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Abstract

Supplementing the Liquid Drop Model (LDM) Hamiltonian, written in the intrinsic reference

frame, with a sextic oscillator plus a centrifugal term in the variable β and a potential in γ with a

minimum in π
6 , the Schödinger equation is separated for the two variables which results in having

a new description for the triaxial nuclei, called Sextic and Mathieu Approach (SMA). SMA is

applied for two non-axial nuclei, 180Hf and 182W and results are compared with those yielded by

the Coherent State Model (CSM). The main result of this paper consists of that we derived the

equations characterizing SMA from a semi-classical treatment of the CSM Hamiltonian. In this

manner the potentials in β and γ variables respectively, show up in a quite natural way which

contrasts their ad-hoc choice when SMA emerges from LDM.

PACS numbers: 21.10.Re,03.65.Ge
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I. INTRODUCTION

Many properties of the low lying spectra of even-even nuclei can be described in terms of

specific dynamic symmetries [1, 2] associated with a definite nuclear phase. The transition

from one symmetry to another is therefore interpreted as a phase transition [3]. On the

path of such a transition a critical point is met. The spectroscopic properties of the nuclei

corresponding to the critical points are in general difficult to be described.

In Ref. [4, 5], it has been proved that on the transition from the U(5) to the O(6)

symmetry a critical point exists for a second order phase transition while the transition

from the U(5) to the SU(3) symmetry has the features of a first order phase transition. In

Ref.[6] it was proved that most of nuclei are mapped not on the border of the symmetry

triangle introduced by Casten [7] but in the interior of the triangle. Examples of such nuclei

are the Os isotopes [8].

Recently, Iachello [9, 10] pointed out that the mentioned critical points correspond to

distinct symmetries, namely E(5) andX(5), respectively. For the critical value of an ordering

parameter, energies are given by the zeros of a Bessel function of half integer and irrational

indices, respectively [11–13]. In Ref.[14] the X(5) description was extended to the first

octupole vibrational band in nuclei close to axial symmetry and also close to the critical

point of the U(5) to SU(3) phase transition. Another symmetries, called Y (5) and Z(5),

have been pointed out in Refs.[15, 16]. The former symmetry corresponds to the critical

point of the transition from axial to triaxial nuclei while the latter one is related to the

critical point of the transition from prolate to oblate through a triaxial shape.

The nice feature of the critical point symmetry consists of that the description is per-

formed in the intrinsic frame by two separated differential equations for the β and γ degrees

of freedom. These equations are solvable and the solutions are irreducible representations

for the specific symmetry. Moreover, apart from an overall scaling parameter the energies

are parameter free quantities.

Since the idea of symmetries associated to the critical points of various phase transitions

showed up, many attempts have been made to describe the two dynamic deformations by

solvable and separable differential equations with specific beta and gamma potentials. Since

the triaxial nuclei might be considered as critical points for a phase transition from prolate

to oblate shape one expects that they can be described by specific solvable models. Thus,
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a description of gamma soft nuclei around γ0 = π
6

with an oscillator potential in γ and a

Kratzer potential in β has been developed in Refs.[17–19].

Another model was proposed by two of us (A.A.R. and P.B.) in a previous publication

[20]. Therein, the Liquid Drop Model (LDM) Hamiltonian [28], written in the intrinsic frame

and supplemented by two ad-hoc chosen potentials, is separated into two terms describing

the β and γ variables, respectively. The potential in β consists in a centrifugal plus a sextic

oscillator term , while that in gamma is proportional to cos2 3γ and has a minimum in π
6
. The

resulting differential equation for γ is satisfied by the Mathieu function. Due to this feature

we called the formalism developed there as the Sextic and Mathieu Approach (SMA). The

proposed model was applied for five nuclei which exhibit the signature for triaxiality, 188Os,

190Os, 192Os, 228Th, 230Th.

The phase transitions in finite nuclei have been investigated also from the microscopic

perspective. Thus using Skyrme-Hartree-Fock plus BCS approach, the E(5) and X(5) phase

transitions have been analyzed in Ref.[21]. The region of Neodymium isotopes has been

studied [22] and the shape evolution in medium mass isotopes has been described within

a microscopic formalism going beyond the mean field approach [23]. The above mentioned

phase transitions have been also studied within a relativistic Hartree-Bogoliubov formalism

[24]. Similar studies were performed by Vertner and collaborators for Nd and Zn isotopes

[25–27].

In Ref.[20] we remarked that the agreements with experimental data provided by SMA

and the Coherent State Model (CSM) respectively, are of similar quality. Here we attempt

to answer the question is there any reason for that to happen? Moreover the two models

are applied for another two nuclei,180Hf and 182W, which are suspected to exhibit a triaxial

shape.

The objectives of this paper are described according to the following plan. In Section II, a

brief review of the main ingredients defining SMA is presented. Section III is devoted to the

CSM approach. It is shown, in Section IV, that SMA’s equations are obtainable from CSM

under certain circumstances. The numerical application is discussed in Section V, while the

conclusions are drawn in Section VI.
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II. SEXTIC AND MATHIEU APPROACH

Adding to the Bohr-Mottelson Hamiltonian written in the intrinsic frame of reference

[28] a potential of a convenient form:

V (β, γ) = V1(β) +
1

β2
V2(γ), (2.1)

the equations for the variables β and γ are separated from each other [29]. As for the

rotational term of the LDM Hamiltonian one notices that for the minimum point γ0 = π
6

the

maximum moment of inertia corresponds to the axis Ox which suggests as a suitable basis,

the Wigner functions DL
MR(Ω) with L standing for the angular momentum and M and R

its projections on the axes Ox of the laboratory and intrinsic frame, respectively. Replacing

the rotational term by its average with the basis functions mentioned above, the equation

for β reads:
[

− 1

β4

∂

∂β
β4 ∂

∂β
+
L(L+ 1)

β2
+ v1(β)

]

f(β) = εβf(β), (2.2)

The remaining terms, depend on γ but also on β by means of the factor 1/β2. In order that

the variable separation is achieved, the mentioned factor is replaced by an average value

1/〈β2〉. Actually, in our concrete calculation this is considered to be a free parameter.

Expanding the γ potential, involved in the rotational term, around γ = π/6 and keeping

only the quadratic terms, the resulting equation in gamma variable, is:
[

− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 3

4
R2 +

(

10L(L+ 1) − 39

4
R2
)

×
(

γ − π

6

)2

+ v2(γ)

]

φ(γ) = ε̃γφ(γ), (2.3)

where the following notations are used:

v1(β) =
2B

h̄2 V1(β), v2(γ) =
2B

h̄2 V2(γ),

εβ =
2B

h̄2 Eβ, ε̃γ = 〈β2〉2B
h̄2 Eγ. (2.4)

In order to solve the separated equations in β and γ respectively, we have to specify the

potentials v1(β) and v2(γ). v1(β) is a sextic oscillator potential in β and the corresponding

differential equation is quasi-exactly solvable. Indeed, by changing the function f(β) =

β−2ϕ(β) in Eq.(2.2), one obtains:
[

− ∂2

∂β2
+
L(L+ 1) + 2

β2
+ v1(β)

]

ϕ(β) = εβϕ(β). (2.5)
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One can check that this equation can be identified to the Schrödinger equation

Hxψ(x) = Eψ(x) (2.6)

associated to a sextic oscillator with a centrifugal barrier

Hx = − ∂2

∂x2
+

(

2s− 1
2

) (

2s− 3
2

)

x2
+ [b2 − 4a(s+

1

2
+M)]x2 + 2abx4 + a2x6, (2.7)

if the following correspondence is adopted:

x = β, E = εβ,
(

2s− 1

2

)(

2s− 3

2

)

= L(L+ 1),

v1(β) = (b2 − 4ac)β2 + 2abβ4 + a2β6,

s =
L

2
+

3

4
, c =

L

2
+

5

4
+M. (2.8)

The eigenfunctions provided by Eq.(2.5) are written in the form:

ϕ
(M)
nβ ,L(β) = Nnβ ,LP

(M)
nβ ,L(β2)β2s− 1

2 e−
a
4
β4− b

2
β2

, nβ = 0, 1, 2, ...M, (2.9)

where Nnβ ,L are normalization constants and P
(M)
nβ ,L(β2) polynomials of degree nβ in β2. The

polynomial coefficients form an (M+1)-vector which satisfies an eigenvalue equation, the

corresponding eigenvalue being denoted by λ(M)
nβ

(L). Using the notations from Eq.(2.4), one

obtains for the eigenvalues the following expression:

Eβ(nβ, L) =
h̄2

2B

[

4bs(L) + λ(M)
nβ

(L) + uπ
0

]

, nβ = 0, 1, 2, ...,M. (2.10)

Here uπ
0 denotes two constants to be fixed such that for the minima (βπ

min > 0) of the

potentials v+
1 (β) and v−1 (β) given by

vπ
1 (β) = (b2 − 4acπ)β2 + 2abβ4 + a2β6 + uπ

0 (π ≡ ±), (2.11)

are equal to each other. Details about how to solve the eigenvalue equation for a sextic

oscillator plus a centrifugal term can be found in Ref.[30].

Concerning the equation for the variable γ, Eq.(2.3) can be reduced to the Mathieu

equation [31]. Indeed, first we change the function

φ(γ) =
M(3γ)
√

| sin 3γ|
. (2.12)
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The equation for the new function is:
[

∂2

∂γ2
+
(

ε̃γ +
1

4
+

3

4
R2
)

+
9

4 sin2 3γ
(2.13)

−
(

10L(L+ 1) − 39

4
R2
)(

γ − π

6

)2

− v2(γ)

]

M(3γ) = 0.

where, as mentioned before, L denotes the angular momentum and R is its projection on the

axis Ox of the intrinsic reference frame. The potential in γ is chosen such that it exhibits a

minimum at γ0 = π/6:

v2(γ) = µ cos2 3γ. (2.14)

Making a quadratic Taylor expansions around the minimum value of the gamma potential,

approximating
(

γ − π
6

)2 ≈ 1
18

(cos 6γ + 1), and changing the variable y = 3γ, we obtain

(

∂2

∂y2
+ a′ − 2q cos 2y

)

M(y) = 0, (2.15)

where

q =
1

36

(

10

9
L(L+ 1) − 13

12
R2 + µ− 9

4

)

,

a′ =
1

9

(

ε̃γ +
3

4
R2 +

5

2

)

− 2q. (2.16)

Eq. (2.15) is just the well known Mathieu equation. Using the expression for the character-

istic value a′ (given by Eq.(2.16)) of the Mathieu equation, one can find the expression for

the excitation energy of the γ equation

Eγ(nγ , L, R) =
h̄2

2B

1

〈β2〉

[

9anγ
(L,R) + 18q(L,R) − 3

4
R2 − 5

2

]

, nγ = 0, 1, 2, .... (2.17)

The total energy for the system is obtained by adding the energies given by the equations

(2.10) and (2.17):

E(nβ, nγ, L, R) = E0 + Eβ(nβ , L) + Eγ(nγ, L, R) (2.18)

The excitation energies depend on four quantum numbers, nβ, nγ , L, R, and five parameters

h̄2/2B, a, b, 1
〈β2〉

, µ. The quantum numbers defining the ground, beta and gamma bands

are as follows:

nβ = 0, nγ = 0, R = L, L = 0, 2, 4, ... g band,

nβ = 0, nγ = 1,

{

R = L− 2, L = 2, 4, 6, ...

R = L− 1, L = 3, 5, 7, ...
γ band,

nβ = 1, nγ = 0, R = L, L = 0, 2, 4, ... β band. (2.19)
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The wave function describing the system in the laboratory frame, is:

|LRMnβnγ〉 = NL,nβ
NL,R,nγ

fL,nβ
(β)φL,R,nγ

(γ)

×
√

2L+ 1

16π2(1 + δR0)

(

DL
MR(Ω) + (−1)LDL

M−R(Ω)
)

, (2.20)

where the factors NL,nβ
and NL,R,nγ

denote the norms of the partial wave functions. The

integration over the β and γ variables is performed with the measures β4dβ and | sin 3γ|dγ,
respectively. These wave functions are further used to calculate the reduced E2 transition

probabilities.

In our approach the quadrupole transition operator is defined as:

T
(E2)
2µ = t1β

[

cos
(

γ − 2π

3

)

D2
µ0 +

1√
2

sin
(

γ − 2π

3

)

(D2
µ2 +D2

µ,−2)

]

+ t2

√

2

7
β2

[

− cos
(

2γ − 4π

3

)

D2
µ0 +

1√
2

sin
(

2γ − 4π

3

)

(D2
µ2 +D2

µ,−2)

]

. (2.21)

The argument γ − 2π/3 of the trigonometric functions is justified by the fact that it cor-

responds to the axis 1 of the principal inertial ellipsoid to which the maximum moment

of inertia is associated. Due to this feature the transformation from the laboratory to the

intrinsic frame is a rotation defined by the matrix DL
MR where the quantum numbers M and

R are eigenvalues of the component 1 of the intrinsic angular momentum operator, Q1.

The reduced E2 transition probabilities are defined as:

B(E2, Ji → Jf) = |〈Ji||T (E2)
2 ||Jf〉|2, (2.22)

where the Rose’s convention [33] was used for the reduced matrix elements.

Summarizing, the SMA formalism uses a sextic oscillator potential with a centrifugal

term for the β and a Mathieu equation for the γ variable. These equations provide for the

total energy, given by Eq.(2.18), a compact form. The wave functions obtained by solving

the quoted equations together with the transition operator of Eq.(2.21), are used to calculate

the electric quadrupole transition probabilities.

There are several groups which studied the γ soft nuclei around γ0 = π
6

[16–19]. The

quoted approaches differ from the present formalism by the equations used for the description

of β and γ coordinates.

Since the results of the SMA formalism will be compared with those obtained by CSM,

in what follows we shall briefly present the main ingredients of the latter approach.

7



III. COHERENT STATE MODEL (CSM)

CSM defines [32] first a restricted collective space whose vectors are model states of

ground, β and γ bands. In choosing these states we were guided by some experimental

information which results in formulating a set of criteria to be fulfilled by the searched

states.

All these required restrictions are fulfilled by the following set of three deformed

quadrupole boson (b†µ, −2 ≤ µ ≤ 2) states:

ψg = e[d(b†
0
−b0)]|0〉 ≡ T |0〉, ψγ = Ω†

γ,2ψg, ψβ = Ω†
βψg. (3.1)

where the excitation operators for β and γ bands are defined by:

Ω†
γ,2 = (b†b†)2,2 + d

√

2

7
b†2,2,Ω

†
β = (b†b†b†)0 +

3d√
14

(b†b†)0 −
d3

√
70
. (3.2)

d is a real parameter simulating the nuclear deformation. From the three deformed states

one generates three sets of mutually orthogonal states

ϕi
JM = N i

JP
J
M0ψi, i = g, β, γ, (3.3)

where P J
MK denotes the angular momentum projection operator:

P J
MK =

2J + 1

8π2

∫

DJ∗

MKR̂(Ω)dΩ, (3.4)

and N i
J the normalization factors while DJ

MK are the rotation matrix elements. It has

been proved that the deformed and projected states contain the salient features of the

major collective bands. Since we attempt to set up a very simple model we relay on the

experimental feature saying that the β band is largely decoupled from the ground as well

as from the γ bands and choose a model Hamiltonian whose matrix elements between beta

states and states belonging either to the ground or to the gamma band are all equal to zero.

The simplest Hamiltonian obeying this restriction is

H = A1(22N̂ + 5Ω†
β′Ωβ′) + A2Ĵ

2 + A3Ω
†
βΩβ, (3.5)

where N̂ is the boson number, Ĵ2-angular momentum squared and Ω†
β′ denotes:

Ω†
β′ = (b†b†)00 −

d2

√
5
. (3.6)
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Higher order terms in boson operators can be added to the Hamiltonian H without

altering the decoupling condition for the beta band. An example of this kind is the correction:

∆H = A4(Ω
†
βΩ2

β′ + h.c.) + A5Ω
†2
β′Ω2

β′ . (3.7)

The energies for beta band as well as for the gamma band states of odd angular mo-

mentum are described as average values of H (3.5), or H + ∆H , on ϕβ
JM and ϕγ

JM (J-odd),

respectively. As for the energies for the ground band and those of gamma band states with

even angular momentum, they are obtained by diagonalizing a 2x2 matrix for each J.

The quadrupole transition operator is considered to be a sum of a linear term in bosons

and one which is quadratic in the quadrupole bosons:

Q2µ = q1(b
†
2µ + (−)µb2,−µ) + q2((b

†b†)2µ + (bb)2µ). (3.8)

The form of the anharmonic component of Q2µ is justified by the fact that this is the

lowest order boson term which may connect the states from beta and ground bands in the

vibrational limit, i.e. d-small.

Using the Rose convention [33], the reduced probability for the E2 transition J+
i → J+

f

can be expressed as:

B(E2; J+
i → J+

f ) =
(

〈J+
i ||Q2||J+

f 〉
)2

(3.9)

The CSM has been successfully applied to several nuclei exhibiting various equilibrium

shapes which according to the IBA (Interacting Boson Approximation) classification, exhibit

the SO(6), SU(5) and SU(3) symmetries, respectively[34]. Several improvements of CSM has

been proposed by considering additional degrees of freedom like isospin [35], quasiparticle

[36] or collective octupole coordinates [37, 38]. CSM has been also used to describe some

nonaxial nuclei [39] and the results were compared with those obtained with the Rotation-

Vibration Model [40]. A review of the CSM achievements is found in Ref. [41].

IV. SMA FORMALISM OBTAINED BY QUANTIZING THE CLASSICAL CSM

EQUATIONS.

In our previous publication on this subject [20] we noted that the two approaches, SMA

and CSM, describe the data of the considered nuclei, equally well. This amazing feature

raised the question why that happens? Actually, here we aim at answering the mentioned
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question. In brief we shall prove that, indeed, SMA can be analytically derived from the

CSM formalism. The source of our inspiration was the result from Ref.[42] showing that a

generalized Davidson potential [45] can be obtained by a semiclassical treatment of a fourth

order boson Hamiltonian.

For this purpose we shall study the classical properties emerging from CSM, by dequan-

tizing the specific CSM Hamiltonian through the Time Dependent Variational equation:

δ
∫ t

0
〈ψ|H − ih̄

∂

∂t′
|ψ〉dt′ = 0. (4.1)

If the variational state spans the whole Hilbert boson space then solving Eq.(4.1) is equivalent

to solving the Schrödinger equation associated to H . Here we take as variational state the

coherent state:

|ψ〉 = exp
[

z0b
†
0 + z2b

†
2 + z−2b

†
−2 − z∗0b0 − z∗2b2 − z∗−2b−2

]

|0〉, (4.2)

where zk, z
∗
k with k = 0,±2 are complex numbers depending on time. As usual, |0〉 denotes

the vacuum state for the quadrupole bosons. The basic property of this function is comprised

by the equation:

bµ|ψ〉 = (δµ,0z0 + δµ,2z2 + δµ,−2z−2) |ψ〉. (4.3)

The classical Hamilton function associated to the CSM’s model Hamiltonian is:

H ≡ 〈ψ|H|ψ〉 = 2(11A1 + 3A2)
(

|z0|2 + |z2|2 + |z−2|2
)

+ A1

(

2z∗2z
∗
−2 + z∗20 − d2

) (

2z2z−2 + z2
0 − d2

)

+

+
A3

70

[

2
(

6z∗0z
∗
2z

∗
−2 − z∗30

)

+ 3d
(

2z∗2z
∗
−2 + z∗20

)

− d3
]

×
[

2
(

6z0z2z−2 − z3
0

)

+ 3d
(

2z2z−2 + z2
0

)

− d3
]

. (4.4)

The action variation can be written in a compact form:

δ〈ψ|ih̄ ∂
∂t

|ψ〉 =
·
z0 δz

∗
0−

·
z
∗

0 δz0+
·
z2 δz

∗
2−

·
z
∗

2 δz2+
·
z−2 δz

∗
−2−

·
z
∗

−2 δz−2, (4.5)

where the symbol ” · ” stands for the time derivative. Finally, the result for the classical

equations, yielded by Eq. (4.1), is:

∂H
∂zk

= −i ·
z
∗

k,

∂H
∂z∗k

= i
·
zk, k = 0,±2. (4.6)
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These equations support the interpretation of zk, with k = 0,±2, as classical phase space co-

ordinates and of z∗k as the corresponding conjugate momenta. With the complex coordinates

we may define the canonical conjugate coordinates:

Q0 =
z0 + z∗0√

2
, Q2 =

z−2 + z∗2√
2

, Q−2 =
z2 + z∗−2√

2
,

P0 =
z0 − z∗0√

2
, P2 =

z2 − z∗−2√
2

, P−2 =
z2 − z∗2√

2
, (4.7)

which, evidently, obey the equations:

{P0, Q0} = 1, {P±2, Q±2} = 1,

{H, Qk} =
·

Qk, {H, Pk} =
·

P k, (4.8)

where the Poisson bracket for any two given functions f, g, defined on the classical phase

space, is denoted by {f, g} and defined as:

{f, g} =
∑

(

∂f

∂zk

∂g

∂z∗k
− ∂f

∂z∗k

∂g

∂zk

)

. (4.9)

In terms of the canonical coordinates Q and P the classical energy function is given in

Appendix A.

In what follows we shall study the Hamilton function H in the subspace defined by

z2 = z−2, where we use the canonical coordinates defined by:

q0 = Q0, p0 = P0,

q2 =
Q2 +Q−2√

2
, p2 =

P2 + P−2√
2

(4.10)

These coordinates are related with the real and imaginary part of the complex variable zk,

by the following equations:

q0 =
√

2u0, p0 =
√

2v0, q2 = 2u2, p2 = 2v2, (4.11)

u0 = Re z0, v0 = Im z0, u2 = Re z2, v2 = Im z2.

The restriction to the mentioned subspace is justified by the following considerations. It is

well known the fact that due to the overcomplete property the coherent states may be used

to construct basis functions describing specific irreducible representations. In particular,

the coherent state used from this paper can be used to project out the basis |NvαJM〉
where the quantum numbers are the boson number N , the seniority v, the missing quantum
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number α, the angular momentum J and its projection on z-axis M [46]. In Ref.[46] it was

shown that a two parameters coherent state may be used as generating function, through a

projection operation, for the entire basis mentioned above. Therefore the properties of the

CSM Hamiltonian in the whole boson space can be described in the reduced phase subspace

mentioned above.

In the expression of H we adopt some approximations and coordinate transformations: i)

we neglect the terms non-quadratic in momenta as well as the therms coupling the coordinate

with momenta; ii) we take care of the restriction z2 = z−2 by introducing the new canonical

conjugate coordinates (q0; p0) and (q2; p2); iii) for the new coordinates we use the polar

coordinates:

q0 = r cos γ, q2 = r sin γ. (4.12)

The approximation i) is suggested by the fact that in the classical picture the kinetic en-

ergy is quadratic in momenta. Concerning ii), accepting the terms coupling coordinates and

momenta would lead to non-local forces, or in other words a coordinate dependent ”mass”

parameter, which is not consistent with the semi-classical description. A Bohr-Mottelson

Hamiltonian with mass parameters depending on the deformation, has been recently con-

sidered by Bonatsos and collaborators in Ref.[44]. In this way H is a sum of the kinetic and

potential energy terms:

H = (11A1 + 3A2 + A1d
2 +

3

70
d4A3)(p

2
0 + p2

2) + V (r, γ),

V (r, γ) = A1d
4 +

A3

70
d6 + r2

[

(11A1 + 3A2) −
d2

2
A1 −

3A3

70
d4 − d2

2
A1 cos(2γ)

]

+
A3

√
2

70
d3r3 cos(3γ)

+
(

A1

4
+

9A3

280
d2
)

r4 − 3A3d

70
√

2
r5 cos(3γ) +

A3

280
r6 (cos(6γ) + 1) . (4.13)

In order to obtain a separable equation for the variables r and γ we approximate V (r, γ)

by a sum of two potentials one depending only on r, V1(r), and the other one only on γ,

V2(γ). In the terms of V1(r), the factors depending on γ are considered in the minimum

point of V2(γ) (which is π/6), while in V2(γ) the factors depending on r are considered in

the minimum point of V1(r), denoted by r0. The approximated potential will be denoted by

U(r, γ).

U(r, γ) ≈ V1(r) + V2(γ),

V1(r) = A1d
4 +

A3

70
d6 + r2

[

(11A1 + 3A2) −
3d2

4
A1 −

3A3

70
d4

]
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+
(

A1

4
+

9A3

280
d2
)

r4 +
A3

280
r6,

V2(γ) =
A3

280
r6
0 cos(6γ). (4.14)

In Figs. 1,2, panels (a), (c), (e) we present the contour plot and two sections of the

approximate potential U(r, γ). The two sections are obtained by fixing one of the two

variables in the potential minimum point. In the panels (b), (d) and (e) similar plots for

the exact potential V (r, γ) are given. Figures 1 and 2 correspond to different sets of the

CSM parameters, i.e. d, A1, A2 and A3. Comparing the curves from left and right panels of

each figure we conclude that the effect of approximations yielding the separated form of the

potentials is quite small. The only visible effect is on the orientation of the symmetry axis

of the equipotential curves. Indeed, the contour plots for exact and approximated potentials

have different symmetry axes although they surround the same minimum point. Changing

slightly the CSM parameters we note that indeed the curves from Fig. 2 are quite close to

the corresponding curves from Fig.1. Thus, we may say that indeed, the curves are stable

against small changes of the set of parameters determining the classical r and γ potentials.

The classical Hamilton function becomes:

H = (11A1 + 3A2 + A1d
2 +

3

70
d4A3)(p

2
0 + p2

2) + U(r, γ). (4.15)

This can be quantized by replacing the sum of the momenta squared by the Laplace operator

written in polar coordinates:

Ĥ = −(11A1 + 3A2 + A1d
2 +

3

70
d4A3)

(

1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂γ2

)

+ V1(r) + V2(γ). (4.16)

It is convenient to introduce the notation:

F = (11A1 + 3A2 + A1d
2 +

3

70
d4A3). (4.17)

The Schrödinger equation:

ĤΨ(r, γ) = EΨ(r, γ), (4.18)

for the trial function:

Ψ(r, γ) = ψ1(r)e
iKγψ2(γ), (4.19)

is separated:
[

−F
(

1

r

∂

∂r
+

∂2

∂r2
− K2

r2

)

+ V1(r)

]

ψ1(r) = E(1)ψ1(r),

13



FIG. 1: The contour plot with an energy step of 80 keV for the approximated potential U(r, γ),

is presented in the variables r and γ (a). The parameters involved are d = 3.5, A1 = 10.65keV ,

A2 = 15.146keV , and A3 = 150keV . The minimum value, Umin = −3305.25keV , is reached in

(r0, γ0) = (2.6, π/6). Two sections γ = π
6 and r0 = 2.6 of the potential U(r, γ) are presented in

panels (c) and (e), respectively. Similar plots but with an energy step of 50 keV and for the exact

potential V (r, γ), are given in the panels (b), (d) and (f), respectively. Parameters were kept the

same as for the approximated potential. The minimum value Vmin = −3280.31keV is reached at

(r0, γ0) = (2.7, π/6).

[

−F
(

2iK

r2
0

∂

∂γ
+

1

r2
0

∂2

∂γ2

)

+ V2(γ)

]

ψ2(γ) = E(2)ψ2(γ).

(4.20)

In what follows we shall show that the first equation (4.20) leads to a Schrödinger equation

for a sextic potential plus a centrifugal term, while the second equation provides a differential

equation obeyed by the Mathieu function.
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FIG. 2: The contour plot with an energy step of 70 keV for the approximated potential U(r, γ) is

represented as function of the variables r and γ (a). The parameters involved are d = 3.22, A1 =

12.95keV , A2 = 7.9keV , and A3 = 240keV. The minimum value Umin = −3276.43keV is reached

at (r0, γ0) = (2.4, π
6 ). Two sections γ = π

6 and r0 = 2.4 of the potential U(r, γ) are presented

in the panels (c) and (e), respectively. Similar plots but with an energy step of 50 keV and

for the exact potential V (r, γ) are given in the panels (b), (d) and (f), respectively. Parameters

were kept the same as for the approximated potential. The minimum value of the potential is

Vmin = −3250.92keV and is reached at (r0, γ0) = (2.5, π
6 ).

Dividing both sides of the first Eq.(4.20) by F and denoting by

u1(r) = V1(r)/F , εr = E(1)/F (4.21)

the equation in the variable r becomes:
[

− ∂2

∂r2
− 1

r

∂

∂r
+
K2

r2
+ u1(r)

]

ψ1(r) = εrψ1(r). (4.22)

Changing the function

ψ1(r) = r−
1

2φ(r), (4.23)
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the equation for the new function is

[

− ∂2

∂r2
+
K2 − 1

4

r2
+ u1(r)

]

φ(r) = εrφ(r), (4.24)

which is nothing else but the Schrödinger equation for a sextic potential plus a centrifugal

term in the variable r. Since we need an equation in the variable β, we have to search for

an explicit relation between r and the dynamic nuclear deformation. Aiming at this goal,

let us consider the canonical transformation relating the quadrupole conjugate coordinates,

α̂2µ, π̂2µ, and the boson operators:

α̂2µ =
1

k
√

2

(

b†µ + (−)µb−µ

)

, π̂2µ =
ik√
2

(

b†−µ(−)µ + bµ
)

. (4.25)

Note that the canonical transformation from above is determined up to a multiplicative

factor k. Averaging these equations with the coherent state ψ (4.2), one obtains that the

coordinates qµ and pµ introduced above are related with the quadrupole operators by:

qµ = 2µ/4〈ψ|kα̂2µ|ψ〉, pµ = 2µ/4〈ψ|1
k
π̂2µ|ψ〉. (4.26)

Identifying the averages of α̂2µ, with the quadrupole coordinates in the intrinsic reference

frame, we obtain [47]:

q0 = kβ cos γ, q2 = kβ sin γ. (4.27)

From here it results the relation between the coordinate r and β :

r = kβ (4.28)

Using this simple relation in connection with the differential equation in r, one obtains the

Shrödinger equation for sextic potential plus centrifugal term in the variable β.

[

− ∂2

∂β2
+
K2 − 1

4

β2
+ k2u1(kβ)

]

φ(kβ) = εβφ(kβ) (4.29)

Now let us turn our attention to the second equation from (4.20). Multiplying it with

r2
0/F and denoting by:

µ =
A3

280F r
8
0, εγ =

r2
0E

(2)

F , (4.30)

one obtains:
[

− ∂2

∂γ2
− 2iK

∂

∂γ
+ µ cos 6γ

]

ψ2(γ) = εγψ2(γ). (4.31)
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With the change of function:

ψ2(γ) = e−iKγM(3γ), (4.32)

we obtain:
[

∂2

∂γ2
+ εγ +K2 − µ cos 6γ

]

M(3γ) = 0. (4.33)

Changing now the variable γ to y = 3γ, the equation for the Mathieu function is readily

obtained:
[

∂2

∂y2
+ a′ − 2q cos 2y

]

M(y) = 0, (4.34)

where the following notations have been used:

a′ =
1

9
(εγ +K2), 2q =

µ

9
. (4.35)

The correspondence between the results just obtained and the Sextic and Mathieu Approach

(SMA) [20] is achieved by relating the parameters involved:

h̄2

2B
= F , a =

√

A3k8

280F , 〈β
2〉 = (

r0
k

)2,

b =

√

A3

70F

(

35A1

2A3
+

9

4

)

. (4.36)

The quantum number K is an eigenvalue of the angular momentum describing a rotation of

angle γ in the plane (q0, q2) and takes the values 0 for the ground and β band and 2 for the

γ band. Note that due to the specific way of treating the intrinsic coordinates, the renor-

malization effect coming from the rotational terms are missing. If these renormalization are

added, under similar conditions as in Ref.[20], a full agreement with SMA is obtained. Con-

cluding this section, we may say that while in the previous paper [20] the sextic potential for

β and the γ potential yielding the equation for the Mathieu function were introduced by an

ad-hoc choice, here they are derived in a natural manner from the CSM formalism. Moreover

the variable separation is based on two approximations suggested by the classical picture:

i) the non-quadratic terms in momenta are ignored and ii) the coupling of coordinates and

momenta are vanishing due to the local character of the classical phenomenological forces.

V. NUMERICAL RESULTS AND DISCUSSIONS

The formalisms SMA and CSM presented in the previous sections have been applied for

calculating the excitation energies and the available B(E2) values for two isotopes:180Hf,

182W.
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A. Parameters

As shown above the total energy provided by SMA depends on five parameters:

h̄2/2B, a, b, 1
〈β2〉

, µ. These have been fixed by fitting the excitation energies using the least

square procedure. The results are given in Table I. Concerning CSM, the parameters de-

termining the energies are: d, A1, A2, A3. They were fixed as follows. We cycled d within a

large interval with a small step. For each d we determined A1 and A2 by fitting the energies

of two states, one belonging to the ground band and one from the gamma band. A3 was

obtained by fitting one level energy from the beta band. Then, we choose that d which

yields an overall good fit. The fitted parameters are given in Table I.

Let us discuss now the results concerning the transition probabilities. The SMA made

use of a anharmonic transition operator written in the intrinsic frame of reference (2.21),

while CSM employs a second order boson operator in the laboratory frame (3.8). In both

cases the operators involve two parameters: t1 and t2 for SMA and q1 and q2 for CSM. These

parameters have been fixed by fitting two particular transitions for each nucleus. The fitted

parameters are given in Table I.

B. Energies

The results obtained with the two approaches, SMA and CSM , are compared, in Fig.3

and Fig.4, with the corresponding experimental data.

By inspecting the experimental data we may see whether the signature for triaxiality

shows up. Indeed, it is well known the fact that the most distinctive signature of the triaxial

rigid rotor is the equation relating the energies of three particular states [48–50]:

E2+

1
+ E2+

2
= E3+

1
. (5.1)

Actually this equation is only approximately obeyed. Denoting by ∆E the modulus of the

difference between the left and right hand side of the mentioned relation, the experimental

data lead to the values:

∆E = 2 keV; 10 keV, (5.2)

for 180Hf and 182W, respectively. Clearly, these deviations suggest that the nuclei considered

in the present paper are close to an ideal triaxial rotor. As a matter of fact this is the
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experimental feature which inspired us to take the γ = 300 as the reference picture. From

Figs. 3 and 4 it results that the experimental data of 180Hf are better described by CSM

while for 182W the SMA seems to be more realistic description.

C. Transition probabilities

Using the fitted parameters from Table I and the corresponding transition operators

presented in the previous section the B(E2) values are readily obtained. Results of our

calculations and the corresponding experimental data are given in Table II for 180Hf and

Table III for 182W.

We remark that both formalisms describe reasonable well the reduced transition prob-

180Hf 182W

h̄2

2B [keV ] 0.401 0.476888

a 16212.86 11508.56

b -44 95

1
〈β2〉 3.14 3.457

µ 20892. 12772.6

t1 177.93[W.u]1/2 158.48[W.u]1/2

t2 4630.24[W.u.]1/2 4736.037 [W.u.]1/2

d 3.5 3.22

A1[keV] 21.17 21.54

A2[keV] 8.15 7.47

A3[keV] -10.85 -12.29

q1 3.739[W.u.]1/2 3.756[W.u.]1/2

q2 -0.125[W.u.]1/2 -0.175[W.u.]1/2

TABLE I: The parameters h̄2/2B, a, b, 1
〈β2〉

, µ involved in the energy expression provided by

SMA (2.18), are given for 180Hf and 182W. Also we give the values for the parameters t1 and t2

defining the transition operator used by SMA (2.21). On the last six rows we give the parameters

determining the CSM excitation energies, d,A1, A2, A3, and the specific E2 transition operator i.e.,

q1 and q2 (3.8).
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SMA     Exp.    CSM

SMA     Exp.    CSM

SMA     Exp.    CSM

180Hf

g band

Γ band
Β band

0+
2+

4+

6+

8+

10+

12+

2+
3+
4+
5+

0+
2+

4+

0
93

309

641

1084

1630

2272

0
93

309

641

1083

1630

2273

1200
1291
1409

1557

1200
1286
1401

1544

0
99

323

660

1100

1632

2248

1183
1292
1414

1568

1024

1160

1451

1102
1183

1369

1102
1188

1389

FIG. 3: Excitation energies for ground, beta and gamma bands in 180Hf, obtained with SMA and

CSM formalism respectively, are compared with the corresponding experimental data taken from

Ref.[51].

abilities. It is worth noting the high accuracy of the CSM description of both excitation

energies and transition probabilities for 180Hf.

180Hf

B(E2;J+
i → J+

f ) SMA Exp. CSM

2+
g → 0+

g 155 155 155

4+
g → 2+

g 219 230 223

6+
g → 4+

g 281 219 250

8+
g → 6+

g 321 250 267

10+
g → 8+

g 353 240 282

12+
g → 10+

g 380 232 296

2+
γ → 0+

g 0.2 3.8 3.8

2+
γ → 2+

g 5.1 5.1 6.6

TABLE II: B(E2) values for some ground to ground and gamma to ground E2 transitions in 180Hf.

J+
i and J+

f denote the angular momenta of the initial and final states, respectively. Experimental

data were taken from Ref.[51]
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182
W

g band

Γ band
Β band

SMA    Exp.     CSM

SMA     Exp.    CSM
SMA     Exp.    CSM

0+
2+

4+

6+

8+

10+

12+

14+

16+

18+

2+
3+
4+
5+

0+
2+

4+

0
105

341

697

1160

1720

2368

3094

3894

4762

0
100

329

680

1144

1712

2372

3112

3909

4747

0
100

329

678

1136

1694

2344

3080

3895

4787

1213
1326
1460
1620

1221
1331
1443

1624

1221

1311
1431
1578

1103
1243

1546

1136
1257

1510

1136

1226

1433

FIG. 4: Excitation energies for ground, beta and gamma bands in 182W, obtained with SMA and

CSM formalism respectively, are compared with the corresponding experimental data taken from

Ref.[52].

D. Earlier descriptions of the triaxial nuclei

Before closing this section we would like to spend few words about the other descriptions

of the triaxiality features. The pioneering paper for phase transition from gamma stable to

gamma unstable nuclei with an analytical description of the critical point, as well as of the

departure from axial symmetry is that of Jean-Wilets [53]. An intensive study of the subject

started, however, in the beginning of the last decade, since the context of symmetries was

much developed and on the other hand relevant data have been accumulated. Triaxiality has

been investigated within the IBA formalism being related to various effects. Thus, including
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182W

B(E2;J+
i → J+

f ) SMA Exp. CSM

2+
g → 0+

g 137 137 137

4+
g → 2+

g 194 196 198

6+
g → 4+

g 248 200 223

8+
g → 6+

g 284 209 241

10+
g → 8+

g 312 203 256

12+
g → 10+

g 336 191 271

14+
g → 12+

g 358 170 285

16+
g → 14+

g 379 204 300

18+
g → 16+

g 398 250 315

2+
β → 0+

β 117 200 157

2+
β → 0+

g 1.3 0.9 0.008

2+
β → 4+

g 10.5 1.7 0.021

2+
γ → 0+

g 0.2 3.4 3.4

2+
γ → 2+

g 8.5 6.74 6.27

2+
γ → 4+

g 0.0 0.034 0.51

4+
γ → 2+

g 0.1 2.4 1.36

4+
γ → 4+

g 1.7 10.4 7.60

TABLE III: B(E2) values for some ground to ground, beta to ground and gamma to ground

E2 transitions in 182W. J+
i and J+

f denote the angular momenta of the initial and final states,

respectively. Experimental data were taken from Ref.[52].

higher order terms the triaxiality of 190,192Os has been studied in Ref. [54]. Including the

g-boson, in a recent study [55] no shape/phase transition towards stable triaxial shapes

has been found. The phase diagram of IBA-2 (which distinguishes protons from neutrons)

including triaxial shapes, has been constructed in Refs. [56–58].

Several authors treated the gamma soft nuclei around γ0 = π
6

[16–19]. However, their

equations for beta as well for gamma variables are different from those proposed in the

present paper. The beta potential is either an infinite square well [16] or a Coulomb or

a Kratzer potential [17–19]. Recently [59], the Davidson potential was used in relation
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to triaxial nuclei. Concerning γ, all quoted descriptions use an oscillator potential. The

sextic potential was previously used in Refs.[60, 61] but only for few low lying states. Again

the description of γ is different. Triaxiality has recently been studied in the framework

of the algebraic collective model [62], and the onset of rigid triaxial deformation has been

considered [63].

The structure of the projected states in the intrinsic variable is relevant for the subject

under consideration. In Ref. [64] we studied the probability distributions of the γ and the β

variables corresponding to various states from the ground, beta and gamma bands. For the

state 0+
β the γ probability has a minimum in π/6 and two maxima in γ = 0 and γ = π/3,

respectively. Increasing the spin in the β band, the picture is changed. For example for 10+
β

the probability distribution of γ has a minimum in π/6 and two maxima, one for γ = π/12

and one for γ = π/4. The γ band exhibits an opposite feature, namely the head state has a

maximum in π/6, while in a high state, like Jπ = 10+, two prominent maxima for γ = 0 and

γ = π/3 are observed. In the ground state 0+
g one meet a situation which is specific to gamma

unstable nuclei, i.e. the distribution is almost constant. Increasing the spin, one obtains for

Jπ = 10+ a maximum at 350. In beta variable the state 0+
β has a bimodal structure, the head

state of gamma band has a deformed maximum while the ground state a spherical maximum.

If the factor β4, entering the measure of integration over the dynamical deformation β is

missing, then the distributions are peaked on various deformations, depending on the band

to which the state belongs and of course on the angular momentum. The results mentioned

above are consistent with the predictions of the semi-phenomenological model proposed by

Kumar and Baranger [65].

Recall the fact that the ground band states with J ≥ 2 are mixed up with the states

of the same angular momentum from gamma band. Therefore one expects to have gamma

distributions with a maximum value at γ = π/6, at least for low lying states from the ground

and gamma bands, while in the beta band two maxima at about π/12 and π/4 may show

up.

The transition from a near spherical shape to a triaxial shape is accompanied by the

change of the staggering from 2+, (3+, 4+), (5+, 6+), ... to (2+, 3+), (4+, 5+), (6+, 7+), ..., In

Ref. [38] we showed that within CSM the first clustering is remnant of the doublet degen-

eracies of the vibrational limit of the model, while the second staggering which is typical

for rigid triaxial rotor, is obtained in the asymptotic region of deformation. Also, such a
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transition is reflected in the behavior of the E2 transitions in the gamma band.

E. Variable separation

We remember that in [20] the SMA was obtained from the Bohr-Mottelson Hamiltonian

by separating the variables β and γ and supplementing the result with new potentials for

beta and gamma respectively. Here SMA is derived from CSM based on a similar procedure

of the variable separation. Of course it would be nice if the final quasi-exactly separable

approach keeps track of the formalism from which it emerges. This problem was studied in

great details by Caprio [66] in connection with the X(5) Hamiltonian comparing the results of

approximate separated Hamiltonian with the exact ones obtained by diagonalizing the initial

Hamiltonian in a large basis constructed from a five dimensional spherical harmonics [67–71].

The conclusion was that replacing 1/β2 by the ”rigid” value 1/β2
0 is a valid approximation

for nearly γ soft potential, while the ”small” angle approximation for γ is good for large γ

stiffnesses. Both approximations work in the overlapping region of the two γ intervals.

Within the SMA the situation is completely different. The only term approximated in

the γ equation is 1/ sin2 3γ originating from the γ kinetic energy term. However, this is not

expanded around γ = 0 which is related to the γ- small picture but around π/6 where the

mentioned term is minimum. In Ref.[20] we studied the potentials in γ for several nuclei

and noticed that they are characterized by a large stiffness. Concerning the approximation

in β, in the quoted paper we plotted the functions of different states from the three bands.

For all considered cases, the functions are highly localized on β0. There is an essential

difference between our case and that of Ref.[66]. Indeed, there the Hamiltonian which is

separated is harmonic and the approximations concern the part of centrifugal term 1/β2
0

which is distributed to the factor expressing the γ kinetic energy and the quadratic Taylor

expansion around γ = 0 which in fact is a singularity point for the γ potential. Note that

in our description the Hamiltonian is highly anharmonic and moreover the γ expansion is

made around a stability point for the γ potential. Moreover the β potential has a deep

deformed minimum which favor a small contribution of fluctuations, which might shift the

average 〈β2〉 from β2
0 .

Concerning the SMA derivation from the CSM, we don’t have a centrifugal term in r

which is coupled to the terms from the γ kinetic energy, and therefore the trouble generated
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by replacing r with r0 in a centrifugal like term is absent. However, the separation is

ultimately obtained by replacing γ by the minimum point coordinate γ0 in some terms, and

r with the minimum coordinate r0 in other terms. Such an approximation is justified for

situations when the eigenfunctions of the γ and r Hamiltonian respectively, are well centered

on the γ0 and r0. This picture might be reached indeed, since as shown in Figs. 1, 2, the

potentials depths are large. Actually, a confident measure of the separation approximation

quality is the comparison of the approximated and non-approximated potentials shown in

Figs 1, 2 for two sets of parameters. As seen there, the potentials do not differ from each

other too much as to induce a significant difference of the corresponding wave functions.

Of course, the separation validity depends essentially on the structure of the phenomeno-

logical Hamiltonian subject to some approximations in order to obtain the desired property.

We believe that a statement covering all possible cases is hard to be made. On the other

hand the Hamiltonian from which a separated Schrödinger equation emerges is itself an

approximation of an ”exact” Hamiltonian. Due to these reasons we are inclined to accept

the separated equation formalism as an self-standing approach rather than being a mathe-

matically proved approximation of a starting approximated Hamiltonian.
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VI. CONCLUSIONS

Here we summarize the main results obtained in the previous sections. The formalism,

conventionally called Sextic and Mathieu Approach (SMA), proposed in a previous publica-

tion for the description of the triaxial nuclei is applied to describe the spectra and transition

probabilities for another two nuclei, 180Hf and 182W. Results of our calculations are in good

agreement with the available data.

The main result of the present study is a natural derivation of the SMA as a limiting case

of the CSM. The model Hamiltonian of CSM together with a three parameters quadrupole

coherent state is used in a time dependent variational principle to derive the classical equa-

tions of motion in the classical phase space coordinates. In the classical energy function

one neglects the terms which are non-quadratic in momenta as well as those which couple

coordinates and momenta. Reducing the space to the subspace generated by two pairs of

conjugate coordinates and then quantizing the classical Hamilton function one arrives at a

separable form for the associated Schrödinger equation, one being the equation for a sextic

oscillator in β and the other one a differential equation for γ obeyed by the Mathieu func-

tion. The reduced space corresponds to a two parameters coherent state from which the

entire boson space basis |NvαJM〉 can be projected out. This justifies the restriction since

in this way one accounts for the classical properties of the CSM model Hamiltonian in the

whole boson space.

The final conclusions are:

• The sextic potential for the β variable and the potential in γ, introduced in our previous

paper on this subject [20], based on pragmatic grounds, gets a theoretical support.

• The success of CSM in explaining the data in a realistic way lets us conclude that,

indeed, this model is able to describe the triaxial nuclei.

• According to the results of the present paper, the SMA represents the strong coupling

limit of CSM .

• We stress, again, that in describing the near vibrational, well deformed with axial

symmetry, triaxial or gamma unstable nuclei one uses a sole model Hamiltonian and

a sole set of model functions for the states belonging to the ground, beta and gamma

bands.
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• This suggests that, indeed, the phase transition from prolate to oblate shape through

a triaxial shape can be described by CSM.

The present results encourage us to attempt to describe also other shape transitions by

means of CSM.
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VII. APPENDIX A

The canonical transformation (4.7) can be inverted and consequently the coordinates

(zµ, z
∗
µ) can be linearly expressed in terms of the canonical coordinates (Qµ, Pµ). Inserting

the result in Eq. (4.4), the classical energy function becomes a polynomial in the canonical

coordinates (Q,P ). The results is:
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