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A. Excellence indicators

Since the project begin several scientific papers have been published either in international

journals having big impact factors or in conferences proceedings. Two papers are under

evaluation. The list of papers achieved within the mentioned project is given below:

1) New theoretical results for 2 decay within a fully renormalized proton-neutron random-

phase approximation approach with the gauge symmetry restored, C. M. Raduta, A. A.

Raduta and I. I. Ursu, PHYSICAL REVIEW C 84, 064322 (2011).

2)Semi-microscopic description of back-bending phenomena in some deformed even-even

nuclei, A. A. Raduta and R. Budaca, PHYSICAL REVIEW C 84, 044323 (2011).

3)Exact results for the particle-number-projected BCS approach with isovector proton-

neutron pairing,A. A. Raduta, M. I. Krivoruchenko, and Amand Faessler, PHYSICAL RE-

VIEW C 85, 054314 (2012).

4)Interplay of classical and quantal features within the coherent-state model, A. A.
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Raduta and C. M. Raduta, PHYSICAL REVIEW C 86, 054307 (2012).

5)FRpnQRPA approach with the gauge symmetry restored. Application for the 2 decay,

A. A. Raduta and c. M. Raduta, EPJ Web of Conferences 38, 14003 (2012).

6)FRpnQRPA APPROACH WITH THE GAUGE SYMMETRY RESTORED. APPLI-

CATION FOR THE 2 DECAY , A. A. Raduta,(c) Rom.Journ. Phys., Vol.57,nr. 1-2, pp.

442-471, 2012

7) Semi-microscopic description of the double back-bending in some deformed even-even

rare earth nuclei, R Budaca and A A Raduta, J. Phys. G: Nucl. Part. Phys. 40 (2013)

025109 (26pp).

8) Application of the sextic oscillator with a centrifugal barrier and the spheroidal equa-

tion for some X(5) candidate nuclei, A A Raduta and P Buganu, J. Phys. G: Nucl. Part.

Phys. 40 (2013) 025108 (29pp).

9) 2νββ decay within a higher pnQRPA approach with the gauge symmetry preserved,

A. A. Raduta, and C. M. Raduta, Journal of Physics: Conference Series 413 (2013) 012014.

10) A semi-microscopic approach to the back-bending phenomena in even-even nuclei,A

A Raduta and R Budaca,Journal of Physics: Conference Series 413 (2013) 012028.

11) Towards a new solvable model for the even-even triaxial nuclei, A. A. Raduta and P.

Buganu,Journal of Physics: Conference Series 413 (2013) 012029.

12) Description of the isotope chain 180-196Pt within several solvable approaches,A. A.

Raduta, P. Buganu, Phys. Rev. C 88 (2013) 064328.

13) Deformation properties of the projected spherical single particle basis, A.A. Raduta,

R. Budaca, Annals of Physics 347 (2014) 141169.

14)A new picture for the chiral symmetry properties within a particlecore framework A

Raduta, C M Raduta and Amand Faessler,Jour. Phys. G: Nucl. Part. Phys. 41 (2014)

035105 (27pp), doi:10.1088/0954-3899/41/3/035105.

15) Harmonic oscillator potential with a sextic anharmonicity in the prolate -rigid col-

lective geometrical model, R. Budaca,Physics Letters B 739 (2014) 5661.

16) Quartic oscillator potential in the -rigid regime of the collective geometrical model,

R. Budaca, Eur. Phys. J. A (2014) 50: 87; DOI 10.1140/epja/i2014-14087-8

17) Semi-microscopic description of the proton- and neutron-induced back-bending phe-

nomena in some deformed even-even rare earth nuclei R. Budaca and A. A. Raduta, EPJ

Web of Conferences 66, 02017 (2014), DOI: 10.1051/epjconf/ 201 4 6602017
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18) Application of the sextic oscillator potential together with Mathieu and spheroidal

functions for triaxial and X(5) type nuclei, A. A. Raduta and P. Buganu, EPJ Web of

Conferences 66, 02086 (2014), DOI: 10.1051/epjconf/ 201 4 66020 86

19) Description of the chiral bands in 188,190 Os, A. A. Raduta and C. M. Raduta,

submitted to Physics Letters B.

20) Analytical solution for the Davydov-Chaban Hamiltonian with sextic potential for

γ = 300 , P. Buganu and R. Budaca, submitted to Physical Review C 91 (2015) 014306

21) Semi-phenomenological description of the chiral bands in 188;190Os, A. A. Raduta

and C. M. Raduta, J. Phys. G: Nucl. Part. Phys. 42 (2015) 065105 (16pp)

22) ENERGY SPECTRA, E2 TRANSITION PROBABILITIES AND SHAPE DE-

FORMATIONS FOR THE EVEN-EVEN ISOTOPES 180196 Pt,P. BUGANU1 , A.A.

RADUTA1,2,Rom.Journ. Phys., Vol. 60, Nos.1-2, (2015) p. 161-178.

23) Nuclear Structure with coherent states, Apolodor Aristotel Raduta, Book, 521 pagini,

Springer, Heidelberg, New York, London, ISBN 978-3-319-14641-6, DOI 10. 1007/978-3-319-

14642-3

24) A new renormalization procedure of the quasiparticle random phase approximation,

A. A. Raduta and C. M. Raduta, Int. Jour. Mod. Phys. E 25, No. 3 (2016) 1650017.

25) Specific features and symmetries for magnetic and chiral bands in nuclei, A. A.

Raduta, Progress in Particle and Nuclear Physics 90 (2016) 241-298.

B.Important results, activities

RESULTS, 2011

Stage 1: Double beta decay and the backbending henomenon

I. Amany body Hamiltonian including a mean field corresponding to a projected spherical

single particle basis, pairing interaction of alike nucleons, a repulsive proton-neutron dipole-

dipole interaction acting in the particle-hole (ph) channel and an attractive proton-neutron

interaction of particle-particle type is treated in the framework of a formalism where the

gauge symmetry is restored and the pnQRPA approach is fully renormalized.

Energies and wave functions have been used to calculate the decay rates and half-life’s for the

following isotopes: 48Ca, 76Ge, 82Se, 96Zr, 104Ru, 110Pd, 128,130Te, 148,150Nd, 154Sm, and 160Gd.
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Results were compared with experimental data as well as with the theoretical calculations

performed with other models. We mention that for all cases considered the Ikeda sum-rule

is obeyed. In fact this is a distinctive merit of our work. We also studied the β− strength

for the mother nuclei and the β+ strength characterizing the daughter nuclei as function of

the GRFRpnQRPA energies. For few cases the available experimental data are presented.

It is worth mentioning that without exception the double beta emitters are stable with re-

spect to the single beta decay. However the intermediate odd-odd nuclei may decay through

β− to the corresponding daughter nuclei of the 2νββ process or may go to the mother nuclei

through an electron capture process which is equivalent to a β+ decay. For such nuclei the

log ft for both decays were calculated and results compared with the experimental data.

Moreover one suggests that the attractive interaction strength be determined by fitting one

of the two log ft mentioned above. Also the total strengths for the β− and β+ decays were

calculated. For few nuclei there are available data concerning the mentioned observable. We

mention the fact that for all nuclei considered here the agreement between the predictions

of the present formalism and the experimental data is very good.

We underline the fact that our formalism is the only one which describes simultaneously

the double beta amplitude and the Ikeda sum rule. The said sum rule asserts that the

difference between the total β− strength and the total β+ strength is equal to 3(N-Z) where

N and Z are the neutron and proton numbers respectively.

II. Another subject treated within our project refers to the back-bending

phenomena. For regular spectra the energy spacing of the consecutive levels is an increasing

function of the state angular momentum. If for a certain angular momentum the monotonic

feature of the energy spacing is broken this is reflected in the plot of the moment of inertia vs

the rotational frequency squared by that the ascendent curve is bending back. The sudden

banding of the mentioned curve is caused by an discontinuous increase of the moment of

inertia. This variation might be determined by a transition from a super-fluid to a normal

phase. Such a transition can be induced by breaking of a neutron pair near the Fermi

sea. The pairs breaking is determined by a term which breaks the time reversal symmetry.

The new feature of the proposed approach consists of that the nucleons move around a

phenomenological deformed core in deformed orbits.

Thus, the back-bending mechanism was studied in terms of two bands hybridization.

These bands are obtained by treating a hybrid system with two components: a set of par-
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ticles moving in a deformed mean field and a phenomenological core whose ground state

is described by an axially symmetric coherent state for quadrupole bosons. The two com-

ponents interact with each other by a quadruole-quadrupole term and a spin-spin force.

The total Hamiltonian is analyzed in a space of states of good angular momentum obtained

through projection from deformed product functions.

The factor function associated to the single particle motion defines the rotational band

nature. The ground band has all particles paired while that of two quasiparticles type is

built upon a neutron broken pair in an intruder state, that is of large angular momentum,

i13/2. Theory was applied to six nuclei from the rare earth region. An excellent agreement

with experimental data has been obtained.

RESULTS, 2012

Stage 2: New results for CSM;

The double beta transition to excited states within GRFRpnQRPA

I. DESCRIPTION OF THE PHASE TRANSITION O(6) → SU(5) WITHIN CSM.

THE RELATION TO OTHER DESCRIPTIONS

The present work belongs to a series of publication authored by the team members [1–5],

and devoted to the study of phase transition in even-even nuclei. Nuclear phases corre-

sponding to the symmetries U(5) (spherical oscillator), SU(3) (symmetrical rotor) and O(6)

(γ−unstable) are associated shapes of nuclei staying in the ground state, namely spheri-

cal, symmetric and asymmetric respectively. They are described in terms of the intrinsic

deformations β and γ [1]. The main results reported in this field were reviewed in Refs.

[7, 8].

The aim of our investigation was the description of the even-even nuclei which represent

the critical point in the transition U(5) → SU(3). The harmonic potential in the variable β

was replaced with a sextic one plus a centrifugal term while the potential in γ is a periodic

function. By the variable separation method the coupled differential equation in the two

deformations is separated. The equation for β is quasi-exactly solvable while that in γ admits

the spheroidal functions as solution. The two equations provide the energies carried by the

two degrees of freedom and therefore the system total energy. The resulting wave function
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is further used together with an anharmonic transition operator, for calculating the reduced

E2 transition probabilities. The approach formulated above was conventionally called Sextic

and Spheroidal Approach (SSA). SSA was applied for ten nuclei, namely 176,178,180,188,190Os,

150Nd, 170W, 156Dy, 166,168Hf. These nuclei have the energy ratio for the first two excited

states in the ground band close to 2.9. This feature is considered to be a signature for the so

called X(5) symmetry [2]. The agreement between our calculations and the corresponding

experimental data is very good. The SSA results were also compared with those obtained by

different approaches: X(5) [2], an infinite 5D square well(ISW) [1], Davidson potential (D)

[2] and the coherent state model (CSM) Model [5]. One concludes that SSA is an simple an

efficient tool for describing the nuclei which realize the critical point of the phase transition

U(5) → SU(3).

Comparing the r.m.s. (root mean square) values provided by the mentioned formalisms

one noticed that for 180Os, 150Nd and 170W the CSM description is better while for 188Os

the SSA descriptions is the most appropriate one. For the remaining nuclei the model D

produces results which are closest to the experimental data.

Concerning the e.m. transitions, for 176,178,180Os, 166,168Hf and 170W only data for the

intraband transitions characterizing the ground band are available while for remaining nuclei

data concerning interband transitions are also known. The five approaches considered in our

paper predict values for the available rates close to the corresponding experimental data.

The final conclusion is that SSA is an adequate approach to describe the critical point of

the transition U(5) → SU(3).

The results which were shortly described above were included in the work: Application

of the sextic oscillator with centrifugal barrier and the spheroidal equation for some X(5)

candidate nuclei, A. A. Raduta and P. Buganu, Journal of Physics G: Nuclear and Particle

Physics, J. Phys. G: Nucl. Part. Phys. 40 (2013) 025108 (29pp).

[1] A. Gheorghe, A. A. Raduta and A. Faessler, Phys. Lett. B 648, (2007) 171.

[2] A. A. Raduta, A. C. Gheorghe, P. Buganu and A. Faessler, Nucl. Phys. A 819, (2009) 46.

[3] A. A. Raduta and P. Buganu, Phys. Rev. C 83, (2011) 034313.

[4] P. Buganu and A. A. Raduta, J. Phys. G: Nucl. Part. Phys. 39 (2012) 025103.
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[5] P. Buganu and A. A. Raduta, Rom. Journ. Phys. 57 (2012) 1103.

[6] A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26 (1952) no.14; A.Bohr and B.Mottelson, Mat.

Fys. Medd. Dan. Vid. Selsk. 27 (1953) no. 16

[7] L. Fortunato, Eur. J. Phys. A 26, s01, 1-30 (2005).

[8] P. Cejnar, J. Jolie and R. F. Casten, Rev. Mod. Phys. 82, No. 3 (2010).

[9] F. Iachello, Phys. Rev. Lett. 87 (2001) 052502.

[10] A. A. Raduta, V. Ceausescu, A. Gheorghe and R. M. Dreizler, Phys. Lett. 99B (1981) 444;

Nucll. Phys. A381 (1982) 253.

[11] Balraj Singh,Nuclear Data Sheets 95, 387 (2002).

II. ASYMPTOTIC AND NEAR VIBRATIONAL BEHAVIOR OF THE CSM AP-

PROACH. THE RELATION TO OTHER DESCRIPTIONS.

Since the liquid drop model (LDP) was emitted [1] many authors have used the

quadrupole coordinates both in phenomenological models and microscopic formalisms, in

order to explain the basic properties of complex nuclei [2]. LDP as proposed by Bohr and

Mottelson is able to describe only few properties of the spherical nuclei. Faessler and Greiner

extended the LDP making it suitable also for the description of deformed nuclei. The re-

sulting formalism, called the Rotation Vibration Model (RVM), was further extended by

including in the model Hamiltonian anharmonic terms which are polynomial invariants in

the quadrupole coordinates. The main drawback of this approach is the large number of ad-

justable parameters. By contrast to RVM, the coherent state model (CSM) [3] uses a much

less parameters. The salient feature of the CSM is that it describes, in a realistic fashion,

nuclei ranging from transitional to well deformed region with spins running from low up

to high and even very high values. The space of model states associated to a given angu-

lar momentum is three dimensional. The states are obtained through angular momentum

projection from three orthogonal deformed states among which one is an axially deformed

coherent state of Glauber type constructed with the zeroth component of the quadrupole

boson. This describes the ground state of the nuclear system. The remaining two deformed

states are the lowest order polynomial excitations of the ground state which are chosen

such that the functions are orthogonal onto each other both before and after the angular

momentum projection. The expressions of the model states are:
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φg
JM(d) = N g

JP
J
M0ψg, ψg = exp

[
d(b†0 − b0)

]
|0〉,

φβ
JM(d) = Nβ

J P
J
M0Ω

†
βψg, Ω†

β =
(
b†b†b†

)
0
+

3d√
14

(
b†b†
)
0
− d3√

70
, (1)

φγ
JM(d) = Nγ

JP
J
M2Ω

†
γ,2ψg, Ω†

γ,m =
(
b†b†
)
2,m

+ d

√
2

7
b†m.

The parameter d plays the role of the nuclear deformation. Within this restricted collective

states one considered an effective Hamiltonian satisfying the restriction of being maximally

decoupled. A possible solution is the following sixth order boson Hamiltonian.

H = A1(22N̂ + 5Ω†
β′Ωβ′) + A2Ĵ

2 + A3Ω
†
βΩβ, Ω†

β′ =
(
b†b†
)
0
+

d2√
5
. (2)

A nice property of the CSM is that the state norms as well as the matrix elements of the

effective Hamiltonian can be expressed in terms of one overlap integral and its first derivative:

I
(0)
J (d2) =

∫ 1

0

PJ(y)e
d2P2(y)dy, I

(k)
J (x) =

dkI
(0)
J

dxk
, x = d2. (3)

For the overlap integral an analytical expression is possible and therefore the energies of

the ground, β and γ bands as well as the transition rates could be analytically calculated.

Moreover these expressions are particularly simple when the deformation parameter d is

either in the near vibrational interval or in the asymptotic region [4]. For example in the

later case we have:

Eg
J = 11A1

[
x− 1

2
+
√
GJ

]
+ A2J(J + 1), x = d2,

Eβ
J =

1

P β
J

[
A1S

β
J + A3F

β
J

]
+ A2J(J + 1), (4)

Eγ
J = A1

Sγ
J

P γ
J

+ A2J(J + 1).

P, S, F and G are polynomials in 1/x with coefficients depending on the angular momentum.

Similarly the matrix element of the transition operator can be expressed as:

〈φi
J ||Qh

2 ||φi
J ′〉 = 2dqhC

J 2 J ′

Ki0Ki
, i = g, β, γ, Ki = −2δiγ ,

〈φγ
J ||Qh

2 ||φg
J ′〉 =

√
2qhC

J 2 J ′

−2 2 0 , (5)

〈φβ
J ||Qh

2 ||φγ
J ′〉 =

2

3
√
19
qhC

J 2 J ′

0−2−2, 〈φβ
J ||Qanh

2 ||φg
J ′〉 = 2

√
7

19
qanhC

J 2 J ′

0 0 0 .
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Note the the matrix element from above depend on angular momentum through a Clebsch

Gordan coefficient which is consistent with the so called Alaga rule.

As for the near vibrational regime, expanding the overlap integrals in series of x = d2,

energies become rational function of x with the coefficients involved depending on J(J +1).

E
g
J = 22A1

3∑

k=0

A
(g)
J,kx

k +A2J(J + 1)−∆EJ ,

E
γ
J = 44A1 +

A1∑3
k=0 Q

(γ,0)
J,k xk

[
3∑

k=0

(
22R

(γ,0)
J,k + 5U

(γ,0)
J,k

)
xk

]
+A2J(J + 1) + ∆EJ , J = par, (6)

E
γ
J = 44A1 +

A1∑3
k=0 Q

(γ,1)
J,k xk

[
3∑

k=0

(
22R

(γ,1)
J,k + 5U

(γ,1)
J,k

)
xk

]
+A2J(J + 1), J = impar,

E
β
J =

1
∑3

k=0 Q
(β)
J,kx

k

{
A1

3∑

k=0

(
22R

(β)
J,k + 5U

(β)
J,k

)
xk +

3∑

k=0

(
A3V

(β)
J,k +A4dZ

(β)
J,k +A5B

(β)
J,k

)
xk

}
+A2J(J + 1).

The coefficients A,R, U, V, Z,B and the correction ∆E are ratios of polynomials in J(J+1).

Analogously the reduced transition probabilities can be also analytically expressed.

In the vibrational limit the projected states become multi-phonon states and consequently

the analytical expressions leads at some selection rules for the E2 transitions. For a cer-

tain choice of the parameters involved in the model Hamiltonian the surface of constant

energy exhibit minima which may be associated to equilibrium shapes like: spherical, axi-

ally prolate or oblate and triaxial. To each equilibrium shape correspond specific properties

reflected both in excitation energies and transition probabilities, which in fact define the

nuclear phase. Moreover, each nuclear shape exhibits a certain symmetry and therefore the

associated properties might be described by the irreducible representations of the underlying

group of transformations [5]. In this context the CSM was used to simultaneously describe

three interacting bands, ground, beta and gamma, in 42 nuclei [6] belonging to different sym-

metries like SU(5), O(6), SU(3), and triaxial shapes or to the transitional regions between

two extreme limits. Numerical results agree very well with the corresponding experimental

data. How do we distinguish the nuclear phases. Indicators for the the regime to which a

chosen nucleus accommodates are the ratio R = E4+1
/E2+1

and the deformation parameter d.

For example in the near vibrational limit R is close to 2 and d is less than the convergence

radius of the overlap integral I
(0)
J [7]. The 42 nuclei, treated in our paper, can be divided in

three categories: strongly deformed transuranic, near vibrational, deformed from the rare

earth region. The parameters involved in the model Hamiltonian and the deformation pa-
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rameter d were determined through the least square procedure. The obtained values of the

optimal parameters as well as of energies and transition probabilities allow us to include the

chosen nucleus to one category or another. For each category of nuclei one notices that the

deformation parameter d depend linearly on the nuclear deformation β. Moreover the three

lines are more or less parallel. Concerning the structure coefficients they do not change

chaotically when one passes from one nucleus to another. For each category, they can be

interpolated by low order polynomials in A+ (N − Z)/2. It is worth noting that the nuclei

whose parameters substantially differ from the point of the interpolating curve are critical

points for phase transitions (X(5), E(5), Y (5)). This is best seen for the isotopic chain of

Gd where two such transitions are identified.

The results which were briefly presented above are in extenso described in the publication:

Analytical description of the coherent state model for the near vibrational and well deformed

nuclei, A. A. Raduta, R. Budaca, A. Faessler, Ann. Phys. (NY) 327 (2012) 671.

[1] A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26 (1952) no.14; A.Bohr and B.Mottelson, Mat.

Fys. Medd. Dan. Vid. Selsk. 27 (1953) no. 16.

[2] A. Faessler and W. Greiner, Z. Phys. 168 (1962) 425; 170 (1962) 105; 177 (1964) 190; A.

Faessler, W. Greiner and R. Sheline, Nucl. Phys. 70 (1965) 33.

[3] A. A. Raduta, V. Ceausescu, A. Gheorghe and R. M. Dreizler, Phys. Lett. 99B (1981) 444;

Nucl. Phys. A381 (1982) 253.

[4] A. A. Raduta and C. Sabac, Ann. Phys. (N.Y.) 148 (1983) 1.

[5] F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cam-

bridge, England, 1987).

[6] A. A. Raduta, R. Budaca, A. Faessler, Ann. Phys. (NY) 327 (2012) 671.

[7] A. A. Raduta, R. Budaca, A. Faessler, Jour. Phys. G: Nucl. Part. Phys. 37 (2010) 085108.

[8] R. Budaca, A. A. Raduta, Rom. Journ. Phys. 57 (2012) 1088.
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III. QUANTUM VS CLASSICAL FEATURES IN NUCLEAR SYSTEMS

The CSM has the peculiarity that it uses a restricted boson space defined by angular

momentum projection from three orthogonal states one of them being a coherent state

while the other are polynomial excitations of the first. The three projected states are model

states for the ground, β and γ bands. The coherent state has the property that it minimizes

the uncertainty relations for the quadrupole coordinate and its conjugate momentum. This

property is considered to define the border between the classical and quantum mechanical

behavior of the system. On the other hand the coherent state violates the gauge and rotation

symmetries. The departure of the uncertainty relations from the classical limit is considered

to be a measure for the quantal behavior. This measure was analyzed both in the vibrational

and the asymptotic limits. We tried also to answer the question: What is the role of nuclear

deformation in determining the classical or quantal behavior of the nuclear system. Another

feature which were in detail discussed is whether the answer to the above question depends on

the chosen pair of conjugate coordinate and momentum. We didn’t provide a general solution

to this problem but rather considered two independent pairs of conjugate coordinate and

momentum: the quadrupole coordinate and the conjugate momentum, the boson number

and the conjugate phase. Such features are studied in the publication:

Interplay of classical and quantal features within the coherent state model, A. A. Raduta

and C. M. Raduta, PHYSICAL REVIEW C 86, 054307 (2012).

[1] M. Baranger and M. Veneroni, Ann. Phys. (NY) 114, 123 (1978).

[2] F. Villars, Nucl. Phys. A285, 269 (1977).

[3] A. A. Raduta, V. Baran and D. S. Delion, Nucl. Phys. A588, 431 (1995).

[4] A. A. Raduta, R. Budaca and Amand Faessler, Jour. Phys. G: Nucl. Part. Phys. 38, 055102

(2011).

[5] A. A. Raduta and R. M. Dreizler, Nucl. Phys. A258, 109 (1976).

[6] A. A. Raduta, V. Ceausescu, A. Gheorghe and R. M. Dreizler, Nucl. Phys. A381, 253 (1982).

[7] P. Haapakoski, T. Honkaranta and P. O. Lipas, Phys. Lett. 41 B, 125 (1970).

[8] P. A. M. Dirac, Proc. Roy. Soc. (London) A114, 243 (1927).
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[9] L. Susskind and J. Glogow, Physics 1, 49 (1964).

[10] P. Carruthers and Michael Martin Nieto, Rev. Mod. Phys. 40, 411 (1968).

[11] W. H. Louisell, Phys. Lett. 7, 60, (1963).

[12] P. Carruthers and M. M. Nieto, Phys. Rev. Lett. 14, 387 (1965).

[13] R. D. Levine, The Journal of Chemical Physics, 44, 3597 (1965).

[14] A. A. Raduta, R. Budaca and Amand Faessler, Ann. Phys.[NY] 327, 671 (2012).

[15] A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd edition, Edizioni

della Normale, Pisa, 2011, ISBN: 978-88-7642-375-8 Nauka, Moscow, 1980, Russian transla-

tion, pp. 204-211.

RESULTS, 2013

Stage 3: Phase transition; The SSD hypothesis

1. A new picture for the chiral symmetry properties within a particle-core

framework,A. A. Raduta, C. M. Raduta and Amand Faessler, Journal of Physics

G; Nucl. Part. Phys.41 (2014) 035105 (27pp)

Rotational spectra appear to be a reflection of a symmetry spontaneous breaking which

results of having a static deformation for the nuclear system. Some of the fundamental

properties of nuclear systems may be evidenced through their interaction with an electro-

magnetic field. The two components of the field, electric and magnetic, are used to explore

the properties of electric and magnetic nature, respectively. At the end of last century the

scissors like states [1–3] as well as the spin-flip excitations [4] have been widely treated by

various groups. Some of them were based on phenomenological assumptions while the other

ones on microscopic considerations. The scissors like modes are excited in (e,e’) experi-

ments at backward angles and expected at an energy of about 2-3 MeV, while the spin-flip

excitations are seen in (p,p’) experiments at forward angles and are located at about 5-10

MeV. The scissors mode describes the angular oscillation of proton against neutron system

and the total strength is proportional to the nuclear deformation squared which reflects the

collective character of the excitation [3, 4].
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In virtue of this feature it was believed that the magnetic collective properties are in

general associated with deformed systems. This is not true due to the magnetic dipole bands,

where the ratio between the moment of inertia and the B(E2) value for exciting the first 2+

from the ground state 0+, I(2)/B(E2), takes large values, of the order of 100(eb)−2MeV −1.

These large values can be justified by a large transverse magnetic dipole moment which

induces dipole magnetic transitions, but almost no charge quadrupole moment [1]. Indeed,

there are several experimental data showing that the dipole bands have large values for

B(M1) ∼ 3−6µ2
N , and very small values of B(E2) ∼ 0.1(eb)2 (see for example Ref.[6]). The

states are different from the scissors mode, they being rather of a shears character. A system

with a large transverse magnetic dipole moment may consist of a triaxial core to which a

proton prolate and a neutron oblate hole orbital are coupled. The interaction of particle

and hole like orbitals is repulsive, which keeps the two orbits apart from each other. In this

way the orthogonal angular momenta carried by the proton particles and neutron holes are

favored. The maximal transverse dipole momentum is achieved, for example, when jp is

oriented along the small axis of the core, jn along the long axis and the core rotates around

the intermediate axis. Suppose the three orthogonal angular momenta form a right trihedral

frame. If the Hamiltonian describing the interacting system of protons, neutrons and the

triaxial core is invariant to the transformation which changes the orientation of one of the

three angular momenta, i.e. the right trihedral frame is transformed to a left type, one says

that the system exhibits a chiral symmetry. As always happens, such a symmetry is identified

when that is broken and consequently to the two trihedral-s correspond distinct energies,

otherwise close to each other. Thus, a signature for a chiral symmetry characterizing a

triaxial system is the existence of two ∆I = 1 bands which are close in energies. Increasing

the total angular momentum, the gradual alignment of jp and jn to the total J takes place

and a magnetic band is developed. The question which naturally arise is whether the

proposed solution for chiral band is unique. Also note that so far only the odd-odd nuclei

were investigated. In the recent past the magnetic states of spin-flip type have been studied

by several groups [1–10]. Our group studied the dipole bands having Kπ = 1± with a

Hamiltonian describing the interaction of quadrupole and octupole bosons [11]. We have

shown the the band 1+ is of a magnetic nature while the band 1− has an electric character.

In an other publication [18] we have noticed that for parity partner bands starting with a

critical angular momentum the angular momenta carried b the quadrupole and octupole

13



bosons are orthogonal. It is expected that adding to such a system a set of nucleons we can

find a suitable strength for the particle core interaction such that the angular momentum

of nucleons is perpendicular on the plane of quadrupole and octupole angular momenta. As

we said before such a configuration is a prerequisite for the existence of a chiral band. The

first attempt of this kind was achieved in Ref.[19].

Here we attempt another chiral system consisting of one phenomenological core with two

components, one for protons (of angular momentum Jp) and one for neutrons (of angular

momentum Jn), and two quasiparticles whose total angular momentum J is oriented along

the symmetry axis of the core due to the particle-core interaction. In a previous publication

we proved that states of total angular momentum I, where the three components mentioned

above carry the angular momenta Jp,Jn,J which are mutually orthogonal, do exist. Such

configuration seems to be optimal to define large transverse magnetic moment inducing large

M1 transitions.

In what follows we shall briefly review the main ingredients of the proposed phenomeno-

logical formalism. The Hamiltonian which describe the particle-core system is:

H = HGCSM +
∑

α

ǫac
†
αcα − G

4
P †P

−
∑

τ=p,n

X(τ)
pc

∑

m

q2m

(
b†τ,−m + (−)mbτm

)
(−)m −XsS

~JF · ~Jc, (1.1)

The quadrupole moment is denoted as follows:

q2m =
∑

a,b

Qa,b

(
c†jacjb

)
2m
,

Qa,b =
ĵa

2̂
〈ja||r2Y2||jb〉. (1.2)

Here HGCSM denotes the phenomenological Hamiltonian defining the generalized coherent

state model (GCSM) and is associated to a proton and neutron bosonic core. The next two

terms stand for a set of particles moving in a spherical shell model mean-field and interacting

among themselves through pairing interaction. The low indices α denote the set of quantum

numbers labeling the spherical single particle shell model states, i.e. |α〉 = |nljm〉 = |a,m〉.
The last two terms denoted hereafter as Hpc express the interaction between the satellite

particles and the core through a quadrupole-quadrupole and a spin-spin force, respectively.
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The angular momenta carried by the core and particles are denoted by Jc(= Jpn) and JF ,

respectively.

The mean field plus the pairing term is quasi-diagonalized by means of the Bogoliubov-

Valatin transformation. The Hamiltonian has been treated in the restricted space of particle-

core states: φ
(g)
JM |BCS〉, φ(β)

JM |BCS〉, φ(γ)
JM |BCS〉, φ(1)

JM |BCS〉, φ̃(1)
JM |BCS〉 and Ψ

(2qp;J1)
JI;M de-

fined as:

φ
(g)
JM = N

(g)
J P J

M0ψg, ψg = exp[(dpb
†
p0 + dnb

†
n0)− (dpbp0 + dnbn0)]|0〉,

φ
(β)
JM = N

(β)
J P J

M0Ωβψg,

φ
(γ)
JM = N

(γ)
J P J

M2(b
†
n2 − b†p2)ψg,

φ
(1)
JM = N

(1)
J P J

M1(b
†
nb

†
p)11ψg,

φ̃
(1)
JM = Ñ

(1)
J P J

M1(b
†
n1 − b†p1)Ω

†
βψg,

Ψ
(2qp;J1)
JI;M = N

(2qp;J1)
JI

∑

J ′

CJ J ′ I
J 1 J+1

(
N

(1)
J ′

)−1 [
(a†ja

†
j)J |BCS〉 ⊗ ϕ

(1)
J ′

]
IM

. (1.3)

The following notations have been used:

Ω†
γ,k,2 = (b†kb

†
k)22 + dk

√
2

7
b†k2, k = p, n,

Ω†
β = Ω†

p + Ω†
n − 2Ω†

pn,

Ω†
k = (b†kb

†
k)0 −

√
1

5
d2k, k = p, n,

Ω†
pn = (b†pb

†
n)0 −

√
1

5
d2p.

N̂pn =
∑

m

b†pmbnm, N̂np = (N̂pn)
†, N̂k =

∑

m

b†kmbkm, k = p, n. (1.4)

The state |BCS〉 is a vacuum state for quasiparticles. The energies in the bands defined

by the the wave functions mentioned above are defined as average values of the model

Hamiltonian in with a state from the particle-core space. There are several parameters

involved which were determined by fitting some energies from the ground, beta and gamma

bands. Numerical application refers to 192Pt which is γ soft and triaxial and by this a good

candidate for a chiral configuration. The parameters obtained by the mentioned fitting

procedure are listed in Table I. There we listed also the values of the parameter

X ′
pc = 6.5η

(−)
11
2

11
2

~

Mω0

X(p)
pc , (1.5)
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ρ = d
√
2 A1 A2 A3 A4 X ′

pc XsS

2.0 555.4 -25.4 -12.8 7.7 -23.4 1.

TABLE I: The structure coefficients determined through the least square procedure, given in keV . The deformation

parameter ρ is dimensionless while X′
pc is defined by Eq. Eq. (1.5).

Here M and ω0 the proton mass and the oscillator frequency used in the shell model. Since

we considered as satellite nucleons the protons in the shell h11/2 we took X
(n)
pc = 0. The

excitation energies corresponding to the parameters from Table 1 were compared with the

experimental data in Fig. 1. We remark a very good agreement between the two sets of

data.
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FIG. 1: Experimental and calculated excitation energies in ground, β and γ bands for 192Pt. They correspond to the fitted

parameters listed in Table 1. The r.m.s. value of the deviation of the theoretical results and the corresponding experimental

data is equal to 67 keV.
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FIG. 2: The excitation energies for the dipole bands described by φ
(1)
JM (left lower column) and φ̃

(1)
JM (right lower column),

respectively. The bands T1 (upper left column) and T2 (upper right column), conventionally called twin bands, are also shown.

The T1 and T2 bands were obtained with X′
pc=-0.023 MeV and XsS= 0.001 MeV for the left column and XsS=-0.001MeV for

the right column.
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FIG. 3: Energy spacings in the two twin bands T1 and T2.
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the angular momentum J, in the bands T1 and T2.
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are represented as function of the corresponding rotational frequency given by (1.8).
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FIG. 6: The B(M1) values associated with the dipole magnetic transitions between two consecutive

energy levels, in the T1 band. The gyromagnetic factors employed in our calculations are: µp =

0.666µN , µn = 0.133µN and µF = 1.289µN . As usual the spin gyromagnetic factor was quenched

by a factor 0.75 in order to account for the influence of the proton excited states on the magnetic

moment.
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Energies of the bands 1+ and 1̃+ are free of any adjustable parameters and are presented

in Fig.2. In the upper panels two bands of two quasiparticles nature are predicted. These

two bands exhibit the properties of a chiral band: a) the energy spacing is almost constant

with a slight fluctuation at the begin and end of the interval( see Fig. 3); b) The signature

of the energy clustering is defined by the equation:

S(J) =
E(J)− E(J − 1)

2J
. (1.6)

As shown in Fig. 4 this is almost independent of angular momentum. The moment of

inertia characterizing the twin bands plotted as function of the rotational frequency squared,

exhibits the back-bending phenomenon.

J =
2(J + 1)

E(J + 1)− E(J)
, (1.7)

~ω = E(J + 1)− E(J). (1.8)

The reduced transition probability B(M1) inside the band is large, reaching the value of

7µ2
N for high spin. The proposed formalism predicts the existence of four twin magnetic

bands from which only two were commented here. We consider that our approach contains

original hypothesis and will stimulate the experimentalists to extend their measurements to

the even-even nuclei.
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2. Description of the isotope chain 180−196Pt within some solvable approaches, A.

A. Raduta and P. Buganu, Physical Review C. Phys. Rev. C 88 (2013) 064328.

Once the hypothesis of a specific symmetry for each critical point of a phase transition [1–4]

was advanced, many groups investigated both experimentally and theoretically which are

the critical nuclei in a isotopic chain. While in the beginning, candidates for the symmetry

X(5) [2] have been found in the region of A ≈ 150 [5–7] recently a new proposal was

made for the isotopes of Pt and Os [8, 9]. In Refs. [10, 11], the experimental data for

176,178,180,188,190,192Os have been realistically described using alternatively the approximations

of sextic and spheroidal (SSA) [10], Davidson and spheroidal (DSA) [11], infinite square well

and spheroidal (ISWSA) [12]. The results were compared with those obtained with the

coherent state model (CSM) [13] and X(5 model respectively. According to this study,

among these isotopes there are some ( 176Os and 188Os ) exhibiting the specific properties

for the critical point in the transition U(5) → Su(3). On the other hand, the approximation
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sextic and Mathieu (SMA) [14], applied to the isotopes 188,190,192Os leads to the conclusion

that 192Os is a candidate for the critical point of the shape transition from oblate to prolate

which goes though the triaxial shape with γ0 = 300.

Encouraged by the results obtained for Os isotopes, the above mentioned approaches have

been applied also to 180−196Pt. In addition to the calculations concerning the excitation

energies in the ground, β and γ bands and the intraband as well as the intraband E2

transitions, we also analyzed the shape evolution in the three bands when we pass from one

isotope to another. We addressed also the question whether there are signatures for a shape

coexistence or a transition from prolate to oblate shape. Here we used a new approximation

called Infinite square well and Mathieu (ISWMA) which seems to be appropriate for the

triaxial nuclei description.

To achieve the mentioned objectives the paper was structured as follows. First the for-

malisms used for the quantitative description of the Pt isotopes were briefly reviewed. The

numerical results are compared with the corresponding experimental data. Finally the main

conclusions are summarized.

In Tables II and III the energies and E2 transition rates determined for 180,188,190Pt by

using the formalisms SSA, ISWSA, X(5), SMA, ISWMA and Z(5) are listed. The comparison

with the experimental data shows a good agreement.
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TABLE II: Spectra for the ground, β and γ bands in 180,188Pt and 190Pt yielded by the SSA,

ISWSA, X(5), SMA, ISWMA, Z(5) formalisms respectively, are compared with the experimental

data taken from Refs. [15–17].

E [keV] 180Pt 188Pt 190Pt

J+band Exp. SSA ISWSA X(5) Exp. SSA ISWSA Exp. SMA ISWMA Z(5)

2+g 153 126 125 133 266 232 183 296 225 282 284

4+g 411 386 366 387 671 645 545 737 645 721 667

6+g 757 749 693 724 1185 1170 1045 1288 1206 1259 1130

8+g 1182 1194 1093 1131 1783 1772 1667 1915 1872 1885 1668

10+g 1674 1705 1563 1604 2438 2429 2405 2535 2620 2591 2276

0+β 478 590 649 753 799 719 849 921 832 661 1110

2+β 861 809 863 993 1115 1193 1153 1203 1260 1173 1617

4+β 1248 1173 1258 1425 1802 1716 1875 1931 2259

6+β 1650 1632 1760 1967 2493 2446 2607 2815 2999

8+β 2164 2348 2593 3240 3314 3426 3803 3822

10+β 2755 3013 3292 4028 4308 4885 4724

2+γ 677 840 858 856 606 681 723 598 648 581 521

3+γ 963 954 969 971 936 860 887 917 848 812 737

4+γ 1049 1101 1105 1110 1085 1098 1089 1128 1159 1183 1254

5+γ 1315 1258 1263 1269 1316 1325 1450 1369 1391 1315

6+γ 1464 1440 1447 1636 1630 1594 1733 1808 1882 2004

7+γ 1727 1653 1637 1642 1868 1893 2009 2062 1949

8+γ 1909 1853 1854 2247 2241 2223 2559 2665 2799

9+γ 2198 2122 2087 2082 2489 2583 2742 2816 2644

10+γ 2421 2338 2326 2911 2971 3391 3222 3647

r.m.s. [keV] 67 92 140 47 81 71 98 206

TABLE III: The reduced E2 transition probabilities yielded by SSA, ISWSA, X(5), and SMA,

ISWMA, Z(5) for the isotopes 180,188,190Pt respectively are compared with the experimental data

taken from [16–18].

B(E2) [W.u.] 180Pt 188Pt 190Pt

J+band →J
′+
band Exp. SSA ISWSA X(5) Exp. SSA ISWSA Exp. SMA ISWMA Z(5)

2+g → 0+g 153+15
−15 110 106 106 82+15

−15 82 82 56+3
−3 56 56 56

4+g → 2+g 140+30
−30 168 169 169 136 131 86 95 89

6+g → 4+g ≥ 50 202 210 210 171 162 119 138 123

8+g → 6+g 230 241 241 200 186 144 169 148

10+g → 8+g 255 265 266 226 205 166 191 166
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FIG. 7: Probability densities for the states 0+g , 10+g , 0β and 2+γ in the isotopes 180,188Pt were

determined with SSA.
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FIG. 8: Probability densities for the states 0+g , 10
+
g , 0β and 2+γ in the isotopes 190Pt were determined

with SSA.

In Figs. 7 and 8, sections of the probability density and the elementary volume product,

for the states 0+g , 10+g , 0+β , 2+γ , are given. One notices that the maxima of the γ wave

functions squared are reached for γ0 = 00 and γ0 = 300. We see that a node in the beta

functions leads to the existence of two maxima in β for the same value of γ. For 188Pt the

equidensity curves surround two maxima for a single value of β. This picture suggests a two

shapes coexistence.

In conclusion, we described the energy spectra of ground, β and γ bands as well as

the intraband and interband transition probabilities for the chain 180−196Pt, using several

phenomenological models emerging from the liquid drop model. A new approach called

ISWMA was proposed, which seems to be suitable for the description of the triaxial nuclei.
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RESULTS, 2014

Stage 4:Chiral symmetry; backbending

I. Deformation properties of the projected spherical single particle basis,

A.A. Raduta, R. Budaca, Annals of Physics 347 (2014) 141169.

Deformed single particle energies obtained by averaging a particle-core Hamiltonian with

a projected spherical basis depend on a deformation parameter and an arbitrary constant

defining the canonical transformation relating the collective quadrupole coordinates and

momenta with the boson operators. When the mentioned basis describes the single particle

motion of either protons or neutrons the parameters involved are isospin dependent. An

algorithm for fixing these parameters is formulated and then applied for 194 isotopes covering
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a good part of the nuclide chart. Relation with the Nilsson deformed basis is pointed out in

terms of deformation dependence of the corresponding single particle energies as well as of

the nucleon densities and their symmetries. The proposed projected spherical basis provides

an efficient tool for the description of spherical and deformed nuclei in a unified fashion.

In this paper we exploited the property of the coherent state of being a basis generating

function. We were inspired by the paper of Nilsson [1] which defines a deformed wave function

as an eigenstate of a Hamiltonian which contains a quadrupole mean field term. Such basis

has been used by many authors for the description of the deformed nuclei. However when

we want de describe an observable which is very sensitive to the variation of the angular

momentum the many body wave function is to be projected over the angular momentum.

This operation is not simple at all, for example for the ground state corresponding to the

RPA (random phase approximation) only approximate solutions are known so far. In this

context any contribution to this field is welcome. In this paper we present a solution for this

problem [2, 5–7].

To describe a particle-core interacting system we shall consider the following Hamiltonian

H̃ = Hsm +Hcore −Mω2
0r

2
∑

λ=0,2

∑

−λ≤µ≤λ

α∗
λµYλµ. (1.1)

where

Hcore = ωb

∑

µ

b†2µb2µ (1.2)

is a harmonic quadrupole boson Hamiltonian associated with the phenomenological core.

The spherical shell model single-particle Hamiltonian is denoted by HSM The particle-core

interaction represented by the last term, depends on the nuclear deformation through the

monopole and quadrupole shape coordinates, α00 and α2µ. The latter ones are related to

the boson operators b†2µ defining the harmonic oscillation of the core, through a canonical

transformation. The restriction of volume conservation provides a relation between the

monopole and quadrupole coordinates:

α00 = − 1

2k2
√
π

[
5 +

∑

µ

(
2b†µbµ + (b†µb

†
−µ + b−µbµ)(−)µ

)]
. (1.3)
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Averaging Hpc with the eigenstates |nljm〉 of HSM , one obtains a deformed boson Hamilto-

nian whose ground state is described by a coherent state:

ψg = ed(b
†
20−b20)|0〉b, (1.4)

where |0〉b is the vacuum state of the boson operators, while d is a real parameter which

simulates the nuclear deformation. On the other hand, the average of Hpc with ψg is a single

particle Hamiltonian, similar to that of the Nilsson model [1]:

Hmf = 〈ψg|Hpc|ψg〉 = ωbd
2 +Hsm − ~ω0r

′2

[√
2d

k
Y20 −

1

8πk2
(5 + 4d2)

]
, (1.5)

where the stretched coordinates are used. Further, extracting from the above Hamiltonian

the zero point deformation energy

lim
d→0

(Hmf −HSM) =
5~ω0r

′2

8πk2
, (1.6)

one arrives at a more recognizable form:

Hmf = ωbd
2 +HSM − ~ω0r

′2

(√
2d

k
Y20 −

1

2πk2
d2

)
. (1.7)

We note that the deformed terms involved in the Nilsson model Hamiltonian and the mean

field Hmf are identical provided the following equation holds:

d

k
=

β√
2
. (1.8)

One recovers the original Nilsson Hamiltonian [1]:

HNilsson(β) = HSM − ~ω0r
′2βY20. (1.9)

if in (3.9) one ignores the constant terms i.e., those which are independent of the particle

coordinates.

Our proposal [5] was to treat the particle-core system, which is rotationally invariant,

with the projected states:

ΦIM
nlj (d) = N I

nlj(d)P
I
MI [|nljI〉ψg]. (1.10)

The tensorial form of this state,

ΦIM
nlj (d) = N I

nlj(d)
∑

J

Cj J I
I 0 I (N

g
J )

−1 [|nlj〉φg
J ]IM , (1.11)
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The norm of this state is:

(N I
nlj(d))

−2 =
∑

J

(
Cj J I

I 0 I

)2
(N g

J )
−2 . (1.12)

The main properties of the projected states are: a) They are orthogonal with respect to

the quantum numbers I and M; b) Although these states belong to the space of particle-core

states, they can be used as a single particle basis. Indeed, whenever we want to calculate

a matrix element for a one body operator we integrate first over the collective degrees of

freedom, the final result being written in a factorize form: one factor contains the dependence

on the nuclear deformation while the second one is the matrix element corresponding to the

spherical shell model single particle states. To give an example, we consider a many body

tensor operator, T k
µ , of rank k and projection µ. The final result for the matrix elements

between two projected spherical states is:

〈ΦI
nlj||T k||ΦI′

n′l′j′〉 = fn′l′j′I′

nljI (d)〈nlj||T k||n′l′j′〉, with (1.13)

fn′l′j′I′

nljI (d) = N I
nlj(d)N I′

n′l′j′(d)ĵÎ
′
∑

J

Cj J I
I 0 I C

j′ J I′

I′ 0 I′W (jkJI ′; j′I) (N g
J )

−2 ;

c) The connection between the deformation parameter d, involved in the definition of the

coherent state ψg, and the nuclear deformation is readily obtained requiring that the defor-

mation terms from the model Hamiltonian and Nilsson Hamiltonian have equal strengths:

d

k
=

√
2π

45
(Ω2

⊥ − Ω2
z). (1.14)

Here Ω⊥ and Ωz denote the mean field frequencies from the Nilsson model which are related

to δ =
√

45/16πβ by:

Ω⊥ = (
2 + δ

2− δ
)1/3, Ωz = (

2 + δ

2− δ
)−2/3. (1.15)

Averaging the particle-core Hamiltonian with the projected state one gets the expression:

ǫInlj = 〈ΦIM
nlj (d)|H ′|ΦIM

nlj (d)〉 = ǫnlj − ~ω0(N +
3

2
)Cj2j

I0IC
j2j
1/201/2

(Ω2
⊥ − Ω2

z)

3

+ ~ω0(N +
3

2
)

[
1 +

5

2d2
+

∑
J(C

jIJ
I−I0)

2I
(1)
J∑

J(C
jIJ
I−I0)

2I
(0)
J

]
(Ω2

⊥ − Ω2
z)

90
. (1.16)

Here the standard notation for the Clebsch Gordan coefficients have been used, Cj1j1j
m1m2m

.

The overlap integrals I
(k)
J have been analytically studied in some previous publications. If
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FIG. 9: Proton and neutron single-particle energies in the region of N = 5 and N = 6 shells

respectively, given by Eq.(1.17) where the shell model parameters κ = 0.0637 and µ = 0.60 for

protons and µ = 0.42 for neutrons were used. The canonical transformation constant is fixed to

k = 10.

from the above expression one subtract the zero point energy contribution one obtains the

final expression for the single particle energies, specific to the proposed model.

ǫInlj = = ǫnlj − ~ω0(N +
3

2
)Cj2j

I0IC
j2j
1/201/2

(Ω2
⊥ − Ω2

z)

3

+ ~ω0(N +
3

2
)

[
1 +

∑
J(C

jIJ
I−I0)

2I
(1)
J∑

J(C
jIJ
I−I0)

2I
(0)
J

]
(Ω2

⊥ − Ω2
z)

90

−~ω0

(
N +

3

2

)[
j − I +

1

2

(
1− (−)j−I

)] 1

8πk2
. (1.17)

The averages (1.17) can be viewed as approximations of the single-particle energies in the

deformed Nilsson orbits. As a matter of fact these are very close to the single-particle

energies (??) of the projected Nilsson states obtained by diagonalization within a single

major shell (∆N = 0). This is illustrated in Fig. 9.
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Notice that although the single particle energies of our model are similar with the Nilsson

model energies, the states degeneracies are different. To make the wave functions of the two

models compatible we change the norm of the projected single particle state to:

〈ΦIM
α |ΦIM

α 〉 = 1 =⇒
∑

M

〈ΦIM
α |ΦIM

α 〉 = 2. (1.18)

Due to this normalization, on each state I with 2I+1 sub-states one could distribute at most

2 nucleons. The notation α was used for the set of shell model quantum numbers |nljm〉.

A. Nucleon density

The density operator corresponding to the projected spherical states can be written as:

ρ̂ =
∑

nljIM

2

2I + 1

∣∣ΦIM
nlj (d)

∣∣2 . (1.19)

Using the tensorial form of the projected particle-core state (1.11), and replacing the

product of the projected core states and their corresponding complex conjugates by their

scalar product, one obtains:

〈ρ̂〉coll = 2
∑

nljm>0

||nljm〉|2 , (1.20)

which is exactly the spherical shell model nucleon density. The consistency with the pro-

jected Nilsson states is then complete.

However, it is desirable to induce a deformation dependence of the particles distribution.

Inspired by the fact that the deformation dependence of the mean field is obtained by

averaging the particle-core Hamiltonian with the quadrupole boson coherent state (1.4), we

extend the procedure to the nucleon density (1.19) with the results:

〈ψg|ρ̂|ψg〉 =
∑

nljIM

2

2I + 1

∣∣〈ψg|ΦIM
nlj (d)〉

∣∣2 . (1.21)

Similarly, the wave function associated to the deformed mean filed can be looked at as the

overlap of the projected spherical state and the coherent state describing the core.

〈ψg|ΦIM
nlj (d)〉 = N I

j

∑

J

F jI
JM(d)|nljM〉, (1.22)
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where

F jI
JM(d) = Cj J I

I 0 I C
j J I
M 0M (NJ)

−2 . (1.23)

A direct connection between the k-pole transition densities defined by the projected

spherical single particle and the spherical shell model bases, can be obtained by using the

second quantization form of a one body operator, which is a tensor of rank k and projection

m with respect to the rotation transformations:

T̂km =
∑√

2

2I + 1
〈ΦIM

nlj |T̂km|ΦI′M ′

n′l′j′〉
√

2

2I ′ + 1
c†αIMcα′I′M ′

=
∑ 2

Î Î ′
〈ΦI

nlj||T̂k||ΦI′

n′l′j′〉CI′kI
M ′mMc

†
αIMcα′I′M ′

=
∑

αI;α′I′

2

Î Î ′
〈αI||T̂k||α′I ′〉ρ̂pskm(αI;α′I ′). (1.24)

For the sake of simplicity we used the abbreviations:

|αIM〉 = |ΦIM
nlj 〉, α = (nlj), Î =

√
2I + 1,

ρ̂pskm(αI;α
′I ′) = − Î

k̂

(
c†αIcα̃′I′

)
km
, c

α̃IM
= (−1)I−McαI,−M . (1.25)

The index ”ps” suggests that the density matrix is associated to a projected spherical basis.

As for the shell model we have:

T̂km =
∑

〈nlj||T̂k||n′l′j′〉ρ̂smkm(nlj;n′l′j′), with

ρ̂smkm(nlj;n
′l′j′) = − ĵ

k̂

(
c†nljcñ′l′j′

)
km
. (1.26)

Using the relationship of the matrix elements corresponding to the two bases we have:

ρ̂smkm(nlj;n
′l′j′) =

∑

I,I′

2

Î Î ′
f j′I′

jI;k(d)ρ̂
ps
km(nljI;n

′l′j′I ′). (1.27)

Taking into account the explicit expression of the norms N I
j and the analytical form of the

Racah coefficient with one vanishing index, it can be proved that for k = 0 the factor f is

equal to unity:

f j′I′

jI;0(d) = δI,I′δj,j′ . (1.28)

Consequently one obtains:

ρ̂sm00 (nlj;nlj) =
∑

I

2

2I + 1
ρ̂ps00(nljI;nljI). (1.29)

Going back to the definition of ρ̂ in the two basis, (3.30) and (3.31), by a direct and simple

calculation one finds that Eqs. (1.29) and (3.24) are identical.
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FIG. 10: Total nuclear density given by Eq.(1.20) is represented as function of x = r′ sin θ and

z = r′ cos θ in units of α
3
2 in 3D plots (up) and contour plots (down) for 150Gd (left) and 156Gd

(right). In both cases the densities corresponding to two adjacent curves differ from each other by

0.21α3/2.
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Ρ � ΡMax

FIG. 11: Total nuclear density projected on the quadrupole boson coherent state defined by

Eq.(1.20) and normalized to its maximum value is represented as function of x = r′ sin θ and

z = r′ cos θ in 3D plots (up) and contour plots (down) for 150Gd (left) and 156Gd (right). Contour

plots are made with a step of 0.062/ρmax.
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FIG. 12: The binding energy second order difference, ∆ETot for the isotopes of Cd (left panel)

and Te (right panel) is represented as function of the number of neutrons, N . For Nilsson model

calculations we included also the ∆N =2 matrix elements with Ncutoff = 10.

B. Quadrupole moment of the first state 2+

Let us derive the expression of the quadrupole moment within the GCSM. The liquid

drop model (LDM) predicts for the quadrupole moment the expression:

Q2µ =
3ZeR2

0

4π

(
α2µ −

10√
70π

(α2α2)2µ

)
, R0 = 1.2A1/3fm. (1.30)

Within LDM the state 2+ is a one phonon state, b†2µ|0〉, which yields for the quadrupole

moment, with the standard definition, the expression:

〈22|Q20|22〉 = −3ZeR2
0

√
5

7πk2
√
π
. (1.31)

From here it results that for spherical nuclei the quadrupole moment is always negative.

The GCSM defines the state 2+ by the angular momentum projected state φg
JM(dn, dp) (see

Eq. (4.2)) while the quadrupole moment, in the boson representation, is:

Q20 =
3ZeR2

0

4π

[
1

kp
√
2

(
b†b0 + bp0

)
− 5

k2p
√
70π

(
(b†pb

†
p)20 + (bpbp)20 + (b†pbp)20

)
]
. (1.32)

Averaging this operator with the projected state mentioned above one obtains:

〈φg
22(dn, dp)|Q20|φg

22(dn, dp)〉 = −3ZeR2
0

7π

[
1√
2

dp
kp

+
1

7

√
5

π

(
dp
kp

)2
(
1 +

I
(1)
2 (ρ)

I
(0)
2 (ρ)

)]
. (1.33)
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This equation might be used to determine the ratio dp/kp and then the other parameters,

dn and kn.

C. Order of shell filling: the magic numbers and the spins of the odd system

ground state

Another issue addressed in this paper regards the ability of the proposed model to describe

the shell filling and how that compares with what we know from the Nilsson model. To this

aim we calculated the second order binding energy difference

∆ETot = − 3

16
[2E(N)− E(N + 2)− E(N − 2)] , (1.34)

with E(N) denoting the total sum of proton and neutron single particle energies for a

nucleus with N neutrons. This quantity is plotted for the isotopic chains of Cd and Te in

Fig. 8. We notice that both models show two major peaks corresponding to the magic

number 82 and the shell filling at N = 68 for Cd and N = 70 for Te. The distributions of

peaks for Te isotones obtained with the projected spherical single particle basis (PSSPB)

and Nilsson model respectively, are similar. Some differences appear in the case of Cd’s.

In the case of Nilsson plot there is a peak for N = 76 which is missing in our case. On

the other hand the plot with PSSPB exhibits a peak for N = 56 which is missing in the

case of the plot made with the Nilsson model. The major peak at N = 70 for Nilsson

model is shifted to N = 68 for our method. The order of the shell filling is, of course,

depending on the quadrupole deformation. A test for this feature is to identify the levels

around the last occupied one and compare their spin with the experimental value for the

ground state spin, in an even-odd nucleus. The results are compared with the data for a

few odd nuclei in Table XVII. Among the identified angular momenta for the last and the

second last occupied as well as for the first unoccupied levels one finds the angular momenta

characterizing the ground state according to the experimental data. The reason we listed

all three spins is that in the region of the Fermi sea the level density is high and a small

uncertainty in determining the deformation may change the position of the level crossing

and thus the filling order. Moreover our estimation does not take into consideration the

effect of the residual interaction which may also shift the position of the Fermi level. We

note that the agreement is reasonable good suggesting that the ground state has the spin of
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the first unoccupied level for 155Gd, 167Er, 177Hf, 179Hf and that of the second last occupied

state for 187Os, 189Os, 157Gd.

D. Model parameters

Besides the parameters involved in the shell model Hamiltonian there are another two,

namely the deformation parameter d and canonicity parameter k. In the case we study

isospin depending properties we have to use a set of wave functions, with the parameters dp

and kp different from those corresponding to the neutrons, denoted by dn and kn.

These parameters have been determined according to the following algorithm: a) Equat-

ing the theoretical result concerning the energy ratio of the states 4+ and 2+ from the ground

band, denoted by R4/2, with the experimental one, we determine the global deformation pa-

rameter ρ (=d
√
2); Inserting this value in Eq.(1.6), one obtains the parameter k; c) From

the expression of the reduced transition probability 0+g → 2+g , one determines kp; d) Using

again Eq. (1.6), but for protons we get dp; e) From the equation ρ(=((d2p + d2n)
1/2) one

determines dn; f) Then Eq. (1.6) used for neutrons, yields kn. This procedure has been

applied for 194 nuclei and the results collected in several tables. Results for k, kp and kn

can be interpolated with linear functions of A, the mass atomic number:

k = 0.0513471 · A+ 4.28957, rms = 2.59477, (1.35)

kp = 0.0488292 · A+ 4.61187, rms = 2.71376, (1.36)

kn = 0.0538922 · A+ 3.80843, rms = 3.17185. (1.37)

The projected spherical single particle basis has been positively tested by realistically de-

scribing the deformed atomic clusters [2], the basic properties of the magnetic dipole mode

of scissors type (for Sm isotopes)[6] and by calculating the Gammow-Teller transition am-

plitude for the double beta decay [7].

To conclude, the coherent state approach is very useful not only for accounting for some

phenomenological properties of complex nuclei, but also for providing a unified description
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TABLE IV: With the nuclear deformation β taken for Ref.[4] and the deformation parameters as well as the canonicity constants determined

as discussed in the text we determined the quantum numbers [NljI] of the last occupied (Locc), the second last occupied (Slocc) and the

first unoccupied (Funocc) neutron states of several even-odd isotopes. Presuming that the Fermi sea is close to one of the mentioned states

we can get information upon the spin of the ground state of the odd system whose experimental values (see [3] p. 78) are listed on the last

column. Indeed in the region of the last occupied state the level density is high which results that the odd nucleon position is sensitive to

the residual interaction.

Nucleus β2 ρ d k dp kp dn kn Locc Slocc Funocc IExp

155Gd 0.252 2.939 2.078 12.4534 1.951 11.6878 2.199 13.1745 [66 13
2

1
2 ] [55 9

2
3
2 ] [66 13

2
3
2 ]

3
2

157Gd 0.271 3.161 2.235 12.5011 2.088 11.6810 2.373 13.2707 [66 13
2

1
2 ] [55 9

2
3
2 ] [66 13

2
5
2 ]

3
2

167Er 0.294 3.697 2.614 13.5377 2.430 12.5842 2.786 14.4282 [53 7
2
5
2 ] [55 9

2
5
2 ] [66 13

2
7
2 ]

7
2

177Hf 0.277 3.403 2.406 13.1820 2.245 12.2975 2.557 14.0107 [53 5
2
1
2 ] [51 3

2
1
2 ] [55 9

2
7
2 ]

7
2

179Hf 0.278 3.415 2.415 13.1845 2.252 12.2973 2.567 14.0157 [55 9
2
7
2 ] [53 5

2
1
2 ] [66 13

2
9
2 ]

9
2

187Os 0.212 2.588 1.830 12.9232 1.735 12.2539 1.920 13.5595 [53 7
2
7
2 ] [53 5

2
1
2 ] [55 9

2
9
2 ]

1
2

189Os 0.183 2.234 1.580 12.8377 1.514 12.3051 1.643 13.3491 [55 9
2
9
2 ] [53 5

2
1
2 ] [66 13

2
11
2 ] 1

2
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of spherical and deformed nuclei by means of a projected spherical single particle basis.
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II. The SSD hypothesis (single state dominance)

The validity of the SSD hypothesis has been checked for the situation when in describing

the 2νββ process the gauge invariance is restored. In the literature, three cases of 2νββ

where the major contribution (over 95%) to the decay rates is brought by a single magnetic

dipole state of the intermediate odd-odd system, have been identified. In these cases the

first state 1+ characterizing the odd-odd intermediate nucleus, is either the ground state or

a state lying very close to the ground state. For this purpose we used the projected spherical

single particle basis described before and a fully renormalized pnQRPA approach with the

gauge invariance restored. Our calculations on this line show that under the mentioned

circumstances the SSD hypothesis is no longer valid and moreover the Ikeda sum rule is

satisfied.

RESULTS, 2015

Stage 5: Specific properties of the chiral magnetic bands

In what follows I shall describe the main results obtained during the year 2015.

I. Nuclear structure with coherent states,Apolodor Aristotel Raduta,

Book, 521 pagini, Springer, Heidelberg, New York, London,

ISBN 978-3-319-14641-6, DOI 10. 1007/978-3-319-14642-3
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The book is very useful for physicists working in the field of nuclear structure

Highlights

Arguments in the favor of coherent state description. Since the coherent state was

used for the first time by Glauber for a system of photons, many progresses have been made

in extending the concept to other systems with various goals. The ground state properties

of a many body system is often described by coherent state as happens within BCS theory,

random phase approximation or the time dependent Hartree-Fock (TDHF) formalisms. In

general, the dequantization procedure defined by a time dependent variational equation

is most reliable when the trial function is of a coherent type. Indeed, only in this case

quantizing the classical trajectories the resulting spectrum might be close to that associated

with the initial many-body Hamiltonian. Such a treatment can be applied also to quadrupole

boson Hamiltonians.

The over-complete property of a coherent state allows for accounts of the dynamics caus-

ing the collective motion. Indeed, by expanding the coherent state in a Hilbert space basis,

no expansion coefficient is missing. Due to this property, for a quadrupole boson Hamil-

tonian contributions in the whole boson space are included, which is not the case when a

diagonalization procedure is adopted. The useful consequence of the mentioned property is

the role of the coherent state as a generating function for a basis of states in the considered

Hilbert space.

Here we deal with quadrupole boson Hamiltonians and therefore we use axially sym-

metric coherent state defined by the quadrupole boson, b+20 and b20, and simple polynomial

excitations of that. It is generally accepted that the nuclear system behaves more or less

classically in a state of high angular momentum. This fact recommends the coherent states

as an efficient tool for treating the high spin states. Indeed, it is well known that the coher-

ent states minimize the Heisenberg uncertainty relations, which in fact reflects a classical

character. However, the coherent state breaks several symmetries among which the most

important are the rotational and the gauge ones. The question is whether restoring these

symmetries, the classical properties are preserved or not. This feature is studied in Phys.

Rev. C 86, 054307 for the mentioned symmetries and two pairs of conjugate coordinates:

the quadrupole coordinate and its conjugate momentum and the boson number operator

40



and the conjugate phase.

Studying a second order boson Hamiltonian within a time dependent variational formal-

ism with a quadrupole coherent state as a trial function, and a constraint, the corresponding

classical equation is exactly solvable, which results in having a closed formula for the ground

band energies, which generalizes the result of Holmberg and Lipas. In the classical picture

the kinetic and potential energies are naturally separated. The potential is just the Davidson

potential. Alternatively, the energy can be obtained with the angular momentum projected

state, i.e. within an approach of variation after projection. An analytical formula for ener-

gies, similar to that resulting in a semi-classical treatment, is obtained. The two very simple

formulas have been applied to 44 nuclei covering regions characterized by different dynamic

symmetries or, in other words, belonging to various known nuclear phases. In all cases one

obtains a very good agreement with the experimental data.

The coherent state description. Being encouraged by the results obtained for the

ground band, we extended these ideas to three interacting bands, ground, beta and gamma.

We started with an axially symmetric coherent state as a model state of the ground band in

the intrinsic frame and two polynomial excitations of that, which are associated to the beta

and gamma band. The excitations where chosen such that the three states to be orthogonal

before and after angular momentum projection. The three sets of projected states have

very attractive properties:1) they depend on a real parameter which simulates the nuclear

deformation. 2) when the deformation is going to zero the functions for the ground band

tend to the highest seniority states |J
2
J
2
0JM〉, while those for gamma and beta bands go the

the second and third highest seniority states. When the deformation is large the projected

wave functions are identical with those provided by the liquid drop model. Moreover, the

continuous link between the two sets of wave functions, in vibrational and rotational limits,

is the same as the correspondence established empirically by Sheline and Sakai. Within

the restricted boson space of projected states we considered an effective boson Hamiltonian,

which yields maximally decoupled bands. For a given J the energies for beta band and

gamma band states of odd angular momentum are taken to be the corresponding average

values while the states of ground band and gamma band of even angular momenta are

obtained by diagonalizing a 2x2 matrix. Energies and quadrupole transition probabilities

are given in an analytical form, which in the vibrational as well as rotational limits become

very simple. This model is called the Coherent State Model (CSM) and has been applied
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to a huge number of nuclei belonging to different symmetry regions. Salient features are

analytically pointed out within both the laboratory and intrinsic frame.

Several Extension of CSM. The CSM was subject of several extensions: 1) A particle-

core Hamiltonian with the core described by the CSM was considered in particle-core space

to describe the properties caused by the crossing of the ground, beta and gamma bands with

a two quasiparticle-core band where the particle-like angular momentum is aligned to

the collective one leading to several backbendings. The model was applied to the Pt region

where several states 12+ have been seen. In a similar spirit we described the one and three

quasiparticle bands in even odd nuclei 2) We attached to the quadrupole bosons an isospin

quantum number distinguishing the proton-like from the neuron-like bosons. The formalism

obtained following a similar path and arguments as for CSM was conventionally called the

Generalized Coherent State Model (GCSM). This new approach describes simultaneously the

major bands , ground, beta and gamma, and one band built on the top of the scissors state

1+. We proved analytically that the GCSM predicts for the total M1 strength, of exciting

1+ from the ground state 0+, a quadratic dependence on the nuclear deformation, which in

fact confirms the collective character of the mode. Based on a semi-classical calculations we

have derived an analytical expression for the gyromagnetic factor of neutrons which corrects

the M1 transition operator towards improving the agreement with the data. The GCSM

was the first approach which was extended as to describe the scissors modes in the even-odd

nuclei, our predictions being later on confirmed by experiment.

3) Recently, the GCSM Hamiltonian was amended by a mean field, a pairing and a

particle-core term consisting of a quadrupole-quadrupole and a spin-spin interaction. The

collective magnetic dipole band is crossed by four two quasiparticle magnetic bands which

have a chiral character. The chiral symmetry is broken by the spin-spin term in four different

ways, which results in having four twin bands. I just mention that this is the first formalism

which treats the twin bands in even-even nuclei.

4) The CSM may be easily extended to the negative parity states if the unprojected state

of ground band is replaced by a product function of two coherent states, one of quadrupole

and one of octupole type. In this way the unprojected ground state violates not only the

rotational symmetry but also the space reflection symmetry. Therefore, in the laboratory

frame we have to restore not only the rotational symmetry but also the parity. In this way,

instead of three bands described by the CSM we have three pairs of parity bands. The space
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was enlarged by adding two dipole parity partner bands. We kept the principles governing

the CSM in constructing the generating functions for independent bands and the effective

Hamiltonian. Thus, the extension provides a realistic description of four rotational bands,

four of positive and four of negative parity. The properties of these bands have been studied

in several publications. Excitation energies of these bands as well as B(E2), B(E1) and

B(E3) values have been described for a large number of nuclei.

5) Adding to the Hamiltonian used at 4) an odd particle we extended the description

to the odd nuclei. Here we describe realistically six rotational bands, three of positive and

three of negative parity bands. One points out that one pair of parity partner bands exhibits

a chiral symmetry.

Projected spherical single particle basis Averaging a particle core-Hamiltonian with

a coherent state one obtains a deformed mean field which resembles the Nilsson Hamilto-

nian. On the other hand averaging the particle-core Hamiltonian with the spherical single

particle wave function one obtains a boson Hamiltonian which admits the axially deformed

quadrupole coherent states as eigenfunctions. This suggest that projecting out the good

angular momentum from the product function of a spherical shell model state and an ax-

ially deformed quadrupole coherent state might be an efficient basis to treat the particle

core-Hamiltonian. From the projected states we succeeded to select a basis. This basis

can be used to treat particle-like Hamiltonians. Indeed, when the matrix element of a par-

ticle operator is calculated, first the boson factors are orthogonalized leading to a factor

depending on nuclear deformation. In particular, the average of the particle-core Hamilto-

nian with an element of the projected spherical basis gives a set of single particle energies

whose deformation dependence is similar to that of Nilsson model states. Moreover, when

the deformation is going to zero the single particle energies go to those of spherical shell

model. Therefore the defined basis has the nice property that recovers the shell model basis

in the vibrational limit, while when the deformation goes apart from zero the Nilsson model

energies are obtained. This feature allows us to treat in an unified fashion the spherical

and deformed nuclei. This was tested by describing the scissors-like modes and the rate of

the 2νββ decay. A systematic analysis including 190 nuclei from all regions of the nuclides

periodic table, is presented in a very recent paper submitted to Annals of Physics (NY).

A phenomenological solvable model. Starting from the Bohr-Mottelson Hamiltonian

written in the intrinsic coordinates supplemented by a specific potential term, by expanding
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the rotational and potential terms in series of the variable γ around its static values, 00 and

300, we obtained a separable form for the differential equations associated to the dynamic

deformation variables, which are fully solvable. Thus, the equation in γ is satisfied by

the spheroidal or Mathieu functions. Regarding the β variable, the equations used are

alternatively those for a sextic oscillator potential with a centrifugal barrier included, an

infinite square well or a Davidson potential. Solutions were used to describe the ground,

beta and gamma bands energies and E2 transition probabilities for axially deformed and

triaxial nuclei, respectively.

Comparison with other models A special chapter is devoted to the comparison of

our methods and some phenomenological models which are very popular in the field nuclear

structure: a) The liquid drop model b) The deformed liquid drop the model of Greiner

and Faessler c) The model of Gneuss and Greiner d) The Interacting Boson Approximation

proposed by Arima and Iachello. e) The model of Lipas and Hapakowski f) The methods

developed by the group of Bonatsos for interacting rotational bands g) The two rotors model

proposed by Lo Iudice and Palumbo h) Nilsson model i) The phenomenological solvable

models mentioned above.

The book covers the essential features of a large variety of nuclear structure properties

of both collective and microscopic nature. Most of results are given in an analytical form

which give a deep insight of the considered phenomena. The detailed comparison with all

existent nuclear structure models provides the readers a proper framework and, at a time,

the perspective of new developments. The book is very useful for young as well as for

experienced researchers. Due to the selfcontent exposure, the book can be successfully read

and used also by the undergraduate students.

II. Description of chiral bands in 188;190Os

Rotational spectra appear to be a reflection of the spontaneous rotational symmetry break-

ing, when the nuclear systems acquires a static deformed shape. Fundamental properties like

the nuclear shape, mass and charge density distribution inside nucleus, electric and magnetic

moments, collective spectra may be evidenced out by the interaction of the nuclear system

with an electromagnetic field. The two components of the field are used to investigate the

electric and magnetic properties, respectively. At the end of the last century the magnetic

dipole states of scissors type [1, 2] as well as those of spin-flip type [4] have been intensively
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studied by various groups. States of scissors type have been excited in (e,e’) experiments

at backward angles and are located around 2-3 MeV, while the spin-flip states are seen in

(p,p’) experiments at forward angles and are expected to be seen in the energy interval of

5-10 MeV. A scissors mode describes the angular oscillation of protons against neutrons; the

total strength of the mode is proportional to β2, with β denoting the nuclear deformation.

Actually, this feature confirms the collective character of the mode. The sound contributions

for the mentioned field were reviewed in Refs. [3, 4]. Since the M1 strength of the scissors

mode is proportional to β2,people believed for a long time that the collective magnetic bands

are specific to the deformed nuclei.

This assertion is however not true since there are magnetic bands where the ratio between

the moment of inertia and the B(E2) value for the transition 0+ → 2+ has very large values

of the order of 100(eb)−2MeV −1. This feature can be justified by a large transversal magnetic

moment, which induces large M1 transitions but no charge quadrupole moment[6]. A large

transversal magnetic moment may be associated to a triaxial core to which a prolate-proton

and an oblate-neutron orbital. The proton angular momentum is oriented along the long

axis of the core while the neutron-s along the short axis. In a hydrodynamic model the core

rotates along the intermediate axis. Such a configuration generates a chiral pair of ∆I = 1

bands.

If the core is almost spherical then the system exhibits magnetic bands

For the chiral configuration, suppose that the three angular momenta form a right-handed

trihedron. By changing the orientation of one angular momentum, one obtains a left-handed

trihedron. This transformation is called a chiral transformation. If the model Hamiltonian

commutes with the chiral generators, the system exhibits a chiral symmetry. As always

happens the symmetry is identified when this is broken, when the energies corresponding to

the right-handed frame are different from those showing up in the left-handed frame. Hence,

a signature for a chiral symmetry is the appearance of two ∆I = 1 bands with close energies.

Here we address the question whether the chiral configuration mentioned above consisting

in one triaxial core, a particle-like proton and a hole-like neutron is a unique solution for

building up a large transversal magnetic moment.

The formalism described in this paper consists in a phenomenological core with two

components, proton- and neutron-bosons, and two quasiparticles having the total angular

momentum oriented along the symmetry axis of the system. We investigated the possible
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FIG. 13: Magnetic rotation. Particle-like proton and hole-like neutron move around a near spherical

core. The corresponding angular momenta ~jp and ~jn respectively, generate a transversal magnetic

moment ~µ⊥ perpendicular on the total angular momentum ~J .Due to the negative value of the neu-

tron gyromagnetic factor the transversal components of the proton and neutron magnetic moments

sum up, while the parallel components are subtracted from each other. Due to the large transversal

magnetic moment, the interaction with an e.m. field may excite the system in a magnetic dipole

state.

orthogonal configuration of the angular momenta carried by the mentioned components.

This would be a prerequisite of a large dipole moment. The model Hamiltonian associated

to the interacting particle-core system has the expression:

H = HGCSM +
∑

α

ǫac
†
αcα − G

4
P †P

−
∑

τ=p,n

X(τ)
pc

∑

m

q2m

(
b†τ,−m + (−)mbτm

)
(−)m −XsS

~JF · ~Jc, (1.38)

If one neglects the particle-core spin-spin term as well the scalar product Jp.Jn comprised

by HGCSM , the resulting Hamiltonian exhibits a chiral symmetry. The neglected terms

break the chiral symmetry. Indeed, by changing the sign of one angular momentum of the

trihedron JF,Jp,Jn one obtains a Hamiltonian which differ from the initial one. Associating

to each transformed trihedron a rotational band one obtains four chiral partner bands with

specific symmetries. Two of these bands are degenerate. Experimental results lead to a
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set of fingerprints of the chiral bands, conventionally called twin bands: 1) the partner

bands are close in energy 2) the energy staggering function does not depend on angular

momentum. 3) The ratios B(M1)/B(E2) as well as B(M1)in/B(M1)out where B(M1)in

and B(M1)out denote the magnetic dipole transitions in-band and inter-band, respectively.

A careful theoretical analysis show the these criteria are necessary but not sufficient, the

partner bands could belong, under certain circumstances, to different nuclear shapes. These

criteria have been checked in the numerical applications to 192Pt, 188Os and 190Os. We

underline the fact that the existent formalisms refer either to odd-odd or to odd-even nuclei.

Our description concerns the even-even nuclei. Results of our investigations were published

in the paper: Semi-phenomenological description of the chiral bands in 188;190Os,

A. A. Raduta and C. M. Raduta, J. Phys. G: Nucl. Part. Phys. 42 (2015)

065105 (16pp) . We hope that the present paper will stimulate the extension of the

experimental measurements to the even-even nuclei. Numerical results are summarized in

Table 1 and Figs 1-4. Excitation energies calculated with these parameters are compared

ρ = d
√
2 A1[keV] A2[keV] A3[keV] A4[keV] X′

pc[keV] XsS [keV] gp[µN ] gn[µN ] gF [µN ] r.m.s.[keV]

188Os 2.2 438.7 -93.8 -70.5 9.1 1.02 3.0 0.828 -0.028 1.289 16.93

190Os 2.0 366.1 92.6 24.0 12.2 1.66 2.0 0.7915 0.0086 1.289 18.63

TABLE V: The structure coefficients of the model Hamiltonian were determined by a least square procedure. On the

last column the r.m.s. values characterizing the deviation of the calculated and experimental energies are also given. The

deformation parameter ρ is adimensional. The parameter X′
pc is related to Xpc by: X′

pc = 6.5η
(−)
11

2

11

2

Xpc.

with the corresponding experimental data, in Figs. 1,2. One notes a good agreement of

results with the corresponding experimental data.
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excitation energies in ground, β and γ bands of 188Os.

Data are taken from [? ].

FIG. 15: The same as in Fig.1 but for 190Os with data

from Ref.[? ].
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FIG. 16: Excitation energies for the yrast (lower-left)

and non-yrast (lower-right) boson dipole states of 188Os.

The twin bands T1 and T2 are also shown.

FIG. 17: The same as in Fig. 3 but for 190Os. Here

the dipole bands from the lower columns are described by

|1; JM〉 and |1̄; JM〉.
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III Analytical solution for the Davydov-Chaban Hamiltonian with a sextic

potential and γ = 300

We proposed an analytical solution for a Davydov-Chaban Hamiltonian with a sextic

potential for the β variable and the variable γ fixed at the value of 300 The resulting formal-

ism is conventionally called the Z(4)-sextic model. The mentioned model exhibits analytical

solutions for the level energies of ground and beta bands, while for the γ band levels some

approximations are needed. Due to the scaling property, energies and B(E2) values depend

on a sole parameter modulo an integer number which fixes a limit for the number of states

taken into consideration. Under certain circumstances which provide simpler potentials, en-

ergies and branching ratios are independent of any adjusting parameters. Energies and the

E(2) transitions predicted by the sextic z(4)-sextic have been studied as function of one free

parameter. Results for some special cases are presented in detail. Numerical applications

refer to the isotopes 128,130,132 Xe and 192,194,196 Pt. A qualitative agreement with data

is obtained. In the case of the Xe isotopes a phase transition is pointed out.

The work shortly described above was published in the paper: PHYSICAL REVIEW

C 91, 014306 (2015), Analytical solution for the Davydov-Chaban Hamiltonian
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IV Energy spectrum, reduced quadrupole transition probabilities and shape

deformation in the even-even isotopes of 180196Pt

The even-even isotopes 180196 Pt were studied within two exactly solvable models called

”Davidson and spheroidal formalism” and ”Davidson si Matiew Approach (DMA)”, respec-

tively. The energies of the bands ground, beta and gamma as well as the reduced intraband

and inerband probabilities and the dependence of the nuclear shape on the isotope and on

the band. Numerical results are compared with the corresponding experimental data as well

as with the theoretical results obtained with other methods.

The DMA method uses the Davidson potential which yields an equation for the gener-

alized Laguere polynomials. The gamma potential is chosen such that it has a minimum

at γ0 = 300. Consequently the equation for the γ variable has the Mathieu function as

solution. In the case of the nuclei with axial symmetry the chosen potential for γ leads to a

differential equation for the spheroidal function. Numerical results are compared with both

the experimental data and those obtained by the same authors through a different approach.

These results are described in the paper: ENERGY SPECTRA, E2 TRANSITION
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PROBABILITIES AND SHAPE DEFORMATIONS FOR THE EVEN-EVEN

ISOTOPES 180196 Pt, P. Buganu and A. A. Raduta,Rom. Jour. Phys. vol. 60,

Nos.1-2, (2015), p.161-178.
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Stage 6: SSD for the double beta decay and microscopic description of finite bands

I. A new renormalization procedure of the quasiparticle

random phase approximation

A. A. Raduta, C. M. Raduta, Int. Jour. Mod. Phys. E 25,3 (2016) 1650017

The big merit of the liquid drop model (LDM) proposed by Bohr and Mottelson [1] is that

one defined the concept of rotational bands. Also, some collective properties of spherical

nuclei have been nicely described. The main drawback of LDM consists of the fact that it

accounts only for the spherical and harmonic motion of the drop, while many experimental

data reclaim a non-harmonic picture and, moreover, many nuclei exhibit static deformed

shapes. Many phenomenological improvements have been proposed along the time, among

which few are to be mentioned: a) rotation-vibration model [2]; b) Gneus-Greiner model [3];

c) generalized collective formalism [4] ; d) coherent state model [5, 6]; e) interacting boson

approximation [7]. In parallel microscopic theories have been formulated, trying to get
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counterparts of the phenomenological methods and interpret the nuclear collective motion

in terms of the single particle motion. Thus, the random phase approximation built on the

top of either the Hartree-Fock or the BCS ground state (QRPA) [8] provides a collective state

which corresponds actually to the one phonon state predicted by the harmonic LDM [9].

Another important result is that of Kumar and Baranger, who calculated the inertial and

stiffness parameter microscopically [10], the potential energy surface leading to some sound

nuclear structure interpretation. Based on the RPA ground state, several procedures of

accounting for some new correlations, i.e. of going beyond RPA, have been proposed. Such

procedures are related with the equations of motion method [11–14] or boson expansion

technique [15, 16, 18, 19].

The RPA method has also been extended to deformed nuclei by using a deformed mean

field [20, 21] and various two body interactions with the channels of particle hole (ph),

particle particle (pp) and hole-hole considered on equal footing [22]. To give an example,

a fully consistent axially-symmetric deformed Hartree-Fock-Bogoliubov (HFB) + QRPA

approach with the D1S Gogny interaction was used in Ref. [24] to study giant resonances

in Mg and Si even isotopes. A new method for solving the Skyrme-HFB-QRPA problem in

deformed nuclei was reported in Ref.[25]. Therein, the Skyrme-HFB-QRPA mean field was

calculated in the coordinate-space representation. The formalism was applied for isovector

and isoscalar quadrupole modes in spherical 20O and deformed 26Ne nuclei. The effect of

deformation on the double beta decay rate [22] has been studied within a deformed pnQRPA.

A common features of all procedures involving QRPA for deformed nuclei is the use of

a deformed single particle basis like Nilsson, deformed Woods-Saxon or projected spherical

single particle basis [23], and the quasiparticle-quasiboson approximation is built on the top

a static deformed ground state.

A procedure which keeps the appealing harmonic picture of RPA but includes in the

definition of the phonon operator new correlations, is obtained by renormalizing the specific

equations of motion [26]. This is achieved by considering in the commutation relations of the

two quasiparticle operators not only the C-number term, which actually defines the quasi-

boson approximation, but also a scalar term which is replaced by its average on the correlated

ground state. The average value depends on the RQRPA amplitudes and consequently is to

be determined self-consistently together with the RQRPA equations. Thus, the drawback

of the standard RPA formalism of collapsing for a critical value of the attractive long range
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interaction strength, is removed. Indeed, the collective root of the RPA equations goes to

zero not for a finite value of the mentioned interaction strength, but only asymptotically.

This approach was extended to the proton-neutron Gamow-Teller dipole interaction in Refs.

[27]. We notice that going beyond the quasi-boson approximation by considering additional

terms in the mutual commutation relations of the quadrupole (or dipole) two quasiparticle

operators the Pauli principle, violated by the standard QRPA formalism, is to some extent

restored. A more complex procedure was proposed in Ref.[28] where the RPA and BCS

equations are simultaneously renormalized. As a consequence the BCS and RPA equations

are coupled together and therefore are to be self-consistently solved.

Vanishing the excitation energy of the collective RPA state corresponds to a phase tran-

sition where the ground state is unstable to adding small contribution. Around this critical

interaction the RPA method is no longer valid. In order to stabilize the ground state it is

necessary either to change the mean field for the single particle motion, which results in

having deformed single particle orbits, or to renormalize the basic equations.

A distinct renormalization procedure was proposed by Takada in Ref.[29]. The author

defines two consecutive spherical Bogoliubov-Valatin (BV) transformation for treating the

pairing interaction. In the second order quasiparticle representation, one builds a phonon

operator including a scattering term, conventionally called as attached field, which allows

accounting for nonlinear effects ignored in the standard QRPA. The model was tested,

with positive results, for a single j-shell. Note that the second BV transformation is also

spherical, i.e. the new quasiparticle operators are tensors of definite rank. Therefore the new

ground state takes account of the paring correlations but not of the quadrupole-quadrupole

interaction. The non-linear effects which renormalize the QRPA are due to the attached

term and not by deforming the single quasiparticle mean-field.

In the present paper we propose a new method of renormalizing the QRPA equations.

As we shall see, the result for the collective root is that it does not vanish in a critical

interaction strength, where the standard QRPA collapses, but reaches a minimum value

and moreover the energy increases when a subsequent increase of the strength is performed.

The new point of this work is that the mean field is redefined in the quasiparticle picture

by including in the ground state the quasiparticle quadrupole pairing correlations. Hence

the ground state is redefined by terms of the QQ interaction and not exclusively by pairing

correlations, as in Ref.[29]. As a result, both the new quasiparticles and the new QRPA
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FIG. 18: The spherical QRPA energy as function

of the quadrupole-quadrupole interaction strength for

the case of a single shell, j = i13/2.

FIG. 19: The deformed quasiparticle energies for

the j = i13/2 multiplet.

solutions are deformed. Thus, we formulated an approach of renormalizing the QRPA such

that no breaking down shows up. Indeed, the first QRPA energy, instead of vanishing, it

becomes minimum and then, by increasing the long range interaction strength, is increasing.

Things happen as if the effective interaction changes its character, from attractive to an

repulsive one. The formalism redefines first the system ground state by accounting for the

quasiparticle quadrupole pairing interaction. Moreover, on the top of the newly defined

ground state a QRPA description is constructed. It turns out that the drawback of the

standard QRPA of collapsing for a critical value of the interaction strength, is removed. In

the new picture some higher QRPA dynamics is included. Indeed, the scattering terms are

effectively participating in building up the new phonon operator.

We note that the new quasiparticles are not tensors of definite rank and projection. They

have however a definite j. This makes the difference with the picture where first one defines

a deformed mean field and then the pairing correlations are considered. In this case j is not

a good quantum number, but Ω is. This difference favors the present approach, when the

QRPA is supplemented by an angular momentum projection operation of the many body

states.

The states considered in the present work are characterized by K = 0 and therefore by

the total angular momentum projection, finite bands of K = 0 can be defined. Results are

summarized in the following figures:
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FIG. 20: The average number of quasiparticles in

the second order BCS state, |B̃CS〉.

FIG. 21: The first QRPA equation root as a func-

tion of the QQ interaction strength. The minimal two

quasiparticle energies are also presented as a function

of X.
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FIG. 22: The first excited state energies predicted

by the renormalized QRPA are compared with the en-

ergy of the first 2+ state, given by the exact calcu-

lation in the case of 2 nucleons moving in the single

shell j=13/2. The minimal two quasiparticle energies

are also presented. The three sets of energies are plot-

ted as function of the QQ interaction strength, X. The

RQRPA results correspond to q0 = 56fm2

FIG. 23: The first excited state energies predicted

by the renormalized QRPA are compared with the en-

ergy of the first 2+ state, given by the exact calcu-

lation in the case of 4 nucleons moving in the single

shell j=13/2. The minimal two quasiparticle energies

are also presented. The three sets of energies are plot-

ted as function of the QQ interaction strength, X. The

RQRPA results correspond to q0 = 40fm2
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Results were in detail described in the paper: A new renormalization procedure of

the quasiparticle random phase approximation, A. A. Raduta, C. M. Raduta,

Int. Jour. Mod. Phys. E, Vol. 25,o. 3(2016) 1650017.
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II Specific features and symmetries for magnetic and chiral bands in nuclei,

A. A. Raduta, Progress in Particle and Nuclear Physics, 90 (2016) 241-298

The magnetic bands have been first seen in 198,199Pb. There are two mechanisms of gener-

ating angular momentum in the magnetic bands: a) the shears-like motion of the proton

and neutron and the collective rotation of the core. At the beginning of the band the states

have mostly a shears character, while the core contribution is about zero. Increasing the

rotation frequency, the shears become closer and closer and the core’s rotation generate an

increasing amount of angular momentum. Correspondingly, the transversal magnetic mo-

ment of the shears blades is decreasing and finally vanishes. The magnetic bands show up

due to the spontaneous breaking of the rotation symmetry for the currents distribution. The

name comes from the fact that the magnetic moment is the order parameter in the phase

transition generated by the mentioned symmetry breaking. The magnetic bands are finite

and non-collective since only few particle participate in determining the M1 transitions.

The first nucleus suspected to be chiral was 134Pr, although later on it was proved that

despite the partner bands are close in energy they correspond to different shapes, which

results in having different electromagnetic properties.

The field of magnetic and chiral bands developed very rapidly such that so far several

nuclear mass regions, e.g. A ∼ 60, 80, 100, 130, 190, 200, have been intensively explored.

Experimentalists formulated a set of criteria which could play the role of fingerprints for

identifying the chiral bands. On the other hand theoreticians tested their approaches by

requiring several conditions to be fulfilled in order to call a band doublet as chiral. In the

intrinsic frame the chiral symmetry is broken. This is restored in the laboratory frame

which results in having two non-degenerate bands. The degeneracy from the intrinsic frame
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is removed due to the tunnelling process between states of different handedness. However,

for large spin the barrier between two types of states is too high such that the tunneling is

prevented and the two bands become degenerate. Thus, the chiral doublets last for a finite

interval of spins. Moreover chirality is not a collective phenomenon, since it is the effect of

few particle motion.

Theoretical approaches like TAC (tilted axis cranking) and PRM (particle-rotor model)

have been used first for odd-odd nuclei where the chiral geometry, responsible for maximal

transversal magnetic moment, consists in one high j particle-like proton and a high j hole-like

neutron coupled to a triaxial rigid rotor. The interacting system is considered in the intrinsic

reference frame, whose axes coincide with those of the inertia ellipsoid. The minimum energy

condition is satisfied when the proton is oriented along the short axis, the neutron along

the long axis, while the collective angular momentum of the core is aligned, according to

the hydrodynamic model to the intermediate axis, since this has the maximum moment

of inertia. Such a configuration minimizes also the Coriolis interaction, which favors the

angular momenta alignment and moreover, the proton and neutron wave functions have a

maximal overlap with the density distribution ellipsoid.

This concept was extended to a set of protons of particle-type and a set of neutron of

hole-type coupled to a triaxial core. Other extensions referred to the odd-even and the

even-even nuclei. The chiral bands are first of all, finite bands; they are close in energy, the

intra-band M1 transitions are large and E2 transition small. Also, the moments of inertia

in the two bands are similar or close to each other.

The chiral character of the band doublet is induced by the aplanar motion associated

to the angular momentum of the valent proton-particles, hole-neutrons and triaxial rigid

core which may be combined as a left- or right-handed frames. The doublet structure is a

reflection of the chiral symmetry restoration in the laboratory frame.

Since in many of theoretical approaches the triaxial rigid rotor is employed for the collec-

tive core, a chapter was devoted to the semi-classical description of the triaxial rigid rotor as

well as to the study of the cranked triaxial rotor, hoping that this information will be useful

to the young readers. Dequantizing the quantal triaxial rotor and separating the kinetic

and potential energy and then quantizing the result one finds a pair of degenerate bands of

different handedness. The degeneracy is lifted up due to the tunneling through the potential

barrier in the region of low spins. Increasing the spin the two bands become degenerate. The
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results for planar and aplanar motion are analytically presented. The semi-classical spec-

trum of the triaxial rotor shows an wobbling structure in the lowest order and a nonlinear

n-dependence (the number of quanta) for energies, when an approximation going beyond

wobbling is adopted.

The PRM is a quantal approach which treats the system in the laboratory frame and,

therefore, the double chiral members are not degenerate, while the TAC is a semi-classical

procedure which first determines variationally the position of the angular momenta with

respect to the density ellipsoid. TAC is able to describe the yrast band, while the coupling

to the triaxial rotor or to a collective core, provides the side bands.

The angles specifying the position of the angular momentum (θ, ϕ) play the role of dy-

namic coordinates and may be used for describing the angular momentum motion. The

deviation from the planar motion is described by the coordinate φ whose motion is softer

than that of θ. The quantal equation for this coordinate is depending on the TAC solutions

for the single particle motion. The corresponding potential has two symmetric minima,

separated by a barrier. When the height of this barrier is small the system is tunneling

from one minimum to another, which results in having an oscillatory motion, called chiral

vibration. The barrier height increases with the rotation frequency and one reaches the

situation when the wave function is localized in the two minima. The motion is stabilized

in the two minima and that corresponds to the chiral rotation. The band degeneracy is re-

moved and two chiral partner bands show up. If the functions are localized and the barrier

is very high, the penetration is not possible any longer and the approach breaks down. To

continue the description for higher spins one has to treat the correlations of the TAC trajec-

tories through the RPA approach. An order parameter for chirality, called handedness, was

defined by Grodner in Ref.[1]. The dynamic variable associated to chirality are the tilted

angles specifying the orientation of the total angular momentum.

Various theoretical approaches were briefly discussed along this paper. The mean field

and the two body interactions governing the many nucleon motion have been treated by

cranking with deformed Woods-Saxon single particle orbits, adding the Strutinski correction,

by Skyrme interaction, by relativistic covariant density functional theory, by 3D TAC and

TAC+RPA. For many of experimental results these formalisms constituted efficient tools

for interpreting the data. On the other hand the modern detection techniques allowed to

separate bands with regular structure suspected to be of magnetic or chiral nature and thus
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stimulated further improvements of the theoretical methods, increasing their capability to

interpret the new data.

A new type of chiral motion in even-even nuclei was also presented, where the chiral

geometry is achieved by two high j proton quasiparticles aligned to the OZ axis, coupled to

a boson proton-neutron core described by the generalized Coherent State Model (GCSM). At

the beginning of the chiral bands the 2qp angular momentum and the two collective angular

momenta carried by the proton and neutron bosons respectively, are mutually orthogonal,

which determine a large transversal magnetic moment. A particle-core type Hamiltonian is

diagonalized in a basis consisting in a set of collective states of good angular momentum

and a 2qp ⊗ core states, where the core’s states were taken as the magnetic dipole states

belonging to the band built on the scissors state 1+. Thus one obtained four chiral bands

among which two, B2 and B1, describe very well the experimental bands denoted by D4

and D′4 in Ref.[2], which have the fingerprints of chiral bands. The B3 and 1′+ bands are

mainly determined by a term proportional to (Jp − Jn)
2 and thereby are called as second

order scissors modes. A detail comparison between this approach and that proposed by

Frauendorf and Meng is presented. As we already mentioned the chiral bands appear to be

a consequence of chiral symmetry restoration. This symmetry is broken in the intrinsic frame

where it can be combined with other symmetry breaking as is for example the reflection-

asymmetric shapes. Correspondingly in the laboratory frame both symmetries are to be

restored which result in having four partner bands, two of positive and two of negative

parity.

A large space was devoted to account for the actual status of the experimental measure-

ments searching for chiral bands in various A-mass regions. There are so many publications

with experimental and theoretical content so that fatally I omitted mentioning some of them.

I assure the authors that this happened out of my intention.

By no means, the field of the magnetic and chiral bands is fascinating for the interesting

features unveiled by both experimental and theoretical researches. The large volume of pub-

lications is a confirmation that nuclear structure is a vivid field able to produce outstanding

results.

This review paper contains 22 figures, 8 tables and 174 references, and describes in 58
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pages the up to date status of the field.

[1] E. Grodner, Acta, Phys. Pol. B 39 (2008) 531.

[2] C. M. Petrache et al, Phys. Rev. C 86, 044321 (2012).

III. New type of chiral motion in even-even nuclei: the case of 138Nd,

A. A. Raduta, Al. H. Raduta and C. M. Petrache,

J. Pjys. G: Nucl. Part. Phys. 43 (2016) 095107

In this paper we described a particle-core formalism for the chiral bands. The application is

made for 138Nd, where some experimental data are available [2, 3]. The phenomenological

core is described by the GCSM. Particles move in a spherical shell model mean-field and

alike nucleons interact among themselves through pairing. The outer particles interact with

the core by a spin-spin force. The model Hamiltonian was treated within a restricted space

associated to the phenomenological core and the subspace of aligned two proton quasiparticle

states, from the h11/2 sub-shell, coupled to the states of the phenomenological scissors-like

dipole states.

The eigenvalues of the model Hamiltonian within the particle-core subspace are arranged

in four bands denoted by B1, B2, B3 and B4, respectively. The bands B3 and B4 correspond

to the particle-core states transformed by changing Jp → −Jp and Jn → −Jn respectively

and are degenerate. Energies as well as the M1 and the E2 transition rates for these bands

are quantitatively studied. The results of our calculations confer the character of chiral

doublet partners to the bands B1 and B2.

Also, the intra-band B(M1) values are large and vary when one passes from one band to

another. On the contrary, the B(E2) values do not depend on band and in general are small.

The energy spacing in all four bands is almost constant. This is reflected by the associated

energy staggering functions shown in Fig. 25. As a matter of fact these properties confer

the bands B1 and B2 a chiral character. The bands B2 and B1 describe the experimental

bands D4 and D′4 of 138Nd.

Our work proves that the mechanism for chiral symmetry breaking, proposed in Ref. [1],

which also favors a large transverse component for the dipole magnetic transition operator,
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is not unique.

Note that the bands B3, B4, as well as the partner bands associated to the collective

bands describing the core, emerge from their sister bands by considering the contribution of

the collective term (Jp−Jn)
2. Recalling that such term determines the excitation energy of

the scissors mode, we can call the mentioned doublet members as the second order scissors

bands.

In order to compare the present approach to the existent formalisms, we have to remember

few specific features of the preceding procedures. For odd-odd nuclei several groups identified

twin bands in medium mass regions [7–10] and even in heavy mass regions [11–13]. The

formalisms proposed for these bands were based either on the Tilted Axis Cranking (TAC)

approach [14] or on the two quasiparticle-triaxial rotor coupling model [15–18]. Although the

efforts were mainly focused on identifying and describing the chiral twin bands in odd-odd

nuclei, few results for even-odd [19–24] and even-even [25] nuclei were also reported.

Also, it is worth mentioning another boson description of the chiral phenomenon, which

uses the interacting boson-fermion-fermion model (IBFFM-1) [26–29]. This hinges on the

interacting boson model(IBM-1)( where there is no distinction between proton bosons and

neutron bosons) for even-even nuclei and IBFM-1 for odd-A nuclei. The vibrational and

rotational degrees of freedom are taken into account in describing the core by the Interacting

Boson Model (IBM) with O(6) dynamical symmetry which resulted in proposing a dynamic

chirality with the shape fluctuation [27]. Within the IBFFM-1, a triaxial shape is obtained

by adding to the IBM1 Hamiltonian, describing the even-even core, a cubic (three-body)

term. Also, it was shown that an important improvement of the agreement between the

calculated and corresponding experimental data in the odd-A nuclei, is obtained if the

exchange effect is accounted for. This effect reflects the anti-symmetrization of the odd

nucleon and the nucleons involved in the boson structure. Within the IBFFM-1[28] the

dynamic chirality in 134Pr was also studied. The analysis of the wave functions has shown

that the possibility for angular momenta of the valence proton, neutron and core to find

themselves in the favorable, almost orthogonal geometry, is present but not dominant. Such

behavior is found to be similar in nuclei where both the level energies and the electromagnetic

decay properties display the chiral pattern, as well as in those where only the level energies

of the corresponding levels in the twin bands are close to each other. The difference in

the structure of the two types of chiral candidates nuclei can be attributed to different
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β and γ fluctuations, induced by the exchange boson-fermion interaction of the interacting

boson fermion-fermion model, i.e. the anti-symmetrization of odd fermions with the fermion

structure of the bosons. In both cases the chirality is weak and dynamic. The interacting

boson-fermion model was extended by including broken proton and broken neutron pairs

[30]. The application to 136Nd showed a very good agreement with experimental data for

eight dipole bands, including the high spin region.

The formalism proposed in the present paper concerns the even-even nuclei and is based

on a new concept. Indeed, there are few features which are different from the main char-

acteristics of the model proposed by Frauendorf for odd-odd nuclei [1, 14]. Indeed, here

the right- and left-handed frames are the angular momentum carried by two aligned pro-

tons and by proton and neutron bosons respectively, associated to the core. Within the

model proposed by Frauendorf, the shears motion is achieved by one proton-particle and

one neutron-hole, while here the shears blades are the proton and neutron components of

the core. The B(M1) values are maximal, in the Frauendorf’s model, at the beginning of

the band and decrease with angular momentum and finally, when the shears are closed, they

are vanishing since there is no transverse magnetic momentum any longer. By contrast,

in the present formalism the B(M1) values increase with the angular momentum. In both

models the dominant contribution to the dipole magnetic transition probability is coming

from particles sub-system. This property is determined by the specific magnitudes of the

gyromagnetic factors associated to the three components of the system. Due to the fact

that only few particles participate to determining the quantitative properties, the chiral

bands seem to be of a non-collective nature. Since the two schematic models reveal some

complementary magnetic properties of nuclei, they might cover different areas of nuclear

spectra.

The results are presented in a synthetic manner in the figures and table which follow.
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B1 band B2 band B3 band B4 band

I B(M1) A
(I)
pn A

(I)
F B(M1) A

(I)
pn A

(I)
F B(M1) A

(I)
pn A

(I)
F B(M1) A

(I)
pn A

(I)
F

11+ 0.662 -1.041 2.705 3.352 -1.041 -2.705 1.931 0.138 2.705 1.574 -0.138 2.705

12+ 1.664 -0.989 3.629 5.093 -0.989 -3.629 3.376 0.131 3.629 2.922 -0.131 3.629

13+ 2.596 -0.933 4.231 6.365 -0.933 -4.231 4.526 0.123 4.231 4.027 -0.123 4.231

14+ 3.409 -0.886 4.665 7.358 -0.886 -4.665 5.460 0.117 4.665 4.938 -0.117 4.665

15+ 4.109 -0.847 4.996 8.151 -0.847 -4.996 6.229 0.112 4.996 5.694 -0.112 4.996

16+ 4.711 -0.813 5.256 8.796 -0.813 -5.256 6.868 0.108 5.256 6.328 -0.108 5.256

17+ 5.231 -0.784 5.465 9.325 -0.784 -5.465 7.405 0.104 5.465 6.863 -0.104 5.465

18+ 5.681 -0.758 5.637 9.762 -0.758 -5.637 7.857 0.100 5.637 7.317 -0.100 5.637

19+ 6.071 -0.734 5.777 10.123 -0.734 -5.777 8.239 0.097 5.777 7.702 -0.097 5.777

TABLE VI: The magnetic dipole proton-neutron and fermion transition amplitudes for the bands

B1, B2, B3, B4.
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FIG. 24: The excitation energies, given in MeV, for

the bands B1, B2, B3 and B4. The experimental chiral

partner bands D4 and D′4 are also shown. The band

B2 is to be compared with the experimental band D4,

while B1 with D′4.

FIG. 25: The energy staggering function given in

units of keV/~, is represented as function of J for the

partner bands B1 and B2 as well as for the band B3.
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C. The participation of the young researchers

As results form the list of publications regarding the subjects of the project, the young

researchers Radu Budaca and Petrica Buganu are coauthors of several papers. Also the two

young researchers attended international conferences where presented oral communications

or posters.

D. Difficulties encountered: None

E. Economic and social impacts.

The performed researches have a fundamental character. Thereby the final product is

the knowledge. As results form the present report as well as form the attached papers

the advanced hypotheses are 100% original and because of that the added value for the

team activities represent an important contribution to the knowledge development in the

field as well as to enriching the Romanian scientific creative treasure. We believe that our

results will have a positive international echo and thus the Romanian science visibility will

be improved. Also the obtained results contribute to creating a proper academic climate

for coming topical research in he field. An example on this line is the training of the young

researchers belonging to the project team. It is interesting to notice that when the project

began the two young people where beginner doctorands. In the meantime they defended

their PhD thesis, won the competition for scientific researcher which allowed them to be

permanently employed in the Department of Theoretical Physics of IFIN-HH. Moreover in

2013 they were promote to the functions of Principal Researcher of rank III. The reason was

that they have an important number of publications in the major international journals.

These data prove that the atmosphere in the group of Prof. Dr. Apolodor Raduta is

encouraging for young researchers in a complex and difficult field.

F. Dissemination, mobility

The team members attended several international conferences where presented invited
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lectures, communications and posters. Here is the list of conferences and contributions:

1) International conference ”Nuclear Structure and related topics”, Dubna 2012. There

Prof. A. A. Raduta presented the lecture FRpnQRPA approach with the gauge symmetry

restored. Application for the 2νββ decay. The lecture appeared in the conference proceedings

2) Dynamics of open nuclear systems, Predeal, 2012.

At this conference we had several oral presentations:

a) Invited lecture (Prof. Dr. A. A. Raduta):2νββ decay within a higher pnQRPA approach

with the gauge symmetry preserved

b) Communication (Dr. R. Budaca): A semi-microscopic approach to the back-bending

phenomena in even-even nuclei

c) Communication (Dr. P. Buganu): Towards a new solvable model for the even-even

triaxial nuclei

These works have been published in the conference proceedings.

3) European Conference on Nuclear Physics,Bucharest, September 16-21,2012.

At this conference we had two lectures and two communications:

a) Invited lecture (Prof. Dr. A. A. Raduta): Description of various nuclear phases within

the Coherent State Model

b) Invited lecture (Prof. Dr. A. A. Raduta):New results for 2νββ decay within a FRpn-

QRPA approach with the gauge symmetry restored.

c) Communication (Dr. R. Budaca):Semi-microscopic description of the back-bending

phenomena in deformed even-even nuclei.

d) Communication (Dr. P. Buganu): Toward a new description of triaxial nuclei.

Finally the following features are to be mentioned:

i) All presentations are directly related to the subjects considered in our project.

ii) At these conferences Prof. Dr. A. A. Raduta was chairman at one morning session

(Dubna) and two afternoon sessions (conferences 2 and 3 in the list)

The communicated papers have been published in the conferences proceedings:

1) A semi-microscopic approach to the back-bending phenomena in even-even nuclei,A A

Raduta and R Budaca,Journal of Physics:EPJ WEB, Conference Series 413 (2013) 012028.

2) Towards a new solvable model for the even-even triaxial nuclei, A. A. Raduta and P.

Buganu,Journal of Physics:EPJ WEB Conference Series 413 (2013) 012029.
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3)FRpnQRPA approach with the gauge symmetry restored. Application for the 2 decay,

A. A. Raduta and c. M. Raduta, EPJ Web of Conferences 38, 14003 (2012).

4)FRpnQRPA APPROACH WITH THE GAUGE SYMMETRY RESTORED. APPLI-

CATION FOR THE 2 DECAY , A. A. Raduta,(c) Rom.Journ. Phys., Vol.57,nr. 1-2, pp.

442-471, 2012

5) 2νββ decay within a higher pnQRPA approach with the gauge symmetry preserved,

A. A. Raduta, and C. M. Raduta, Journal of Physics: Conference Series 413 (2013) 012014.

Posters

1. Application of the sextic oscillator potential together with Mathieu and spheroidal

functions for triaxial and X(5) type nuclei , Apolodor A. Raduta and Petrica Buganu, Firenze

Conference, Italy, 2013,EPJ Web of Conferences 66, 02086 (2014), DOI: 10.1051/epjconf/

201 4 66020 86.

2. Semi-microscopic description of the proton- and neutron-induced back-bending phe-

nomena in some deformed even-even rare earth nuclei, R. Budaca and A. A. Raduta, Firenze

Conference Italy, 2013, EPJ Web of Conferences 66, 02017 (2014), DOI: 10.1051/epjconf/

201 4 6602017.

Invited lectures at the Balcanic Conference, 2013

1. Radu Budaca, The 13th International Balkan Workshop on Applied Physics, Con-

stanta, Romania, 4-6 July 2013.

2.Petrica Buganu, The 13th International Balkan Workshop on Applied Physics, Con-

stanta, Romania, 4-6 July 2013. These lectures where included in the proceedings.

Attending conferences, working stage abroad

1) Prof. Dr. Apolodor Raduta, Institut fur Theoretische Physik der Universitaet, Tue-

bingen, Germany, 3 months starting with 1.05.2011.

2) Prof. Dr. Apolodor Raduta, Institut fur Theoretische Physik der Universitaet, Tue-

bingen, Germany, 3 months starting with 1.09.2013.

3) On 5.11.2013, being invited by Tuebingen University Prof. dr. Apolodor Raduta

presented the lecture ”Fascinating physics of neutrinos as a severe test of some modern
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theories.” This was the first lecture in the series (of 6 lectures), named Humboldt lectures,

for the academic year 2013-2014. It is to be noted that the lecture subject is one of those

included in the project ID-2-2011.

4) Dr. Radu Budaca, International Conference on Nuclear Physics, Firentze, Iune, 2013.

5) Dr. Petrica Buganu, International Conference on Nuclear Physics, Firentze, Iune,

2013.

6) Dr. Petrica Buganu, 7th Workshop on shape phase transitions and critical point

phenomena in nuclei, March 2014, Sevillia, Spain. Here he had two oral presentations:

i. Phenomenological description of triaxial nuclei.

ii. Phase transitions within some solvable models.

7) In the period of 16.09-24.09.2014, Dr. Radu Budaca attended the International school

of Nuclear Physics, 36th course Nuclei in the Laboratory and in the Cosmos Erice-Sicily,

Italy.

8) In period of 20.11.2014-22.11.2014, Dr. Radu Budaca participated at the TIM14

Physics Conference -Physics without frontiers, Timisoara. At this conference he presented

orally the work: Quartic oscillator potential in the -rigid regime of the collective geometrical

model.

G. Promoting to a higher position

1) Radu Budaca was promoted to the position of Scientific Researcher of rank III.

2) Petrica Buganu was promoted to the position of Scientific Researcher of rank III.

28.11.2016 Prof. Dr. Apolodor Raduta
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