appear to be an effect caused by the scattering terms from
the phonon operator.
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Fig. 1 – One third of the single β− (left column) and one third of the β+ (right column) strengths,
denoted by B′(GT−) and B′(GT+), for the mother , 48Ca, 76Ge, 82Se and 96Zr, and daughter, 48Ti,
76De, 82Kr and 96Mo, nuclei respectively, folded by a Gaussian function with a width of 1 MeV, are
plotted as functions of the corresponding energies yielded by the present formalism. Note that the
difference of the two strengths for the mother nucleus should amount N-Z if the sum rule is obeyed.
For 76Ge and 82Se, the experimental data for the β− strength are also presented.
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(c) RJP 57(Nos. 1-2) 442–471 2012



18 FRpnQRPA approach with the gauge symmetry restored 459

0

2

4

6

8

10

0.0

0.1

0.2

0.3

0.4

0

2

4

6

8

10

0

1

2

0 5 10 15
0

2

4

6

8

10

12

0 5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

2

4

6

8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

128Te

B
 '(

G
T 

- )

 GRFRpnQRPA

 Exp.

128Xe

B
 '(

G
T 

+ )

 GRFRpnQRPA

110Pd

B
 '(

G
T 

- )

 GRFRpnQRPA

110Cd
B

 '(
G

T 
+ )

 GRFRpnQRPA

130Te

B
 ' (G

T 
- )

E [ MeV ]

 GRFRpnQRPA

 Exp.

130Xe

B
 ' (G

T 
+ )

E [ MeV ]

 GRFRpnQRPA

104Ru

B
 '(

G
T 

- )

 GRFRpnQRPA

104Pd

B
 '(

G
T 

+ )

 GRFRpnQRPA
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Table 3.

The calculated summed strengths for the β− strength associated to the mother nuclei and the summed

β+ strengths for the daughter nuclei, quenched by a factor 0.6, are compared with the corresponding

available data. Experimental data for total B(GT−) are taken from Refs. [38] (a)), [41] (b)), [42]

(c)), [45] (d)), [47] (e), f)

.

Nucleus 0.6
∑
B(GT )−

∑[
B(GT )−

]
exp

Nucleus 0.6
∑
B(GT )+

∑[
B(GT )+

]
exp

48Ca 14.54 14.4±2.5 a) 48Ti 3.666 1.9±0.5 a)

76Ge 23.037 23.3 b) 76Se 1.125 1.45±0.07 c)
82Se 25.372 24.6 b) 82Kr 0.079 -
96Zr 29.163 - 96Mo 2.537 0.29±0.08 d)

100Mo 28.96 26.69 e) 100Ru - -
104Ru 32.921 - 104Pd 3.990 -
110Pd 32.932 - 110Cd 7.239 -
116Cd 36.2 32.7 f) 116Sn - -
128Te 43.485 40.08 b) 128Xe 2.917 -
130Te 47.432 45.90 b) 130Xe 13.040 -
148Nd 51.74 - 148Sm 1.29 -
150Nd 54.11 - 150Sm 0.02 -
154Sm 54.68 - 154Gd 0.54 -
160Gd 57.93 - 160Dy 0.21 -

As seen from Table I the results of our calculations for single beta transition
strengths obey the ISR.

An interesting result which is worth to be mentioned, concerns the summed
strength for the β− and β+ transition, denoted conventionally, by

∑
B(GT−) and∑

B(GT+), respectively. These single β decay strengths quenched with a factor of
0.6 [37], accounting for the polarization effects on the single-β transition operator,
ignored in the present paper, are listed in Table III. Actually, the quenched values
are to be compared with the experimental data, since the measured B(GT) strength
represents about 60%-70% of the strength corresponding to the ISR.

The experimental value for the summed B(GT−) of 48Ca is taken from Ref.
[38], where from the total strength, which amounts about 15.3±2.2, the contribution
of isovector spin monopole states was extracted. The result was obtained with the
reaction 48Ca(p,n)48Sc, and corresponds to a large energy excitation interval, from 0
to 30 MeV.

In [41] the total GT strength, for 76Ge and 82Se, consists of the sum of the
strength observed in the peaks plus the estimated contribution from the background.
The experimental results correspond to 65 and 59% of the 3(N-Z) sum rule. Accord-
ing to Ref. [39], by adding to the GT cross section in discrete states the contribution
from the background and that of continuum, the total strength magnitude is much
improved to a better obey of the sum rule. We note a good agreement between the
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results of our calculations for the summed β− strength and the corresponding exper-
imental data.

The experimental data for the summed B(GT+) transition of 48Ti was taken
from [38]. This result was obtained after extracting the contribution of the isovector
spin monopole states from the total strength of 2.8±0.3. The reaction 48Ti(n,p)48Sc
was used to study the B(GT+) strength for excitation energies up to 30 MeV. This
value for the total strength is larger than that reported by Alford et al. [40]∑

B(GT+) = 1.42±0.2. (32)

where only contribution of states with excitation energies up to 15 MeV are taken
into account. This comparison shows that, indeed, the B(GT) strength is sensitive
to the magnitude of the considered energy interval. In this context we mention the
results obtained through the charge exchange reactions (3He,t) and (d,2He) on 48Ca
and 48Ni respectively [43], for B(GT−) and B(GT+) with an excitation energy
interval Ex ≤ 5 MeV: 1.43(38), 0.45.

The GT strength from the 76Se(n,p)76As reaction [42] is 1.45± 0.07 and cor-
responds to and excitation energy Ex ≤ 10MeV . The authors used the multipole
decomposition method. In Ref. [44] the B(GT+) strength was measured in a differ-
ent reaction, 76Se(d,2He)76As, and different excitation energy interval, Ex ≤ 4MeV .
The result reported is

∑
0−4MeV B(GT+) = 0.54± 0.1, which is smaller than that

from Ref. [42]. The length of the energy intervals justifies the mentioned differ-
ences. We remark that the results for the summed β+ strength in 48Ti and 76Se are
in reasonable good agreement with the corresponding experimental data.

The last β+ strength mentioned in Table 3 refers to the daughter nucleus 96Mo.
Through the reaction 96Mo(d,2He)96Nb the strength taken mainly by a single state,
placed at 0.69 MeV, was measured. However, from Fig.1 we note that, indeed, there
is a state at 0.69 Mev which catch a certain β+ strength, but that strength is smaller
than that distributed among the states lying in the energy interval of 1.8 to 7.5 MeV.
More complete measurement through a (p,n) reaction on 96Mo and an energy range
of 0-10 MeV is necessary in order to make a fair comparison with the results pre-
sented here. The matrix elements involved in the double beta transition amplitude of
100Mo and 116Cd, have been experimentally investigated in Ref. [47]. The first ma-
trix elements, describing the transitions 0+

i → 1+, were obtained from the reactions
100Mo(3He,t)100Tc and 116Cd(3He,t)116In respectively, at θt ≈ 00, while the matrix
elements for the 1+→ 0+

f were derived from the known log ft value. For both cases
the strength of the first β− transition exhibits two bumps, one broad and called GTR1
while the second one less spread, located at lower energy and called GTR2. The cen-
troid energies of the two resonances as well as the strength carried by each of them
are compared with the theoretical results obtained with our approach, in Table 4. The
quenched values of the total β− strength of 128,130Te are compared with the experi-
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mental data since the measured B(GT−) strength, as we already mentioned before,
represents about 56% and 59% respectively, of the strength corresponding to the ISR.
There are some claims [39] saying that adding the strength carried by the states from
the continuum, the total B(GT) strength are corrected up to 90% of the simple sum
rule. We remark the good agreement between the calculated and experimental total
strength. Note that if we replace the quenching factor by 0.56 for 128Te and by 0.59
for 130Te the results for the total strength would be 40.586 and 46.56 respectively
which are closer to the experimental data. Unfortunately for the last four mother and
for the last four daughter nuclei, there are no data available for the single β− and
single β+ strengths, respectively.

5.3. TRANSITION AMPLITUDE AND HALF LIFE

The energy corrections involved in Eq.(30) for the considered double beta emit-
ters, are:

∆E(48Ca) = 2.646 MeV, E1+(48Sc)=0.338 MeV,
∆E(76Ge) = 1.530 MeV, E1+(76As)=0.044 MeV,
∆E(82Se) = 2.016 MeV, E1+(82Br)=0.075 MeV,
∆E(96Zr) = 2.186 MeV, E1+(160Nb)=1.116 MeV,
∆E(100Mo) = 2.026 MeV, E1+(100Tc)=0.0 MeV.
∆E(104Ru) = 1.161 MeV, E1+(104Rh)=0.0 MeV,
∆E(104Pd) = 1.516 MeV, E1+(110Ag)=0.0 MeV,
∆E(116Cd) = 1.916 MeV, E1+(116In)=0.0 MeV,
∆E(128Te) = 0.946 MeV, E1+(128I)=0.58 MeV,
∆E(130Te) = 1.776 MeV, E1+(130I)=0.85 MeV,
∆E(148Nd) = 1.476 MeV, E1+(148Pm)=0.137 MeV,
∆E(150Nd) = 2.196 MeV, E1+(150Pm)=0.137 MeV,
∆E(154Sm) = 1.530 MeV, E1+(154Eu)=0.046 MeV,
∆E(160Gd) = 0.046 MeV, E1+(160Tb)=0.139 MeV.

(33)

Calculating first the GT transition amplitude and then the Fermi integral with GA =
1.254, as in Ref. [4], we obtained the half-lives given in Table 5. There we also give
the experimental data taken from different sources as well as the results obtained
by other procedures. From there one can see that the results of our calculations
agree quite well with the corresponding experimental data. Results of Ref.[10] were
obtained within a standard renormalized pnQRPA formalism and therefore the ISR
is violated.

5.4. TRANSITIONS OF THE INTERMEDIATE ODD-ODD NUCLEUS

The intermediate odd-odd nuclei involved in the double beta process can, in
principle, perform the transition β+/EC, which results in feeding the mother nu-
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Table 4.

The strengths B(GT) of the single β− transitions from the mother nuclei to the intermediate odd-odd

nuclei excited in the states of the two components, GTR1 and GTR2, of the GT giant resonance are

listed. The experimental data taken from Ref. [47](Exp.) and theoretical (Th.) values for the centroid

energies of the two resonances are also specified.

Excited 100Tc 116In
states Ex[MeV] B(GT) Ex[MeV] B(GT)

Exp. Th. Exp. Th. Exp. Th Exp. Th.
GTR1 13.3 11.16 23.1± 3.8 15.63 14.5 12.37 25.8± 4.1 18.9
GTR2 8.0 8.05 2.9±0.5 5.87 8.9 7.87 6.6±1.1 7.2

cleus of each transition. On the other hand, they can perform a β− transition to the
corresponding daughter nuclei. For some transitions of this type the logft values
are measured. The corresponding theoretical results are obtained by means of the
expression:

ft∓ =
6160

[l〈11||β±||0〉lgA]2
, l = i,f. (34)

In order to take account of the effect of distant states responsible for the ”missing
strength” in the giant GT resonance [4] we chose gA = 1.0. In a previous publication
[19], where a standard pnQRPA approach was used, the strengths of the ph and pp
interactions have been fixed in order to reproduce the log ft values characterizing
the two transitions of the intermediate odd-odd nucleus. Similarly, here the strengths
of the two body proton-neutron interactions, χ and Xdp, could be fixed by fitting the
log ft values associated to the two single beta transitions. This procedure has been
applied, however, only for 100Mo and 116Cd. Unfortunately, there are not enough
available data to enable a fitting procedure for the remaining emitters. For these
nuclei the strength of the ph interaction was taken as given by Eq. (31) while the
attractive interaction strength was chosen such that one of the decay branches of the
odd-odd nuclei has the logft value close to those known for the chosen nucleus or
for a nucleus from the neighboring region. In Table 6, the results of our calculations
for the mentioned log ft values are listed. As seen from Fig.1 the predicted centroid
of the GT resonance has a small shift with respect to the experimental one. This
suggests that Eq.(31) should be revisited and the fit of the GT resonance centroids be
performed within the GRFRpnQRPA.

5.5. PREVIOUS CONSIDERATION OF THE SUBJECT

After our paper on fully renormalized pnQRPA was published [11], another
approach addressing the same issue showed up [48,49], which claims that the results
obey the ISR. However as pointed out in Ref. [50], that formalism does not fulfill the
consistency condition, required by the linearizing procedure. Actually, this feature
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was outlined in Section 3 of the present paper. Indeed, we showed that within the
linearizing procedure framework, the pp interaction term does not contribute to the
equations of motion if the condition of conserving the nucleon total number holds.
However, in the mentioned papers the pp interaction influence on the phonon ampli-
tudes is taken into account by averaging some specific double commutators on the
vacuum state. Following the same path for the number non-conserving terms, their
amplitudes in the phonon operator cannot be vanishing. According to Ref. [49], the
experimental GT transition amplitude is reached for the pp interaction strength close
to the pnQRPA breaking down value. Moreover, the breaking down point of the
fully renormalized pnQRPA is lying close to and below the breaking down point of
the standard pnQRPA. This result is on a par with our result from Ref. [11]. There-
fore even if the ISR is satisfied, the principle problem of having a stable ground state
for the mother and daughter nuclei still persists.

The attractive interaction of ph dipole-pairing type is responsible for the ground
state correlations. To a less extent these are also caused by the F components of the
new phonon operator. The projection of gauge is essential for restoring the ISR.
The gauge projection of the pnQRPA was previously achieved in Ref. [67] where
the ISR is anyway satisfied within the unprojected picture. By contrast, therein the
effect of projection is small.

Generally speaking, whenever some beauty conditions, like fully renormaliza-
tion and gauge symmetry restoration, are met a certain tribute is expected to be payed.
Thus, there are some specific weak points which require further improvements. In-
deed, the average of the quasiparticle number operators has been approximately cal-
culated. We feel that a better expression can be found for this quantity which is
essential for the adopted iterative procedure. We hope that a better representation
for the average number of quasiparticles will speed up the convergence of the iter-
ative process. Moreover, this will allow us to extend our calculations to actinides
region. The renormalized vacuum state is characterized by a non-vanishing average
number of quasiparticles. That means that the pnQRPA features are determined by
the pairing properties not only through the occupation probabilities U2 and V 2 but
also by the averages of quasiparticle number operators. The question which arises is
whether the pnQRPAmay influence the pairing properties. A positive answer could
supply us with a unifying variational principle for both vacua, of quasiparticle and
pnQRPA boson respectively. This goal was in fact touched within a different con-
text by Jolos et al [73]. These features concerning the description of the quasiparticle
number operators in a better way as well as describing the BCS and the pnQRPA
in an unified fashion, by a set of coupled equations derived from a unique variational
principle will be implemented in the near future.
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Table 6.

The logft values characterizing the β+/EC and β− processes associated to the intermediate odd-odd

nuclei are listed.

Mother odd-odd Daughter
nucleus nucleus nucleus
48Ca

β+/EC←− 48Sc
β−−→ 48Ti

Theor. 8.44 4.63
76Ge

β+/EC←− 76As
β−−→ 76Se

Theor. 4.57 6.13
82Se

β+/EC←− 82Br
β−−→ 82Kr

Theor. 8.11 7.18
96Zr

β+/EC←− 96Nb
β−−→ 96Mo

Theor. 5.67 7.00
100Mo

β+/EC← 100Tc
β−→ 100Ru

Exp. 4.45+0.18
−0.30 [69] 4.66 [70]

Theor. 4.65 4.1
104Ru

β+/EC←− 104Rh
β−−→ 104Pd

Exp. 4.32 [61] 4.55 [61]
Theor. 4.71 6.47
110Pd

β+/EC←− 110Ag
β−−→ 110Cd

Exp. 4.08 [62] 4.66 [62]
Theor. 4.14 6.32
116Cd

β+/EC← 116In
β−→ 116Sn

Exp. 4.45+0.18
−0.30 [71] 4.66 [72]

Theor. 4.65 4.1
128Te

β+/EC←− 128I
β−−→ 128Xe

Exp. 5.049 [65] 6.061 [66]
Theor. 5.87 6.06
130Te

β+/EC←− 130I
β−−→ 130Xe

Theor. 6.08 5.80
148Nd

β+/EC←− 148Pm
β−−→ 148Sm

Theor. 6.8 7.33
150Nd

β+/EC←− 150Pm
β−−→ 150Sm

Theor. 5.55 8.46
154Sm

β+/EC←− 154Eu
β−−→ 154Gd

Theor. 5.52 5.13
160Gd

β+/EC←− 160Tb
β−−→ 160Dy

Theor. 5.25 4.20
(c) RJP 57(Nos. 1-2) 442–471 2012



468 A. A. Raduta 27

6. CONCLUSIONS

Summarizing the results of this paper, one may say that restoring the gauge
symmetry from the fully renormalized pnQRPA provides a consistent and realistic
description of the transition rate and, moreover, the ISR is obeyed. As shown in
this paper, it seems that there is no need to include the pp interaction in the many
body treatment of the process. Small deviations of the predicted and experimental
GT resonance centroids suggest that the parameter χ should be fixed by fitting the
centroids within the GRFRpnQRPA. By contrast to the standard pnQRPA mod-
els where the strength of the pp interaction is not affecting the position of the GT
resonance centroids, here the attractive interaction contributes to the distribution of
the β− strength. Therefore, the two strengths should be fixed at a time by fitting two
data, either the GT resonance centroid and the log ft value of one decay of the in-
termediate odd-odd nuclei or by fixing the log ft values corresponding to the single
beta decays of the odd-odd intermediate nucleus.

Before closing let us enumerate the results of our numerical analysis.

• Results for the summed strength B(GT−) agree quite well with the existent ex-
perimental data. Also the summed B(GT+) strengths for 76Ti and 76Se agree
reasonable well with the corresponding experimental data.

• The GT resonance centroid locations as well as the total strength of the GT reso-
nance for 100Tc and 116In are quite well described.

• The calculated half-lives are in good agreement with the experimental data.

The gauge projection of the pnQRPA was previously achieved in Ref. [67]
where the ISR is anyway satisfied within the unprojected picture. By contrast therein
the effect of projection is small.

Concluding, the present calculations prove that the GRFRpnQRPA is able
to describe in a realistic manner the 2νββ decay and moreover satisfies the ISR.
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7. APPENDIX A

The sub-matrices involved in the GRFRpnQRPA equations are given by the
following expressions:

(A11)p1n1;pn = Eren(pn)δpn;p1n1 + 2χσ(1)T
p1n1;pn,

(A12)p1n1;pn = 0 = (A21)p1n1;pn ,

(B12)p1n1;pn = 2χσ(1)T
p1n1;pn = (B21)p1n1;pn ,

(B11)p1n1;pn = 0 = (B22)p1n1;pn ,

(A22)p1n1;pn = |Eren(pn)|δpn;p1n1 + 2χσ(1)T
p1n1;pn.

(35)
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