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A unified description of four positive and four negative parity rotational bands for even-even nuclei

with and without octupole deformation is presented within an extended version of the coherent

state model. Signatures for octupole deformation in the ground as well as in the excited bands are

pointed out. Specific features of octupole deformed nuclei related with the electric and magnetic

transition probabilities are presented. The second part of the present lecture regards the parity

partner bands in even-odd nuclei. Comments about a possible chiral symmetry to be detected in

odd nuclear systems are added. To save the space, only part of the applications performed in the

last decade were reviewed.

I. INTRODUCTION

Low-lying negative parity states were first observed in Ra and Th nuclei by high-resolution alpha

spectroscopy measurements by Asaro et al. in 1953 [1] and Stephen et al. in 1955 [2]. Indeed, by

angular correlations and gamma coincidence a spin sequence 1, 3, 5, ... of negative parity has been

identified. The states were interpreted as describing vibrations around a spherical equilibrium

shape. Microscopically, such vibrations are caused by particle-hole (ph) excitations induced by

octupole-octupole two body interaction. Long time people thought that the negative parity states

are similar with the vibrational states of positive parity, the only difference being the parity. The

interest for negative parity states increased dramatically when two theoretical works predicted

that some nuclei might have a static octupole deformation. Indeed, in Ref.[3] Chasman predicted

parity doublets for several odd mass isotopes of Ac, Th, and Pa. The doublet members have the

same angular momentum, different parities, large connecting E3 transition and almost the same

energy. The parity doublet of lowest energy plays the role of a degenerate ground state with a

broken parity reflection-symmetry. Advancing the parity doublet hypothesis, Chasman was able
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to describe consistently the data in the nuclei mentioned above. In the second paper [4], Moller

and Nix showed that the binding energy in the mass region of 224 gains about 1.5 MeV when the

octupole deformation is included in the mean field of the potential energy.

By contrast to the case of nuclei having only quadrupole deformation, a nuclear surface with

a static octupole deformation does not exhibit a space reflection symmetry. On the other hand

breaking a symmetry leads to setting on a new nuclear phase, with specific properties. Therefore,

one expects that an octupole deformed nucleus has properties which are not met in nuclei with

good space reflection symmetry. Due to this feature the study of the rotational bands in octupole

deformed nuclei is of a paramount importance. However, it is difficult to identify the nuclei with a

static octupole deformation. The reason is that there is no measurable observable which may quan-

titatively describe the octupole deformation. Therefore, information about it should be indirectly

obtained from energy levels.

In the framework of microscopic theories the onset of octupole deformation is caused by the

octupole interaction of orbits lying close to the Fermi sea and characterized by ∆j = ∆l = 3. In

this context the octupole deformed nuclei should have the Fermi level close to the intruder state.

Low lying negative parity states (nps) are compatible only with a potential energy exhibiting a

flat deformed minimum. This means that a nucleus with a low lying negative parity state may be

suspected to have a static octupole deformation. Along the time several signatures for octupole

deformation have been pointed out. Here is the list of properties considered to be signatures for a

static octupole deformation.

• In the even-even pear shape nuclei the negative and positive parity states (belonging to the

ground band) form an alternating parity spectrum with a parity doublet structure.

• The two interleaved bands show an identical J(J+1) pattern, i.e. rotations in the two bands

are characterized by identical moments of inertia.

• The negative parity members of doublets have enhanced E1 rates and moments.

• The experimental data show that the hindrance factor for an alpha decay from a state of a

given parity to the doublet member of opposite parity is enhanced by 2-3 orders of magnitude.

Contributions to the description of various properties of the octupole deformed nuclei have been

reviewed in several papers [5, 6]. Due to the space restriction we confine our review to the contri-
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butions performed with a single formalism, namely the one which is able to describe in a consistent

manner a large volume of data.

Thus the aim of our lecture is to investigate some properties of octupole bands within a for-

malism which represents an extension [7–11, 13] of the coherent state model (CSM)[14]. Our

intentions regard the following features: i) The interleaved structure in the g, β and γ bands for

some even-even isotopes of Ra, Th,U, Pu,Gd, Y b. ii) The low excitation energy for the state 1− in

218Ra. iii)The description of the E1 branching ratios. iv) Are there signatures for static octupole

deformation in the excited bands? v) What are the specific properties for the dipole bands. vi)

Could an octupole deformed nucleus have a chiral symmetry? In the second part of my talk the

formalism is extended to the even-odd systems. Results are shown for few isotopes and concerns

the bands with Kπ = 1
2

±
, 3

2

±
, 5

2

±
.For these bands some relevant data concerning the transition

probabilities are given. Possible signatures for static octupole deformation and chiral symmetry in

the odd systems are investigated.

II. SIMULTANEOUS DESCRIPTION OF FOUR POSITIVE AND FOUR NEGA-

TIVE PARITY BANDS IN SOM EVEN-EVEN ISOTOPES

A. Brief review of CSM

The intrinsic deformed states modeling the ground, beta and gamma bands must satisfy a set of

restrictions suggested by the experimental data. These restrictions have been formulated in Ref.[14]

and in brief they are: a) the states are deformed functions of quadrupole bosons, b†2µ; b) the states

in the laboratory frame are obtained through an angular momentum projection procedure; c) the

states are orthogonal before and after angular momentum projection; d) functions depend on a

real parameter simulating the quadrupole deformation; e) in the vibrational region the functions

describe a degenerate multi-boson state while in the large deformation regime they are proportional

to a Wigner function of a definite K; f) the link between the vibrational and rotational functions

is achieved in full agreement with the Sheline-Sakai scheme[15, 16]; g) the projected states span

a restricted collective space where an effective Hamiltonian is constructed. In Ref.[14] we found a

solution for the deformed states obeying these criteria.

The projected states defining the ground, beta and gamma bands , are:
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ϕ
(i)
JM = N

(i)
J P J

MKi
Φi, i = g, β, γ (2.1)

where the projection operator is defined by:

P J
MK =

2J + 1

8π2

∫
dΩDJ∗

MK(Ω)R(Ω), (2.2)

and acts on intrinsic mutually orthogonal states of the form

Φg = exp
[
d
(
b+20 − b20

)]
|0 >(2) ,

Φβ = Ω†
βΦg

≡
[(
b†2b

†
2b

†
2

)

00
+

3√
14

d
(
b†2b

†
2

)

00
− d3

√
70

]
Φg ,

Φγ = Ω†
γΦg ≡

[(
b†2b

†
2

)

22
+

√
2

7
d b†22

]
Φg . (2.3)

It can be checked that these projected states are orthogonal. Also the un-projected states have

this property. The parameter d is real and simulates the nuclear deformation.

An effective Hamiltonian is then constructed such that a maximal decoupling of the projected

states is achieved

Ĥ2 = A1

(
22N̂2 + 5Ω†

β′Ωβ′

)
+A2Ĵ

2
2 +A3Ω

†
βΩβ , (2.4)

Ĵ2 is the total angular momentum, N̂2 is the quadrupole boson number operator and

Ω†
β′ = (b†2b

†
2)0 −

d2

√
5
. (2.5)

With this Hamiltonian all states of the beta band and those of the gamma band with odd J are

completely decoupled. Only the states of the gamma band with even J are coupled to the ground

band states of similar angular momentum. In this case, for a given J the energies are computed

by diagonalizing the boson Hamiltonian in a two-dimensional space. The coupling is in any case

vanishing in the vibrational and rotational limits and is small in the transitional regime. The CSM

was successfully used to describe the g, β and γ states, including those of high spin, in the Pt, rare

earth and actinide regions.

In order to enlarge the range of its applicability we proposed several independent CSM exten-

sions: a) By adding the quasiparticle degrees of freedom the back-bending phenomena in even-even

and even-odd nuclei could be studied [17, 18]. b) A distinction between protons and neutrons was

made in order to allow for a description of the low-lying orbital M1 mode[19]. c) Three nega-

tive parity bands with Kπ = 0−, 1−, 2− were described by exciting, with an octupole boson, the
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g, β, γ bands given by the CSM model [20]. In this way the vibrational-negative parity bands were

described.

To stress on the specific features, CSM has been extensively compared with others phenomeno-

logical models like: i) the liquid drop model (LD); ii) the rotation-vibration model (RVM); iii)

the Interacting Boson Approximation (IBA). This latter study clearly shows that the two models

differ in their basic conceptual assumptions and their range of applicability. Indeed, while IBA is

not working for deformed nuclei as well as for the high spin states, the CSM works especially well

under these circumstances due to its semiclassical character.

B. CSM extension to the negative parity states

We suppose that the ground state exhibits both quadrupole and octupole deformations and is

described by a product of two coherent functions for quadrupole and octupole bosons, respectively

[7]:

Ψg = ef(b+
30
−b30)ed(b+

20
−b20)|0〉2|0〉3, (2.6)

d and f are real parameters which simulate the quadrupole and octupole nuclear deformations,

respectively. This function is a sum of two components with different parities Ψ± which define,

through the angular momentum projection, two sets of states respectively:

ϕ
(g,k)
JM = N

(g,k)
J P J

M0Ψ
(k)
g , K = ± (2.7)

J = δk,+(even) + δk,−(odd). (2.8)

The normalization factors have the expressions:

(
N

(g,k)
J

)−2
= e−

1

2
(2y3+3y2)(2J + 1)I(k)

(g,J)(y2, y3), y2 = d2, y3 = f2. (2.9)

where the overlap integrals are given by:

IJ
(g,k) = (3y3)

J
∞∑

p=pmin

lMax∑

l=0

(
y2
3

4

)p−l

(9)p
(

5

27

)l

(−)l+J

× (p+ J)!(2p + J)!F (−l, 2p − 3l + J + 1; 9
10y2)

l!p!(2p − 3l + J)!(2p + 2J + 1)!
.

Alternatively, the projected states can be written in a tensorial form as:

ϕ
(g,k)
JM = N (g,k)

J

∑

J2,J3

(N
(k)
J3
N

(g)
J2

)−1CJ3 J2 J
0 0 0 [Ψ

(k)
J3
ϕ

(g)
J2

]JM ; k = ± . (2.10)
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In this case all matrix elements for quadrupole operators can be expressed as simple functions of

overlap integrals:

I
(0)
J =

∫ 1

0
PJ(x)ed

2P2(x)dx, (2.11)

and I
(1)
J , which is the first derivative of I

(0)
J with respect to y2(= d2). If the intrinsic ground state

has not a good reflection symmetry it sounds reasonable to assume that intrinsic gamma and beta

bands have also this property. Then instead of using Φγ and Φβ as model states of the two bands

we propose now to choose the following functions:

Ψγ = Ω+
γ Ψg, Ψβ = Ω+

β Ψg. (2.12)

Projecting first the parity and then the angular momentum, one obtains four bands, two of positive

and two of negative parity:

ϕ
(i,k)
JM = N (i,k)

J P J
MKi

Ψ
(k)
i ; i = β, γ ; k = ± , (2.13)

with

Ψ
(±)
i = Ω+

i e
−

y3+y2
2



cosh(fb+30)

sinh(fb+30)


 edb+

20 | 0〉3|0〉2 ;

i = β, γ ; Ki = 2δi,γ , y2 = d2, y3 = f2.

These functions can be also written as superposition of products of quadrupole and octupole

projected states.

ϕ
(i,k)
JM = N (g,k)

J

∑

J2,J3

(N
(k)
J3
N

(g)
J2

)−1CJ3 J2 J
0 0 0[Ψ

(k)
J3
ϕ

(i)
J2

]JM . (2.14)

Since for large values of the deformation parameter d, the projected states ϕ
(i)
JM with i = g, β, γ

behave like a Wigner function with a definite quantum number ”K”, they describe rotational

bands with K = 0, 0, 2, respectively. Analogously, the octupole states Ψ
(±)
JM describe rotational

bands having K = 0. Consequently, four of the six bands defined above have K = 0, while the

remaining two are K = 2 bands. In order to stress on the parity partnership, we use the suggestive

notations g±, β±, γ± for the six bands. Each pair of bands is expected to give rise to an alternating

parity sequence as it happens in the case of ground and Kπ = 0− bands, i.e. the g± pair. The

set {ϕ(i,k)
JM }i,k;J,M with i = g, β, γ and k = ± is orthogonal. Note that for f = 0 only the positive

parity states ϕ
(+)
J3M3

are well defined. However, the limits for ”f” going to zero exist both for k = +

and k = −, and the following relation holds:

lim
f→0

ϕ
(i,+)
JM = ϕ

(i)
JM . (2.15)
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Thus, the formalism proposed yields the CSM in the limit of f → 0. Following the CSM, we define

a model Hamiltonian which is effective in the model space of projected states. The effectiveness

criteria is satisfied by:

Ĥ = Ĥ ′
2 + B1N̂3(22N̂2 + 5Ω+

β′Ωβ′) + B2N̂3Ω
+
β Ωβ

+ B3N̂3 + A(J23)

→

J2

→

J3 +A(J)Ĵ
2,

where Ĥ ′
2 is obtained from Ĥ2 by subtracting the rotational term A2Ĵ

2
2 .

The formalism described above is called the extended CSM (ECSM).

C. Extension to the Kπ = 1± bands.

Here, the ECSM will be further extended by considering the dipole parity partner bands [12, 13].

The difficulty encountered when the restricted collective space is enlarged consists in finding an

intrinsic state which is orthogonal on the previously defined model states, before as well as after

angular momentum projection. The second step is to correct the model Hamiltonian by a term so

that the resulting Hamiltonian is effective in the extended space of projected states. A possible

solution for the intrinsic state generating the dipole bands is:

Ψ(1,±) = Ω†
3b

†
31Ψ

(±)
g , Ω†

3 = [b†3b
†
3]0 +

f2

√
7
. (2.16)

From these states, two sets of angular momentum projected states are obtained, which are hereafter

denoted by φ1,±
JM . These states are weakly coupled to the states of other bands by the B1 and B3

terms. Moreover, these terms give large contribution to the diagonal matrix elements involving

the projected dipole states. Aiming at describing quantitatively the properties of the dipole states,

two terms are added to the model Hamiltonian

∆H = C1Ω
†
3Ω3 + C2Ω

†
3N̂2Ω3. (2.17)

The new terms affect only the diagonal m.e. of the dipole states. C2 is determined so that the

corresponding contribution to a particular state (say 2−) cancels the one coming from the B1

term. C1 is determined so that the measured excitation energy of the state 1− is reproduced. The

contribution of the B1 and B3 terms to the off-diagonal matrix elements characterizing the dipole

states amounts to few keV.
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Thus, the final Hamiltonian to be used for describing simultaneously four positive and four

negative bands, is:

H = A1(22N̂2 + 5Ω†
β′Ωβ′) + A2Ω

†
βΩβ + AJ

~J2

+ B3N̂3 + B1N̂3(22N̂2 + 5Ω†
β′Ωβ′) + A(J23)

~J2
~J3

+ C1Ω
†
3Ω3 + C2Ω

†
3N̂2Ω3. (2.18)

The quantities which are to be calculated are:

• The excitation energies

ǫ
(k)
J = E

(k)
J − E

(+)
0 . (2.19)

• The dynamic moment of inertia, as function of angular frequency.

h̄ω =
dE

dI
≈ 1

2
(EI − EI−2), (2.20)

J (2)/h̄2 =

(
dω

dI

)−1

≈ 2/(ωI − ωI−2).

• The energy displacement functions

δE(J−) = E(J−)

− (J + 1)E((J − 1)+) + JE((J + 1)+)

2J + 1
, (2.21)

∆E1,γ(I) =
1

16
[6E1,γ(I) − 4E1,γ(I − 1) − 4E1,γ(I + 1)

+ E1,γ(I − 2) + E1,γ(I + 2)], (2.22)

E1,γ(I) = E(I + 1) − E(I).

• The E1 transition operator is defined as:

T1µ = q1
∑

µ2,µ3

C3 2 1
µ3 µ2 µ (b+3µ3

+ (−)µ3b3,−µ3
)

× (b+2µ2
+ (−)µ2b2,−µ2

)

• Using this transition operator we calculated the ratio:

R1(I) =
B(E1; I− → (I + 1)+)

B(E1; I− → (I − 1)+)
(2.23)

• Also, the E2 and E3 transition probabilities have been calculated:

Tλµ = qλ
(
b†λµ + (−)µbλ,−µ

)
, λ = 2, 3. (2.24)

• The angle between the angular momenta ~J2 and ~J3.

cosϕ =
〈φ(k)

JM | ~J2. ~J3|φ(k)
JM 〉√

〈φ(k)
JM |Ĵ2

2 |φ
(k)
JM 〉〈φ(k)

JM |Ĵ2
3 |φ

(k)
JM 〉

, k = 1,±. (2.25)

8



D. Numerical results

Numerical calculations have been performed for: 158Ga, 172Yb, 218Ra, 220Ra, 226Ra, 228Th,

232Th, 236U, 238U, 238Pu. Due to the lack of space we do not present here all results,

but only those which are necessary for underlying the relevant ideas. There are several

parameters involved in the game, which are to be determined through a fitting procedure:

A1,A2,AJ ,B1,B3,A(J23), C1, C2, d, f .

The structure coefficients A and B and the deformation parameters d and f were determined

by the least square procedure of the excitation energies in the bands g±, β±, γ±. The remaining

two parameters C1 and C2 are determined as explained before.

0,0 0,1 0,2 0,3
1,0

1,5

2,0

2,5

3,0

3,5

4,0

218Ra

238U
236U

234U
232U

232Th
226Ra

228Th

 d

 quad.def.param.
 d = 11.25  + 1.1

FIG. 1: The deformation parameter d, is plotted as function of the nuclear deformation.

In Fig. 1 the obtained values for the deformation parameter d are plotted as function of the

nuclear deformation β, for the actinide isotopes considered. The results for the rare earth isotopes

lye on a straight line parallel to the one from Fig . 1. The values of d corresponding to 158Gd

and 172Yb are equal to 3 and 3.68, respectively. It is remarkable the linear dependence of the two

variables, d and β. Unfortunately, a similar plot for the octupole deformation parameter is not

possible due to the lack of experimental data for the nuclear octupole deformation. The calculated
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values of f are equal to 0.3 except those for 226Ra and 238U which are 0.8 and 0.6, respectively.
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FIG. 2: The coefficients involved in the model Hamiltonian are plotted as function ofA−0.5∗(N−Z)

.

The structure coefficients are represented as function of A − 0.5(N − Z) in Figs. 2 and 3.

The calculated values were interpolated by a smooth curve of a polynomial type. Energies for the

partner bands g+ and g−, in three isotopes of Ra are represented in Fig. 4. One notes the doublet as

well as the interleaved structure of positive and negative parity states. In the formalism described

here, the doublets are caused by the small octupole deformation. If the octupole deformation were

vanishing, the doublet members would be degenerate. For 218Ra the doublet structure persists

also in the region of high spin, while for 226Ra the spectrum in the high angular momentum area

becomes equidistant.

Let us now turn our attention to the low position of the Kπ = 0− state 1−. This is caused by

the term ~J2
~J3 which is attractive in the state 1− and repulsive in other states.

The calculated energies for three pairs of parity partner bands, g±, β± and γ±, are compared

with the available experimental data in Fig.5. There we give also the parabola aJ(J + 1) + b
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FIG. 3: The structure coefficient C1 (black square) and C2, determined as explained in the text, is

represented as function of A− 0.5 ∗ (N − Z) (black square). The obtained values are interpolated

by a third order polynomial (full line curve).

FIG. 4: Experimental and calculated energies for the g± bands in 218,220,226Ra (see Ref.[7]).

which fits the energies of the first and the last states in the respective band. In general, the J
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dependence of energies is different from the J(J+1) pattern. The quality of the agreement between

the theoretical results and the experimental energies can be best judged by plotting the dynamic

moment of inertia which is a very sensitive function of the rotational frequency. Such a plot is

shown in Fig. 6 for the pairs of bands g±, β±, γ±. This graph indicates 226Ra as the best candidate

for a static octupole deformation in all three bands.

Since in 218Ra the spectrum in the bands g± is almost equidistant, the dynamic moment of

inertia is very large. Due to this feature, for this case we give, instead, the graph, Fig. 7, repre-

senting the angular momentum as function of the rotational frequency. It is worth noticing that

the back and forward bending seen for the experimental energies characterizing the band g+, are

nicely reproduced by our calculations. The microscopic interpretation of the first bending is the

crossing of a collective band with a two quasiparticle band, while the forward bending is caused

by the intersection of the later band with a four quasiparticle band. In our phenomenological

description the two bending are caused by the interaction between the quadrupole and octupole

degrees of freedom. If the octupole deformation is small the projected states J+, (J+1)− are close
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FIG. 5: Experimental and calculated energies for the bands g±, β±, γ± for 226Ra.

in energies. Since the projected states originates from the same intrinsic state, they are charac-

terized by a single moment of inertia. If the state energies depend linearly on J(J + 1) then the

first order energy displacement function vanishes for the angular momentum equal to J. If energies

depend quadratically on J(J + 1), the vanishing of the second order energy displacement function

indicates that the second order derivative for energy with respect to J(J+1) is the same for parity

partner bands. In order to decide whether a state exhibits a static octupole deformation or not, a

simultaneous analysis of both displacement functions is necessary.
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FIG. 6: The dynamic moment of inertia characterizing the bands g±, β±, γ±, is plotted as function

of the rotational frequency.
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The two functions are given for 226Ra in Figs. 8 and 9, respectively. We note that at least for

this isotope the octupole deformation is settled, according to the behavior of the δE function,

simultaneously in the three pairs of bands, g±, β±, γ±. The second order energy displacement

shows that ground and beta bands get octupole deformation for the same angular momentum

while in the gamma bands the octupole deformation is earlier settled. A systematic analysis of

the displacement functions for a large number of nuclei may be found in Refs. [10, 22]. Therein

we identified several distinct situations: a) octupole deformation shows up in all three pairs of

bands; b) octupole deformation appears in the bands g± but not in the other bands; c) octupole
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expressions for the transition operator as explained in Ref.[11] .

deformation is settled in the γ± bands but not in the others.

Due to the rod effect saying that the charge density is maximum in the region where the surface

curvature is maximum, a system having octupole deformation may exhibit a non-vanishing dipole

moment. Consequently, interacting with an electromagnetic field such a system can be driven in a

state characterized by large E1 rates. In this context one expects that the B(E1) value exhibits a

jump at the angular momentum where the octupole deformation is set on. This feature is illustrated
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FIG. 11: Theoretical (Th.) and available experimental (Exp.) excitation energies for the Kπ = 1−

and Kπ = 1+ in 172Yb.

in Fig.10 where the reduced matrix element for the transition I → (I−1) is represented as function

of angular momentum. One notes a fairly good agreement between theoretical and experimental

data.

The results for the Kπ = 1− band energies are presented in Fig.11 for 172Yb, where relevant data

are available [23]. In Fig. 12 the dynamic moment of inertia is plotted vs. the angular momentum.

From this figure one notices that the results corresponding to even and those corresponding to odd

angular momenta are lying on separate smooth curves as if these sets of states belonged to two

distinct bands. The remark is valid for both the positive and negative parity bands.

In order to see whether there are signatures of octupole deformation in the dipole bands, we

show in Fig. 13 the energy displacement functions for the two dipole bands with Kπ = 1±.

According to Fig.13 , the states of angular momentum equal to 18,19 may have static octupole

deformation. To obtain a definite conclusion about the static octupole deformation we have an-

alyzed the E1 and M1 properties of these bands. The relative magnitude of branching ratios for

the bands with Kπ = 1+ and Kπ = 1− indicate that the magnetic transitions are stronger for

the positive parity states while the E1 transitions prevail for negative parity states. Due to this

fact we call the band Kπ = 1+ as the magnetic band while the negative parity band as the electric

band. The branching ratios of the dipole states calculated within the formalism presented above are

compared with the corresponding data in Fig.14. In contrast to the case of Kπ = 0− band, for the

Kπ = 1− band there is no jump in the behavior of the B(E1) value. However, the M1 branching

ratio from the Kπ = 1+ to Kπ = 0+ get a jump for J = 18, 19, which are in fact the angular
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FIG. 12: The dynamic moment of inertia for the dipole bands of positive and negative parity

corresponding to the calculated and experimental energies respectively, is plotted as function of

the angular momentum

FIG. 13: The energy displacement functions δE (left panel) and ∆E (right panel), given in the

text, are plotted as functions of J.

momenta where the energy displacement functions vanish. Due to this feature we consider the

big value of the mentioned M1 branching ratio as a signature for the octupole deformation in the

dipole bands. Within ECSM, one can calculate the angle between the angular momenta carried by

the quadrupole ( ~J2) and octupole ( ~J3) bosons respectively, for a state of total angular momentum

~J . This angle is shown in Fig. 15 as function of the angular momentum for the states belonging

to the four pairs of bands under study. Apart from small details, the features shown in Fig. 15 for
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FIG. 14: The branching ratios characterizing the transitions of Kπ = 1− states to the ground

band states (triangle), are compared with the corresponding experimental data (square). The

transition operator used is T1µ = T h
1µ + T anh

1µ with the harmonic term defined in the text and

T anh
1µ = qanh{

[
b†3

(
Ĵ3Ĵ2

)

2

]

1µ
+
[(
Ĵ3Ĵ2

)

2
b3̃

]

1µ
}. All ratios correspond to the relative effective charge

qanh/q1=-1.722, where q1 denotes the strength of the harmonic term.

226Ra are common to all nuclei studied by our group. The angle has a saw-tooth structure for the

dipole bands. Here the angle characterizing the even and odd angular momenta stay on separate

smooth curves suggesting once again that the two sets of states might form different bands. For

the bands g±, β±, γ± the angle is decreasing up to a critical value after which is slightly increasing

reaching a plateau at ϕ = π/2. The interpretation of this result is as follows. If the quadrupole

bosons describes an ellipsoidal shape having the axis OZ as symmetry axis, the angular momentum

~J2 is oriented along an axis in the plane XOY, say OX, to which the maximum moment of inertia

is associated. The octupole bosons describe a shape for which the moment of inertia corresponding

to the axis OZ, is maximum.

Suppose now that a term describing a set of particles and a term describing the interaction

between the two sub-systems are added to the model Hamiltonian. Depending on the strength

of the interaction, the eigenstates of the resulting Hamiltonian may be characterized by a right

or left triad (~j, ~J2, ~J3). In the case the two frames defines states of equal energies one says that

the composite system exhibits a chiral symmetry. In this context we may say that the nuclear

system excited in a high angular momentum state belonging to either of the six bands g±, β±, γ±,

constitutes a precursor of a chiral symmetry system. Such a system will be studied in Section 3.
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FIG. 15: The angle between the angular momenta carried by the quadrupole and octupole bosons

respectively, in the states of g± (upper left), β± (upper right), γ± (bottom left) and dipole (bottom

right) bands, vs. angular momentum.

We may ask ourself whether the magnetic states described in this lecture is related with the

scissors mode [25]. The scissors mode describes the angular oscillations of the symmetry axes of

proton and neutron systems. Here, we do not make any distinction between protons and neutrons,

but we could say that we deal with two distinct entities, one described by the quadrupole and

other by octupole bosons. The two systems rotate around axes which make an angle which was

just described. By contrast to the scissors mode, where the angle between the symmetry axes

is small, here the angle is large. Therefore, we could name the magnetic states described in the

present lecture as shares states.
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III. ROTATIONAL BANDS IN EVEN-ODD NUCLEI

A. The model Hamiltonian

We suppose that the rotational bands in even-odd nuclei may be described by a particle-core

Hamiltonian:

H = Hsp +Hcore +Hpc, (3.1)

where Hsp is a spherical shell model Hamiltonian associated to the odd nucleon, while Hcore is

a phenomenological Hamiltonian which describes the collective motion of the core in terms of

quadrupole and octupole bosons. This term is identical to that used[? ] in the previous Section to

describe eight rotational bands in even-even nuclei. The two subsystems interact with each other

by Hpc, which has the following expression:

Hpc = − X2

∑

µ

r2Y2,−µ(−)µ
(
b†2µ + (−)µb2,−µ

)
−X3

∑

µ

r3Y3,−µ(−)µ
(
b†3µ + (−)µb3,−µ

)

+ XjJ
~j ~J +XI2

~I2. (3.2)

The term ~j ~J is similar to the spin-orbit interaction from the shell model and expresses the inter-

action between the angular momenta of the odd-particle and the core. The last term is due to the

rotational motion of the whole system, ~I denoting the total angular momentum of the particle-core

system. The core states are described by eight sets of mutually orthogonal functions, obtained by

projecting out the angular momentum and the parity from four quadrupole and octupole deformed

functions: one is a product of two coherent states:

Ψg = ef(b+
30
−b30)ed(b+

20
−b20)|0〉2|0〉3 ≡ ΨoΨq|0〉2|0〉3, (3.3)

while the remaining three are polynomial boson excitations of Ψg. The parameters d and f are

real numbers and simulate the quadrupole and octupole deformations, respectively. The vacuum

state for the k-pole boson, k = 2, 3, is denoted by |0〉k.

The particle-core interaction generates a deformation for the single particle trajectories. Indeed,

averaging the model Hamiltonian with Ψg, one obtains a deformed single particle Hamiltonian, Hmf

which plays the role of the mean field for the particle motion:

Hmf = C +Hsp − 2dX2r
2Y20 − 2fX3r

3Y30, (3.4)

where C is a constant determined by the average of Hcore. The Hamiltonian Hmf represents an

extension of the Nilsson Hamiltonian by adding the octupole deformation term. In Ref.[18] we
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have shown that in order to get the right deformation dependence of the single particle energies

Hmf must be amended with a monopole-monopole interaction, Mω2r2α00Y00, where the monopole

coordinate α00 is to be determined from the volume conservation restriction. This term has a

constant contribution within a band. The constant value is, however, band dependent.

In order to find the eigenvalues of the model Hamiltonian we follow several steps:

1) In principle the single particle basis could be determined by diagonalizing Hmf amended

with the monopole interaction. The product basis for particle and core may be further used to find

the eigenvalues of H. Due to some technical difficulties in restoring the rotation and space reversal

symmetries for the composite system wave function, this procedure is however tedious and therefore

we prefer a simpler method. Thus, the single particle space consists of three spherical shell model

states with angular momenta j1, j2, j3. We suppose that j1 and j2 have the parity π = +, while j3

has a negative parity π = −. Due to the quadrupole-quadrupole interaction the odd particle from

the state j1 can be promoted to j2 and vice-versa. The octupole-octupole interaction connects

the states j1 and j2 with j3. Due to the above mentioned effects the spherical and space reversal

symmetries of the single particle motion are broken. To be more specific, by diagonalizing H (3.1)

in a projected spherical particle-core basis with the spherical single particle state factors mentioned

above, the eigenstates could be written as a projected spherical particle-core state having as single

particle state factor a function without rotation and parity good symmetries. Therefore one could

start with a coupled basis where the single particle state is a linear combination of the spherical

states, where the mixing coefficients are to be determined by a least square fitting procedure as

to obtain an optimal description of the experimental excitation energies. Thus, instead of dealing

with a spherical shell model state coupled to a deformed core without reflection symmetry, as the

traditional particle-core approaches proceed, here the single particle orbits are lacking the spherical

and space reversal symmetries and by this, their symmetry properties are consistent with those of

the phenomenological core.

2) We remark that Ψg is a sum of two states of different parities. This happens due to the

specific structure of the octupole coherent state:

Ψo = Ψ(+)
o + Ψ(−)

o . (3.5)

The states of a given angular momentum and positive parity can be obtained through projection
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from the intrinsic states:

|n1l1j1K〉Ψ(+)
o Ψq, |n2l2j2K〉Ψ(+)

o Ψq, |n3l3j3K〉Ψ(−)
o Ψq. (3.6)

The projected states of negative parity are obtained from the states:

|n1l1j1K〉Ψ(−)
o Ψq, |n2l2j2K〉Ψ(−)

o Ψq, |n3l3j3K〉Ψ(+)
o Ψq. (3.7)

The angular momentum and parity projected states are denoted by:

ϕ
(+)
IM (jiK; d, f) = N

(+)
i;IKP

I
MK |nilijiK〉Ψ(+)

o Ψq ≡ N
(+)
i;IKψ

(+)
IM (jiK; d, f), i = 1, 2

ϕ
(+)
IM (j3K; d, f) = N

(+)
3;IKP

I
MK |n3l3j3K〉Ψ(−)

o Ψq ≡ N
(+)
3;IKψ

(+)
IM (j3K; d, f),

ϕ
(−)
IM (jiK; d, f) = N

(−)
i;IKP

I
MK |nilijiK〉Ψ(−)

o Ψq ≡ N
(−)
i;IKψ

(−)
IM (jiK; d, f), i = 1, 2

ϕ
(−)
IM (j3K; d, f) = N

(−)
3;IKP

I
MK |n3l3j3K〉Ψ(+)

o Ψq ≡ N
(−)
3;IKψ

(−)
IM (j3K; d, f). (3.8)

The factors N
(±)
i,IK asure that the projected states ϕ(±) are normalized to unity. Obviously, the

unnormalized projected states are denoted by ψ(±). For the quantum number K we consider the

lowest three values, i.e. K = 1/2, 3/2, 5/2. Note that the earlier particle-core approaches [27, 28]

restrict the single particle space to a single j, which results in eliminating the contribution of the

octupole-octupole interaction.

3) Note that for a given ji, the projected states with different K are not orthogonal. Indeed,

the overlap matrices :

A
(+)
K,K ′(Ijl; d, f) = 〈ψ(+)

IM (jlK; d, f)|ψ(+)
IM (jlK

′; d, f)〉,

l = 1, 2, 3; K,K ′ = 1/2, 3/2, 5/2,

A
(−)
K,K ′(Ijl; d, f) = 〈ψ(−)

IM (jlK; d, f)|ψ(−)
IM (jlK

′; d, f)〉,

l = 1, 2, 3; K,K ′ = 1/2, 3/2, 5/2, (3.9)

are not diagonal. By diagonalization, one obtains the eigenvalues a
(±)
Ip (jl) and the corresponding

eigenvectors V
(±)
IK (jl, p), with K = 1/2, 3/2, 5/2 and p = 1, 2, 3. Then, the functions:

Ψ
(+)
IM (jl, p; d, f) = N

(+)
l;Ip

∑

K

V
(+)
IK (jl, p)ψ

(+)
IM (jlK; d, f),

Ψ
(−)
IM(jl, p; d, f) = N

(−)
l;Ip

∑

K

V
(−)
IK (jl, p)ψ

(−)
IM (jlK; d, f).

(3.10)
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are mutually orthogonal. The norms are given by:

(
N

(±)
l;Ip

)−1
=

√
a

(±)
Ip (jl). (3.11)

For each state, there is a term in the sum (3.10), which has a maximal weight. The corresponding

quantum number K is conventionally assigned to the mixed state. 4) In order to simulate the core

deformation effect on the single particle motion, in some cases the projected states corresponding

to different j must be mixed up.

Φ
(+)
IM(p; d, f) =

∑

l=1,2,3

A(+)
pl Ψ

(+)
IM(jlp; d, f),

Φ
(−)
IM(p; d, f) =

∑

l=1,2,3

A(−)
pl Ψ

(−)
IM(jlp; d, f). (3.12)

The amplitudes A(±)
pl can be obtained either by diagonalizing Hmf or, as we mentioned before, by

a least square fitting procedure applied to the excitation energies.

The energies of the odd system are approximated by the average values of the model Hamiltonian

corresponding to the projected states:

E
(+)
I (p; d, f) = 〈Φ(+)

IM (p; d, f)|H|Φ(+)
IM (p; d, f)〉,

E
(−)
I (p; d, f) = 〈Φ(−)

IM(p; d, f)|H|Φ(−)
IM (p; d, f)〉. (3.13)

Note that due to the structure of the particle-core projected states, the energis for the odd system

are determined by the coupling of the odd particle to the excited states of the core. Our approach

was applied for the description of the Kπ = 1/2± bands.

However this procedure can be extended by including the K 6= 0 states in the space describing

the deformed core.

B. The description of the Kπ = 3
2

±
, 5

2

±
bands.

In principle the method presented in the previous subsection may work for the description of

bands with the quantum number larger than 1/2. However the intrinsic reference frame for the odd

system is determined by the deformed core and therefore one expects that this brings an important

contribution to the quantum number K. To be more specific, we cannot expect that projecting

out the good angular momentum from |j5/2〉 ⊗ Ψg a realistic description of the K = 5/2 bands is
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obtained. Therefore we assume that the Kπ = 3
2

±
, 5

2

±
bands are described by projecting out the

angular momentum from a product state of a low K single partile state and the intrinsic gamma

band state.

We recall that within CSM, the states of the gamma band are obtained by projection from the

intrinsic state:

Ψ
(γ;±)
2 = Ω†

γ,2Ψ
(±)
o Ψq (3.14)

where the excitation operator for the gamma intrinsic state was defined before. The low index of Ψ

in Eq. (3.14) is the K quantum number for the γ intrinsic state. Thus, a simultaneous description

of the bands with K = 1/2, 3/2, 5/2 can be achieved with the projected states:

ϕ
(±)
IM ;1/2 = N

(±)
I,1/2

∑

J

(
N

(g,±)
J

)−1
Cj1 J I

1/2 0 1/2

[
|n1l1j1〉 ⊗ ϕ

(g;±)
J

]

IM
,

ϕ
(±)
IM ;3/2 = N

(±)
I,3/2

∑

J

(
N

(γ,±)
J

)−1
C j1 J I
−1/2 2 3/2

[
|n2l2j2〉 ⊗ ϕ

(γ;±)
J

]

IM
,

ϕ
(±)
IM ;5/2 = N

(±)
I,5/2

∑

J

(
N

(γ,±)
J

)−1
Cj1 J I

1/2 2 5/2

[
|n3l3j3〉 ⊗ ϕ

(±)
J

]

IM
. (3.15)

In the above expressions the notation N
(i,±)
J with i = g, γ is used for the normalization factors of

the projected states describing the ground and the gamma bands, respectively, of the even-even

core. Note that for each angular momentum I the above set of three projected states is orthogonal.

The energies for the six bands with Kπ = 1/2±, 3/2±, 5/2± are obtained by averaging the model

Hamiltonian (3.1) with the projected states defined above.

EI,K = 〈ϕ(±)
IM ;K |H|ϕ(±)

IM ;K〉,K = 1/2, 3/2, 5/2. (3.16)

The matrix elements of the particle core-interaction can be analytically calculated [29].

C. Transition probabilities

For some K = 1/2 bands results for the reduced E1 and E2 transition probabilities are available.

They are given in terms of the branching ratios:

RIπ =
B(E1; Iπ → (I − 1)π

′

)

B(E2; Iπ → (I − 2)π)
, π

′ 6= π (3.17)

The dipole and quadrupole transition operators are:

Q1µ = eq1
(
(b†2b

†
3)1µ + (b3b2)1̃µ

)
,

Q2µ = eQ2

(
b†2µ + (−)µb2,−µ + ar2Y2µ

)
. (3.18)
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D. Numerical results

Excitation energies for one positive and one negative parity bands in three odd isotopes:219Ra,

237U and 239Pu have been calculated. The parameters defining Hcore, as well as the deformation

parameters d and f are the same as for the eight rotational bands in the even-even neighboring

isotopes. The single particle states are spherical shell model states with the appropriate parameters

for the (N,Z) region of the considered isotopes [30]. Our calculations correspond to the single

particle states: (j1, j2, j3) = (2g7/2, 2g9/2, 1h9/2). In order to obtain the best agreement between

the calculated excitation energies and the corresponding experimental data, in the expansion (3.12)

a small admixture of the states (j1; j3) and (j2; j3) was considered: |A(+)
i,3 |2 and |A(−)

i,3 |2, are both

equal to 0.001 for for 219Ra while for 237U and 239Pu the amplitudes take the common values:

|A(+)
i,3 |2 = |A(−)

1,3 |2 = 0.04 The mixing amplitude of the states (j1, j2) is negligible small. Energies

(3.13) depend on the interaction strengths X2,X3,XjJ and XI2 . These were determined by fitting

four particular energies in the two bands of different parities, i.e. Kπ = 1
2
±
. The results of the

fitting procedure are given in Table I. Inserting these in Eqs. (3.13) the energies in the two bands

with K = 1/2 are readily obtained.

E(I±) = E
(±)
I (1; d, f) − E

(+)
1

2

(1; d, f). (3.19)

The theoretical results for excitation energies, given in Fig. 16 and Table II, agree quite well

with the corresponding experimental data. Our results suggest that the dominant K component is

K = 1/2 while the dominant j component is g9/2 The results of r.m.s. values for 219Ra, 237U and

239Pu are 66.24 keV, 48.97 keV and 31.8 keV, respectively. In calculating the r.m.s. value for 219Ra

we ignored the data for the states 53/2± since the spin asignement is unsure. It is interesting to

mention that the spectra of 219Ra has been measured by two groups [37, 38] by the same reaction,

208Pb(14C,3n)219Ra. However they assign for the ground state different angular momenta, 9/2+

[37] and 7/2+ [38]. In our approach both assignements yield good description of the data. However

we made the option for 9/2+ since the corresponding results agree better with the experimental

data than those obtained with the other option.

The case of 227Ra was treated with the formalism presented in Subsection B. The single particle

basis is: 2g7/2, 2g9/2, 2f5/2. The first state coupled to the coherent state describing the unprojected

ground state generates the parity partner bands Kπ = 1/2±. The bands Kπ = 3/2± are obtained

through projection from the product state 2g9/2Ψ
(γ;±)
2 while the bands Kπ = 5/2± originate from
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Parameters 219Ra 227Ra 237U 239Pu

X2b
2[keV] 22.714 -1.992 1.080 -2.515

X3b
3[keV] -8.823 169.511 2.227 4.937

XjJ [keV] -0.230 8.553 -5.817 -3.985

XI2 [keV] 3.778 4.390 4.634 5.050

TABLE I: Parameters involved in the particle-core Hamiltonian obtained by fitting four excitation

energies. Here b denotes the oscillator length: b = ( h̄
Mω )1/2; h̄ω = 41A−1/3. The usual notations

for nucleon mass (M) and atomic number (A) were used

.

the intrinsic state 2f5/2Ψ
(γ;∓)
2 . Concerning the bands characterized by Kπ = 1/2± one could

consider also the mixing of components with different K in the manner discussed in Section A.

However, our numerical application suggests that such a mixing is not really necessary in order to

obtain a realistic description of the available data. The calculated energies in the three bands are

compared with the corresponding experimental data in Fig.17.

From Fig. 17 we note that our approach reproduces the experimental energies ordering in the

band Kπ = 1/2− ordering. The energy split of the states 3/2−, 1/2− is nicely described although

the doublet is shifted down by an amount of about 50 keV. In the band 5/2+ there exist an energy

level which is tentatively asigned with 11/2+. Our calculations suggests that this level could be

asigned as 13/2+. No experimental data are available for the band 5/2−. In Fig. 17 we gave

however the results of our calculations for this band. Note that the ordering for the lowest levels is

not the natural one. However starting with 13/2− the normal ordering is restored. It is interesting

to note that the heading states for the bands 1/2+ and 5/2+ are almost degenerate. the same it is

true for the lowest angular momenta states in their negative parity partner bands.

Now we would like to comment on the parameters yielded by the fitting procedure, for the

considered isotopes. Except for 237U, where both quadrupole-quadrupole and octupole-octupole

interactions are attractive, the two intercations have different characters for the rest of nuclei. In

the first situation the λ (=2,3)-pole moments of the odd nucleon and of the collective core have

different signs. In the remaining cases the two moments are of similar sign. We also remark the

large strength for the q3.Q3 interaction in 227Ra which is consistent with the fact the neighbouring

even-even isotope exhibits a relatively large octupole deformation. Indeed, according to Refs.
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219Ra 237U 239Pu

π = + π = − π = + π = − π = + π = −

J Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th.

1/2 0.0 0.0 398.5 0.0 0.0 469.8 469.8

3/2 11.4 11.4 454.4 7.9 7.9 492.1 477.7

5/2 56.3 74.6 475.5 57.3 62.8 505.6 498.3

7/2 82.9 106.9 550.3 75.7 108.4 556.0 549.8

9/2 0.0 0.0 162.3 191.2 581.3 163.8 183.5 583.0 572.0

11/2 539.0 545.0 204.1 231.8 680.9 193.5 222.0 661.2 655.2

13/2 234.3 235.0 588.0 586.0 317.3 347.7 721.9 318.5 338.1 698.7 685.7

15/2 837.0 847.6 495.4 496.0 375.1 393.1 846.4 846.4 359.2 386.5 806.4 799.9

17/2 529.1 525.4 921.0 917.4 518.2 544.2 930.0 899.1 519.5 534.9 857.5 839.5

19/2 1229.0 1210.6 733.7 734.3 592.0 592.0 1027.5 1046.6 570.9 592.2 992.5 984.2

21/2 876.6 861.2 1309.0 1318.9 762.8 780.3 1131.0 1113.3 764.7 773.7 1058.1 1033.3

23/2 1622.0 1626.6 1035.6 1038.3 853.0 829.0 1250.7 1281.3 828.0 839.2 1219.4 1208.3

25/2 1271.6 1235.5 1722.0 1790.5 1048.7 1065.8 1376.1 1364.8 1053.1 1054.4 1300.9 1267.2

27/2 2022.0 2090.7 1393.6 1400.6 1155.1 1108.8 1515.7 1550.2 1127.8 1127.8 1487.4 1472.2

29/2 1684.7 1644.4 2137.0 2230.5 1372.2 1378.3 1662.3 1654.0 1381.5 1377.0 1584.9 1541.2

31/2 2444.0 2600.9 1815.6 1814.2 1494.1 1421.6 1821.8 1852.8 1467.8 1458.0 1795.4 1776.0

33/2 2113.4 2086.8 2552.0 2580.8 1729.2 1728.7 1987.7 1981.0 1748.5 1744.2 1908.9 1855.4

35/2 2272.1 2272.7 1868.2 1772.5 2166.5 2188.9 1847.0 1831.3 2143.4 2119.8

37/2 2563.6 2563.6 2987.0 3115.9 2117.2 2117.2 2349.7 2346.1 2152.2 2150.2 2272.0 2209.8

39/2 2750.8 2770.6 2272.2 2161.7 2547.5 2558.3 2263.0 2245.0 2529.4 2503.6

41/2 3029.0 3076.7 2530.1 2544.1 2746.7 2749.4 2590.1 2597.9 2672.0 2604.4

43/2 3255.8 3303.4 2702.5 2589.4 2960.5 2960.5 2714.0 2700.5 2951.4 2927.5

45/2 3505.0 3627.9 2963.8 3009.5 3174.7 3191.3 3060.1 3087.5 3108.0 3039.3

47/2 3776.5 3867.8 3154.5 3055.6 3401.5 3395.3 3198.0 3198.0 3407.0 3395.3

49/2 4009.6 4218.7 3415.8 3513.7 3630.0 3671.7 3559.1 3619.1 3578.0 3514.4

51/2 4328.9 4462.5 3625.5 3560.5 3865.0 3862.4 3713.0 3737.0 3895.0 3895.8

53/2 4540.4 4759.2 3886.8 4057.8 4105.0 4190.9 4087.1 4194.0 4080.0 4029.9

55/2 4913.6 5044.1 4115.0 4104.8 4344.0 4350.0 4256.0 4319.8 4413.0 4436.7

TABLE II: Excitation energies in 219Ra, 237U and 239Pu, for the bands characterized by Kπ = 1
2
+

and Kπ = 1
2

−
respectively, are given in keV. The results of our calculations (Th.) are compared

with the corresponding experimental data (Exp.) taken from Ref.[32, 37, 38].
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FIG. 16: Calculated (Th.) and experimental(Exp.) excitation energies for the Kπ = 1
2

±
bands in

219Ra. The data were taken from Ref.[38].

[8, 10] for this nucleus we have f = 0.8. The large value of the strength X3 determines a large

mixing amplitudes of the states [g9/2Ψ
(+)
g ; f5/2Ψ

(−)
g ] as well as of the states [g9/2Ψ

(−)
g ; f5/2Ψ

(+)
g ].

Indeed, the value obtained for this amplitude is: |A(+)
i,3 |2 = |A(−)

1,3 |2 = 0.07425. Another distinctive

feature for 227Ra consists in the fact that the ~j · ~J interaction strength has a sign which is different

from that associated to other nuclei. In fact the repulsive character of this interaction in 227Ra is

necessary in order to compensate the large attractive contribution of the q3Q3 interaction.

Further, we addressed the question whether one could identify signatures for static octupole

de10formation in the two bands. To this goal, in Fig. 18, we plotted the energy displacement

functions [10, 11, 31] δE(I),∆E1,γ(I), defined in the previous section, for 239Pu. We choose this

nucleus, since more data are available. The plot suggests that a static octupole deformation is
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possible for the states with angular momenta I ≥ 51
2 belonging to the two parity partner bands.

Finally we calculated the branching ratio RJ defined by Eq.(3.17), for 219Ra. There are two

parameters involved which were fixed so that two particular experimental data are reproduced.

The values obtained for these parameters are:

present1 :
q1
q2

= 18.377 × 10−3fm−1, ab2 = −0.63616fm2,

present2 :
q1
q2

= 11.310 × 10−3fm−1, ab2 = −0.34422fm2, (3.20)

where b denotes the oscillator strength characterizing the spherical shell model states for the odd

nucleon. As shown in Table III, the theoretical results agree resonable well to the corresponding

experimental data. Our results show an oscilating behavior with maxima for the negative parity

states. Note that some off the data are well described while others deviate from the data by a

factor ranging from 2 to 3. In the third column of Table V we listed the results obtained in Ref.[34]
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FIG. 18: The theoretical and experimental energy displacement functions δE(I) and ∆E1,γ(I)

given by Eqs.(2.21) and (2.22) respectively, characterizing the isotope 239Pu, are plotted as a

function of the angular momentum I. Experimental data are taken from Ref.[32]. In the lower

panel, the theoretical and experimental ∆E1,γ(I) corresponding to the states Iπ =
(

1
2 + 2k

)+
with

k=1,2,3,..., are represented by the symbols labeled by Th.I and Exp.I respectively, while those

associated with the negative parity states Iπ =
(

1
2 + 2k

)−
with k=1,2,3,... bear the labels Th.II

and Exp.II , respectively.

by a different model.

IV. CONCLUSIONS

The results presented above may be summarized as follows: States of four pairs of partner bands

g±, β±, γ±, 1±, are projected from four orthogonal states having both quadrupole and octupole

deformation. The interleaved structure of positive and negative parity states, which have been seen

in some nuclei, is well reproduced. The low position for the state 1− in 218Ra and 220Ra is caused

by the ~J2
~J3 interaction. The back bending of the angular momentum represented as function of the

rotational frequency, seen in 218Ra, is nicely reproduced. From the analysis of energy displacement
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B(E1;J→(J−1))
B(E2;J→(J−2)) [10

−6fm−2]

Jπ − Jg.s. Exp. present1 present2 Ref.[34]

5− 2.52(18) 2.52 2.52 1.195

6+ 1.12(08) 1.09 0.677 0.314

7− 1.49(10) 3.97 3.284 1.318

8+ 1.23(16) 1.23 0.704 0.313

9− 1.16(08) 4.56 3.194 1.442

10+ 2.77(64) 1.44 0.775 0.312

11− 1.41(9) 4.59 2.829 1.567

12+ 3.68(26) 1.69 0.868 0.313

13− 2.14(30) 4.39 2.448 1.691

14+ 1.96(14) 1.96 0.967 0.314

15− 1.76(18) 4.11 2.131 1.814

16+ 1.06(17) 2.22 1.060 0.315

17− 2.08(28) 3.84 1.887 1.936

18+ 3.34(48) 2.45 1.137 0.317

19− 1.34(42) 3.62 1.704 2.057

20+ 2.38(44) 2.63 1.195 0.318

21− 4.01(94) 3.44 1.568 2.177

Average 2.09(9) 2.97 1.7 1.072

TABLE III: Experimental (Exp.) and calculated values of the ratio B(E1)/B(E2) for the initial

state Jπ running from 19/2− to 51/2−. For an easier writting the angular momenta are normalized

to Jg.s. = 9/2. Experimental data are from Ref.[37]. Results are given in units of 10−6fm−2. For

comparison on the last column we give the results from Ref.[34].

functions (e.d.f.) it results that the settlement of the octupole static deformation in the excited

bands, takes place for different angular momenta. Moreover, there are several distinct situations:

a) The vanishing of the e.d.f. takes place only for the gb. b) the vanishing takes place in g, β

and γ bands but at different angular momenta. c) the vanishing appears in γ band but not in

other bands. The jump in the E1 transition probability seen in 226Ra for the g± bands, for the

angular momenta were the static octupole deformation is set on, is reproduced. Note that the
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octupole deformation causes an electric dipole moment, due to the charge distribution. For the

dipole band such a jump is not seen. However, a jump in the M1 transition shows up. We believe

that this is a distinctive feature for the dipole bands. The plot of the dynamic moment of inertia

indicates that each dipole band is a reunion of two distinct bands. For these bands an interleaved

structure with the corresponding bands of opposite parity can be seen. The angle ( ~J2, ~J3) in the

states of g±, β±, γ± reaches a minimum for a certain J , then is slightly increasing and a saturation

is obtained for ϕ = π/2. By contrast in the dipole bands the angle is a monotone decreasing

function of J. Comparing the M1 branching ratios for the bands 1+ and 1− one has concluded that

the band 1+ is of magnetic nature. Doing the same with E1 branching ratio one concludes that

the band 1− is of an electric character. The magnetic states from the band 1+ are different from

the so called scissors states. Indeed, they are rather of shares nature. We have seen that there

are states where the angle ( ~J2, ~J3) is π/2. These states are precursors of a chiral symmetry. This

formalism is the only one which treats correctly the rotational degrees of freedom. All the others

overestimate the contribution of the Eulerian angles. By contrast to other boson formalisms, where

in order to obtain an octupole deformed shape is necessary to have a fourth order octupole boson

Hamiltonian, here a second order term is enough to cause a static octupole deformation. Note

that all the terms involved in the model Hamiltonian have a microscopic justification within a

boson expansion formalism applied to a two body quadrupole-quadrupole plus octupole-octupole

interaction [26].

Comparison between our formalism for even-odd nuclei and that of Ref. [36], reveals the fol-

lowing features: i) Having in mind the asymptotic behavior of the coherent states written in the

intrinsic frame of reference [14], one may anticipate that the wave function describing the odd

system from Ref. [36], might be recovered in the asymptotic limit of the present approach. Due to

the fact that our formalism is associated to the laboratory reference frame, the Coriolis interaction

does not show up explicitly. The split of the states of different parities is determined by the matrix

elements of Hpc. ii) Since the coherent states are axially symmetric functions, we don’t account for

the motion of the γ-like deformation. Again the two formalisms are on a par with each other. iii)

The approach of Ref. [36] is of a strong coupling type and therefore K is a good quantum number,

which is not the case in our approach. Indeed, we use the laboratory frame and the meaning of the

quantum number K is given by the fact that the K-component of the spherical function prevails

over the components with K ′ 6= K. iv) The Hamiltonian describing the odd system (3.1) involves a
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term Hcore which describes in a realistic fashion the neighboring even-even system. By contrast, in

Ref.[36] the terms associated to the core are not appropriate for describing the complex structure

of the even-even sub-system.

Before closing, we would like to add few remarks about the possible development of the present

formalism. Choosing for the core unprojected states, the generating states for the parity partner

bands with Kπ = 0±β , 2
±
γ , 1

± states, otherwise keeping the same single particle basis for the odd

nucleon, the present formalism can be extended to another four bands, two of positive and two of

negative parity. Another noteworthy remark refers to the chiral symmetry [39] for the composite

particle and core system. Indeed, in Section III we showed that starting from a certain total angular

momentum of the core, the angular momenta carried by the quadrupole ( ~J2) and octupole ( ~J3)

bosons respectively, are perpendicular on each other. Naturally, we may ask ourselves whether

there exists a strength for the particle-core interaction such that the angular momentum of the

odd particle becomes perpendicular to the plane ( ~J2, ~J3). This would be a signature that the three

component system exhibits a chiral symmetry.

As a final conclusion, one may say that the present CSM extension to odd nuclei can describe

quite well the excitation energies in the parity partner bands with Kπ = 1
2

±
, 3

2

±
, 5

2

±
.
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