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Abstract Several relevant properties of the Na clusters were
studied by using a projected spherical single particle state.
The proposed model is able to describe in a unified fashion
the spherical and deformed clusters. Photoabsorbtion cross
section is realistically explained within an RPA approach
and a Schiff dipole moment as a transition operator.
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1 Introduction

Formalisms used to describe atomic clusters depend essen-
tially on their size. Thus, for clusters having only few con-
stituents, the ab initio quantum chemical methods [1] are
vastly used. Large clusters are most comfortably described
by statistical models or semiclassical approaches [2]. Even
for medium sized clusters, statistical methods offer a suit-
able frame for a qualitative interpretation. For such situa-
tions, all adopted formalisms are based on the mean field
approach which allows to replace a many body compos-
ite system consisting of valence electrons interacting mutu-
ally (which can be easily delocalized or excited by pumping
an energy in optical domain) and with the correlated ionic
core by a system of interacting electrons moving in an av-
erage potential. In this way, the static properties of metallic
clusters are quantitatively described by the substitute sys-
tem Hamiltonian. Models are distinguished by the specific
derivation of the mean field. Three solutions for the average

A.A. Raduta (X)) - A.H. Raduta - R. Budaca

Institute of Physics and Nuclear Engineering, Bucharest
POB MG6, Romania

e-mail: raduta@nipne.ro

potential are to be mentioned: (i) solving the Kohn—Sham
equations [3], (ii) assuming the positive charge of the ionic
core uniformly distributed in a sphere of radius R defining
the cluster size. This is known as the jellium hypothesis [4],
and (iii) postulating the expression of the average poten-
tial. Several reviews on the fundamental features of metallic
clusters have been published [6].

Since the shell structure and magic clusters are associated
with a spherical symmetry, most of theoretical investigations
regard spherical clusters. The first paper devoted to the de-
formed clusters appeared in 1985 [7]. Several details of the
mass spectrum [8], not described by spherical jellium mod-
els, are clearly explained. Also, the fragmentation of collec-
tive states can be consistently described [9]. The formalism
is known as Clemenger—Nilsson (CN) model since the mean
field is similar to that used by Nilsson model with the differ-
ence that in the new version the spin-orbit term is missing.

Although the model was very successful in describing
many properties of deformed clusters, there are some limi-
tations due to the fact that the rotational symmetries are bro-
ken. Several years ago, we proposed a new schematic model
based on a projected spherical single particle basis [10].
The main properties of the single particle states which make
them very useful are: (1) are mutually orthogonal, (2) de-
pend on a parameter simulating the quadrupole deformation,
and (3) in the spherical limit the set should be identical to
the spherical shell model, while for nonvanishing deforma-
tion the associated energies are identical to those produced
by the CN model. Moreover, the projected states approxi-
mate the projected Clemenger Hamiltonian eigenstates quite
well. Once such a basis is constructed, the RPA formalism
for spherical and deformed clusters can be unitarily applied.
The path to this goal is organized according to the following
plan. The projected spherical basis is constructed in Sect. 2.
Several testing applications are briefly presented. The dipole
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excitations are described within the random phase approx-
imation (RPA) in Sect. 3, while the final conclusions are
drawn in Sect. 4.

2 The Projected Spherical Single Particle Basis

The single particle basis is defined by using a particle-core
Hamiltonian
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where o are the A-pole coordinates of the surface of a
phenomenological core. The monopole coordinate is fixed
by using the volume conservation condition during the de-
formation process. The quadrupole coordinates defines the
quadrupole bosons by
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Consider now the coherent state:
|We) = exp[d (b3, — b20)]10), 2.3)

with d a deformation parameter which simulates the quadru-
pole deformation of the core. Note that averaging H with
the coherent state one obtains the CN Hamiltonian provided
the deformations specific to the two schemes are related by
0.693ké = d. If the core Hamiltonian is harmonic in the
quadrupole bosons, then averaging H on the shell model
state |NII) one obtains a quadrupole boson Hamiltonian
which admits the coherent state as an eigenstate. These two
features allow us to approximate the eigenvalues of H by
the average values corresponding to the projected states:
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where ./\/nll (d) denotes the normalization factor [9], which is
given in Appendix, while P/{,, x the projection operator. The
result for single particle energies is
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Fig. 1 s.p. energies as function of the deformation d
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where 2, and §2 are the frequencies corresponding to the
mentioned directions used by the CN model, while Fy; are
geometrical factors. The parameters involved in the expres-
sion of 5. p. energies are: D = —0.04hwo, hwg = Ep N ~1/3,
Er =3 eV. These energies are plotted in Fig. 1 as function
of d.

The s.p. energies and projected wave functions have
been used to calculate the equilibrium deformations, the sec-
ond difference for the total energy, and the electron density.
The total energy for a A/-cluster is obtained by summing the
single particle energies, in an increasing order, at a given de-
formation parameter d. The equilibrium deformation is that
value of d which makes the total energy minimum. The sec-
ond difference for the total energy is defined by

3
MWN) = Z{[EW +D = EW)]
—[EWN)—EWN - D]}, (2.6)

and represented in Fig. 2, while the electron density is
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where the summation is performed over all occupied states.

A measure for the spatial extension of a cluster is the
r.m.s. value associated to the last atom in the cluster, i.e.,
the highest occupied state:
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The electric polarizability is calculated in terms of the num-
ber of spilled out electrons:

N
a=R3<1+ ‘p>, N =/ pd°r,
N P r>R

while the plasmon energy along the i(= x, y, z) direction
is determined by the number of electrons inside the jellium
sphere and the time derivatives of the background poten-
tial [10]:

(2.9)
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hw; = homie [ﬁ ﬁ] [a.u.],
, 1 3%V,
i=x,y.2, fi=—5—%5. (2.10)
;) Bxl.

wMie denotes the Mie frequency fiwnie = 1y 3/2 [a.u.], with
rs being the Wigner—Seitz radius which for Na clusters is
about 3.93 a.u. The results for r.m.s. of the highest occu-
pied state, polarizability and plasmon frequency are given
in Fig. 4 as function of the number of components [11].
The upper panel of Fig. 4 suggests that Nas; exhibits a halo
structure.
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Fig. 3 In the first row, we present the curves characterized by a constant electron density. In the second row, the spatial distribution for density is
presented. For the cluster Naj, the projection in the xz plane is also given
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Fig.4 (a) r.m.s. values for h.o. state as function of A. (b) Normalized
polarizability as function of A. (¢) Plasmon frequencies as function

of N

3 The RPA Description of the Dipole Collective States

Throughout this paper, applications refer to the alkali clus-
ters of Na. The valence electrons are assumed to move in the
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mean field, presented in the previous chapter, and interact
among themselves through the Coulomb interaction. This
interaction is expanded in multipoles from which we retain
only the dipole term. The resulting many body Hamiltonian,
consisting of the mean field one body term and a separable
dipole—dipole interaction is treated by the RPA formalism
[12]. The amplitudes of the phonon operator

Clu =2 [Xpu(chen),, = Youleren)y, .
ph

3.1

where obtained by solving the RPA equations. The excita-
tion energies w, determine the amplitudes X", Y”". The re-
duced probability for exciting the system from the ground
state |0") to the RPA state |1;7) is given by

B(E1L.07 — 1) = [(0l[M(ED|[1)[".

3.2)

where the transition operator is taken to be a Schiff-like di-
pole operator:

4 373

The correction to the dipole operator is needed to simulate
the screening effect of the particle-core interaction due to the
electronic cloud. In our model, the cubic term is responsible
for the description of the volume type excitations. The pho-
toabsorbtion cross section is obtained by folding the individ-
ual transitions by a Lorentzian characterized by a damping
factor y = I' /w, ranging from 0.06 to 0.135:

(3.3)

o) =CY_ ful(@;wy, ). (3.4)

Here, f, denotes the oscillator strength and C a normaliza-
tion factor which is equal to 1.0975 (eV A?). Comparison
with the experimental data is made in Fig. 5 in terms of the
photoabsorbtion cross section for Na clusters with various
number of components.

Taking into account the A/ dependence of the RPA en-
ergies one may say that the states shown in Fig. 5 describe
surface type of plasmon oscillations while those from Fig. 6
are of volume type. Both kinds of excitations are fragmented
due to the quadrupole deformation of the mean field. Taking
for the electron density a Fermi type expression one finds
out that the Schiff dipole moment satisfies a sum rule [12]:
EWS=Y (Ey — Eo)| (Ol M(ED||1,)]”

n
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Fig. 5 Photoabsorbtion cross section per atom as function of excitation wavelength
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Fig. 7 EWS and S(N) as function of the components number

with a(NV) = —0.975157 — 0.0112138N1/3

+0.360518N2/3, (3.5)

In Fig. 7, one shows that indeed the equality EWS = S(N)
holds.

Using the RPA states, the number of the spilled out elec-
tron is calculated and then the electric polarizability for the
N < 40 clusters are calculated. The agreement with experi-
mental data is very good.

4 Conclusions
The results presented in the previous sections prove that the
projected spherical single particle basis is suitable for a re-

alistic and a unitary description of the collective properties
of atomic clusters of spherical and deformed shapes. A new
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Appendix

The norms of the angular momentum projected states
from (2.4) have the expression:

AT = SCHANE) T for 1 £0, 1= even

lj | (A.1)
N(C)

)
[No] =Zm( 141

) forI=0, I =odd.

With the standard notations for the Clebsch—Gordan coef-
ficients and Nﬁc) denoting the norm of the J component
projected from the deformed state describing the core. This
norm depends on the deformation parameter d and was cal-
culated in [13]. The analytical expression obtained therein
is

NO@d) =[] + DIV @] e,

(Jn?

V@)= ———"—
;@ An1es + 1!

(6a%)"/e~ 12 (A2)

F 1(J+1) J+3 3d2
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Here, the notation F(a, b; x) stands for the degenerate hy-
pergeometrical function.
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