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Abstract

A semi-microscopic model to study the neutron and proton induced backbending phenomena in

some deformed even-even nuclei from the rare earth region, is proposed. The space of particle-core

states is defined by the angular momentum projection of a quadrupole deformed product state. The

backbending phenomena are described through a hybridization of four rotational bands, defined by

a set of angular momentum projected states, and a model Hamiltonian describing a set of paired

particles moving in a deformed mean field and interacting with a phenomenological deformed core.

The nature of each rotational band is specified by the single-particle factor function. The ground

band corresponds to the situation when all particles are paired while the other rotational bands are

built on a neutron or/and a proton broken pair. Four rare earth even-even nuclei which present the

second anomaly in the observed momenta of inertia are successfully treated within the proposed

model.

PACS numbers: 21.10.Re, 21.60.Ev, 21.10.Hw, 27.70.+q
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I. INTRODUCTION

The irregular behavior of the moment of inertia in the yrast band at intermediate and

high spin states, known as backbending, has always attracted considerable experimental and

theoretical attention. Since its first experimental observation [1], many endeavor attempts

were performed in order to explain the phenomenon. It is commonly accepted that it is

caused by the intersection of two rotational bands. This interpretation was proposed by

Stephens and Simon [2] based on the rotational alignment of the individual single-particle

angular momenta of a broken pair along the rotation axis. The pair breaking is caused by the

Coriolis force which violates the time-reversal symmetry. The first theoretical interpretation

based on the Coriolis anti-pairing effect was due to Mottelson and Valatin [3] where the

backbending phenomenon was put on the account of a drastic change in the pairing field.

Although the band hybridization method was all along known and applied to this par-

ticular problem within some phenomenological approaches [4–6], the nature of the involved

rotational bands was not yet well established. Only after the rotational alignment hypothe-

sis was confirmed, it became clear that the first backbending is due to the intersection of the

ground band (g) and a two quasiparticle (2qp) band built upon a broken pair from a high

angular momentum orbital. The second band is often referred to as the S(tockholm) band.

Thus, the anomalous increase of the moment of inertia is interpreted as the reduction of the

energy cost to achieve a certain total angular momentum by aligning the angular momenta

carried by the constituents of a broken pair. Stephens and Simon noticed that in the rare

earth region the first broken pair is from the neutron intruder orbital 6i13/2. Actually this

picture was later confirmed by many theoretical calculations, mostly based on the cranking

Hartree-Fock-Bogoliubov (CHFB) [7, 8] calculations and the core plus quasiparticle models

[2, 9, 10]. The backbending is a relatively widespread phenomenon within the rare earth

region, but only very few nuclei exhibit a second anomaly in the moment of inertia. It was

for the first time measured for 158Er [11], and the early interpretation was based on the

alignment of the individual angular momenta resulting from breaking a 5h11/2 proton pair

[12]. Other nuclei which exhibit a second moment of inertia anomaly are located around

the N = 90 rare earth isotopes. The proton nature of the second broken pair was at a first

glance queried in Ref.[13], since in the same energy region of the spectrum, the alignment

of a 5h9/2 neutron broken pair might also play an important role. However, the proton
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nature of the second backbending was later confirmed by several more detailed theoretical

studies [7, 14] based on blocking arguments offered by the experimental investigations of

the odd-proton and odd-neutron neighboring nuclei of the N ≈ 90 isotopes [15, 16]. As a

result, the second backbending is regarded as being caused by a successive breaking of a

neutron and a proton pair, where the neutron broken pair is the one which causes the first

backbending [17]. As a matter of fact, the suspected neutron pair 5h9/2 which may break at

a time with 5h11/2 proton pair is causing, indeed, a third anomaly in the moment of inertia

of some isotopes of Yb [18]. Indeed, for this nucleus a weak up-bending is noticed at spins

beyond J = 36.

The most extensive calculations on the double backbending were performed in the frame-

work of the CHFB approach, which provided one of the most reliable qualitative description

of the phenomenon over a large number of nuclei. One of the most important features of the

CHFB approach is that it embraces all the mechanisms known to cause the backbending,

that is the particle alignment, the pairing phase transition and the sudden change of defor-

mation. However, the CHFB description is a semiclassical one, which encounters difficulties

in describing the states near the band crossing. An important improvement is obtained

by the angular-momentum-projected Tamm-Dancoff approximation which was successfully

applied for the dysprosium isotopes [19, 20]. Therefore, in order to achieve a quantitative

description of the multiple backbending, a full quantal formalism is necessary. Such models

were proposed based on mainly two directions: genuine shell model formalisms [17] can trace

better the influence of the single-particle degrees of freedom on the pair breaking process

while the particle-core models [10, 21] put emphasis on the rotational alignment description.

The recent calculations based on the interacting boson model [22, 23] can be also included

in the first category. For a quantitative description of the energy spectra with double back-

bending one advocates for the second solution. The advantage of the particle-core approach

consists in the fact that it treats the single-particle and collective degrees of freedom on

equal footing. It is worth mentioning that a qualitative explanation of the first backbending

in some isotopes of Pt, W and Os, was obtained in Ref.[24] by using the general collective

model [25, 26] where, of course, the particle degrees of freedom are missing. Therein the

backbending is determined by the angular momentum dependence of the moment of inertia,

induced by the specific ways the structure coefficients are fixed.

In a previous publication [27], we proposed a semi-microscopic model for the description
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of the backbending phenomenon within the band hybridization picture. The rotational

bands implied in the hybridization procedure were defined by angular momentum projection

from quadrupole deformed product states and a model Hamiltonian describing a set of

intruder neutrons interacting among themselves through pairing forces and coupled to a

phenomenological deformed core. By projecting the angular momentum one avoids the

difficulties showing up by the choice of a diagonalization basis. Moreover, working with

states of good angular momentum is more advantageous than applying cranking methods

which encounter enormous angular momentum fluctuations in the band crossing region. The

distinctive feature of our model is that, although we use a spherical projected particle-core

basis, the core and the single-particle trajectories are deformed. The hybridization of the

rotational bands was achieved by diagonalizing the model Hamiltonian in an orthogonal basis

constructed from the projected states of g and S-bands. The model was meant to reproduce

only the first backbending, which was done quite well for six even-even nuclei from the rare

earth region. Besides the reproduction of the backbending plots, the formalism [27] also

provided some useful information regarding the rotational alignment of the particles moving

in an intruder orbital.

In the present paper we extend the formalism from Ref.[27] to the second backbending

induced by a proton broken pair. This is done by performing the hybridization between four

rotational bands. The first two are obviously the g-band and the S-band with a neutron

broken pair, whereas the other two are associated to a proton broken pair and to two, one

of neutron and one of proton type, broken pairs, respectively. The projected states which

define the four bands have specific single-particle factors describing each case mentioned

above. The protons and neutrons are treated through BCS model states associated only to

6νi13/2 and 5πh11/2 orbitals. The intruder particles are coupled to a phenomenological core

which is deformed and described by means of the coherent state model (CSM) [28]. The

projected states are deformed and therefore not orthogonal but can be used to construct an

orthogonal basis. The lowest eigenvalues of the model Hamiltonian in this orthogonal basis

define the yrast band. The main purpose of the present work is to reproduce the experimental

yrast spectrum and its backbending behavior for some even-even rare earth nuclei which are

known to be double backbenders, as well as to provide a through out analysis of the rotational

alignment process and the possible consequences for the E2 transition properties along the

yrast band.
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The description of the method and results are presented according to the following plan.

The projected particle-core product basis for the description of the double backbending

phenomenon is presented in the next section, Section II. The model Hamiltonian is described

in Sec. III where the deformed mean fields for neutrons and protons are also defined. The

band hybridization procedure is presented in Sec. IV. The E2 transition probabilities are

considered in Sec. V and the emerging numerical calculations are given in Sec. VI. Final

conclusions are drawn in Sec. VII.

II. THE PROJECTED PARTICLE-CORE PRODUCT BASIS

A. The particle-core space, a brief description

The spectra exhibiting a double backbending will be described by a particle-core Hamilto-

nian whose eigenvalues are calculated within a particle-core space. The nucleons are moving

in a deformed mean field and the alike ones interact among themselves by pairing force. The

core is deformed and described by a phenomenological quadrupole coherent state. The two

subsystems interact with each other by a qQ and a spin-spin, ~Jf · ~Jc, interaction. The model

Hamiltonian will be described in detail in the next Section.

The treatment of the mean field term and the pairing interaction provides the occupa-

tion probabilities of the m-substates, the gap parameter ∆, as well as the Fermi energy λ.

Consequently, the average number of nucleons in the j-multiplet, 〈N τ
jτ
〉 with τ = ν, π, is

readily obtained. Note that for the chosen nuclei the Fermi levels for neutrons and protons

respectively, lie close to a sub-state of the intruders 6i13/2 and 5h11/2 respectively. If the

particle-core basis was a deformed one, than the lowest state |2qp〉|ψc〉 would correspond to

a sub-state of the two intruders, respectively. As will be argued in the next subsection and

in Section VI the mentioned substates have m = 1/2 for neutrons and m = 7/2 for protons.

Since the core state does not contribute to the total K quantum number, the projection of

the total angular momentum on the symmetry axis, we say that the intrinsic states leading

to the yrast band have a K = 1/2 for the neutrons and K = 7/2 for protons. Also in the

Nilsson model, the last filled neutron state has Ω = 1/2 while the last proton occupies the

state Ω = 7/2. The choice of the K = 1/2 sub-state as the Fermi level of the neutron sys-

tem was made in Ref.[27] to describe the first backbending. As for considering the K = 7/2
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Fermi level for the proton system, breaking the corresponding pair and aligning the resulting

quasiparticle angular momenta to that of the core as prerequisite conditions of the second

backbending, these features are in full agreement with the microscopic formalisms used in

literature. In this respect in Ref.[7] the alignment of a Ω = 7/2 broken pair is used to

explain the second backbending in 158Er and 160Yb. The last nucleus mentioned above, is

also treated by Cwiok and collaborators in Ref.[29] while 158Er by Riley [15].

In the region of the considered nuclei the neutron gap is smaller than the proton gap and

therefore the lowest 2qp generated by breaking a neutron pair is excited at a lower energy

cost than the lowest 2qp state of proton type. One says that the neutron pairs breaks earlier

than the proton pair. Due to this feature the first backbending is caused by a neutron

breaking, while the second backbending by breaking, subsequently, a proton pair.

A great simplification is obtained if the single-particle space is restricted to the intruder

multiplets where a number of nucleons equal to 〈N τ
jτ
〉 is distributed. Solving the BCS equa-

tions in the restricted space the quasiparticle energies depend on m but are still invariant at

changing m to −m. However, in a pure microscopic formalism where the Coriolis interaction

is included in the mean field, the time reversed quasiparticle states are no longer degenerate

and consequently the broken pair is a K = 1 state. Here the interaction ~Jf · ~Jc, which

simulates the Coriolis interaction in the sense specified in Ref. [27], is only subsequently

used when the whole Hamiltonian is diagonalized and thereby the broken pairs with K = 1

are used. An important technical simplification is achieved if these pairs are obtained by

applying the angular momentum raising operator on the K = 0 pairs.

If the quasiparticles were not deformed and moreover the dangerous graphs were elimi-

nated at the level of BCS calculations, one would expect that the interaction between states

with different number of quasiparticles is vanishing. Under these circumstances, truncating

the particle-core space to the states with 0qp, 2qp and 4qp is a reasonable approximation.

Since the rotation process involved in the angular momentum projection operation changes

the K quantum number, and moreover particles and holes are mixed by the BV transforma-

tion, the overlap of states with different number of quasiparticles is however nonvanishing.

Despite this feature we keep the restriction of the quasiparticle space as specified above.

The reason is that the mixing weight of components with more than 4 quasiparticles would

be at least of sixth order in the U and V coefficients and thus small.

We orthogonalized first the angular momentum projected basis and then diagonalized
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the model Hamiltonian written in the quasiparticle representation. The second step of this

process is conventionally called the hybridization of the four bands defined by averaging the

Hamiltonian with the four sets of projected non-orthogonal states.

Note that restricting the particle-core space by ignoring those states which involve the

proton 2qp components, one obtains the space used in Ref.[27] to describe the spectra of

nuclei exhibiting only one backbending. That was a realistic test for the fact that our

choice of the particle-core basis is suitable for describing the high spin states in the first

backbending region.

B. The particle-core space, definitions and details

The model space for the particle-core Hamiltonian is generated by angular momentum

projection from a deformed product function:

Ψ ≡ ψfψc, (2.1)

where ψf is the fermion factor state corresponding to the intruder particles, while ψc is the

collective factor state defining the phenomenological deformed core. The collective factor

function is a coherent state for the quadrupole bosons b†20:

ψc = ed(b†
20
−b20)|0〉b, (2.2)

where |0〉b denotes the quadrupole boson vacuum state, while d is a real parameter playing

the role of the nuclear deformation. The fermion factor function defines the nature of the

rotational band. For the ground band, the fermion factor state is defined as a product of

neutron and proton BCS states:

ψg
f = |nBCS〉d|pBCS〉d. (2.3)

Each of these BCS states is deformed and describes a set of alike nucleon pairs moving in a

deformed mean field [22].

The rotational bands interacting with the g-band on one hand and with each other, on the

other hand, are associated to one neutron or/and one proton broken pair. The particles of a

broken pair occupy states which are no longer connected by a time-reversal transformation.

As pointed out in Ref.[27], the symmetry breaking may be achieved by applying the angular
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momentum raising operator on a function with time-reversal symmetry. Thus, a set of paired

particles with one broken pair is described by a state of the following form:

J+α
†
jkα

†
j−k|BCS〉d, (2.4)

where α†
jk is the creation operator of a quasiparticle in the single-particle state |jk〉 of a

proton or neutron intruder orbital. The quasiparticle operators are related to the particle

ones by the Bogoliubov-Valatin (BV) transformation:

α†
jk = Ujkc

†
jk − Vjk(−)j−kcj−k,

αjk = Ujkcjk − Vjk(−)j−kc†j−k. (2.5)

Note that while the BCS state has the intrinsic projection K = 0, the state (2.4) has K = 1

which is essential for the pair breaking mechanism.

Using the same recipe as for the g-band, the fermion factor states for the neutron and

proton S-bands are given by:

ψnS
f =

[

J+α
†
jnνα

†
jn−ν |nBCS〉d

]

|pBCS〉d, (2.6)

ψpS
f = |nBCS〉d

[

J+α
†
jpπα

†
jp−π|pBCS〉d

]

, (2.7)

while the fermion state with two broken pairs, one of neutron and one of proton type, is

expressed as:

ψnpS
f =

[

J+α
†
jnνα

†
jn−ν |nBCS〉d

] [

J+α
†
jpπα

†
jp−π|pBCS〉d

]

. (2.8)

Obviously, the above state has the intrinsic projection K = 2.

For each band, the total projected states are obtained by acting on the state (2.1), with a

specific choice for the fermionic factor state, with the Hill-Wheeler projection operator [30],

P J
MK =

2J + 1

8π2

∫

DJ∗
MKR̂(Ω)dΩ. (2.9)

The projection of angular momentum from the quadrupole coherent state was presented

by one of authors (A. A. R.) in Ref. [28] where the CSM introduces three sets of projected

states for a simultaneous description of the ground, γ and β bands. Thus, the ground band

projected state is given by

ψ
(g)
J = N (g)

J P J
M0ψc, (2.10)
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with the normalization constant having the expression:

(

N (g)
J

)−2

= (2J + 1)e−d2

I
(0)
J , (2.11)

where I
(k)
J denotes the overlap integral

I
(k)
J =

∫ 1

0

PJ(y) [P2(y)]
k exP2(y)dy, x = d2. (2.12)

Here PJ(y) stands for the Legendre polynomial of rank J . These integrals have been ana-

lytically calculated in Ref.[28].

In order to project the angular momentum from the fermionic product states (2.3), (2.6),

(2.7) and (2.8), one has to project the BCS and the states (2.4) separately for neutrons and

protons:

φ
(n)
JnMn

= N
(n)
Jn
P Jn

Mn0|nBCS〉d, (2.13)

φ
(p)
JpMp

= N
(p)
Jp
P

Jp

Mp0|pBCS〉d, (2.14)

Φ
(n)
Jn1;Mn

(jnν) = N
(n)
Jn1(jnν)P

Jn
Mn1J+α

†
jnνα

†
jn−ν |nBCS〉d, (2.15)

Φ
(p)
Jp1;Mp

(jpπ) = N
(p)
Jp1(jpπ)P

Jp

Mp1J+α
†
jpπα

†
jp−π|pBCS〉d. (2.16)

A detailed prescription for calculating the norms of the above states was presented in a

recent paper [27] where the projection procedure of Kelemen and Dreizler [31] was used

for deformed BCS-type states. It is worth to remark that although one deals with a semi-

phenomenological formalism, the projection of a many body state as happens in the fully

microscopic situation [17], is unavoidable. Using the results from [27], the total single-
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particle projected states can be written as follows:

ψBCS
Jf Mf

= NBCS
Jf

P
Jf

Mf0|nBCS〉d|pBCS〉d

= NBCS
Jf

∑

JnJp

C
JnJpJf

0 0 0

N
(n)
Jn
N

(p)
Jp

[

φ
(n)
Jn
φ

(p)
Jp

]

JfMf

, (2.17)

ψjnν
Jf 1;Mf

= N jnν
Jf 1P

Jf

Mf1

[

J+α
†
jnνα

†
jn−ν |nBCS〉d

]

|pBCS〉d

= N jnν
Jf 1

∑

JnJp

C
JnJpJf

1 0 1

N
(n)
Jn1(jnν)N

(p)
Jp

[

Φ
(n)
Jn1(jnν)φ

(p)
Jp

]

JfMf

, (2.18)

ψ
jpπ
Jf 1;Mf

= N
jpπ
Jf 1P

Jf

Mf1|nBCS〉d
[

J+α
†
jpπα

†
jp−π|pBCS〉d

]

= N
jpπ
Jf 1

∑

JnJp

C
JnJpJf

0 1 1

N
(n)
Jn
N

(p)
Jp1(jpπ)

[

φ
(n)
Jn

Φ
(p)
Jp1(jpπ)

]

JfMf

, (2.19)

ψ
jnjp

Jf 2;Mf
(νπ) = N

jnjp

Jf 2 (νπ)P
Jf

Mf2

[

J+α
†
jnνα

†
jn−ν |nBCS〉d

] [

J+α
†
jpπα

†
jp−π|pBCS〉d

]

= N
jnjp

Jf 2 (νπ)
∑

JnJp

C
JnJpJf

1 1 2

N
(n)
Jn1(jnν)N

(p)
Jp1(jpπ)

[

Φ
(n)
Jn1(jnν)Φ

(p)
Jp1(jpπ)

]

JfMf

, (2.20)

with the corresponding normalization constants given by

(

NBCS
Jf

)−2

=
∑

JnJp

(

C
JnJpJf

0 0 0

N
(n)
Jn
N

(p)
Jp

)2

, (2.21)

(

N jnν
Jf1

)−2

=
∑

JnJp

(

C
JnJpJf

1 0 1

N
(n)
Jn1(jnν)N

(p)
Jp

)2

, (2.22)

(

N
jpπ
Jf 1

)−2

=
∑

JnJp

(

C
JnJpJf

0 1 1

N
(n)
Jn
N

(p)
Jp1(jpπ)

)2

, (2.23)

(

N
jnjp

Jf2 (νπ)
)−2

=
∑

JnJp

(

C
JnJpJf

1 1 2

N
(n)
Jn1(jnν)N

(p)
Jp1(jpπ)

)2

. (2.24)

Throughout this paper the standard notation, Cj1 j2 j3
m1 m2 m3

, for the Clebsch-Gordan coefficients,

is used. The upper limits for the angular momenta Jn and Jp in the summations from the

Eqs.(2.17)-(2.20) and (2.21)-(2.24) are given by the largest angular momenta realized in

the configuration (j)2Np , where j is the angular momentum of the neutron (13/2) or proton

(11/2) intruder orbitals, while Np represents the number of particle pairs from those orbitals.

The Pauli principle restrains the maximal angular momentum of a given configuration [32]

to

Jmax = Np(2j − 2Np + 1). (2.25)
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Having all factors of the total product state (2.1) projected, the total projected states cor-

responding to the g-band, neutron, proton and neutron-proton S-bands are readily defined

by the following expressions:

Ψ
(1)
JM = N (1)

J P J
M0|nBCS〉d|pBCS〉dψc

= N (1)
J

∑

JfJc

C
JfJcJ
0 0 0

NBCS
Jf

N
(g)
Jc

[

ψBCS
Jf

ψ
(g)
Jc

]

JM
, (2.26)

Ψ
(2)
JM ;1(jnν) = N (2)

J1 (jnν)P
J
M1

[

J+α
†
jnνα

†
jn−ν |nBCS〉d

]

|pBCS〉dψc

= N (2)
J1 (jnν)

∑

Jf Jc

C
JfJcJ
1 0 1

N jnν
Jf1N

(g)
Jc

[

ψjnν
Jf 1ψ

(g)
Jc

]

JM
, (2.27)

Ψ
(3)
JM ;1(jpπ) = N (3)

J1 (jpπ)P J
M1|nBCS〉d

[

J+α
†
jpπα

†
jp−π|pBCS〉d

]

ψc

= N (3)
J1 (jpπ)

∑

JfJc

C
JfJcJ
1 0 1

N
jpπ
Jf 1N

(g)
Jc

[

ψ
jpπ
Jf 1ψ

(g)
Jc

]

JM
, (2.28)

Ψ
(4)
JM ;2(jnν; jpπ) = N (4)

J2 (jnν; jpπ)P J
M2

[

J+α
†
jnνα

†
jn−ν |nBCS〉d

] [

J+α
†
jpπα

†
jp−π|pBCS〉d

]

ψc

= N (4)
J2 (jnν; jpπ)

∑

JfJc

C
JfJcJ
2 0 2

N
jnjp

Jf2 (νπ)N
(g)
Jc

[

ψ
jnjp

Jf 2 (νπ)ψ
(g)
Jc

]

JM
, (2.29)

where the normalization factors are given by

(

N (1)
J

)−2

=
∑

JfJc

(

C
JfJcJ
0 0 0

NBCS
Jf

N
(g)
Jc

)2

, (2.30)

(

N (2)
J1 (jnν)

)−2

=
∑

JfJc

(

C
JfJcJ
1 0 1

N jnν
Jf 1N

(g)
Jc

)2

, (2.31)

(

N (3)
J1 (jpπ)

)−2

=
∑

JfJc

(

C
JfJcJ
1 0 1

N
jpπ
Jf 1N

(g)
Jc

)2

, (2.32)

(

N (4)
J2 (jnν; jpπ)

)−2

=
∑

JfJc

(

C
Jf JcJ
2 0 2

N
jnjp

Jf 2 (νπ)N
(g)
Jc

)2

. (2.33)

The summations over the fermion angular momentum Jf from the above equations are

restricted by a maximal value determined by the sum of the upper limits of the neutron and

proton angular momenta Jn and Jp given by Eq.(2.25). Concerning the summations over

the core angular momentum Jc, these are constrained by the triangle rule.

From Eqs.(2.26)-(2.29) few useful properties emerge, which are worth to be mentioned.

All projected states, by construction, have the total angular momentum as a good quantum
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number, even though they are deformation dependent through the parameter d. Except

the ground state (2.26), all other states (2.27)-(2.29) are defined only for even angular

momentum J , with J > 2. It is worth to remark that the set

{

Ψ
(1)
JM ,Ψ

(2)
JM ;1(jnν),Ψ

(3)
JM ;1(jpπ),Ψ

(4)
JM ;2(jnν; jpπ)

}

, (2.34)

is not orthogonal. As will be shown in what follows, this feature is suitable for studying the

the bands interaction.

III. THE MODEL HAMILTONIAN

Within the model space defined above, we consider an effective particle-core Hamiltonian:

H = Hc +Hsp +Hpair +Hpc. (3.1)

The core term Hc is a quadratic polynomial of the boson number operator N̂ :

Hc = ωb
0N̂ + ωb

1N̂
2,

N̂ =
∑

µ

b†2µb2µ. (3.2)

The second term, N̂2, was not considered in our previous study of the first backbending

[27], but here this is necessary for a better description of the high spin states. In Ref.[33] it

was shown that the addition of the N̂2 term do not violate the symmetry of the quadrupole

boson Hamiltonian and moreover substantially improve the agreement between experimental

and calculated energies.

As for the single-particle Hamiltonian Hp, this is a sum of two terms corresponding to

neutrons and protons, each of them describing a set of particles in an intruder spherical shell

model orbital |nlj〉:

Hp = Hν
sp +Hπ

sp,

H i
sp = (εniliji

− λi)
∑

mi=all

c†nilijimi
cnilijimi

, i = ν, π. (3.3)

Here c†nljm and cnljm are the creation and annihilation operators for a particle in a spherical

shell model state |nljm〉 with the energy εnljm, while λ is the Fermi level energy for the
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system of paired particles. Alike nucleons interact through the pairing force:

Hpair = Hν
pair +Hπ

pair,

H i
pair = −Gi

4
P †

ji
Pji
, i = ν, π, (3.4)

where P †
j and Pj denote the creation and annihilation operators of a Cooper pair in the

intruder orbital j and are defined by

P †
j =

∑

m>0

2c†nljmc
†
nlj−m(−)j−m. (3.5)

Since we deal only with one neutron and one proton single j orbital, we shall simplify the

notations by specifying the single-particle shell model state with only two quantum numbers,

j and m.

The particle-core interaction consists of two terms, the quadrupole-quadrupole (qQ) and

the spin-spin interaction:

Hpc = HqQ +HJfJc. (3.6)

The spin-spin interaction term has the form:

HJfJc = C ~Jf · ~Jc, (3.7)

and may simulate the Coriolis coupling [34]. The qQ term is a sum of two separable inter-

actions, one associated to the proton and one to the neutron subsystems:

HqQ = Hn
qQ +Hp

qQ,

H i
qQ = −Ac

∑

µ,mi,m′
i

q2µ(ji;mim
′
i)c

†
jimi

cjim′
i

[

(−)µb†2−µ + b2µ

]

, (3.8)

q2µ(ji;mim
′
i) = 〈jimi|r2Y2µ|jim′

i〉, i = ν, π.

The interaction strength AC is taken to be the same for neutrons and protons. AC and C

(3.7) are free parameters which will be fixed by a fitting procedure.

Note that here the proton-neutron interaction is ignored. Also, the quadrupole bosons

are phenomenological entities i.e., we ignore their microscopic interpretation, for example,

in the spirit of the boson expansion. The two mentioned issues might be included by fol-

lowing the approach of Ref.[35]. The particle-core interaction induces a deformation of the

single-particle mean field as well as of the quadrupole boson operators. The description
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of the single-particle motion in the deformed mean field generated by the particle-core in-

teraction, requires the use of a deformed single-particle basis. Such a basis is constructed

by diagonalizing the single-particle Hamiltonian together with the qQ interaction. Actually

this is the common procedure to follow in the case of deformed systems. The single-particle

Hamiltonian H̃ determining the mean field is obtained from the total Hamiltonian (3.1) by

imposing the restrictions: Gn = Gp = 0 and C = 0. Taking the average of H̃ with the

eigenstates |nljm〉 of the single-particle Hamiltonian Hp, one obtains a collective deformed

Hamiltonian whose ground state is described by the coherent state from Eq.(2.2). On the

other hand, if one takes the average of the particle-core Hamiltonian H̃ with the above

mentioned coherent state (2.2), one would obtain a single-particle Hamiltonian which is

similar to the deformed Nilsson Hamiltonian [36]. Thus, in the first order of perturbation,

the energies of the deformed mean field are given by

εnljm = εnlj − 4dXC(2n+ 3)Cj 2 j
1

2
0 1

2

Cj 2 j
m 0 m, (3.9)

where n is the principal quantum number of the intruder orbital, while

XC =
~

8Mω0

√

5

π
AC , (3.10)

will be further considered as the strength of the quadrupole-quadrupole interaction of both

neutrons and protons. In the above definition of the qQ strength, M and ω0 are the nucleon

mass and the harmonic oscillator frequency. Since only the relative energies to the Fermi

level are involved in the BCS equations, the orbital energy εnlj is taken to be zero. Indeed,

this term does not depend on m and therefore may be considered as a renormalization of

the Fermi energy. Concluding, the single-particle energies corresponding to the deformed

mean field to be used in the further calculations have the expression:

εjm = −4dXC(2n+ 3)Cj 2 j
1

2
0 1

2

Cj 2 j
m 0 m. (3.11)

From here it is obvious that two states related by a time-reversal transformation have the

same energy, and therefore one can restrict the single-particle space to the states |jm〉 with

m > 0, keeping in mind that each such state is occupied by a pair of nucleons. Using the

single-particle energies (3.11) one can rewrite the mean field Hamiltonian as

Heff
sp =

∑

m=all

εjmc
†
jmcjm. (3.12)
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In order to completely determine the single-quasiparticle basis, one has to treat the

sum Heff
p + Hpair through the BCS formalism which results in providing the occupation

probabilities U and V , the energy gap ∆, the quasiparticle energies and the Fermi energy

λ. A similar pairing plus quadrupole calculation was carried out in Ref.[22]. Given the BCS

nature of the single-particle factors of the projected states (2.34), it is necessary to write

the effective Hamiltonian in the quasiparticle representation. Thus, making use of the BV

transformation (2.5), one obtains

Hqp = Heff
sp +Hpair

= E0 +
∑

m=all

E ′
jmα

†
jmαjm +

∑

m>0

gjm(−)j−m(α†
jmα

†
j−m + αj−mαjm), (3.13)

where the following notations were adopted:

E0 = −λNpart −
∆2

G
, E ′

jm =
−λ(εjm − λ) + ∆2

Ejm
,

gjm = −εjm∆

Ejm
. (3.14)

Here Npart represents the number of particles in the intruder orbital, while the quasiparticle

energy Em and the gap parameter ∆ are BCS related quantities.

The expression of the qQ interaction term in the qp representation is obtained in the

same manner. Due to the properties of the boson factor from the qQ interaction term, only

the µ = 0 component of the scalar product will have a nonvanishing contribution when the

expectation value is calculated on the projected coherent state factor:

HqQ =

[

2
∑

m>0

q20(j;mm)V 2
jm +

∑

m=all

q20(j;mm)(U2
jm − V 2

jm)α†
jmαjm

− 2
∑

m>0

q20(j;mm)UjmVjm(−)j−m(α†
jmα

†
j−m + αj−mαjm)

]

(b†20 + b20). (3.15)

Within the quasiparticle representation, it can be shown that the matrix elements on pro-

jected states (2.34) of the cross terms of the quasiparticle Hamiltonian Hqp, are canceled

by the similar terms from the qQ interaction matrix elements. Actually this cancellation

is consistent with the fact that the BCS equations can be also obtained by vanishing the

dangerous graphs.

15



IV. HYBRIDIZATION OF THE ROTATIONAL BANDS

The energy spectrum of the rotational bands implied in the hybridization procedure is

approximated by the average of the total Hamiltonian with each projected state from the

set (2.34). The necessary matrix elements can be analytically expressed, but in order to

save the space are not given here.

The hybridization of these bands is achieved following the procedure of Ref. [27] extended

to the case of four interacting bands. Here we briefly present the main ingredients of this

procedure.

One can check that the projected basis (2.34) is not orthogonal. This can however be

orthogonalized following for example the procedure of [37]. Indeed, denoting by αJ
m the

eigenvalues and by V J
im the eigenvectors of the overlap matrix it can be checked that the set

of functions

ΦJM
m =

1
√

αJ
m

4
∑

i=1

Ψ
(i)
JMV

J
im, m = 1, 2, 3, 4, (4.1)

is orthogonal.

Writing the total wave function as an expansion in the newly obtained orthogonal basis:

ΦJM
Tot =

4
∑

m=1

XJM
m ΦJM

m , (4.2)

the eigenvalue equation associated to the model Hamiltonian acquires the following matrix

form:
4
∑

m′=1

H̃mm′XJM
m′ = Em

JMX
JM
m . (4.3)

The Hamiltonian matrix H̃mm′ is defined as

H̃mm′ =
1

√

αJ
mα

J
m′

4
∑

n,n′=1

V J
nm〈Ψ(n)

JM |H|Ψ(n′)
JM〉V J

n′m′ . (4.4)

Solving the homogeneous system of linear equations (4.3) for a given J and then changing

J , one obtains a four J-sets of energies. Collecting the lowest energy from each J-set of

solutions, one obtains the so called yrast band.

V. E2 TRANSITION PROBABILITIES

The reduced quadrupole transition probabilities are calculated by truncating the transi-

tion operator to the boson part, i.e. we suppose that the collective transition is due to the
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core component of the wave function. The microscopic structure of the yrast states have

however an indirect contribution. The boson structure of the transition operator is assumed

to be of the form:

Q2µ = q′1α2µ + q′2 (αα)2µ , (5.1)

where α2µ denotes the quadrupole coordinate which is depending linearly on the boson

operators

α2µ =
1√
2
(b†2µ + (−)µb2−µ). (5.2)

The reduced probability for the quadrupole transition in the yrast band, using the Rose’s

convention, can be written as

B(E2, J+ → J ′+) =
∣

∣

∣
〈ΦJ

Tot||Q2||ΦJ ′

Tot〉
∣

∣

∣

2

, (5.3)

where the functions involved are the states (4.2) defined by the hybridization procedure

presented in the last section. The wave functions (4.2) do not involve the ground state

which is given by the projected state (2.26). Thus, if the final state is 0+ then instead of

ΦJ ′

Tot with J ′ = 0 we use Ψ
(1)
0 . The transition matrix elements involve two parameters q1

and q2 which are to be fixed by a fitting procedure. The reduced matrix elements of the

transition operator have been analytically expressed in Refs. [49, 50].

VI. NUMERICAL APPLICATION AND DISCUSSIONS

There are very few nuclei in the rare earth region which present a second anomaly in

their moment of inertia evolution along the yrast band. The most studied nuclei are 156Er,

158Er, 160Yb and 162Hf since for them a great deal of experimental data are available. These

nuclei will be treated within the formalism described in the previous sections.

A. Parameters

The model involves seven free parameters. Six of them, namely the neutron and proton

pairing constants Gn and Gp, the strengths of the qQ and spin-spin interactions, XC and C,

and the strengths ωb
0 and ωb

1, of the two boson terms, are the structure coefficients defining

the model Hamiltonian. The remaining parameter d defines the coherent state ψc and plays
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the role of the deformation parameter. The fitted values of these parameters are given in

Table I. In what follows we shall explain how these parameters were fixed.

TABLE I: The fitted parameters for the four nuclei are listed. The nuclear quadrupole deformation

β2, taken from Ref.[38], is presented for comparison with the deformation parameter d.

Nucleus d XC [keV] Gn [MeV] Gp [MeV] ωb
0

[MeV] ωb
1

[keV] C [keV] d · XC [keV] β2

156Er 1.9498 84.0455 0.2146 0.2626 1.1420 0.255 3.042 163.87 0.177

158Er 2.4910 68.6731 0.1803 0.2593 1.1525 -1.426 5.866 171.06 0.203

160Yb 2.2870 74.9940 0.1892 0.2619 1.2684 -0.514 2.270 171.51 0.195

162Hf 2.1490 78.2942 0.2000 0.2583 1.3104 8.674 -1.991 168.25 0.184

In the first step, the BCS equations were separately solved for protons and neutrons.

The pairing constants and the single-particle energies represent the input data for the BCS

equations. The single-particle energies are defined by Eq.(3.9) and depend linearly on the

deformation parameter, as can be seen from Fig.1 and Fig.2. From these one can see that

the product dXC plays the role of the deformed mean field strength, like the quadrupole

nuclear deformation β2 in the Nilsson model [36]. Given the fact that here we deal only with

neutrons from the 6i13/2 intruder orbital and protons from 5h11/2 intruder orbital, which are

responsible for the first and the second band crossing respectively, the BCS equations are

solved only for a subset of the entire neutron and proton single-particle space which contains

the states that might interact with the mentioned intruder states. Thus for neutrons, the

subset comprises all states of the n = 5 shell together with the intruder states 6i13/2 and the

state 5h11/2,11/2 coming from below which is an intruder for the n = 4 shell. Similarly, the

proton subset gather all states of the n = 4 shell, the intruder state 4g9/2,9/2 for the n = 3

shell coming from below and of course all states of the intruder orbital 5h11/2. In total,

one has to solve the BCS equations in a space of 23 neutron states and 17 proton states

where each single-particle state can accommodate two nucleons. The nuclei 158Er, 160Yb and

162Hf are N = 90 isotones, such that we distributed in the neutron subspace 10 particles for

each, and 20, 22 and 24 particles in the proton subspace respectively. As for 156Er this has

8 neutrons and 20 protons distributed in the corresponding subspaces. Judging from the

observed degree of the shell filling, for all considered nuclei the last occupied proton intruder

state h11/2 has the projection 7/2, while the neutron intruder state i13/2 which is closest
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to the neutron Fermi level has the projection 1/2. Thus, the broken pairs configuration

(ν, π) = (1/2, 7/2) is the same for all four nuclei, even though they have different neutron

and proton numbers.

The pairing interaction constants Gn and Gp and the qQ interaction strength are fixed

such that to reproduce the observed sequence of the single-particle levels and the last occu-

pied state for a given deformation d of the core. Later on, a fine tuning is performed in order

to improve the position of the band crossing points. Solving the BCS equations one obtains

the quasiparticle energies, the gap parameter ∆, the Fermi level energy λ and the occu-

pation probability parameters U and V . The projected neutron and proton single-particle

states (2.13)-(2.16) describe only the nucleons from the intruder orbitals 6νi13/2 and 5πh11/2.

Thus, in further calculation one would need only the BCS parameters concerning the seven

neutron states i13/2 and the six proton states h11/2. Using the occupation probabilities of

the intruder states, one calculates the average number of pairs in the considered intruder

orbitals:

〈Npair〉 =
∑

m>0

V 2
m. (6.1)

It is needless to say that the BCS calculations performed only for the single-particle states

of the considered intruder orbitals with a number 〈Npair〉 of occupying pairs would provide

results equivalent to those obtained for the larger single-particle subspaces chosen above.

Even though the equation (2.25) is designed for an even and integer number of pairs, it can

be used to determine an approximate higher limit of the angular momentum realized in a

virtual configuration of 〈Npair〉 pairs. The value obtained in this manner is then rounded

to the closest even integer, defining in this way the upper limits of the summations over

neutron and proton angular momenta Jn and Jp involved in the definition of the projected

single-particle states. All this information and the BCS results are given in Table II. With

all this data, the projected states (2.17)-(2.20) are fully determined.

Some remarks concerning the BCS results are worth to be made. The observed single-

neutron level structure of all four nuclei for the tabulated values of the quadrupole defor-

mation β2 shows that none of the neutron intruder states i13/2 are occupied. In the present

model, the single-particle energies (3.9) depend linearly on the deformation parameter d

contrary to the Nilsson case. Because of this feature, one finds that for the N = 90 isotones

the Fermi level provided by the BCS equations is right above the first intruder state 6νi13/2,
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TABLE II: The neutron and proton Fermi level energies, gap parameters and the quasiparticle

energies are given for each treated nucleus. The average number of pairs determined with (6.1)

and the corresponding exact and approximated maximal angular momentum is also given.

Neutron k = 1/2 Proton k = 7/2

Nucleus λn [MeV] ∆n [MeV] En
qp [MeV]

D

N
νi13/2

pair

E

〈Jmax
n 〉 Jmax

n λp [MeV] ∆p [MeV] Ep
qp [MeV]

D

N
πh11/2

pair

E

〈Jmax
p 〉 Jmax

p

156Er 48.350 1.39475 1.44662 0.85 11.51 12 44.271 1.46021 1.46081 3.33 17.79 18

158Er 48.496 1.13589 1.13905 1.26 14.50 14 44.083 1.39234 1.39288 3.34 17.77 18

160Yb 48.268 1.22848 1.23084 1.29 14.74 14 44.395 1.35984 1.46115 3.71 16.98 16

162Hf 48.056 1.34656 1.34681 1.30 14.78 14 44.678 1.27407 1.61959 4.05 15.81 16

as indicated in figures 1 and 2. Exception is for the 156Er isotope which has fewer neutrons

and cannot fill any intruder 6νi13/2 sub-state, but due to the large value of the pairing

strength Gn the occupation probability is considerably extended above the Fermi level λn

and thus placing an average number of two nucleons in the intruder orbital i13/2 (see Table

II). Also, according to the shell filling, the proton Fermi level of the Er isotopes must be

placed under the intruder state 5πh11/2,7/2, but as can be seen in Fig.1 the obtained Fermi

level λp is placed right above this state. This is caused by the fact that the intruder state

h11/2,7/2 and the state d3/2,1/2 of the n = 4 shell are almost degenerated for the chosen value

of the deformation parameter d and consequently the occupation probability corresponding

to one pair of protons is shared by the two states.

The deformation parameter d affects both the single-particle and the collective degrees

of freedom. Indeed, on one hand it is embedded in the strength dXC of the deformed mean

field, and on the other hand it defines the energy of the core. One may therefore assert that

the particle-core interaction induces a deformation effect on both the single-particle and the

core motion. However, it can be easily checked that the ground band energies are not very

sensible to the single-particle degrees of freedom. Indeed, the overwhelming contribution to

the total energy of the ground band is due to the core because all the intruder particles are

paired and do not carry any angular momentum. This fact implies that up to the first band

crossing the whole angular momentum dependency is given by the core.

Besides the deformation parameter d, the core energy is also parametrized by ωb
0 and ωb

1,

the strengths of the two boson terms. The core parameters d, ωb
0 and ωb

1 are determined in

the first approximation such that to reproduce the first yrast energy levels which are purely

collective. The final value of the deformation d is fixed by achieving a consensus between
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FIG. 1: Color online. Neutron (top) and proton (bottom) single-particle energy levels given in units

of ~ω0(= 41A−1/3 MeV) and calculated with Eq.(3.9) for 156Er (left) with XC = 84.0455 keV and

158Er (right) with XC = 68.6731 keV. The vertical lines indicate the single-particle configurations

corresponding to the fitted deformation parameter d. The Fermi energy level resulting form the

BCS calculations is also pointed out.

the reproduction of the single-particle levels configuration and the best description of the

angular momentum dependency of the total energy of the g-band up to the first backbending.

The final touch to the formalism is made by fixing the strength C of the spin-spin inter-
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FIG. 2: Color online. Neutron (top) and proton (bottom) single-particle energy levels given in units

of ~ω0(= 41A−1/3 MeV) and calculated with Eq.(3.9) for 160Yb (left) with XC = 74.9940 keV and

162Hf (right) with XC = 78.2942 keV. The vertical lines indicate the single-particle configurations

corresponding to the fitted deformation parameter d. The Fermi energy level resulting form the

BCS calculations is also pointed out.

action. The effect of the spin-spin interaction was presented in detail in Ref.[27]. Basically it

simulates the Coriolis force in the intrinsic reference frame and is actually the model Hamil-

tonian term which is responsible for the pair breaking. Indeed, recalling the fact that the
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pair breaking is equivalent to the time-reversal symmetry breaking of the system it is then

clear that it cannot be achieved by the qQ interaction and therefore the spin-spin interaction

is necessarily demanded. It is found that this term does not have any effect on the energies

of crossing bands up to the first critical angular momentum, but on the contrary has a strong

effect on the moderate and high spin states in the yrast band. Because of this feature the

strength C is fixed such that to reproduce the moderate and high spin yrast state energies.

B. Energies

The energies of the rotational bands implied in the present model are approximated by

the diagonal matrix elements of the model Hamiltonian between the projected states of the

set (2.34) and calculated using the parameters listed in Table I. The hybridization of these

bands is achieved by solving the eigensystem (4.3), which provides a set of four eigenvalues

Em
JM . The lowest hybridization energies Em

JM define the yrast band E(J).

The band hybridization is schematically shown in Fig.3 where all involved rotational

bands and the resulting yrast band are plotted versus total angular momentum J . Similar

dependence of the rotational bands on the angular momentum was obtained in Ref.[2, 17]

where the energies were computed only in a projected quasiparticle space with a relatively

large number of single-particle states. As can be seen from Fig.3 the proton S-band does

not interact with the other bands or is very weakly interacting with the g-band at high spin

states in the case of 162Hf. Moreover, its energy is higher than that of other bands, such that

it has no influence on the yrast band. Thus, the inclusion of this band in the hybridization

process is justified by the sake of the description completeness. However, the unperturbed

proton S-band provides valuable information regarding the dynamics of the system’s angular

momenta. Indeed, the minimum displayed by both the neutron and proton S-bands in Fig.3

indicates the amount of angular momentum carried by the corresponding broken pair. This

is suggested by the following reasoning. First of all one must note that the slopes of the

curves from Fig.3 determine the rotational frequencies of the bands. The negative slopes of

the neutron and proton S-bands at low spins imply a negative rotational frequency which

is due to the core that must compensate the already high angular momentum realized by

the decoupled broken pair. In the minimum point, where the slope vanishes, the core is

no longer rotating and the total angular momentum is coming from the broken pair alone.
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Thus, the spin at which the S-bands show a minimum represents the angular momentum

carried by the broken pair.

Inspecting Fig.3 one finds that for all considered nuclei the neutron broken pair carries

almost 8-10 units of angular momentum, while the angular momentum of the proton broken

pair is about 6-8~. But as we already remarked, the second backbending is due to the

crossing of the neutron S-band with the neutron-proton S-band and not with the proton

one. Of course the 4qp band associated to two broken pairs, one of neutron and another of

proton type has a different structure from a 2qp S-band. As can be seen from Fig.3, such a

band has an extended plateau which means that the total angular momentum is due to the

both broken pairs without any core contribution. As a matter of fact the total spin where

the plateau ends and the core starts to rotate is equal to the sum of the angular momenta

provided by the broken pairs, which is around J = 16.

For a better understanding of the multiple backbending phenomena, the theoretical re-

sults and the experimental data are compared by means of backbending plots and the cor-

responding energy spectra. The backbending plot is a graph which shows the dependence

of the moment of inertia on the angular frequency squared. If one adopts for the moment

of inertia the following expression

I =
4J + 6

E(J + 2) − E(J)
, (6.2)

where E(J) are the yrast energies, and defines the rotational frequency as

~ω(J) =
dE(J)

dJ
≈ 1

2
[E(J + 2) −E(J)], (6.3)

one readily obtains the experimental and theoretical backbending curves for the four nuclei

treated here. These plots are shown in Fig.4 where the description is limited to the experi-

mental yrast states up to the spin J = 36 for 158Er, 160Yb and 162Hf and J = 32 for 156Er.

The nature of states with angular momentum higher than 36 might be different from that

of the states considered in the present work. Indeed, since the states density increases with

the spin, one expects that a larger band admixture takes place. Even so, the number of

experimental states described here is enough to account for the most important features of

the second moment of inertia anomaly. The smaller number of yrast states considered in

the case of 156Er is due to the fact that the states beyond J = 32 have not yet an angular

momentum assigned.
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FIG. 3: Energy trajectories implied in the band hybridization are presented as function of the

total angular momentum. The g-band is represented by the strait line, neutron S-band by the

dashed line and the proton S-band by the dotted line, while the dash-dotted line corresponds to

the neutron-proton S-band. The yrast energies (circles) resulted from the diagonalization of the

total Hamiltonian in the orthogonal basis (4.1) are also visualized.

Coming back to the backbending plots of Fig.4, it is obvious that the double zigzag

shape is reproduced quite well for all four nuclei. An especially good agreement is found

for moderate spin states at the first backbending which is, indeed, very well reproduced in

all cases. The second backbending is supposed to be less pronounced than the first one,
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FIG. 4: Color online. Backbending plots for 156Er, 158Er, 160Yb and 162Hf isotopes comparing

theory (squares) with experiment (circles). Experimental data are taken from Refs.[39–42].

because, as Fig.3 shows, the crossing angle between the neutron S-band and the neutron-

proton S-band is much smaller than the one between the g-band and the neutron S-band.

However, the experimental data offers a rather sharp second backbending for nuclei 156Er,

160Yb and 162Hf, while the theoretical calculations predict a two points discontinuity which

smooths the backbending region. In the case of 158Er, the second observed moment of

inertia anomaly is not a real backbending but a relatively weak up-bending. Note that,

the theoretical results also predict an up-bending which is however much steeper. This is

consistent with the results from Fig.3 where the crossing angle between the neutron and
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neutron-proton S-bands for this nucleus is very small.
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FIG. 5: Color online. Experimental and theoretical yrast spectra of 158Er, 160Yb, 162Hf and 156Er,

with numerical values given in units of keV. The starting point of the backbendings are indicated

for each nuclei by a dashed line. At the beginning of each spectrum one can find the corresponding

r.m.s. values.

The good agreement between theoretical and experimental backbending plots is reflected

also in the corresponding energy spectra. Thus, Fig.5 suggests a very good agreement

between the results of our calculations and the corresponding data, which is quantitatively

expressed by relatively small r.m.s. values for deviations. Note that the energy spectra are

better reproduced at high spins than at low spins, contrary to the backbending plots where

the first backbending is better described than the second one. This happens because the

backbending curves do not depend on the absolute energies of the angular momentum states,
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but on the energy difference between consecutive states and moreover through a quadratic

law (~ω)2 which is more sensitive to small deviations. Examining Fig.5, one remarks an

increasing behavior of the critical energies with Z for the N = 90 isotones. This feature

might be ascribed to the constant decrease of the deformation which increases the frequency

of the collective rotation.

The four nuclei treated here are γ-unstable. Thereby the collective motion of the N = 90

isotones 160Yb and 162Hf can be well described by the O(6) dynamic symmetry [43]. The

softness of these nuclei points to a possible dynamic deformation which is increasing with the

angular momentum. Indeed, judging by the behavior of the g-bands from Fig.3, the energy

spectrum at lower spins is of the rotational type, while for larger spins it becomes more

vibrational-like. This change in the energy spectra is most likely caused by the increase of

the γ deformation because the β is fixed for these nuclei. The structure of 156Er is different.

The observed collective spectrum of the 156Er exhibits signatures of the E(5) dynamical

symmetry [44] which is assigned to the critical point of the phase transition from the O(6)

to the U(5) symmetry. The critical point potential has a very extended minimum in the

deformation parameter β around the origin which corresponds to a spherical shape described

by the U(5) dynamical symmetry. As a matter of fact, the observed nuclear deformation of

156Er is indeed small. In this case one can also have a variation of the β deformation along

its flat minimum as the nucleus is increasing its rotation.

C. Angular momentum alignment

In order to study the alignment of the angular momenta involved in the system’s dynam-

ics, it is useful to compute the averages of the involved angular momenta:

J̃n(J̃n + 1) = 〈ΦJM
Tot | ~J2

n|ΦJM
Tot 〉, (6.4)

J̃p(J̃p + 1) = 〈ΦJM
Tot | ~J2

p |ΦJM
Tot 〉, (6.5)

J̃f(J̃f + 1) = 〈ΦJM
Tot | ~J2

f |ΦJM
Tot 〉, (6.6)

J̃c(J̃c + 1) = 〈ΦJM
Tot | ~J2

c |ΦJM
Tot 〉. (6.7)

The deviation

∆J =
∣

∣

∣
J − (J̃c + J̃f)

∣

∣

∣
, (6.8)
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is a measure for the departure from the full alignment of the fermionic and core angular

momenta, i.e. when J̃c + J̃f equates the total angular momentum J of the system. All the

average angular momenta (6.4)-(6.7) and the deviation ∆J are plotted in Fig.6 as functions of

total angular momentum J . These plots reveal additional information for the backbending

phenomenon. Indeed, from Fig.6 one can extract the angular momentum carried by the

neutron and proton broken pairs, the composition of the total angular momentum, the

critical spins of the band crossings, or one can even investigate the alignment of different

angular momenta of the system. The difference between the values of the J̃f , J̃n and J̃p

before and after the critical angular momenta associated to the pair breaking, gives the

amount of angular momentum carried by the broken pairs which is consistent to those

determined from analyzing the plots of Fig.3. An interesting feature can be seen from Fig.6,

which is the essential difference between the two band crossings. Indeed, while the neutron

angular momentum J̃n has a clear discontinuity reflected in a jump to a plateau of higher

spin, the proton angular momentum has a steady increase extended around the critical

angular momentum where the second band crossing actually takes place, although the curve

changes substantially its slope. This was somehow expected due to the smaller crossing

angle between the neutron and neutron-proton S-bands. The smaller crossing angle means

a larger range of the angular momentum where the bands are effectively interacting. The

neutron and neutron-proton S-bands start to interact from J = 22 for 156Er and J = 24 for

the rest of nuclei, and keep interacting afterwards. After this spin, the states are no longer of

a pure nature and the nucleus is described by a coexistence of 2qp and 4qp states of broken

pairs. This is contrary to the case of the first band crossing where the interacting range is

finite and very short, about 2 units of angular momentum. Investigating the behavior of the

core angular momentum J̃c, one observes that it has a sudden fall at the first band crossing

of about 2~ − 3~, while at the second band crossing it drops very little (under 1~), keeping

approximately the same value for few total angular momentum states.

In what concerns the angular momenta alignment, one remarks that before the band

crossings the alignment defect ∆J has a minimum and right after a local maximum. Note

that here we deal with a rotational alignment and that is why the deviation ∆J decreases

with total angular momentum. Even though, the full alignment ∆J = 0 is not possible

because of the fact that after the first band crossing the yrast states are of K 6= 0 nature.

However, at the beginning of the second band crossing, one finds that ∆J ≈ 0. This approx-
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FIG. 6: Color online. Expected values of the angular momenta corresponding to the neutron and

proton broken pairs, the total fermionic angular momentum of the neutron and proton intruder

orbitals as well as the core angular momentum. The deviation ∆J of the total angular momentum

is also visualized.

imate alignment is due to the fact that the proton orbital starts to aid more consistently

the fermionic angular momentum J̃f when the neutron S-band starts to interact with the

neutron-proton S-band and the proton pair just slowly begins to break. This leads us to

the conclusion that the angular momenta of the broken pairs first align to each other and

only after that they align with the core angular momentum. The last alignment seems to

be hindered, as shown in Fig.6 where the angular momentum defect does not decrease after
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the second band crossing and moreover at some point it starts to increase in parallel with

the core angular momentum. The increasing behavior of ∆J at high angular momentum

states points to the fact that the rotation at high spins starts to work against the alignment

between the core and fermionic angular momenta.

D. Electric quadrupole transitions

A very sensitive test of the wave functions describing the energy levels are the quadrupole

transition probabilities. In Fig.7 one compares the numerical results provided by the formu-

las from Sec. VI with the corresponding experimental data available only for 156Er, 158Er and

160Yb. The parameters q1 and q2 of the quadrupole transition operator are fixed by fitting

the experimental B(E2) values and the obtained results are given in Table III. The theoret-

ical and experimental values are also compared with the rotational limit of the quadrupole

transition probability corresponding to the rigid rotor wave functions defined as:

B(E2, J+ → J ′+)rot =
5

16π
Q2

0

(

CJ2J ′

0 0 0

)2

, (6.9)

with Q0 fixed by fitting the first experimental transition probability B(E2, 2+ → 0+). The

values of Q0 corresponding to each considered nucleus are also given in the Table III.

TABLE III: The results of the fitting procedure performed for the quadrupole transition proba-

bilities shown in Fig.7 are listed for each treated nucleus together with the Q0 value defining the

values of B(E2)rot.

Nucleus q1 [W.u.] q2 [W.u.] r.m.s. [W.u.] Q0 [W.u.]

156Er 12.31060 11.73900 60.3801 57.47668

158Er 2.10613 -1.58305 74.4017 77.34075

160Yb 7.89159 7.55747 55.0754 68.37170

The transitions along the yrast band directly reflect the structural changes of the total

wave function in the band crossing region. Indeed, investigating the theoretical points from

Fig.7 one notices that at the first band crossing only one transition is sizable hindered.

This indicates the fact that the interaction of the g-band with the neutron S-band is weak

such that the transition from 0qp to the 2qp nature is very sudden, taking place in the

interval of no more than 2 units of total angular momentum. This behavior is also found
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FIG. 7: Color online. Theoretical predictions for the reduced E2 transition probabilities are

compared with experimentally available data for 156Er, 158Er and 160Yb taken from Refs.[39–41].

The open symbols indicate experimental data with assumed or derived assignment and were not

taken into account for the fitting procedure only in case of 156Er nucleus. The rigid rotor limit of

the B(E2) is also shown for comparison.
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in the experimental data, although in case of the 156Er nucleus the minimum calculated

transition is somehow shifted to the next transition in respect to experimental results. The

situation at the second band crossing is essentially different because in this case both model

states are of the quasiparticle nature which enforces the interband interaction leading to a

less visible decrease of the transition probability with an extended minimum in the band

crossing region. Looking at the experimental values, especially those before the first band

crossing, we observe some significant deviations from the rigid rotor behavior. The largest

deviations are obtained in case of the 156Er nucleus. Judging by the moderately small values

of the nuclear deformation β2 and of the obtained values for the deformation parameter

d, it is not surprising that 156Er deviates the most from the perfect rigid rotor case. The

large discrepancy at the low spins between the experimental data and the predicted rigid

rotor behavior could also be due to the fact that these nuclei are relatively sensitive to

the shape fluctuations. This is, in fact, consistent with the previous comment about the γ

softness of these nuclei. The oscillation of the transition probabilities before the first band

crossing, although not yet well understood from the phenomenological point of view, it is

well reproduced by the theoretical results. Indeed, even the unusual parabolic dependency

on the angular momentum of the B(E2) values before the first band crossing in the 158Er

and 160Yb nuclei is simulated quite well by the model predictions.

E. Gyromagnetic factor

The magnetic dipole moment of the particle-core system is defined as:

~µ = gc
~Jc + gf

~Jf ≡ gJ
~J, (6.10)

where gc and gf denote the gyromagnetic factors of the core and fermionic subsystems,

respectively. The structure of the total wave function is reflected by the total gyromagnetic

factor gJ :

gJ = gc +
gf − gc

2

[

1 +
J̃f(J̃f + 1) − J̃c(J̃c + 1)

J(J + 1)

]

. (6.11)

For the core gyromagnetic factor one takes the rotational value

gc =
Zc

Ac
, (6.12)

33



given in units of nuclear magneton µN , where Zc and Ac are the nuclear charge and the

mass number of the core:

Zc = Z − 2
〈

N
πh11/2

pair

〉

, (6.13)

Ac = A− 2
〈

N
νi13/2

pair

〉

− 2
〈

N
πh11/2

pair

〉

, (6.14)

with the expected number of neutron and proton pairs determined from the BCS equations

and given in Table II.

As for the fermionic gyromagnetic factor, it is obtained from the following decomposition

of the fermionic magnetic moment:

~µf = gf
~Jf = gn

~Jn + gp
~Jp, (6.15)

which gives an expression for gf in terms of J̃n, J̃p and J̃f similar to (6.11),

gf = gp +
gn − gp

2

[

1 +
J̃n(J̃n + 1) − J̃p(J̃p + 1)

J̃f(J̃f + 1)

]

. (6.16)

Knowing that the intruder neutrons are from the i13/2 orbital, and the intruder protons

are from the h11/2 orbital, one obtains the following values for the proton and neutron

gyromagnetic factors

gn =
gs

13
= −0.22µN , (6.17)

gp = 1.29µN . (6.18)

For the above calculation we used the free value of the gl while for gs the free values were

quenched by the factor 0.75, which accounts for the nuclear medium effect [45],

gn
l = 0, gp

l = 1µN , g
n
s = −3.8256 × 0.75µN , g

p
s = 5.5855 × 0.75µN . (6.19)

The total gyromagnetic factor is plotted in Fig.8 as function of the total angular mo-

mentum J . Its change in the behavior reflects the transition from states of different nature.

Before the first band crossing its value is almost constant and close to the rotational limit,

although slightly overestimated. Of course, even if the nature of the g-band is collective,

it is far from being perfectly rotational as it is suggested by the small values of the defor-

mations d and β2 from Table I. Indeed, it can be seen from Fig.8 that the departure of the

gyromagnetic factor from its rotational limit Z/A before the first band crossing is bigger
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FIG. 8: Color online. Calculated gyromagnetic factor for yrast states (circles) given in units of

nuclear magneton is represented as function of angular momentum. There are also visualized few

experimental values (squares) taken from Refs.[39–42] together with the rotational limit Z/A of

the gyromagnetic factor.

for 156Er and 162Hf nuclei, which turn out to be the less deformed ones. At the first band

crossing the gyromagnetic factor has a sudden fall down, reaching very small values where

the total magnetic moment almost vanishes. This discontinuity marks the change of the

yrast band from 0qp to a 2qp neutron character. The fall of gJ at the first band crossing

is due to the negative value of the neutron gyromagnetic factor coming from the decoupled

neutron pair. After the first band crossing the rotation of the core starts to dominate and
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the gyromagnetic factor increases almost linearly with J . This trend keeps up to the second

band crossing where the ascendant slope becomes bigger due to the positive value of the

proton gyromagnetic factor coming from the proton broken pair. The second band crossing

is reflected in an inflexion point of gJ as function of J . This is consistent to the slowness

of the consequent breaking of the proton pair which does not offer a jump like in the case

of the first band crossing. The growth of the gJ persists only for a few states and then it

comes to a saturation in the vicinity of the rotational limit value. As a matter of fact, the

mentioned plateau begins at the spin where the second backbending ends. Few remarks are

necessary regarding the comparison of calculation results with the experimental values of the

gyromagnetic factor. Leaving aside the nuclei 156Er and 162Hf where relevant experimental

data are lacking, the other two reproduce quite well the sudden fall of gJ at the first band

crossing. An especially good agreement between theory and experiment is obtained for 158Er

where not only the discontinuity of the gyromagnetic factor but also its absolute values are

reproduced.

Before closing this section, we would like to comment on the obtained values of some

of the model parameters. First of all, one notes the linear dependence of the deformation

parameter d on the nuclear deformation β2. This property can be used to approximately

determine the deformation d for other nuclei from the rare earth region. The numerical

values of the deformation parameter d are in the range of values determined in Refs.[46, 47]

for other isotopes of the nuclei treated in this paper. This feature pleads in favor of both the

CSM formalism and the present approach. The other parameter which deserves a special

attention is the strength of the spin-spin interaction. Although such an interaction was

already used in connection to the backbending phenomena [21], here it brings an essentially

different contribution. First of all in Ref.[21], the spin-spin interaction was found to be

repulsive while in the present model it can be both attractive and repulsive. Indeed, the

spin-spin interaction matrix elements are going from negative to positive values in the 2qp

and 4qp bands as well as in the corresponding non-diagonal matrix elements. The picture

is opposite for negative values of the strength C, as happens in the case of 162Hf. It is

interesting to mention that the second backbending in 162Hf, is difficult to explain due to its

unexpected sharpness. Indeed, before the second backbending was experimentally observed

in 162Hf, the CHFB calculations predicted for this nucleus a small up-bending or even no

backbending [48]. As a matter of fact in our approach the reproduction of the second
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backbending in this nucleus was possible only by choosing a negative value for the spin-spin

strength C. This feature proves the importance of the spin-spin interaction in explaining

the backbending phenomenon which thus appears to be the result of an interplay between

the Coriolis-like force and the Qq interaction.

VII. CONCLUSIONS

A semi-microscopic formalism was applied to describe the double backbending phe-

nomenon for nuclei from the rare earth region. The proposed approach uses a particle-core

Hamiltonian, with a phenomenological core described in terms of quadrupole bosons and a

single-particle Hamiltonian describing two sets, one of protons and another one of neutrons.

The alike nucleons interact among themselves through pairing forces. The coupling between

the single-particle and collective degrees of freedom is achieved by the qQ and the spin-spin

interactions. The structure of the fermion state dictates the nature of the rotational band,

such that for the g-band it is a product of a neutron and a proton BCS state. The pair

breaking is simulated by applying the sequence of operators J+α
†
jkα

†
j−k on the deformed

BCS state. The two quasiparticle operators are pointing out which pair is broken, while

the angular momentum raising operator breaks the time-reversal symmetry of the 2qp state.

Adopting this idea, the fermion factor function of the neutron and proton S-bands is given

by a product between a BCS state and a K = 1 2qp state, while for the neutron-proton

S-band is a product of two states of the latter type. The projected states are not mutually

orthogonal and therefore an orthogonalization procedure is to be applied. Diagonalizing the

model Hamiltonian in the orthogonal basis for each angular momentum, one obtains a set of

four hybridization energies, with the lowest ones defining the yrast band. Using this output

i.e., the energies and the total wave functions, we were able to make a consistent analysis of

all the important aspects of the backbending phenomenon.

Numerical calculations were carried out for energy levels including the experimental region

of the second backbending. Thus, for 158Er, 160Yb and 162Hf, the highest yrast spin is 36,

while for 156Er the last considered yrast state corresponds to J = 32. Before the first band

crossing the yrast levels come from the 0qp projected states and after a critical angular

momentum they become of a 2qp nature. At the second band crossing there is another

transition within the yrast band from 2qp to 4qp states. This change of structure of the yrast

37



states is reflected in the electromagnetic behavior of the total wave functions associated to the

yrast band members. Indeed, from the numerical results regarding the angular momentum

dependence of the B(E2) values and of the total gyromagnetic factor one can clearly observe

some discontinuities in the band crossing regions.

The theoretical backbending plots reproduce quite well the behavior of the observed

moment of inertia as function of the angular frequency squared. The shape and sharpness

of both, low and high spin moment of inertia anomalies are in a good agreement with the

experiment. The comparison of calculated and experimental yrast energy spectra gives a

more faithful measure of the agreement quality through the r.m.s. values, which are about

40 keV. Similarly, a good agreement is obtained by comparing the theoretical predictions

for E2 transition probabilities with the available experimental data.

The advantage of the present model over other approaches consists in the fact that it

provides a simple and consistent explanation for the pair breaking process in connection to

the rotational alignment of the angular momenta involved in the system. After a detailed

discussion given in the previous section on the interpretation of the numerical results in the

framework of the present theory, we have clarified the major distinctions between the first

and the second anomaly of the moment of inertia. First of all, using simple arguments one

determines the amount of angular momentum carried by each broken pair and the critical

angular momentum J where the pair breaking takes places. This is actually what makes

the difference between the two band crossings. While the neutron pair breaking takes place

at J = 10 or 12, one cannot certainly say at what angular momentum the proton pair

is broken because at high spin states the crossing bands interact within a larger interval.

This is suggesting that the proton pair breaking is a slower process than the neutron pair

breaking. Also, at the first band crossing the core angular momentum drops a few units,

2~ − 3~, while at the second band crossing it remains almost constant having a variation

of not more than 1~. By contrast to the case of the first band crossing, at high spin states

the core rotates already two fast to adjust to the suddenly broken proton pair and instead

it slows down the pair breaking process. This is a new feature which is not found in any

other formalism.

Concerning the rotational alignment, it is found that the proton and neutron angular

momenta first align to each other and only after that they align to the core angular mo-

mentum. The full alignment between the fermionic and the core angular momenta cannot
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be achieved due to the intrinsic properties of the higher spin states which are of the K = 1

and K = 2 nature. However, strong alignments are obtained at the band crossing critical

angular momenta. Another interesting result of the present approach is that the rotational

alignment lessens after the second backbending, which is pointing to the fact that the 2qp

and 4qp bands still interact even after the band crossing.

The first backbending manifests itself in the gyromagnetic factor plot by a big fall down

of gJ . By contradistinction, the second backbending is reflected by an inflexion point in the

above mentioned plot.

The effect brought by each term of the model Hamiltonian on the spectrum in the region

of the band crossing is in extenso analyzed. In this way the free strength parameters acquire

a well established significance.

What distinguishes our model from the others? First of all the three components of

neutrons, protons and the core are described by deformed wave functions. Moreover, the

mean fields of neutrons as well of protons are derived from the particle-core coupling term and

thereby the three components have similar deformation properties. The total wave function

describing the nucleus in the laboratory reference frame is obtained by angular momentum

projection procedure from the product of the mentioned three deformed functions which, as

a matter of fact, is not an easy task. We suspect that due to the specific construction the

wave function has a complex structure which allows to describe quantitatively the spectra

in the region of the two backbendings. The accuracy of description is reflected not only in

the backbending plot but also by energies (Fig. 5), transition probabilities (Fig. 7) and

gyromagnetic factors (Fig. 8).

Note that the core is described by projecting out the angular momentum from a coherent

state and by an anharmonic boson Hamiltonian. Therefore the core moment of inertia is

not constant but depending on the angular momentum. This property is however different

from the particle-rotor model where the core has a constant moment of inertia and therefore

the sudden increase of the total moment of inertia is caused exclusively by the transition of

two particles from a superfluid phase to a normal one.

As a final conclusion one can say that the present formalism is able to describe quantita-

tively the double backbending phenomenon. Moreover, a consistent qualitative explanation

of the combined contribution of the pair breaking and rotational alignment to the backbend-

ing phenomenon is provided.
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