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Abstract
A many-body Hamiltonian involving the mean field for a projected spherical
single particle basis, the pairing interactions for alike nucleons, the dipole–
dipole proton–neutron interactions in the particle–hole (ph) channel and the ph

dipole-pairing potential is treated by the projected gauge of fully renormalized
proton–neutron quasiparticle random phase approximation (PGFRpnQRPA)
approach. The resulting wavefunctions and energies for the mother and the
daughter nuclei are used to calculate the 2νββ decay rate and the process half
life. For illustration, the formalism is applied for the decays 100Mo→ 100Ru
and 116Cd→ 116Sn. The results are in good agreement with the corresponding
experimental data. The Ikeda sum rule is obeyed.

1. Introduction

Double beta decay is one of the most exciting topics of nuclear physics because of the possible
existence of neutrinoless ββ decay modes, which are extensively searched since they connect
to the neutrino mass and neutrino nature. The calculation of the nuclear matrix elements
for these decay modes is a challenge in the study of the ββ decay process; however, this
calculation implies the calculation not only of Gamow–Teller transitions but also of Fermi and
tensor transitions.

The 2νββ process is interesting by its own but is also very attractive because it constitutes
a test for some of the nuclear matrix elements (m.e.) which are used for the process of 0νββ
decay. The subject development is reflected by several review papers [1–7]. Our contribution
described in this paper concerns the 2νββ process, which can be viewed as two consecutive
and virtual single β− decays. The formalism yielding closest results to the experimental data is
the proton–neutron random phase approximation (pnQRPA) which includes the particle–hole
(ph) and particle–particle (pp) [8] as independent two-body interactions. The second leg of
the 2νββ process is very sensitive to changing the relative strength of the later interaction,
denoted hereafter by gpp. It is worth mentioning that the two-body interaction of ph type
is repulsive while that of pp nature is attractive. Due to this feature there is a critical value
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for gpp for which the first root of the pnQRPA equation vanishes. Actually, this is the signal
that the pnQRPA approach is no longer valid. Moreover, the gpp value which corresponds to
a transition amplitude which agrees with the corresponding experimental data is close to the
mentioned critical value. That means that the result is not stable to adding corrections to the
pnQRPA picture. One improvement for the pnQRPA was achieved by one of us (AAR), in
collaboration, in [9, 10], by using a boson expansion (BE) procedure. Another procedure of
going beyond pnQRPA is to renormalize the dipole two quasiparticle operators by replacing the
scalar components of their commutators by their average values [11]. Such a renormalization
is inconsistently achieved since the scattering operators are not renormalized. This lack of
consistency was removed in [12, 13] where a fully renormalized pnQRPA (FRpnQRPA) is
proposed.

Unfortunately, all higher pnQRPA procedures mentioned above have a common drawback
of violating the Ikeda sum rule (ISR) by an amount of about 20–30% [14]. It is believed that
such a violation is caused by the gauge symmetry breaking. Consequently, a method of
restoring this symmetry was formulated by the present authors in [15].

In this paper the results of [15] are improved in three respects: (a) aiming at providing a
unitary description of the process for the situations when the nuclei involved are spherical or
deformed, here we use the projected spherical single particle basis defined in [16] and used
for double beta decay in [17, 18]; (b) the space of proton–neutron dipole configurations is
split into three subspaces, one being associated with the single β−, one to the β+ process, and
one spanned by the unphysical states; (c) the correlations for the second leg of the process are
mainly determined by the ph dipole-pairing term. A compact expression for the dispersion
equation of energies is obtained from the linearized equations of motion of the basic transition
operators corresponding to the two coupled processes. The numerical application is made for
the 2νββ processes 100Mo →100 Ru and 116Cd→ 116Sn.

We shall describe the formalism and results according to the following plan. The single
particle basis is briefly presented in section 2. The model Hamiltonian is given in section 3.
The FRpnQRPA approach is discussed in section 4, while the projected gauge of FRpnQRPA
(PGFRpnQRPA) is the objective of section 5. The Gamow–Teller (GT) amplitude for the
2νββ process is given in section 6. Numerical applications are shown in section 7, while the
final conclusions are drawn in section 8.

2. The model Hamiltonian

We suppose that the states describing the mother, the daughter and the intermediate odd–odd
nuclei are described by a sole many-body Hamiltonian. Written in the second quantization
with a projected spherical single particle basis [16, 17, 19–23], this is similar to the one
used in [18], H ′, with the difference that the proton–neutron dipole–dipole interaction in the
particle–particle (pp) channel, Hpp, is replaced by an attractive term of dipole-pairing type,
Hdp:

H =
∑ 2

2I + 1
(εταI − λτα)c

†
ταIMcταIM −

∑ Gτ

4
P

†
ταIPταI ′

+ 2χ
∑

β−
µ (pn)β+

−µ(p′n′)(−)µ − Xdp

∑

pn;p′

n′;µ

(
β−

µ (pn)β−
−µ(p′n′)

+β+
−µ(p′n′)β+

µ(pn)
)
(−1)1−µ. (2.1)

The operator c
†
ταIM (cταIM) creates (annihilates) a particle of type τ (=p, n) in the state (IM

α ,
when acting on the vacuum state |0〉. In order to simplify the notations, hereafter the set
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of quantum numbers α(=nlj) will be omitted. The two-body interaction consists of three
terms, the pairing, the dipole–dipole particle–hole (ph) and the dipole-pairing interaction. The
strengths corresponding to the two-body interactions are denoted by Gτ (τ = p, n), χ,Xdp,
respectively. All of them are separable interactions, with the factors defined by the following
expressions:

P
†
τI =

∑

M

2
2I + 1

c
†
τIMc

†
τ̃ IM

,

β−
µ (pn) =

∑

M,M ′

√
2

Î
〈pIM|σµ|nI ′M ′〉

√
2

Î ′
c
†
pIMcnI ′M ′ .

(2.2)

The remaining operators from equation (2.2) can be obtained from the above-defined operators,
by Hermitian conjugation.

We note that the Hamiltonian used in this paper differs from that of [18] by the attractive
two-body interaction. Indeed, while in the quoted reference a dipole–dipole pp interaction is
used here a proton–neutron dipole-pairing term is introduced. As shown in the next section,
the reason for such a replacement consists of the fact that fixing the gauge the pp interaction
does not contribute at all at the pnQRPA level.

Passing to the quasiparticle (qp) representation through the Bogoliubov–Valatin
transformation

a
†
τIM = UτI c

†
τIM − sIMVτI cτI−M, sIM = (−)I−M, τ = p, n, U 2

τI + V 2
τI = 1, (2.3)

the first two terms of H are replaced by the independent quasiparticles term,
∑

EτIa
†
τIMaτIM ,

while the two-body dipole–dipole interactions are expressed in terms of the dipole two qp and
the dipole qp density operators:

A
†
1µ(pn) =

∑
C

Ip In 1
mp mn µa

†
pIpmp

a
†
nInmn

, A1µ(pn) =
(
A

†
1µ(pn)

)†
,

B
†
1µ(pn) =

∑
C

Ip In 1
mp −mn µa

†
pjpmp

anInmn
(−)In−mn, B1µ(pn) =

(
B

†
1µ(pn)

)†
.

(2.4)

3. The fully renormalized pnQRPA

In [12], we showed that all these operators can be renormalized as suggested by the
commutation equations

[
A1µ(k), A

†
1µ′(k

′)
]

≈ δk,k′δµ,µ′

[

1 − N̂n

Î 2
n

− N̂p

Î 2
p

]

,

[
B

†
1µ(k), A

†
1µ′(k

′)
]

≈
[
B

†
1µ(k), A1µ′(k′)

]
≈ 0,

[
B1µ(k), B

†
1µ′(k

′)
]

≈ δk,k′δµ,µ′

[
N̂n

Î 2
n

− N̂p

Î 2
p

]

, k = (Ip, In).

(3.1)

Indeed, denoting by C
(1)
Ip,In

and C
(2)
Ip,In

the averages of the right-hand sides of (3.1) with the
renormalized RPA vacuum state, the renormalized operators defined as

Ā1µ(k) = 1
√

C
(1)
k

A1µ, B̄1µ(k) = 1
√∣∣C(2)

k

∣∣
B1µ (3.2)

obey boson-like commutation relations
[
Ā1µ(k), Ā

†
1µ′(k

′)
]

= δk,k′δµ,µ′ ,
[
B̄1µ(k), B̄

†
1µ′(k

′)
]

= δk,k′δµ,µ′fk, fk = sign
(
C

(2)
k

)
.

(3.3)
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Further, these operators are used to define the phonon operator

C
†
1µ =

∑

k

[
X(k)Ā

†
1µ(k) + Z(k)D̄

†
1µ(k)

−Y (k)Ā1−µ(k)(−)1−µ − W(k)D̄1−µ(k)(−)1−µ
]
, (3.4)

where D̄
†
1µ(k) is equal to B̄

†
1µ′(k′) or B̄1µ(k) depending on whether fk is + or −. The phonon

amplitudes are determined by the equations
[
H,C

†
1µ

]
= ωC

†
1µ

[
C1µ, C

†
1µ′

]
= δµµ′ . (3.5)

Interesting properties for these equations and their solutions are discussed in our previous
publications [12, 13].

4. The projected gauge of the fully renormalized pnQRPA

The renormalized ground state, i.e. the vacuum state for the phonon operator defined by the
FRpnQRPA approach, is a superposition of components describing the neighboring nuclei
(N − 1, Z + 1), (N + 1, Z − 1), (N + 1Z + 1), (N − 1, Z − 1). The first two components
conserve the total number of nucleons (N + Z) but violate the third component of isospin,
T3. By contrast, the last two components violate the total number of nucleons but preserve T3.
Actually, the last two components contribute to the violation of the ISR. However, one can
construct linear combinations of the basic operators A†, A,B†, B which excite the nucleus
(N,Z) to the nuclei (N −1, Z+1), (N +1, Z−1), (N +1, Z+1), (N −1, Z−1), respectively.
These operators are

A†
1µ(pn) = UpVnA

†
1µ(pn) + UnVpA1,−µ(pn)(−)1−µ

+ UpUnB
†
1µ(pn) − VpVnB1,−µ(pn)(−)1−µ,

A1µ(pn) = UpVnA1µ(pn) + UnVpA
†
1,−µ(pn)(−)1−µ

+ UpUnB1µ(pn) − VpVnB
†
1,−µ(pn)(−)1−µ,

A†
1µ(pn) = UpUnA

†
1µ(pn) − VpVnA1,−µ(pn)(−)1−µ

−UpVnB
†
1µ(pn) − VpUnB1,−µ(pn)(−)1−µ,

A1µ(pn) = UpUnA1µ(pn) − VpVnA
†
1,−µ(pn)(−)1−µ

−UpVnB1µ(pn) − VpUnB
†
1,−µ(pn)(−)1−µ.

Indeed, in the particle representation, these operators have the expressions

A†
1µ(pn) = −

[
c†pc̃n

]
1µ

, A1µ(pn) = −
[
c†pc̃n

]†
1µ

, (4.1)

A†
1µ(pn) =

[
c†pc†n

]
1µ

, A1µ(pn) =
[
c†pc†n

]†
1µ

. (4.2)

In terms of the new operators the many-body Hamiltonian is

H =
∑

τjm

Eτja
†
τjmaτjm + 2χ

∑

pn,p′n′;µ
σpn;p′n′A†

1µ(pn)A1µ(p′n′) − Xdp

∑

pn;p′

n′;µ

σpn;p′n′

×
(
A†

1µ(pn)A†
1,−µ(p′n′) + A1,−µ(p′n′)A1µ(pn)

)
(−)1−µ,

σpn;p′n′ = 2

3ÎnÎn′
〈Ip||σ ||In〉〈Ip′ ||σ ||In′ 〉. (4.3)

4
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Here EτI denotes the quasiparticle energy. If instead of the dipole ph pairing interaction we
consider the proton–neutron two-body pp interaction, then the third term of H would be

H3 = −2Xdp

∑

pn;p′

n′;µ

σpn;p′n′A†
1µ(pn)A1µ(p′n′). (4.4)

Since we are interested in describing the harmonic modes which preserve the total number
of nucleons, the term H3 would not contribute at the RPA level. Indeed, this term defines a
deuteron-type excitation, and consequently modifies the total number of nucleons.

The equations of motion of the operators defining the phonon operator are determined by
the commutation relations

[
A1µ(pn),A†

1µ′(p
′n′)

]
≈ δµ,µ′δjp,jp′ δjn,jn′

[

U 2
p − U 2

n +
U 2

n − V 2
n

ĵ 2
n

N̂n −
U 2

p − V 2
p

ĵ 2
p

N̂p

]

.

(4.5)

The average of the rhs of this equation with the PGFRpnQRPA vacuum state is denoted by

D1(pn) = U 2
p − U 2

n +
1

2In + 1

(
U 2

n − V 2
n

)
〈N̂n〉 − 1

2Ip + 1

(
U 2

p − V 2
p

)
〈N̂p〉. (4.6)

The equations of motion show that the two qp energies are renormalized too:

Eren(pn) = Ep

(
U 2

p − V 2
p

)
+ En

(
V 2

n − U 2
n

)
. (4.7)

The space of pn dipole states, S, is written as a sum of three subspaces defined as

S+ = {(p, n)|D1(pn) > 0, Eren(pn) > 0, }, S− = {(p, n)|D1(pn) < 0, Eren(pn) < 0, },

Ssp = S − (S+ + S−),

N± = dim(S±), Nsp = dim(Ssp),

N = N+ + N− + Nsp.

(4.8)

The third line of the above equations specifies the dimensions of these subspaces. In S+ one
defines the renormalized operators

Ā†
1µ(pn) = 1√

D1(pn)
A†

1µ(pn), Ā1µ(pn) = 1√
D1(pn)

A1µ(pn), (4.9)

while in S− the renormalized operators are

F̄†
1µ(pn) = 1√

|D1(pn)|
A1µ(pn), F̄1µ(pn) = 1√

|D1(pn)|
A†

1µ(pn). (4.10)

Indeed, the operator pairs A1µ,A†
1µ and F1µ,F†

1µ satisfy commutation relations of boson
type. An RPA treatment within Ssp would yield either vanishing or negative energies. The
corresponding states are therefore spurious.

The equations of motion for the renormalized operators read
[
H, Ā†

1µ(pn)
]

= Eren(pn)Ā†
1µ(pn) + 2χ

∑

(p1n1)∈S+

σ
(1)
pn;p1n1

Ā†
1µ(p1n1)

− 2Xdp

∑

(p1n1)∈S−

σ
(1)
pn;p1n1

F̄†
1µ(p1n1)

+ 2χ
∑

(p1n1)∈S−

σ
(1)
pn;p1n1

F̄1−µ(−1)1−µ(p1n1)

5
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− 2Xdp

∑

(p1n1)∈S+

σ
(1)
pn;p1n1

Ā1−µ(−1)1−µ(p1n1),

[
H, F̄†

1µ(pn)
]

= |Eren(pn)|F̄†
1µ(pn) + 2χ

∑

(p1n1)∈S−

σ
(1)
pn;p1n1

F̄†
1µ(p1n1)

− 2Xdp

∑

(p1n1)∈S+

σ
(1)
pn;p1n1

Ā†
1µ(p1n1)

+ 2χ
∑

(p1n1)∈S+

σ
(1)
pn;p1n1

Ā1−µ(−1)1−µ(p1n1)

− 2Xdp

∑

(p1n1)∈S−

σ
(1)
pn;p1n1

F̄1−µ(p1n1)(−1)1−µ,

[H, Ā1µ(pn)] = −Eren(pn)Ā1µ(pn) − 2χ
∑

(p1n1)∈S+

σ
(1)
pn;p1n1

Ā1µ(p1n1)

+ 2Xdp

∑

(p1n1)∈S−

σ
(1)
pn;p1n1

F̄1µ(p1n1)

− 2χ
∑

(p1n1)∈S−

σ
(1)
pn;p1n1

F̄†
1,−µ(p1n1)(−1)1−µ

+ 2Xdp

∑

(p1n1)∈S+

σ
(1)
pn;p1n1

Ā†
1−µ(p1n1)(−1)1−µ,

[H, F̄1µ(pn)] = −|Eren(pn)|F̄1µ(pn) − 2χ
∑

(p1n1)∈S−

σ
(1)
pn;p1n1

F̄1µ(p1n1)

+ 2Xdp

∑

(p1n1)∈S+

σ
(1)
pn;p1n1

Ā1µ(p1n1)

− 2χ
∑

(p1n1)∈S+

σ
(1)
pn;p1n1

Ā†
1,−µ(p1n1)(−1)1−µ

+ 2Xdp

∑

(p1n1)∈S+

σ
(1)
pn;p1n1

F̄†
1−µ(p1n1)(−1)1−µ, (4.11)

where

σ
(1)
pn;p1n1

= 2

1̂În

〈p||σ ||n〉|D1(pn)|1/2 2

1̂În1

〈p1||σ ||n1〉|D1(p1n1)|1/2 ≡ TpnTp1n1 . (4.12)

The phonon operator is defined as

,
†
1µ =

∑

k=(pn)

[
X(k)Ā†

1µ(k) + Z(k)F̄†
1µ(k) − Y (k)Ā1−µ(k)(−)1−µ − W(k)F̄1−µ(k)(−)1−µ

]

(4.13)

with the amplitudes determined by the equations
[
H,,

†
1µ

]
= ω,

†
1µ,

[
,1µ, ,

†
1µ

′

]
= δµ,µ

′ . (4.14)

Thus, the phonon amplitudes are obtained by solving the PGFRpnQRPA equations




A11 A12 B11 B12

A21 A22 B21 B22

−B11 −B12 −A11 −A12

−B21 −B22 −A21 −A22









X(pn)

Z(pn)

Y (pn)

W(pn)



 = ω





X(p1n1)

Z(p1n1)

Y (p1n1)

W(p1n1)



 (4.15)

6
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where the following notations have been used:

(A11) = Eren(pn)δpn;p1n1 + 2χσ (1)T
p1n1;pn,

(A12) = −2Xdpσ
(1)T
p1n1;pn,

(B11) = −2Xdpσ
(1)T
p1n1;pn,

(B12) = 2χσ (1)T
p1n1;pn,

(A21) = −2Xdpσ
(1)T
p1n1;pn,

(A22) = |Eren(pn)|δpn;p1n1 + 2χσ (1)T
p1n1;pn,

(B21) = 2χσ (1)T
p1n1;pn,

(B22) = −2Xdpσ
(1)T
p1n1;pn.

(4.16)

Here the index T suggests the fact that the matrix is transposed. The matrix dimension for A11

and B11 is N+ × N+ while for A22 and B22 it is N− × N−. The off-diagonal sub-matrices A12

and B12 have the dimension N+ × N− while A12 and B12 are of the N− × N+ type.
In order to solve equations (4.15) we need to know D1(pn) and, therefore, the averages

of the qp’s number operators, N̂p and N̂n. These are written first in particle representation
and then the particle number conserving term is expressed as a linear combination of A†A and
F†F chosen such that their commutators with A†,A and F†,F are preserved. The final result
is

〈N̂p〉 = V 2
p (2Ip + 1) + 3

(
U 2

p − V 2
p

)( ∑

n′,k
(p,n′)∈S+

D1(p, n′)(Yk(p, n′))2

−
∑

n′,k
(p,n′)∈S−

D1(p, n′)(Wk(p, n′))2
)

,

〈N̂n〉 = V 2
n (2In + 1) + 3

(
U 2

n − V 2
n

)( ∑

p′,k
(p′,n)∈S+

D1(p
′, n)(Yk(p

′, n))2

−
∑

p′,k
(p′,n)∈S−

D1(p
′, n)(Wk(p

′, n))2
)

. (4.17)

Equations (4.15), (4.17) and (4.6) are to be simultaneously considered and solved iteratively.
It is worth mentioning that using the quasiparticle representation for the basic operators
A†

1µ,F†
1µ,A1,−µ(−1)1−µ,F1,−µ(−)1−µ, one obtains for ,†

1µ an expression which involves the
scattering pn operators. Thus, the present approach is, indeed, PGFRpnQRPA.

It is worth noting that the compatibility condition for the PGpnQRPA equations (4.15)
can be written in a compact form as a dispersion equation for the excitation energies. This is
explicitly given in the appendix.

5. The 2νββ process

The formalism presented above was used to describe the 2νββ process. If the energy carried
by leptons in the intermediate state is approximated by the sum of the rest energy of the emitted
electron and half the Q-value of the double beta decay process

-E = mec
2 + 1

2Qββ, (5.1)

7
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the reciprocal value of the 2νββ half life can be factorized as
(
T

2νββ
1/2

)−1 = F
∣∣MGT

(
0+

i → 0+
f

)∣∣2
, (5.2)

where F is an integral on the phase space, independent of the nuclear structure, while MGT

stands for the Gamow–Teller transition amplitude and has the expression

MGT =
√

3
∑

k,k′

i〈0||β+
i ||1k〉i i〈1k|1k′ 〉f f 〈1k′ ||β+

f ||0〉f
Ek + -E + E1+

. (5.3)

In the above equation, the denominator consists of three terms: (a) -E, which was already
defined, (b) the average value of the kth PDFRpnQRPA energy normalized to the particular
value corresponding to k = 1, and (c) the experimental energy for the lowest 1+ state.
The indices carried by the β+ operators indicate that they act in the space spanned by the
PGFRpnQRPA states associated with the initial (i) or final (f ) nucleus, respectively. The
overlap m.e. of the single phonon states in the initial and final nuclei, respectively, are
calculated within PGFRpnQRPA. In equation (5.3), the Rose convention for the reduced m.e.
is used [25].

Note that if we restrict the pn space to S+ and moreover the Xdp interaction is missing,
MGT vanishes due to the second leg of the transition. Indeed, the m.e. associated with the
daughter nucleus is of the type f 〈0|(c†ncp)1µ(c

†
ncp)1µ|o〉f , which is equal to zero due to the

Pauli principle restriction. In this case the equations of motion are of Tam–Dankoff type and
therefore the ground state correlations are missing. In order to induce the necessary correlations
we have either to extend the formalism in the space S− or to allow the ph excitations to interact
via a pairing like force. Here the two effects are simultaneously considered. Also we remark
that the operator Ā†

1µ plays the role of a β− transition operator, while when F̄†
1µ is applied on

the ground state of the daughter nucleus, it induces a β+ transition. Therefore, the ββ decay
cannot be described by considering the β− transition alone.

6. Numerical application

For illustration, we present the results for the transitions 100Mo→100Ru and 116Cd→116Sn .
For these cases the energy corrections involved in equation (5.3) are

-E(100Mo) = 2.026 MeV, E1+(100Tc) = 0.0 MeV,

-E(116Cd) = 1.916 MeV, E1+(116In) = 0.0 MeV.
(6.1)

The parameters defining the single particle energies are those of the spherical shell model,
the deformation parameter d and the parameter k relating the quadrupole coordinate with
the quadrupole bosons as shown in equation (2.2). These are fixed as described in [18].
The deformation parameter d used in this paper is the same as in [18]. The single particle
parameters as well as the strengths for the two-body interactions are given in table 1 where we
also present the values used in [18]. Of course, the formalisms used here and in [18] are totally
different and therefore we expect that the parameters characterizing the one- and two-body
interactions used in the two approaches are different.

Few comments about these data are necessary. As shown in [24] the parameter d depends
linearly on the nuclear deformation, the proportionality constant being the parameter k.
Comparing to the case of [18] here we used a larger deformation for 100Mo and 100Ru,
i.e. a smaller k, and a smaller one for 116Cd and 116Sn. Although we use the same single
particle wavefunctions due to the restrictions (4.8) as well as to the gauge conservation some
single particle wavefunction become ineffective. Due to this feature, keeping for the single
particle space the same dimension as in [18], the ISR would be drastically suppressed. Also
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Table 1. The deformation parameter d, the pairing interaction strengths for protons (Gp) and neutrons (Gn) and the GT dipole interaction χ used in our calculations. We also give the
parameter k relating the quadrupole coordinates and bosons (this is involved in the expression of the single particle energies) as well as the resulting logf t values characterizing the
β+/EC and β− transitions of 100Tc and 116In, respectively. The results for logf t values, given in the right column, are compared to the experimental data from the left column.

k Gp (MeV) Gn (MeV) χ (MeV)

d Here Ref. [18] Here Ref. [18] Here Ref. [18] ISR logf t Here Ref. [18] Xdp (MeV)

100Mo −1.5 5.5 10. 0.18 0.28 0.288 0.26 15.995 100Mo
β+/EC←− 100Tc 0.232 0.060 1.406

4.45+0.18
−0.30 4.65

100Ru −0.6 5.5 3.6 0.15 0.285 0.255 0.220 12.002 100Tc
β−

−→100Ru 0.232 0.060 1.406
4.66 4.12

116Cd −1.8 12. 3.0 0.15 0.2 0.282 0.245 20.07 116Cd
β+/EC←− 116In 0.200 0.238 1.308

4.39+0.1
−0.15 4.29

116Sn −1.2 12. 2.5 0.12 0.18 0.2458 0.275 16.007 116In
β−

−→116Sn 0.200 0.238 1.308
4.662 4.08

9
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Table 2. The number of single particle proton states lying above the (Z, N) core is given. The
single particle space for neutrons is identical to that for protons. The dimensions of the dipole
configurations which obey constraints (4.8) for mother and daughter nuclei (here) are compared
with the corresponding data from [18].

100Mo 100Ru 116Cd 116Sn

Nucleus Here Ref. [18] Here Ref. [18] Here Ref. [18] Here Ref. [18]

The (Z,N) core (20, 20) (26, 26) (20, 20) (26, 26) (20, 20) (26, 26) (20, 20) (26, 26)
Number of states 45 20 45 20 55 27 55 27
dim(S+ + S−) 138 132 141 132 189 166 186 166

the pairing contribution to the BGT strengths is also diminished. For this reason the single
particle space had to be enlarged. We remark that although the dimension of the single particle
space is increased by a factor of about 2, the dimension of the pn dipole configurations used in
the pnQRPA calculations is only slightly different from that used in [18]. Of course increasing
the single particle space, the pairing properties are modified. Since the protons are near to
closing a major shell, the strength is to be decreased. The neutron pairing strength is a bit
larger than in [18] otherwise close in magnitude.

The core system for the two decays is defined by (Z,N) = (20, 20). Labeling the
states according to their energies ordering, the single particle space is defined by the indices
interval [11, 55] and [11, 65], respectively. The dimensions for the spaces (S+,S−,S) are
(137, 1, 163) and (139, 2, 175) for 100Mo and 100Ru, while for the mother and daughter nuclei
of the decay 116Cd→116Sn, they are (189, 0, 219) and (182, 4, 219), respectively. For both
processes considered here eight iterations were necessary in order that the iteration process
reaches the convergence. The dimensions of single particle and pn dipole configuration spaces
are compared with similar data used in [18] in table 2. The strength of the dipole pn two-body
interaction is usually taken to be

χ = 5.2
A0.7

MeV. (6.2)

This expression was obtained by fitting the positions of the GT resonances in 40Ca, 90Zr
and 208Pb [26]. This expression provides for χ the values 0.207 and 0.187 for 100Mo and
116Cd, respectively. These values yield for the log f t values of the intermediate odd–odd
nuclei results which deviate much from the corresponding experimental data. Moreover, even
in [18] these values of the ph interaction strength yields half lives which deviate from the
experimental data especially for 116Cd. Therein, the log f t values associated with the decays
of the intermediate odd–odd nuclei are well described by using χ given in table 1 and a large
strength for the pp interaction. Indeed the ratio of the strengths for the pp and ph interactions,
usually denoted by gpp, is 1.6 and 1.68, respectively. For this reason we fixed χ by fitting
the log f t value characterizing the β+/EC process of the intermediate nuclei. Results for
χ obtained in this way are slightly different from those provided by the expression (6.2).
The parameter Xdp was fixed such that the log f t value characterizing the β− decay of the
intermediate odd–odd nuclei is close to the corresponding experimental data.

We note that the ISR is satisfied both for mother and daughter nuclei. In our calculation
the ISR is sensitive to the dimension of the single particle basis. Indeed, choosing a basis of
a smaller dimension the ISR would be underestimated. Another parameters which influence
the magnitude of ISR are the pairing strengths. Indeed ISR is increasing by increasing Gn or
decreasing Gp. Variation of χ and Xdp does not affect much ISR. However, by varying these
parameters, the single beta strengths are modified according to the interaction nature. The
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Table 3. The Gamow–Teller amplitude for the 2νββ decay, in units of MeV−1, and the
corresponding half life (T1/2), in units of yr, are listed for two ground-to-ground transitions.
The experimental half lives for the transitions of 100Mo (a[27], b[28], c[29], d[30]), 116Cd (e[37])
are also given. In the second last column the results reported in f[31] and g[32] are given.
Comparison is also made with the theoretical results from the last column reported in h[33], [34]
(unmarked) and j[35].

T1/2 (yr)

MGT Reference Reference Reference
(MeV−1) Present Exp. [18] [31, 32] [33, 34, 35]

100Mo→100Ru 0.221 8.79 × 1018 (8.0 ± 0.16) × 1018 a 4.4 × 1018 2.9 × 1018 f 1.8 × 1018 h

(0.115+0.03
−0.02) × 1020 b

0.033+0.02
−0.01 × 1020 c,d

116Cd→116Sn 0.15998 2.02 × 1019 (3.2 ± 0.3) × 1019 e 3.86 × 1019 5.1 × 1019 g 8.3 × 1018

3.75 × 1019 j

strength is transferred to the lower energy by the attractive interaction (Xdp) and pushed up by
the repulsive one (χ ).

Using these input data we calculated the distribution of the β± strengths with the
result shown in figure 1. The energy intervals where both distributions are large contribute
significantly to the double beta transition amplitude. In plotting the β+ strength we ignored
the values smaller than 0.01. The β∓ strengths are fragmented among the pnQRPA states,
reflecting the fact that the single particle states are deformed. Note that the first peak for the
β− strength is the highest one while the one centered at higher energy has a large width and
a fine substructure. The low energy peak is mainly determined by the attractive two-body
interaction while the broad peak, i.e. the GT giant resonance, by the ph interaction. The β+

strength is small in magnitude and less fragmented than the β− strength. Also we note that
the highest energy peak is the largest one.

Calculating first the GT transition amplitude and then the Fermi integral with GA = 1.254,
as in [4], we obtained the results given in table 3.

From table 3, one may see that this approach provides for the half life of the double
beta decay, values which are quite close to the experimental data. The results are compared
with other theoretical calculations using different formalisms. Thus, in [18] a schematic
Gamow–Teller proton–neutron interaction, in the particle–hole and particle–particle channels,
is treated within a projected spherical single particle basis by a pnQRPA approach. The results
correspond to a large value of the parameter gpp. Indeed, for the two nuclei considered here,
100Mo and 116Cd, the parameters (χ, gpp) are (0.06, 1.6) and (0.238, 1.68), respectively. In
[31, 32], a realistic Bonn interaction is treated by a higher pnQRPA approach, using a single
particle basis corresponding to the Woods–Saxon potential. Of course, the ISR is not obeyed
given the fact that a higher pnQRPA approach is used. The results shown in the last column
were obtained using for proton–neutron interaction the Paris potential in both the ph and pp

channel and a pnQRPA formalism. It is worth mentioning that although within the pnQRPA
approach the ISR is obeyed the large value for the pp interaction strength raises the question
whether the used formalism is still valid. On the other hand, the higher pnQRPA approach,
yielding the results shown in table 3 in the column labelled ‘References [31, 32]’, leads
necessarily to a violation of the ISR. We remark that these weak points are not present in the
present formalism. In [38] the standard renormalized pnQRPA was applied for calculating
the rate of double beta transitions of many isotopes. Unfortunately, the list does not include
the isotopes considered here and consequently we cannot compare the predictions presented
here with those from the quoted reference. Another fully renormalized procedure which
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Figure 1. One-third of the single β− strength for the mother nucleus, 100Mo (upper-left panel)
and 116Cd (bottom-left panel), and one-third of the β+ strength for the daughter nucleus, 100Ru
(upper-right panel) and 116Sn (bottom-right panel), folded by a Gaussian function with a width of
1 MeV, are plotted as functions of the corresponding energies yielded by the present formalism.
Note that for a given nucleus the difference B

′(−)
GT − B

′(+)
GT is to be compared with the reduced ISR

value, i.e. N−Z.

obeys the ISR was formulated in [39]. The dependence of single beta decay strengths on the
particle–particle interaction was studied numerically in [40]. By contrast, in our case, the pp

interaction does not contribute to the ground state correlations. Actually for this reason we
replaced it by a dipole-pairing interaction. This interaction brings important contributions to
the backward-going RPA amplitudes. However, even if this attractive two-body interaction is
missing, the ground state correlations would not vanish due to the presence of the amplitudes
F in the phonon operator expression. At its turn this is caused by the split of the pn dipole
configurations in two orthogonal subspaces, one associated with the β− transition while the
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Table 4. The experimental summed strength for the β− transition (second row) is compared with
the corresponding theoretical values quenched by a factor 0.6, for the two considered double beta
emitters.

Nucleus 100Mo 116Cd

0.6
∑

B(GT)− 28.96 36.2
∑

B(GT)
Exp
− 26.69 32.7

other one to the β+ decay. Also the ISR is obeyed. We added however the dipole-pairing
interaction in order to describe the log f t values associated with the single beta transitions
of the intermediate odd–odd nuclei. The eigenvalue equations and the restrictions for the
averaged quasiparticle number operators, in the two renormalization approaches, are different
from each other.

Another experimental result concerns the summed strength for the β− transition, denoted,
conventionally, by

∑
BGT−. The experimental value of this sum covers only a fraction of the

sum rule limit of 3(N − Z). Therefore, in order to get a fair comparison of the calculated
and measured quantity, we have to quench the calculated strength by a factor 0.6 in order to
account for the missing experimental strength. The results are presented in table 4.

The intermediate odd–odd nucleus, 100Tc, can perform the transition β+/EC, feeding
100Mo or the β− transition to 100Ru. The same is true for 116In which by means of an EC

process may undergo to 116Cd while through a β− decay can feed the nucleus 116Sn. The
measured log f t values for these transitions are given in table 1. The corresponding theoretical
results are obtained by means of the expression

f t∓ = 6160
[l〈11||β±||0〉lgA]2

, l = i, f. (6.3)

In order to take account of the effect of distant states responsible for the ‘missing strength’ in
the giant GT resonance [4] we choose gA = 1.0. As we already mentioned, these single beta
transitions were used as to fix the strengths of the two-body dipole–dipole interactions.

The matrix elements involved in the double beta transition amplitude of the two emitters,
100Mo and 116Cd, have been experimentally investigated in [37]. The first matrix elements,
describing the transitions 0+

i → 1+, were obtained from the reactions 100Mo(3He,t)100Tc and
116Cd(3He,t)116In, respectively, at θt ≈ 00, while the matrix elements for the 1+ → 0+

f were
derived from the known log f t value. For both cases the strength of the first β− transition
exhibits two bumps, one broad and called GTR1, while the second one less spread, located at
lower energy and called GTR2. The centroid energies of the two resonances as well as the
strength carried by each of them are compared with the theoretical results obtained with our
approach, in table 5.

From the mentioned table we note that the theoretical centroid energy for GTR1 is by
about 2 MeV smaller than the experimental data. Moreover, the calculated strength carried by
GTR1 is smaller than the corresponding experimental data. A reason for such a discrepancy
might be the relative values for the attractive and repulsive dipole–dipole interaction intensities
which favors the transfer of strength from the GTR states to the states from the resonance of
GTR2 and those from around 5 MeV. It is an open question whether these deviations could
be washed out by a better fitting procedure or they constitute the price we have to pay for
restoring the gauge symmetry. Note that the centroid for GTR2 of the 100Mo→ 100Tc transition
is fairly well described by our approach. As for the transition 116Cd →116In, the predicted
centroid of GTR2 is 1 MeV lower in energy than the corresponding experimental data. The
calculated strengths for GTR2 are larger than the corresponding experimental data. It is worth

13



J. Phys. G: Nucl. Part. Phys. 38 (2011) 055102 C M Raduta and A A Raduta

Table 5. The strengths B(GT) of the singleβ− transitions from the mother nuclei to the intermediate
odd–odd nuclei excited in the states of the two components, GTR1 and GTR2, of the GT giant
resonance are listed. The experimental (Exp.) and theoretical (Th.) values for the centroid energies
of the two resonances are also specified.

100Tc 116In

Ex (MeV) B(GT) Ex (MeV) B(GT)

Excited states Exp. Th. Exp. Th. Exp. Th Exp. Th.

GTR1 13.3 11.16 23.1± 3.8 15.63 14.5 12.37 25.8± 4.1 18.9
GTR2 8.0 8.05 2.9±0.5 5.87 8.9 7.87 6.6±1.1 7.2

mentioning that the summed strength of the two resonances, GTR1 and GTR2, is reasonably
close to the corresponding experimental data. A specific feature for our formalism is that
states around the GTR1 centroid contribute to the peak seen in the strength distribution for
the single β+ decay of the daughter nuclei. Also for both nuclei it seems that the resonance
around 5 MeV for the β− decay does not contribute at all to the double beta decay. Indeed,
in this region, the matrix element for the second leg of transition is almost vanishing. In this
respect we note that in the case of 116Cd, a bunch of states below 2 MeV contribute to the
double beta decay rate.

Before closing few statements clarifying the objective of this paper is necessary. From
table 3 we see that this paper provides a half life for 100Mo which agrees with the data from
[27, 28] better than the result of [18]. Moreover the agreement with the data for the decay of
116Cd is of the same quality as for that reported in the quoted reference. However, the aim of
this paper is not that of improving the description agreement with the data. Indeed, the nice
agreement of [18] was obtained with large value for the gpp ratio. Indeed, for small gpp the
amplitude MGT is not affected at all and thus the pp interaction could be ignored. The effect
of lowering the MGT values is recorded for gpp close or larger than unity, depending on the
nucleus considered. Results of [18] correspond to the values 1.6 and 1.68 for 100Mo and 116Cd,
respectively. These values lie close to the pnQRPA breaking point and therefore one cannot
say how reliable is the approach used. To conclude, irrespective of the single particle basis
and the two-body interaction, the pp channel is not needed in the region of small gpp (less than
the breaking point value by 0.15) and is decreasing dramatically the magnitude of the matrix
element defining the second leg of the double beta process when the gpp is approaching the
pnQRPA breaking point value. This was in fact the motivation for higher pnQRPA approaches
[9–12]. The drawback of the higher pnQRPA approaches is that the ISR is violated by an
amount of 20–30%. Actually, this is the context of our approach. Indeed as shown before
our formalism is a fully renormalized pnQRPA formalism and moreover preserves the total
number of nucleons, i.e., is invariant to the gauge transformation which results in satisfying
ISR. We recall that the sum rule represents a consistency test of the approximations used for
the many-body systems. The gauge invariance condition infers that the pp interaction does
not contribute at all in this approach. However, we need an attractive interaction responsible
for the pnQRPA correlations. Here this interaction was chosen to be the dipole-pairing
interaction whose strength is Xdp. This is not considered in addition to the pp interaction
but is taken alone. The pp interaction has been commonly used for double beta decay since
Cha [41] noticed that the strength of the single β+ decay is very sensitive to the variation
of the pp interaction strength. Its strength, instead of being derived from the ph interaction
strength using the Pandya transformation, was always considered to be a free parameter. By
contrast, the dipole-pairing interaction cannot be connected to the ph interaction by a simple
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recoupling transformation. Indeed, when applied on the ground state of a (Z,N) nucleus,
such an interaction may lead to a state describing either a nucleus (Z + 2, N − 2) or one of
the type (Z − 2, N + 2). Also while in the standard pnQRPA calculations the position of the
centroid of the GT giant resonance is insensitive to the magnitude of the pp interaction, here
the Xdp interaction does influence the location of this resonance.

Therefore, this interaction may bridge the mother and daughter nuclei in a double β− or
a double β+ process.

We note that renormalization procedures include in the mutual commutators of the basic
dipole operators A(pn)1µ,A†(p′n′)1µ′ , besides the unity number, the monopole part of the
exact result. However, the additional term is equated with its average value on the renormalized
pnQRPA vacuum. In this way the Pauli principle is partially restored with respect to the
standard pnQRPA description.

We may say that it is the first time when numerical calculations are performed for a
fully renormalized pnQRPA and a gauge symmetry restored. Generally speaking, whenever
some beauty conditions, like fully renormalization and gauge symmetry restoration, are met
a certain tribute is expected to be payed. Thus there are some specific weak points which
require further improvements. Indeed, the average of the quasiparticle number operators has
been approximately calculated. We feel that a better expression can be found for this quantity
which is essential for the adopted iterative procedure. We hope that a better representation for
the average number of quasiparticles will speed up the convergence of the iterative process.
Moreover, this will allow us to extend our calculations to heavy nuclei. The renormalized
vacuum state is characterized by a non-vanishing average number of quasiparticles. That
means that the pnQRPA features are determined by the pairing properties not only through
the occupation probabilities U2 and V2 but also by the averages of quasiparticle number
operators. The question which arises is whether the pnQRPA may influence the pairing
properties. A positive answer could supply us with a unifying variational principle for both
vacua of quasiparticle and pnQRPA boson, respectively. This goal was in fact touched within
a different context by Jolos et al [42]. These features concerning the description of the
quasiparticle number operators in a better way as well as describing the BCS and the pnQRPA
in a unified fashion, by a set of coupled equations derived from a unique variational principle,
will be implemented in a subsequent paper.

7. Conclusions

Summarizing the results of this paper, one may say that restoring the gauge symmetry from
the fully renormalized pnQRPA, one obtains a realistic description of the transition rate and
moreover the ISR is obeyed. As shown in this paper, it seems that there is no need to include
the pp interaction in the many-body treatment of the process. Indeed, in the framework of a
FRpnQRPA approach this interaction violates the total number of particle and consequently
the gauge projection process makes it ineffective. For this reason the pp interaction was not
included in the model Hamiltonian.

Note that the hypothesis saying that the double beta process consists of two successive
single β− decays requires a consistent description of the double beta and single beta processes.
In our formalism, actually, this feature is met since the rate of the double beta decay and the
log f t values associated with the single beta decays of the intermediate odd–odd nuclei
are realistically described. Another issue which is worth mentioning refers to the chain of
approximations of the many-body Hamiltonian. A measure of the consistency of all these
approximations is the ISR which in our case is satisfied to a high accuracy.

15



J. Phys. G: Nucl. Part. Phys. 38 (2011) 055102 C M Raduta and A A Raduta

The attractive interaction of ph dipole-pairing type is responsible for the ground state
correlations. To a less extent these are also caused by the F components of the new phonon
operator. The projection of gauge is essential for restoring the ISR. The gauge projection of
the pnQRPA was previously achieved in [36] where the ISR is anyway satisfied within the
unprojected picture. By contrast therein the effect of projection is small.

The GPFRpnQRPA equations consist of FRpnQRPA equation (5.12) supplemented by
equations (5.6) and (5.17) which must be simultaneously solved by an iteration procedure.
Since the two-body interaction is a separable interaction, equation (5.2) may be replaced by
the dispersion equation (A.1) for energies and equations (A.3) for the four phonon amplitudes.
An extensive study of all existent data, with the formalism described in this paper, will be
presented in a subsequent work.
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Appendix

The compatibility condition for the homogeneous system of equations determining the phonon
amplitudes yields two dispersion equations for ω:

4
(
χ2 − X2

dp

)[
R+

− − R−
+

][
R+

+ − R−
−
]

+ 4χ




∑

S+

T 2
pnE

ren(pn)

ω2 − (Eren(pn))2
+

∑

S−

T 2
pn|Eren(pn)|

ω2 − |Eren(pn)|2



 = 1, (A.1)

with

R+
± =

∑

(p1n1)∈S+

T 2
p1n1

ω ± Eren(p1n1)
, R−

± =
∑

(p1n1)∈S−

T 2
p1n1

ω ± |Eren(p1n1)|
. (A.2)

The phonon amplitudes can be analytically determined. Indeed, the GPFRpnQRPA equations
yield the following expressions for the four amplitudes:

X(pn) = 2
T 2

pn

ω − Eren(pn)
(χX − XdpY), W(pn) = −2

T 2
pn

ω + |Eren(pn)|
(χX − XdpY),

Z(pn) = 2χ
T 2

pn

ω − |Eren(pn)|
(χY − XdpX ), Y (pn) = −2χ

T 2
pn

ω + Eren(pn)
(χY − XdpX ).

(A.3)

The constant factors X and Y have the expressions

X =
∑

S+

Tp1n1X(p1n1) +
∑

S−

Tp1n1W(p1n1),

Y =
∑

S+

Tp1n1Y (p1n1) +
∑

S−

Tp1n1Z(p1n1).
(A.4)

The two factors are related by
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Y = 1
Xdp

[

χ − 1
2
(
R+

− − R−
+
)
]

X ≡ UX . (A.5)

Finally, the independent constant factor X is determined from the normalization condition of
the phonon operator. The result is

X−2 = 4




∑

S+

T 2
pn

(ω − Eren(pn))2
−

∑

S−

T 2
pn

(ω + |Eren(pn)|)2



 (χ − XdpU)2

+ 4




∑

S−

T 2
pn

(ω − |Eren(pn)|)2
−

∑

S+

T 2
pn

(ω + Eren(pn))2



 (Xdp − χU)2. (A.6)

Having X and Y determined, the phonon amplitudes are readily obtained by means of
equations (A.3).
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