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Abstract

We study the holomorphic unitary representations of the Jacobi group
based on Siegel-Jacobi domains. Explicit polynomial orthonormal bases of
the Fock spaces based on the Siegel-Jacobi disk are obtained. The scalar
holomorphic discrete series of the Jacobi group for the Siegel-Jacobi disk
is constructed and polynomial orthonormal bases of the representation
spaces are given.
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1 Introduction

The Jacobi groups are semidirect products of appropriate semisimple real alge-
braic group of Hermitian type with Heisenberg groups [27], [13]. The semisimple
groups are associated to Hermitian symmetric domains that are mapped into
a Siegel upper half space by equivariant holomorphic maps [23]. The Jacobi
groups are unimodular, nonreductive, algebraic groups of Harish-Chandra type.
The Siegel-Jacobi domains are nonreductive symmetric domains associated to
the Jacobi groups by the generalized Harish-Chandra embedding [23], [13], [28]
-[30].

The holomorphic irreducible unitary representations of the Jacobi groups
based on Siegel-Jacobi domains have been constructed by Berndt, Böcherer,
Schmidt, and Takase [9], [8], [25]-[27] with relevant topics: Jacobi forms, auto-
morphic forms, spherical functions, theta functions, Hecke operators, and Kuga
fiber varieties.

Some coherent state systems based on Siegel-Jacobi domains have been in-
vestigated in the framework of quantum mechanics, geometric quantization,
dequantization, quantum optics, nuclear structure, and signal processing [12],
[19], [24], [2]-[6].
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This paper is organized as follows. In Section 2 we present explicit formulas
for the canonical automorphy factors and kernel functions of the Jacobi groups
and corresponding Siegel-Jacobi domains. In Section 3 we introduce a Fock
space of holomorphic functions on the Siegel-Jacobi disk. We obtain explicit
polynomial orthonormal bases for this space and the Fock spaces with inner
products associated to points on the Siegel disk (Proposition 3.1 and Proposi-
tion 3.2). In Section 4 we construct the scalar holomorphic discrete series of
the Jacobi group for the Siegel-Jacobi disk (Proposition 4.1). We give polyno-
mial orthonormal bases of the representation spaces (Proposition 4.2). Finally,
we discuss the link between the coherent state systems based on Siegel-Jacobi
domains and the explicit kernel functions of representation spaces for Jacobi
groups.

Notation. We denote by R, C, Z, and N the field of real numbers, the field
of complex numbers, the ring of integers, and the set of non-negative integers,
respectively. Mmn(F) ≅ Fmn denotes the set of all m× n matrices with entries
in the field F. M1n(F) is identified with Fn. Set Mn(F) = Mnn(F). For any
A ∈ Mmn(F),

tA denotes the transpose matrix of A. For A ∈ Mmn(C), Ā
denotes the conjugate matrix of A and A† = tĀ. For A ∈Mn(C), the inequality
A > 0 means that A is positive definite. The identity matrix of degree n is
denoted by In. Let O(D,W ) denote the space of all W -valued holomorphic
functions on the connected complex manifold D equipped with the topology of
uniform convergence on compact sets. Here W is a finite dimensional Hilbert
space. Set O(D) =O(D,W ) for dimW = 1. In this paper we will use the words
” unitary representation on a Hilbert space” to mean a continuous unitary
representation on a complex separable Hilbert space.

2 Canonical automorphy factor and kernel

function for Jacobi groups

We begin with the definition of the Jacobi group given in [9], [27], [13]. Let Hn

be the Siegel upper half space of degree n consisting of all symmetric matrices
Ω ∈ Mn(C) with ImΩ > 0. Let Sp(n,R) be the symplectic group of degree n
consisting of all matrices σ ∈M2n(R) such that tσJnσ = Jn, where

σ =

(

a b
c d

)

, Jn =

(

0 In
−In 0

)

, (2.1)

and a, b, c, d ∈ Mn(R). The group Sp(n,R) acts transitively on Hn by σΩ =
(aΩ+ b)(cΩ + d)−1, where σ ∈ Sp(n,R) and Ω ∈ Hn.

Let Gs be a Zariski connected semisimple real algebraic group of Hermitian
type. LetD =Gs/Ks be the associated Hermitian symmetric domain, whereKs

is a maximal compact subgroup of G. Suppose there exist a homomorphism ρ :
Gs → Sp(n,R) and a holomorphic map τ : D → Hn such that τ(gz) = ρ(g)τ(z)
for all g ∈ Gs and z ∈ D. The Jacobi group GJ is the semidirect product of Gs

and the Heisenberg group H [V ] associated with the symplectic R-space V and
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the nondegenerate alternating bilinear form D : V × V → A, where A is the
center of H [V ]. The multiplication operation of GJ ≈ Gs ×V ×A is defined by

gg′ = (σσ′, ρ(σ)v′ + v,κ + κ
′ +

1

2
D(v, ρ(σ)v′), (2.2)

where g = (σ, v,κ) ∈ GJ , g′ = (σ′, v′,κ′) ∈ GJ .
The Jacobi-Siegel domain associated to the Jacobi group GJ is defined by

DJ = D×CN∼=GJ/(Ks ×A), where dim V = 2N .
Let w0 be a fixed element of D and let Iτ(w0) be the complex structure on

V corresponding to τ(w0) ∈ Hn. Let VC = V+ ⊕ V− be the complexification of
V , where V± consists of all v ∈ VC such that Iτ(w0)v = ±iv. Then w ∈ D and
v ∈ VC determine the element vw = v+ − τ(w)v− of V+, where v = v+ + v−,
v± ∈ V±.

GJ is an algebraic group of Harish-Chandra type [27], [13], [23]. We recall
the definition of Harish-Chandra type groups [23].

Let G be a Zariski connected R-group with Lie algebra g and let GC be the
complexification of G. Suppose there are given a Zariski connected R-subgroup
K of G with Lie algebra k and connected unipotent C -subgroups P± of GC with
Lie algebras p±. The group G is called of Harish-Chandra type if the following
conditions are satisfied:

(HC 1) gC = p++kC +p− is a direct sum of vector spaces,
[

kC, p±
]

⊂ p±, and
p+ = p−; (HC 2) the map P+ ×KC × P− → GC gives a holomorphic injection
of P+ × KC × P− onto its open image P+KCP−; (HC 3) G ⊂ P+KCP− and
G ∩KCP− = K.

If g ∈ P+KCP− ⊂ GC, we denote by (g)+ ∈ P+, (g)0 ∈ KC, (g)− ∈ P− the
components of g such that g = (g)+(g)0(g)−.

The identity connected component of a linear algebraic group H is denoted
in the usual topology by H̊. The generalized Harish-Chandra embedding of the
homogeneous space D = G̊/K̊ into p+ is defined by gK̊ 7−→ z, where g ∈ G̊,
z ∈ p+ and exp z = (g)+. Then the G̊-invariant complex structure of D is
determined by the natural inclusion D →֒ P+ ⊂ GC/(KCP−). Let (GC × p+)

′

be the set of elements (g, z) ∈ GC × p+ such that g exp z ∈ P+KCP− and let
(p+×p+)

′

be the set of elements (z1, z2) ∈ p+×p+ such that (exp z̄2)
−1 exp z1 ∈

P+KCP−.
The canonical automorphy factor J : (GC × p+)

′ → KC and the canonical
kernel function K : (p+ × p+)

′ → KC for G are defined by

J(g, z) = (g exp z)0 , K(z′, z) = (((exp z)−1 exp z′)0)
−1, (2.3)

where (g, z) ∈ (GC × p+)
′ and (z′, z) ∈ (p+ × p+)

′

.
According to [27], [13] (Corollary 4.5, Proposition 4.7, and equation (6.1)),

we obtain

Theorem 2.1 a) The Jacobi group GJ acts transitively on DJ by

gx = (σw, vσw + t(cτ(w) + d)−1z), ρ(σ) =

(

a b
c d

)

, (2.4)
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where g = (σ, v,κ) ∈ GJ and x = (w, z) ∈ DJ .
b) The canonical automorphy factor J for the Jacobi group GJ is given by

J(g, x) = (J1(σ,w), 0, J2(g, x)), (2.5)

where g = (σ, v,κ) ∈ GJ , x = (w, z) ∈ DJ , J1 is the canonical automorphy
factor for Gs, and

J2(g, x) = κ +
1

2
D(v, vσw) +

1

2
D(2v + ρ(σ)z, J1(σ,w)z). (2.6)

c) The canonical kernel function K for the Jacobi group GJ is given by

K(x, x′) = (K1(w,w
′), 0,K2(x, x

′)), (2.7)

where x = (w, z) ∈ DJ , x′ = (w′, z′) ∈ DJ , K1 is the canonical kernel function
for Gs, and

K2(x, x
′) = D(2z̄′+

1

2
τ(w′)z, qz)+

1

2
D(z̄′, qτ(w)z̄′), q = ρ(K1(w,w

′))−1. (2.8)

The Heisenberg group Hn(R) consists of all elements (λ, µ, κ), where λ, µ ∈
M1n(R), κ ∈ R with the multiplication law

(λ, µ, κ) ◦ (λ′, µ′, κ′) = (λ + λ′, µ+ µ′, κ+ κ′+ λ tµ′ − µ tλ′). (2.9)

Let GJ
n = Sp(n,R)⋉ Hn(R) be the semidirect product of the symplectic group

Sp(n,R) and the Heisenberg group Hn(R) endowed with the following multipli-
cation law:

(σ, (λ, µ, κ)) · (σ′, (λ′, µ′, κ′)) = (σσ′, (λσ′, µσ′, κ) ◦ (λ′, µ′, κ′)), (2.10)

where (λ, µ, κ), (λ′, µ′, κ′) ∈ Hn(R) and σ, σ′ ∈ Sp(n,R). The Jacobi group
GJ

n of degree n acts transitively on the Jacobi-Siegel space HJ
n = Hn × Cn by

g(Ω, ζ) = (Ωg, ζg), where (Ω, ζ) ∈ HJ
n, g = (σ, (λ, µ, κ)) ∈ GJ

n, σ is given by
(2.1), and [29]

Ωg = (aΩ+ b)(cΩ+ d)−1, ζg = ν(cΩ + d)−1, ν = ζ + λΩ + µ. (2.11)

According with Theorem 2.1 and [22], we have

Proposition 2.1 The canonical automorphy factor J1 and the canonical kernel
function K1 for Sp(n,R) are given by

J1(σ,Ω) =

(

t(cΩ+ d)−1 0
0 cΩ+ d

)

, (2.12)

K1(Ω
′,Ω) =

(

0 Ω− Ω′

(Ω′ − Ω)−1 0

)

, (2.13)

where Ω,Ω′ ∈ Hn and σ ∈ Sp(n,R) is given by (2.1).
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The canonical automorphy factor θ = J2(g, (Ω, ζ)) for GJ
n is given by

θ = κ+ λ tζ + ν tλ− ν(cΩ + d)−1c tν, ν = ζ + λΩ + µ, (2.14)

where g = (σ, (λ, µ, κ)) ∈ GJ
n, σ is given by (2.1), and (Ω, ζ) ∈ HJ

n.
The canonical automorphy kernel K2 for GJ

n is given by

K2 ((ζ
′,Ω′), (ζ,Ω)) = −1

2
(ζ′ − ζ̄)(Ω′ − Ω̄′)−1(tζ′ − tζ̄), (2.15)

where (Ω, ζ), (Ω′, ζ′) ∈ HJ
n.

Let Dn be the Siegel disk of degree n consisting of all symmetric matrices
W ∈ Mn(C) with In −WW̄ > 0. Let Sp(n,R)∗ be the multiplicative group of
all matrices ω ∈M2n(C) such that

ω =

(

p q
q̄ p̄

)

, tpp̄− tq̄q = In,
tpq̄ = tq̄p, p, q ∈Mn(C). (2.16)

Remark that Sp(n,R)∗ = Sp(n,C) ∩ U(n, n) for n > 1. Sp(n,R)∗ acts tran-
sitively on Dn by ωW = (pW + q)(q̄W + p̄)−1, where ω ∈ Sp(n,R)∗ and
W ∈ Dn. Let Kn∗

∼= U(n) be the maximal compact subgroup of Sp(n,R)∗

consisting of all ω ∈ Sp(n,R)∗ given by (2.16 ) with p ∈ U(n) and q = 0. Then
Dn

∼=Sp(n,R)∗/U(n).
Let GJ

n∗ be the Jacobi group consisting of all elements (ω, (α,κ)), where ω ∈
Sp(n,R)∗, α ∈ Cn, κ ∈ iR, and endowed with the multiplication law

(ω′, (α′,κ′))(ω, (α,κ)) =
(

ω′ω,κ + κ
′ + βtᾱ− β̄tα

)

, (2.17)

where (ω, (α,κ)), (ω′, (α′,κ′)) ∈ GJ
n∗ β = α′p+ ᾱ′q̄, and ω is given by (2.16).

The Heisenberg group Hn(R)∗ consists of all elements (In, (α,κ)) ∈ GJ
n∗,

where ω ∈ Sp(n,R)∗, α ∈ Cn, κ ∈ iR. The center A∗
∼=R of Hn(R)∗ consists

of all elements (In, (0,κ)) ∈ GJ
n∗ with κ ∈ iR. According to [30], there exists

an isomorphism Θ : GJ
n → GJ

n∗ given by Θ(g) = g∗, g = (σ, (λ, µ, κ)) ∈ GJ
n,

g∗ = (ω, (α,κ)) ∈ GJ
n∗,

σ =

(

a b
c d

)

, ω =

(

p+ p−
p− p+

)

, (2.18)

p± =
1

2
(a± d)± i

2
(b ∓ c), α =

1

2
(λ+ iµ), κ = −i

κ

2
. (2.19)

Let DJ
n = Dn × Cn∼=GJ

n∗/(U(n) × R) be the Siegel-Jacobi disk of degree n.
GJ

n∗ acts transitively on DJ
n by g∗(W, z) = (Wg∗ , zg∗), where g∗ = (ω, (α,κ)) ∈

GJ
n∗, (W, z) ∈ DJ

n, ω is given by (2.18), and [30]

Wg∗ = (pW + q)(q̄W + p̄)−1, zg∗ = (z + αW + ᾱ)(q̄W + p̄)−1. (2.20)
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We now consider a partial Cayley transform of the Siegel-Jacobi disk DJ
n

onto the Siegel-Jacobi space HJ
n which gives a partially bounded realization of

HJ
n [30]. The partial Cayley transform φ : DJ

n → HJ
n is defined by

Ω = i(In +W )(In −W )−1, ζ = 2 i z(In −W )−1, (2.21)

where (ζ,Ω) = φ ((W, z)) and (W, z) ∈ DJ
n.

φ is a a biholomorphic map which satisfies gφ = φg∗ for any g ∈ GJ
n and

g∗ = Θ(g) [30].
The inverse partial Cayley transform φ−1 : HJ

n → DJ
n is given by

W = (Ω− iIn)(Ω + iIn)
−1, z = ζ(Ω + iIn)

−1, (2.22)

where (W, z) = φ−1 ((Ω, ζ)) ∈ DJ
n and (Ω, ζ) ∈ HJ

n.
According with Theorem 2.1, [22] and [30], we have

Proposition 2.2 The canonical automorphy factor J1∗ and the canonical ker-
nel function K1∗ for Sp(n,R)∗ are given by

J1∗(ω,W ) =

(

t(q̄W + p̄)−1 0
0 q̄W + p̄

)

, (2.23)

K1∗(W
′,W ) =

(

In −W ′W̄ 0
0 t(In −W ′W̄ )−1

)

, (2.24)

where W,W ′ ∈ Dn and ω ∈ Sp(n,R)∗ is given by (2.16).
The canonical automorphy factor θ∗ = J2(g∗, (W, z)) for G

J
∗ is given by

θ∗ = κ∗ + z tα+ ν∗
tα− ν∗(q̄W + p̄)−1q̄ tν∗, ν∗ = z + αW + ᾱ, (2.25)

where g∗ = (ω, (α,κ)) ∈ GJ
n∗, ω is given by (2.16), and (W, z) ∈ DJ

n.
The canonical automorphy kernel for GJ

∗ is given by K2∗((W
′, z′), (W, z)) =

A(W ′, z′;W, z), where (W, z), (W ′, z′) ∈ DJ
n, and

A(W ′, z′;W, z) = (z̄+
1

2
z′W̄ )(In−W ′W̄ )−1 tz′+

1

2
z̄(In−W ′W̄ )−1W ′ tz̄. (2.26)

3 Fock spaces based on the Siegel disk

Let A∗
∼=R be the center of the Heisenberg group Hn∗(R). Given m ∈ R, let

χm be the central character of A∗ defined by χm(κ) = exp (2πimκ), κ ∈ A∗.
Suppose m > 0.

For each W ∈ Dn we denote by FmW the Fock space of all functions Φ ∈
O(Cn) such that ‖Φ‖mW <∞ and the inner product is defined by [22]

(Φ,Ψ)mW = (2πm)n
(

det(1 −WW̄ )
)−1/2

(3.1)

×
∫

Cn

Φ(z)Ψ(z) exp(−8πmA(W, z))dν(z),
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where the Lebesgue measure on Cn is given by

dν(ζ) = π−n
n
∏

i=1

dReζi dImζi, (3.2)

and A(W, z) = K2∗((W, z), (W, z)) can be written as

A(W, z) = (z̄ +
1

2
zW̄ )(In −WW̄ )−1 tz +

1

2
z̄(In −WW̄ )−1W tz̄. (3.3)

Remark that Fm 0 is the usual Bargmann space [1].
We consider the Gaussian functions GU : DJ

n → C, U ∈ Cn, defined by
GU (W,Z) = G(U,Z,W ), where

G(U,Z,W ) = exp(U tZ +
1

2
UW tU) =

∑

s∈Nn

Us

s!
Ps(Z,W ) (3.4)

for all (W,Z) ∈ DJ
n . We utilize the notation

Us =

n
∏

i=1

Usi
i , s! =

n
∏

i=1

si!, |s| =
n
∑

i=1

si, δsr =

n
∏

i=1

δsiri , (3.5)

where U = (U1, ..., Un) ∈ M1n(C) ∼= C
n
, s = (s1, ..., sn) ∈ Nn, and r =

(r1, ..., rn) ∈ N
n. The polynomials Ps : DJ

n → C, s ∈ N
n, are exactly the match-

ing functions studied by Neretin [17]. We express the homogeneous polynomial
Ps of degree |s| in the following compact form:

Ps(Z,W ) =
∑

a∈An, ã≤s

s!

2âa!(s− ã)!
Zs−ãW a, (3.6)

where An is the set of all symmetric matrices a = (aij)1≤i, j≤n with aij ∈ N,

W a =
∏

1≤i≤j≤n

W
aij

ij , a! =
∏

1≤i≤j≤n

aij , ãk =

n
∑

i=1

aik, â =

n
∑

i=1

aii, (3.7)

and ã ≤ s is equivalent with ãi ≤ si for 1 ≤ i ≤ n. Using the equations

∫

Cn

UsŪ rdν(U) = δsrs!, (3.8)

∫

Cn

G(U,Z ′,W ′)G(Ū , Z̄, W̄ )dν(U)=det(1−W ′W̄ )−1/2expA(W ′, z′;W,z), (3.9)

where A(W ′, z′;W, z) is defined by (2.26), we obtain

(

det(1−W ′W̄ )
)−1/2

expA(W ′, z′;W, z) =
∑

s∈Nn

1

s!
Ps(Z

′,W ′)Ps(Z,W ). (3.10)

Equation (3.9) is given in [11] (Lemma 5).
We now define the polynomials ΦWs ∈ FmW , s ∈ Nn, by

ΦWs(z) =
1√
s!
Ps(2

√
2πmz,W ), s ∈ N

n. (3.11)
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Proposition 3.1 Given W ∈ Dn, the set of polynomials {ΦWs|s ∈ Nn} forms
an orthonormal basis of the Fock space FmW . The kernel function of FmW admits
the expansion

(

det(1−WW̄ )
)−1/2

exp (2πmA(W, z′;W, z)) =
∑

s∈Nn

ΦWs(z
′)ΦWs(z). (3.12)

Proof. Given U ∈ C
n and W ∈ Dn, we define the function ΨUW : Cn → C

such that ΨUW (z) = G(U, 2
√
2πmz,W ). Using the change of variables Z =

2
√
2πmz, we have

‖ΨUW ‖2mW =π−ndet(1−WW̄ )−1/2

∫

Cn

exp(B(U,Z,W )−A(Z,W ))dν(Z) , (3.13)

where

B(U,Z,W ) = U tZ + ŪZ† − 1

2
UW tU − 1

2
ŪW̄U+. (3.14)

Using the change of variables Z ′ = (1−WW̄ )−1/2
(

Z − Ū −WU
)

, the relation
dν(Z) = det(1 −WW̄ )dν(Z ′), and the relation [1]

∫

Cn

exp(−Z ′
t
Z ′− 1

2
(Z ′W̄ tZ ′+Z

′
WZ ′†))dν(Z ′)=πn

(

det(1−WW̄ )
)

−1/2, (3.15)

we obtain ‖ΨUW ‖2mW = exp(UU †). Then

∑

s,r∈Nn

UsŪ r

√
s!r!

(ΦWs,ΦWr)mW =
∑

s∈Nn

1

s!
UsŪs. (3.16)

By comparing the coefficients of UsŪ r in the series of both sides of (3.16), we
see that

(ΦWs,ΦWr)mW = δsrs!, s, r ∈ N
n. (3.17)

Using (3.10) and (3.11), we obtain the expansion (3.12). �

We now introduce the set of polynomials fs : DJ
n → C, s ∈ Nn, defined by

fs(W, z) =
1√
s!
Ps(2

√
2πmz,W ). (3.18)

Let H0(DJ
n) be the complex linear subspace of all holomorphic functions

f ∈ O(DJ
n) with the basis {fs|s ∈ N

n}. Let Fm(DJ
n) be the Hilbert space of all

functions f ∈ O(DJ
n) such that 〈f, f〉m < ∞, where the inner product 〈., .〉m is

defined such that the set {fs|s ∈ Nn} is an orthonormal basis. We now prove

Proposition 3.2 a) The generating function of the basis {fs|s ∈ Nn} can be
expressed as

exp(8πmU tz +
1

2
UW tU) =

∑

s∈Nn

Us

√
s!
fs(W, z). (3.19)
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The kernel function of Fm(DJ
n) admits the expansion

(

det(1−W ′W̄ )
)−1/2

expA(W ′, z′;W, z) =
∑

s∈Nn

fs(W
′, z′)fs(W, z). (3.20)

b) f ∈ O(DJ
n) is a solution of the system of differential equations

∂2f

∂zj∂zk
= 8πm(1 + δjk)

∂f

∂Wjk
, 1 ≤ j ≤ k ≤ n, (3.21)

if and only if f ∈ H0(DJ
n).

Proof. Using (3.4) and (3.18), we obtain (3.19). The generating function
(3.19) satisfies (3.21). Then

∂2fs
∂zj∂zk

= 8πm(1 + δjk)
∂fs
∂Wjk

, 1 ≤ j ≤ k ≤ n, s ∈ N
n. (3.22)

Using (3.6) and (3.18), we obtain

fs(z,W ) =
1√
s!
(2
√
2πmz)s +Rs(z,W ), (3.23)

where Rs is a polynomial of degree |s| − 1 in z. Then there exists the change of
basis {zsW a|s ∈ N, a ∈ An} 7−→ {fs(z,W )W a|s ∈ Nn, a ∈ An} in O(DJ

n). Let
f ∈ O(DJ

n). Then there exists the set {cs|cs ∈ O(Dn), s ∈ Nn} such that

f(z,W ) =
∑

s∈Nn

cs(W )fs(W, z). (3.24)

If f satisfies (3.21), then ∂cs/∂Wjk = 0 for any 1 ≤ j ≤ k ≤ n, s ∈ Nn. Then cs
is constant for any s ∈ Nn. Hence f ∈ O(DJ

n). The inverse implication follows
from (3.22). �

In the case n = 1, Proposition 3.2 has been obtained in [6].

4 Scalar holomorphic discrete series of the

Jacobi group on the Siegel-Jacobi disk

Consider the Jacobi group GJ
n. Let δ be a rational representation of GL(n,C)

such that δ|U(n) is a scalar irreducible representation of the unitary group U(n)

with highest weight k, k ∈ Z, and δ(A) = (detA)k [31]. Let m ∈ R. Let
χ = δ ⊗ χ̄m, where the central character χm of A ∼=R is defined by χm(κ) =
exp (2πimκ), κ ∈ A. Any scalar holomorphic irreducible representation of GJ

n is
characterized by an index m and a weight k. Suppose m > 0 and k > n+ 1/2.

Let Hmk denote the Hilbert space of all holomorphic functions ϕ ∈ O(HJ
n)

such that ‖ϕ‖
HJ

n
<∞ with the inner product defined by [25]
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(ϕ, ψ)HJ
n
= C

∫

HJ
n

ϕ(Ω, ζ)ψ(Ω, ζ)Kmk(Ω, ζ)−1dµ(Ω, ζ), (4.1)

where C is a positive constant, (Ω, ζ) ∈ HJ
n and the GJ

n-invariant measure on
HJ

n is given by

dµ(Ω, ζ) = (det Y )−n−2
∏

1≤i≤n

dξi dηi
∏

1≤j≤k≤n

dXjk dYjk. (4.2)

Here ξ = Re ζ, η = Im ζ, X = ReΩ, Y = ImΩ.
The kernel function Kmk is defined by [25]

Kmk(Ω, ζ) = K
mk((Ω, ζ), (Ω, ζ)) = exp

(

4πmηY −1 tη
)

(detY )k, (4.3)

K
mk((ζ′,Ω′), (ζ,Ω))=

(

det(
i

2
Ω̄− i

2
Ω′)

)

−kexp(2πimK ((ζ′,Ω′), (ζ,Ω))) , (4.4)

where K is given by (2.15).
Let πmk be the unitary representation of GJ

n on Hmk defined by [25]
(

πmk(g−1)ϕ
)

(Ω, ζ) = Jmk(g, (Ω, ζ))ϕ(Ωg , ζg), (4.5)

where ϕ ∈ Hmk, g ∈ GJ
n, (Ω, ζ) ∈ HJ

n and (Ωg, ζg) ∈ HJ
n is given by (2.11).

The automorphic factor Jmk for GJ
n is defined by [25]

Jmk(g, (ζ,Ω)) = (det(cΩ + d))
−k

exp(2πimθ), (4.6)

where θ is given by (2.14) and σ is given by (2.1).
Takase proved the following theorem [25], [26]:

Theorem 4.1 Suppose k > n+1/2. Then Hmk 6= {0} and πmk is an irreducible
unitary representation of GJ

n which is square integrable modulo center.

Let Hmk
∗ denote the complex pre-Hilbert space of all ψ ∈ O(DJ

n) such that
‖ψ‖

DJ
n
<∞ with the inner product defined by

(ψ1, ψ2)DJ
n
= C∗

∫

DJ
n

ψ1(W, z)ψ2(W, z)
(

Kmk
∗ (W, z)

)−1
d ν(W, z), (4.7)

where C∗ is a positive constant, (z,W ) ∈ DJ
n,

Kmk
∗ (W, z) =

(

det(In −WW̄ )
)−k

exp(8πmA(W, z)), (4.8)

where A is given by (3.3) and the GJ
n-invariant measure on DJ

n is [30]

dν(W, z)=(det(1−WW̄))−n−2
n
∏

i=1

dRezi d Imzi
∏

1≤j≤k≤n

dReWjkd ImWjk. (4.9)

According with [21], [30], and (2.26), the kernel function Kmk
∗ is given by

Kmk
∗ (W, z) = K

mk
∗ ((W, z), (W, z)), where

K
mk
∗ ((z,W ), (z′,W ′))=

(

det(In −W ′W̄ )
)−k

exp (8πmA(W ′, z′;W, z)) . (4.10)
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Remark 4.1 Using the coherent state method, Kramer, Saraceno, and Berceanu
investigated the kernel (4.8) in the case 8πm = 1 [12], [2]-[6].

We now introduce the map g∗ 7−→ πmk
∗ (g∗), where π

mk
∗ (g∗): Hmk

∗ → Hmk
∗ is

defined by
(

πmk
∗ (g−1

∗ )ψ
)

(z,W ) = Jmk
∗ (g∗, (z,W ))ψ(zg∗ ,Wg∗), (4.11)

ψ ∈ Hmk
∗ , g∗ = (ω, (α,κ)) ∈ GJ

n∗ , (z,W ) ∈ DJ
n, and (zg∗ ,Wg∗) ∈ DJ

n is given
by (2.20). The automorphic factor Jmk

∗ for GJ
n∗ is defined by [21], [30]

Jmk
∗ (g∗, (z,W )) = exp(2πimθ∗) (det(q̄W + p̄))

−k
(4.12)

where θ∗ is given by (2.25) and ω given by (2.16).

Proposition 4.1 Suppose m > 0, k > n+ 1/2, and C = 2n(n+3)C∗. Then
a) Hmk

∗ 6= {0} and πmk
∗ is an irreducible unitary representation of GJ

n∗ on
the Hilbert space Hmk

∗ which is square integrable modulo center.
b) There exists the unitary isomorphism Tmk

∗ : Hmk
∗ → Hmk given by

ϕ(Ω, ζ) = ψ (W, z) (det(In −W ))k exp(4πmz(In −W )−1 tz), (4.13)

where ψ ∈ Hmk
∗ , ϕ = Tmk

∗ (ψ), (W, z) ∈ DJ
n, (Ω, ζ) = φ((−W, z)) ∈ HJ

n, and φ
is given by (2.21).

The inverse isomorphism Tmk : Hmk → Hmk
∗ is given by

ψ (W, z) = ϕ(Ω, ζ) (det(In − iΩ))k exp
(

2πmζ(In − iΩ)−1 tζ
)

, (4.14)

where ψ ∈ Hmk
∗ , ψ = Tmk(ϕ) , (Ω, ζ) ∈ HJ

n, (−W, z) = φ−1 ((Ω, ζ)) ∈ DJ
n, and

φ−1 is given by (2.22).
c) The representations πmk and πmk

∗ are unitarily equivalent.

Proof. Using the partial Cayley transform (2.21) and (2.22), we obtain

Y = ImΩ = (In −W )−1(In −WW̄ )(In − W̄ )−1, (4.15)

η = Im ζ = z(In −W )−1 + z̄(In − W̄ )−1. (4.16)

By (4.15) and (4.16), we obtain

ηY −1 tη = 2A(z,−W )− z(In −W )−1 tz − z̄(In − W̄ )−1 tz̄, (4.17)

where A is given by (3.3). Using (4.2), (4.9), (2.21), and (2.22), in the limit
Ω → iIn and W → 0, we obtain

dµ(ζ,Ω) = 2n(n+3)dν(z,W ). (4.18)

By (4.1), (4.7), (4.13), (4.14), the condition C = 2n(n+3)C∗, and the change
of variables W → −W , we get ‖ϕ‖

HJ
n

= ‖ψ‖
DJ

n
. From ζ(In − iΩ)−1 tζ =

−2 z(In−W )−1 tz it is clear that (4.13) and (4.14) are equivalent. By Theorem
4.1, a) and b) hold. Using (2.21), (2.22), (4.5), (4.11), (4.13), and (4.14), we
obtain πmkTmk = Tmk

∗ πmk
∗ . �
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Remark 4.2 Berndt, Böcherer and Schmidt constructed the holomorphic dis-
crete series of the Jacobi group in the case n = 1 [8], [9].

Let H k denote the complex Hilbert space of all holomorphic functions Φ ∈
O(Dn) such that ‖Φ‖

Dn
<∞, with the inner product defined by

(Ψ1,Ψ2)k =

∫

Dn

Ψ1(W )Ψ2(W )
(

det(1 −WW̄ )
)k−1/2

dµDn
(W ), (4.19)

dµDn
(W ) =

(

det(1 −WW̄ )
)−n−1 ∏

1≤j≤k≤n

dReWjk d ImWjk.

We haveHk 6= {0} for k > n+1/2 [7], [25]. Let {Qa|a ∈ An} be an orthonormal
polynomial basis of H k.

We introduce the polynomials

Fsa(W, z) =

√

(8πm)n

C∗s!
Ps(

√
8πmz,W )Qa(W ), s ∈ N

n, a ∈ An. (4.20)

Proposition 4.2 The set of polynomials {Fsa|s ∈ Nn, a ∈ An} forms an or-
thonormal basis of Hmk

∗ . The kernel function of Hmk
∗ satisfies the expansion

(det(1−W ′W̄ ))−k expA(W ′, z′,W, z)=
∑

s∈Nn,a∈An

Fsa(W
′, z′)Fsa(W, z). (4.21)

Proof. We introduce the functions FU : DJ
n → C, U ∈ Cn, such that

FU (W, z) = G(U, 2
√
2πmz,W ). Using (4.20) and the proof of Proposition 3.1,

we have

(FU (W, z)Qa,FU (W, z)Qb)DJ
n
= C∗ (8m)

n
exp(UU †) (4.22)

×
∫

Dn

Qa(W )Qb(W )det(1−WW̄ )k−1/2dµDn
(W ),

(Fsa , Frb)DJ
n
= δsrδab, s, r ∈ N

n, a, b ∈ An. (4.23)

The Berezin kernel of H k is positive definite for k > n + 1/2 [7] and satisfies
the following identity:

(

det(1−W ′W̄ )
)−k+1/2

=
∑

a∈An

Qa(W
′)Qa(W ). (4.24)

Using (3.12) and (4.24), we obtain (4.21). �

Remark 4.3 In the case n = 1 and 8πm = 1, the expansion (4.21) was obtained
in [3], using the coherent state method.
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Remark 4.4 We now discuss the unitary representations of Jacobi groups
based on Siegel-Jacobi domains in the language of coherent states [18]. Let
Q(H) be the set of all one-dimensional projections of the Hilbert space H. Let
P [ψ] denote the one-dimensional projection determined by ψ ∈ H\{0}. The
elements of Q(H) can be considered either as normal pure states of the von
Neumann algebra of bounded operators on H or as pure states of the C∗-algebra
of compact operators on H [10]. The projective Hilbert space P (H) consists of
all one-dimensional complex linear subspaces of H. The space P (H) is a Kähler
manifold equipped with the usual Fubini-Study metric [10]. The space Q(H)
with relative w∗ -topology is homeomorphic to P (H) with the manifold topology
[10]. Then we can identify Q(H) with P (H).

We recall an intrinsic definition of coherent state representations given in
[15].

Let G be a connected, simply connected Lie group and X a G-homogeneous
space which admits an invariant measure µX. Let π be a continuous irreducible
unitary representation of G in the separable Hilbert space H. A family E =
{Ex|x ∈ X} of one-dimensional projections in H will be called a π-system of
coherent states based on X if the following conditions are satisfied: 1) Eg x =
π (g)Exπ (g)

−1 for any g ∈ G and x ∈ X; 2) there exists ψ ∈ H\{0}, such
that

∫

X
|〈ψ, π (g)ψ〉|2 dµX <∞. π is called a symplectic (Kähler) coherent state

representation if E and X are isomorphic symplectic (Kähler) manifolds and X

is a symplectic (Kähler) submanifold of Q(H).
Moscovici and Verona have been studied coherent state representations based

precisely on the coadjoint orbit associated with π in the sense of geometric
quantization [15]. The Schrödinger coherent state systems for the Heisenberg
group with one-dimensional center on the Fock spaces of holomorphic functions
have been obtained by Bargmann [1], Satake [20], [22], [23], and Lee [13].

Lisiecki and Neeb investigated some Kähler coherent state representations
of Heisenberg groups and Jacobi groups with one-dimensional center [14],[16].
The orbit method for the Heisenberg group and the Jacobi group with multi-
dimensional center has been studied in detail by Yang [28].

Let π be an irreducible unitary representation of the Jacobi group GJ with
the Jacobi-Siegel domain D and the kernel function K : D×D →Hom(W,W ).
The representation spaceH consists of holomorphic functions taking their values
in a finite dimensional Hilbert space W . For each x ∈ D and v ∈ W , we
consider the vectors Kxv ∈ H given by Kxv(x

′) = K(x, x′)v for any x′ ∈ D.
Then {P [Kxv]|x ∈ D, v ∈ W} is a π-system of coherent states. In particular,
the πmk-system of coherent states based on HJ

n and the πmk
∗ -system of coherent

states based on DJ
n are determined by the explicit kernel functions given by

(4.4) and (4.10), respectively.
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