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The procedure used in a previous publication [11] to describe the multiplets 0+

and 2+ was extended to two other multiplets 4+ and 6+. Using the same parameters as
in the quoted reference we calculated the semiclassical energies for the new multiplets
and results were compared with the corresponding experimental data. Alternatively, the
energies are considered as eigenvalues of the model Hamiltonian with the already fixed
structure coefficients. This method works pretty well for 154Gd but fails for the rest
of nuclei. For these nuclei the fitting procedure for the parameters defining the model
Hamiltonian must be applied by considering all energy levels from the four multiplets.

1. INTRODUCTION

The collective states of deformed nuclei are usually classified in rotational
bands distinguished by a quantum number K, which is the angular momentum pro-
jection on the z axis of the intrinsic reference frame. The collective character of
the states is diminished by increasing the value of K [1–4]. In Ref. [5] one of us
(A.A.R.) suggested a possible method of developing bands in a horizontal fashion.
Indeed, therein on the top of each state in the ground band a full band of monopole
multi-phonon states has been constructed. This idea was recently considered in a
phenomenological context by trying to organize the states describing the motion of
the intrinsic degrees of freedom, in bands. Thus, two intrinsic collective coordinates,
similar to the nuclear deformations β and γ, are described by the irreducible repre-
sentations of a SU(2) group acting in a fictitious space (i.e. not in ordinary space) .
Compact formulas for excitation energies have been obtained [6, 7].

Later on we addressed the question whether these expressions could provide a
realistic parametrization of the data. We were interested to describe about 26 states
0+ and 67 states 2+ observed in 168Er by means of the (p,t) reaction [8]. In the cited
paper the excitation energies and the corresponding reaction strengths were provided.
These data were described qualitatively by two microscopic models, called projected
shell model (PSM) and quasiparticle phonon model (QPM), respectively.
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Both models have some inherent drawbacks. PSM restricts the fermion space
to four quasiparticle states and even from the four qp space the states with four
alike quasiparticles are excluded. This is not the case of QPM where the multi-
quasiparticle components are taken into account by means of the QRPA approach.
However, the final states contain at most two phonon states. These states violate the
Pauli principle and moreover are not states of good angular momentum.

The first attempt to fit the data of Ref. [8] was made in Ref. [9] by using a
phenomenological model which was earlier developed in Ref. [7]. We used alter-
natively two boson Hamiltonians including high anharmonicities, one being treated
semi-classically while the other one being diagonal in the standard quadrupole boson
basis, |NV αJM〉. The parameters involved in the model Hamiltonian were fixed by
a least mean square procedure. A nice agreement between the calculated energies for
the two sets of states 0+ and 2+ has been obtained. Although the experimental data
for the E2 transitions linking the states 0+ and 2+ are lacking we presented closed
formulas for them.

After the quoted paper showed up another 12 new states 2+ have been identified
in the same nucleus (168Er ) by a more careful examination of the data from the (p,t)
experiment [10]. This was certainly a challenge for us to check whether the new
data could be described with the earlier fitted parameters. Amazingly the new data
fell on the theoretical curves for energies. This was a good reason to extend our
boson description to some other nuclei. The results were all positive and described
in Ref. [11].

Certainly some of the considered states have a pronounced two (or many)
quasiparticle character. The question which we however raise is whether these can
be mimicked by the phenomenological multiphonon states.

The aim of this paper is to investigate whether the compact energy formulas
can be also used for higher angular momentum multiplets like 4+ and 6+. The sim-
plest path to follow is to start with those nuclei considered in Ref. [11] and use the
parameters determined in the previous analysis for the states 0+ and 2+. Then, in a
subsequent work we shall make a systematic study of the states 0+,2+,4+,6+ and
point out the global features (if any).

For the sake of completeness and, at a time, for facilitating the presentation
of the results we describe very briefly the formalism which leads us to the compact
formulas we are going to use.

Thus the plan for our exposure is as follows. In Section 2 we present the semi-
classical formalism while the boson description given in Section 3. Numerical ana-
lysis is made in Section 4 while the final conclusions are drawn in Section 5.
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2. SEMICLASSICAL DESCRIPTION

Although more details on the model can be found in Ref. [7], we give here the
essential information to make the presentation self-contained. We use a sixth-order
quadrupole boson Hamiltonian:

H = εN̂ +
∑

J=0,2,4

CJ

[(
b†2b
†
2

)
J

(b2b2)J

]
0

+F
(
b†2b
†
2

)
0
N̂ (b2b2)0 . (1)

where b†2µ, b2µ, with −2 ≤ µ ≤ 2, are the quadrupole boson operators and N̂ the

boson number operator. Averaging H on a coherent state for the bosons b†20 and
1√
2
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†
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one obtains a classical Hamilton function, H, depending on two canonical coordi-
nates, q1 and q2, and their corresponding conjugate momenta.
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The new coefficientsA,B,C,F depend on the parameters ε,CJ involved in the initial
boson Hamiltonian.

A= ε, B =
1
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35
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35
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The classical Hamilton function describes a system of two degrees of freedom or,
in other words a particle moving in a plane. Basically it contains a kinetic and a
potential term plus a coupling term depending on both the coordinates and the con-
jugate momenta. The potential energy depends only on coordinates and has a simple
expression:

V (q1, q2)≡H|p1=p1=0 =
A

2
(q21 + q22) +

B

4
(q21 + q22)2 +

F

40
(q21 + q22)3. (6)
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H contains two distinct terms describing an anharmonic motion of a classical plane
oscillator and a pseudo-rotation around an axis perpendicular to the oscillator plane,
respectively. Taking into account that the third component of the pseudo-angular
momentum is a constant of motion, the classical Hamiltonian in the reduced space
can be easily quantized and the resulting energy is:

εn,M =A(n+ 1) +B(n+ 1)2 +
C

2
M2 +

F

5

[
(n+ 1)3−4(n+ 1)M2

]
, (7)

The number of the plane oscillator quanta is denoted by n while the value of the
third component of the pseudo-angular momentum is M . Actually, Eq. (7) repre-
sents a semi-classical spectrum which describes the motion of the intrinsic degrees
of freedom which are related to those introduced by the liquid drop model, i.e. β and
γ. Assuming that the rotational degrees of freedom are only weakly coupled to the
motion of the intrinsic coordinates, the total energy associated to the motion in the
laboratory frame can be written as a sum of two terms corresponding to the intrinsic
and rotational motion, respectively:

εn,M,J =A(n+1)+B(n+1)2 +
C

2
M2 +

F

5

[
(n+ 1)3−4(n+ 1)M2

]
+δJ(J+1)

(8)
This expression for energies is a generalization of that obtained in Refs. [12, 13]
where the energies from the ground state band were represented as a weighted sum
of a vibrational and a rotational term. In Ref. [7] it was shown that the components
of the pseudo-angular momentum ~L, are obtained by averaging the generators of a
boson SU(2) algebra with the coherent state given by Eq. (2). An explicit expression
of the angular momentum in the laboratory frame and the pseudo-angular momentum
expressed in terms of the intrinsic coordinates is given in Ref. [7]. Considering that
the pseudo-angular momentum is perpendicular to the (q1, q2) plane, i.e., M=L, the
above mentioned relation between L and J suggests the values M = 2 when J =
4 and M = 3 for J = 6. Alternatively, we could chose M =

√
L(L+ 1) which

leads to M =
√

6 and
√

12 for J=4 and J=6 respectively. The results presented here
correspond to the first option.
With these restrictions the excitation energies for the states 4+ and 6+ become:
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3. BOSON DESCRIPTION

We note that the Hamiltonian introduced in the previous section is a boson
number conserving Hamiltonian involving anharmonicities up to the sixth order. De-
spite this feature we showed that one could obtain analytical expressions for its eigen-
values. In order to prove that we write the Hamiltonian in a slightly different form
using the results of Ref.[7] concerning the fourth order boson term:

H =(A+γ)N̂ + (B+
C

8
)N̂2− 1

6
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8
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where the coefficient γ has the expression:

γ =
2

7
√

5
C2−

3

7
C4. (11)

This Hamiltonian commutes with the operators N̂ , Λ̂, Ĵ2, Ĵz where Λ̂ denotes the
Casimir operator of the group R5:

Λ̂ = N̂(N̂ + 3)−5(b†2b
†
2)0(bb)0. (12)

The Hamiltonian is diagonal in the basis |NvαJM〉, where the specified quantum
numbers are the number of bosons, seniority, missing quantum number, angular mo-
mentum and its projection on the z axis, respectively.

We just mention that this basis was explicitly constructed in both the labora-
tory and intrinsic frames in Ref. [14]. The analytical form of this basis seems to
be very useful to calculate the matrix elements of any operator which is monomial
in quadrupole bosons [15]. The quantum number α is called the missing quantum
number due to the degeneracy appearing in the reduction from the group R(5) to the
groupR(3). The number of degenerate states was analytically calculated in Ref. [16].

The eigenvalues of H in the mentioned basis are:
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By contrast to the semi-classical energies given by Eq.(8), the eigenvalues of H are
characterized by two quantum numbers, N and v. Due to this feature one expects
that the new expression for energies yields a better description of the data.
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We attempt to describe the available data for 4+ and 6+ by the lowest two se-
niority states. Since N−v must be even, for each angular momentum we distinguish
states described by even and by oddN , respectively. Thus, for J=4 and J=6 the above
equation becomes:
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It is worth mentioning that the sets of energies of the same seniority but different
angular momentum have the same N dependence. Consequently the difference
EN,3,6−EN,3,4 is independent of N . From Eqs. (13) one finds very simple ex-
pressions for the relative energies characterizing the multiplets 4+ and 6+:

EN,2,4−EN,3,4 =
8

5
F (N −2)−C,

EN,3,6−EN,4,6 = 2F (N −2)− 5

4
C, (14)

EN,3,6−EN,3,4 = −11

3

(
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1

8
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)
,

5(EN,2,4−EN,3,4) = 4(EN,3,6−EN,4,6).

These simple equations might be useful when the parameters involved in the model
Hamiltonian, i.e. B,C,γ,F , are to be determined.

4. NUMERICAL RESULTS

As we mentioned before, the main aim of this paper is to extend our study of the
low spin multiplets achieved in Ref. [11] to those of angular momenta 4 and 6. The
simplest way for our extension is to keep the same parameters as were determined
in Ref. [11] and use the defining equations from the previous section. In the case of
the semiclassical description the fitting procedure applied to the multiplets 0+and 2+

has determined the parameters A,B,F and

C =
1

2
C− 4

5
F + 6δ. (15)



7 A phenomenological interpretation of 4+ and 6+ state multiplets in even-even nuclei 1055

Therefore the parameters C and δ could not be determined at a time. From Eq.(15)
we can express C in terms of δ and thus we are left with one free parameter which is
determined by a least square procedure of the data concerning the multiplets 4+ and
6+. The values obtained in this way for δ are given in Table I. Note that δ yielded

Table 1.

The parameter δ yielded by the fitting procedure for the nuclei under consideration.
152Gd 154Gd 168Er 180W 184W 190Os

-δ[keV] 98.914 22.218 170.406 413.275 324.852 369.870

by the fitting procedure is a negative quantity. One may think that this feature is
forbidden given its significance of half the reciprocal value of the moment of inertia.
Actually this is not true since in the rotational limit the average of the model Hamil-
tonian on the angular momentum projected state generated by the coherent state |Ψ〉
yields a rotational term which is to be added to the δ term.

The result of this simple exercise is that the semiclassical description works
for all nuclei considered in the previous publication, i.e. 152Gd, 154Gd, 168Er, 180W,
184W and 190Os where the multiplets 0+ and 2+ where studied. As for the boson
description it turns out that only for 154Gd the set of parameters provided by the
analysis of the multiplets 0+ and 2+, is suitable. For the remaining cases a general
fit considering all multiplets 0+,2+,4+,6+ at a time is needed.

In general the states 4+ and 6+ in the nuclei mentioned above, are populated
in various experiments like β− and ε decays, inelastic scatterings of the types (d,d′),
(n,n′), (p,p′), (γ,γ′), Coulomb excitations, transfer reactions such as (p,t), (d,p),
(t,p) as well as (α,Xnγ), (p,Xnγ) or neutron capture reaction, (n,γ).

In what follows we shall discuss each nucleus separately. The states 4+ in
152Gd having the energies shown in Fig.1 were populated by the β− decay of 152Er
or by the inelastic scattering (d,d′) [17, 18].

The results for 154Gd are plotted in Fig. 2 for the states 4+ and Fig.3 for 6+. For
this case both methods of semiclassical approach and exact eigenvalues are presented.
The experimental data are those from Refs. [18, 19]. The states were excited by
several experiments from which we mention the capture of thermal neutrons, 153Gd
(n,γ), the ε decay of 154Tb and the reaction 152Sm (α, 2nγ).

For 168Er the energies of 17 states 4+ and 7 states 6+ are available [18, 20].
These states were observed in several experiments such as 166Er (t,p), 167Er(n,γ)
(E=24 keV resonance), 167Er(d,p), (t,d) for the 4+ states while the 6+ states were
observed in the reactions 167Er(n,γ) ( thermal neutrons), 170Er (p,t), 167Er (p,t), (t,d).
In Fig. 4 we observe a good agreement between the semiclassical energies and the
corresponding experimental data.
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Fig. 1 – Excitation energies of the states Jπ = 4+ (a) and Jπ = 6+ (b) in 152Gd. Theoretical results
(full curve) are obtained using Eq. (9) and, for the involved parameters, the values obtained in the

previous publication [11] by a fitting procedure applied to the multiplets 0+ and 2+. The filled circles
are experimental data points from Refs. [17, 18].
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Fig. 2 – Semiclassical energies for the multiplet 4+ (full line) are compared in panel (a) with
experimental data (discs) for 154Gd from Refs. [18,19]. In panels (b) and (c) the theoretical results are

obtained with the exact eigenvalues EN,2,4 and EN,3,4 respectively, given by Eqs. 13.
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Fig. 3 – Semiclassical energies for the multiplet 6+ (full line) are compared in panel a) with
experimental data for 154Gd (filled circles). In panels b) and c) the theoretical results are obtained

with the exact eigenvalues denoted by EN,3,6 and EN,4,6 respectively, and given by Eqs. 13.
Experimental data (filled circles) are from Refs. [18, 19].
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Fig. 4 – The same as in Fig. 1 but for 168Er. Experimental data are from Refs. [18, 20].
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For the two isotopes of W which are considered here only few energies are
known [18, 21], namely a total of 5 states for 180W and 6 for 184W. They are com-
pared with the semiclassical energies in Fig. 5. For 180W the states 4+ and 6+

were populated by the experiment 181Ta(p,2nγ) (E=17 MeV). Concerning 184W
the states 4+ and 6+ were excited either by the β− decay of 184Ta or by the inelastic
scattering 184W(d,d’).

In 190Os four states 4+ and three states 6+ are known from experiments like
β− decay of 190Re, thermal neutron capture 189Os(n,γ), Coulomb excitation. The
comparison between the semiclassical energies and the corresponding experimental
data is performed in Fig. 6. It is instructive to see how the potential energy defined
in the previous section, depends on the deformation dynamic variable r defined by:

r2 = q21 + q22. (16)

The deformation dependence of the potential energies associated to the nuclei under
consideration is shown in Fig. 7.

The plot for potential energy looks similar to that for the n dependence of the
excitation energy. However in the later case the quantum number n is obtained by
quantizing the plane oscillator energy which includes both the potential and kinetic
energy. Comparing the plots for excitation energy and that of potential energy, for
each nucleus, one sees that in some cases there are states located in the secondary
minimum. This allows us to state that the nuclei in such states belong to a distinct
nuclear phase. Therefore these states exhibit signatures for a new nuclear phase.
It is customary to consider the energy ratio E4+/E2+ as a signature of the nuclear
phase to which the considered nucleus belongs. In Fig. 8 a) we have represented
the energy ratio for the states |N,2,4〉 and |1,1,2〉 in the boson description. In a
harmonic picture one expects that the energy of a N boson state to be about N times
the energy of the first state 2+. Therefore the ratio should be equal to N in the
harmonic limit. In the rotational limit for N=2 the ratio is 3.33. One notes that up
to very large values of N the ratio is smaller than N which reflects a strong effect
coming from anharmonicities. Another energy ratios plotted in Fig. 8 b) as a function
of N concerns the states |N,2,4〉 and |N − 1,1,2〉. In the harmonic limit this is
equal to N/(N −1) and therefore a larger than unity number. Large deviations from
harmonic limit show up in the interval of N where the energy ratio is less than unity.
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Fig. 5 – The same as in Fig.1 but for 180W in the upper panels a) and b) and for 184W in the lower
panels a) and b). Experimental data for 180W are from Refs. [18, 21] while for 184W are from

Refs. [18, 22].
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Fig. 6 – The same as in Fig. 1 but for 190Os. Experimental data are from Refs. [18, 23].
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Fig. 7 – The potential energy term defined by Eq. (6) is plotted as function of the deformation
dynamic variable r defined by Eq.(16) .
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Fig. 8 – The ratios EN,2,4/E1,1,2 and EN,2,4/EN−1,1,2 are plotted as function of N , the number of
bosons, for 154Gd in panels a) and b), respectively.
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Fig. 9 – The ratios En,4/E1,2 (left column) and En,4/En−1,2 (right column), are plotted as function
of n for three nuclei: 152Gd (a) and (d), 154Gd (b) and (e) and 168Er (c) and (f).

A similar study can be performed also within the semiclassical formalism. In-
deed in Figs. 9 and 10 we plotted the ratios En,4/E1,2 and En,4/En−1,2 as function
of n, respectively.

Comparing the energy ratios given by the boson formalism with those given
by the semiclassical approach for 154Gd we see that they are similar. Also it is in-
teresting to notice that the two ratios considered in the semiclassical picture exhibit
minima for the same quantum numbers n. Except for 154Gd where the minimum
ratio En,4/En−1,2 is very flat, the minima for other nuclei are well pronounced.
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Fig. 10 – The ratios En,4/E1,2 (left column) and En,4/En−1,2 (right column), are plotted as
function of n for three nuclei: 180W (a) and (d), 184W (b) and (e) and 190Os (c) and (f).

5. CONCLUSIONS

In the previous Sections we extended, with a positive result, the semiclassical
description of the multiplets 0+ and 2+ to two other multiplets 4+ and 6+. Using
the same parameters for the model Hamiltonian as in Ref. [11] the calculated ener-
gies for the multiplet members agree quite well with the corresponding experimental
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data. We tried to apply a similar extension for the alternative description where the
energies are eigenvalues of the boson Hamiltonian. Our attempt was only partially
successful. Indeed, good results, which are in agreement with the experimental data,
are obtained only for 154Gd. As for the remaining nuclei it is necessary to consider a
simultaneous fitting procedure for all multiplets 0+, 2+, 4+ and 6+. We hope that our
results will stimulate nuclear structure groups to study these multiplets. Obviously,
the formalisms employed would be essentially different from those suitable for the
description of the rotational bands.
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