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The liquid drop model adapted to atomic clusters is used to calculate the binding energy of

spherical and semi-spherical neutral sodium and argon clusters. There are three important

terms: volume, surface, and curvature energy. The relative importance of curvature energy

is discussed. It is shown that a semi-spherical cluster is less bound compared to a spherical

one.
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The density functional theory [1] is successfully employed in the field of atomic cluster physics.

Alternatively, with less computational effort, one can use as a first approximation some simple

models [2] replacing the many-body effects by an effective single-particle potential, since to a good

approximation the delocalized conduction electrons of neutral small metallic clusters form a Fermi

liquid like the atomic nucleus [3].

The liquid drop model (LDM) dominated for many decades the theory of nuclear fission, start-

ing with the first explanation, given in 1939 by Meitner and Frisch, of the induced fission process

discovered by Hahn and Strassmann. We have used the LDM to develop the analytical superasym-

metric fission model [4] allowing to predict in 1980 heavy particle radioactivity [5], prediction

mentioned in the New Encyclopaedia Britannica.

In 1990 W. A. Saunders adapted the LDM to the atomic cluster physics, and explained the

increase of fissionability with decreasing size of the charged metal cluster which was observed in

experiments. The following year J. P. Perdew et al. [6] presented a LDM for a neutral metal

cluster with z = 1, 2, 3, 4 valence electrons. They mentioned that the LDM “originally developed

for finite systems (nuclei), may actually be more appropiate for infinite ones (metals).” For the

ground state properties of neutral clusters or the fission of doubly or multiply charged clusters, the

LDM expresses the smooth part of the total energy to which the shell corrections [8] may be added.

The interplay between LDM, shape deformations and Strutinsky shell corrections (including the



2

case of fission) for free clusters was reviewed by Yannouleas et al. [7].

Despite large differences between some specific quantities employed in Nuclear Physics and

Atomic Cluster Physics, the macroscopic-microscopic method, i.e. the LDM completed with shell

corrections could be very useful to solve many problems of the physics of atomic clusters deposited

on different types of substrates. It may provide very rapidly a first solution which can be eventually

refined within density functional theory.

Within the self-consistent spherical jellium model a metallic cluster is defined by the number

of atoms N and the electronic density parameter rs [9]. Assuming spherical symmetry, the cluster

radius for monovalent metals is R = rsN
1/3. The Wigner-Seitz radius, rs, is the radius of a sphere of

the same volume as the volume per particle. The ionic charge is homogeneously smeared out within

the sphere of radius R to give a rigid positive background. The electrons move self-consistently in

the field of this background and under the influence of their mutual Coulomb interactions.

The energy of a metallic crystal is expressed as a sum of volume, surface and curvature terms

[6]; this expression can be accurate even for atomic-scale properties.

E = αV + σA + (1/2)γ

∫

dAR−1 (1)

where α, σ, γ are intrinsic volume, surface, and curvature energies and R−1 is the local curvature

of surface-area element dA.

The curvature energy is a corection to the surface energy [10]. The Myers-Swiatecki’s droplet

model is a LDM model plus terms that arise when it is extended to one higher order in the expansion

parameters A−1/3 and I2; I = (N −Z)/A. It removes the assumption of incompressibility and the

requirement that the neutron and proton density distributions have a common surface.

The curvature energy is linear in the mean total curvature, L, of the surface:

L =

∫

dS(R−1

1
+ R

−1

2
) (2)

where R1,R2 are the principal radii of curvature of the surface-sheet element dS. L is shape

dependent; if one compares different convex nuclear shapes with the same volume, it has a minimum

for the sphere. The Gaussian total curvature is given by

K =

∫

dS(R1R2)
−1 (3)

For simple connected closed surfaces, K = 4π, thus it is constant throughout the fission process,

and this property may be used for testing the accuracy of numerical calculations involving R1,R2.

In the leptodermous (thin surface) approach of their droplet model, Myers and Swiatecki ex-

panded the charge independent part of the binding energy per nucleon in terms of the small
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quantities A−1/3 and I2 up to the 2nd order (one order higher than in the LDM). Of the new

terms which enter in this model the only one which has a major influence on the saddle-point

properties is the curvature correction to the surface energy. The deformation energy with respect

to the spherical shape

EDef = a2(1 − b1I
2)A2/3(Bsurf − 1) + a3A

1/3(Bcurv − 1) − a4A
1/3(Bcomp − 1)

+c1Z
2A−1/3(BCoul − 1) − c2Z

2A1/3(Bred − 1) (4)

where surface, curvature, compression, Coulomb, and redistribution energies are deformation de-

pendent.

The nanostructured coating of surfaces by cluster deposition [11–13] is at present a rapidly

growing field. By analyzing some shapes of cluster deposited on a surface obtained by using

scanning probe microscopy [14, 15], one can see that a semi-spheroid with the z axis of cylindrical

symmetry oriented perpendicularly on the surface plane may be a good approximation.

We investigate the stability of semi-spheroidal shapes by assuming, as a first approximation of

one possibility which can be met in practice, a vanishing interaction energy with the surface on

which the cluster is deposited, so that the neutral atomic cluster may be considered to be free.

We are using the standard notation of (ρ, z) for the axially symmetric dimensionless cylindrical

coordinates. When the shape is a semi-spheroid the length scale is given by the radius of a sphere

with the same volume, Rs = 21/3R0 = 21/3rsN
1/3, in which N is the number of atoms, rs is the

Wigner-Seitz radius and ρ = ρ(z) is the surface equation given by

ρ2 =







(a/c)2(c2 − z2) z ≥ 0

0 z < 0
(5)

where a is the minor (major) semiaxis for prolate (oblate) semi-spheroid and c is the major (minor)

semiaxis for prolate (oblate) semi-spheroid. Volume conservation leads to a2c = 1.

It is convenient to choose the deformation parameter δ defined by

a =

(

2 − δ

2 + δ

)1/3

; c =

(

2 + δ

2 − δ

)2/3

(6)

so that

a

c
=

2 − δ

2 + δ
= a3 ; c =

1

a2
(7)

The eccentricity is defined by the equation

e2 =







1 − a2/c2 prolate (a < c)

a2/c2 − 1 oblate (a > c)
(8)
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TABLE I: Wigner-Seitz radius, Volume, Surface, and Curvature energy parameters for sodium, potassium

and argon clusters.

Cluster rs λV λS λcurv Refs.

Å eV eV eV

Sodium 2.117 -2.252 0.541 0.154 [16, 17]

Potassium 2.572 -2.198 0.521 0.072 [17]

Argon 1.90 -0.105701 0.189956 -0.082291 [18]

Clusters and nuclei are “leptodermous” systems characterized by a constant density in the

volume and a thin surface layer allowing to expand their binding energy in terms of powers of

N1/3. Despite the fact that this expansion is a priori valid only for large enough systems (e.g.

Na2654) it “predicts the energy per electron E/N accurately (within 0.03 eV) even for N = 1” [6].

We are interested in sodium monovalent metallic cluster and in argon a noble gas cluster. From

the macroscopic LDM point of view they will have different values of the parameters rS , λV , λS ,

and λcurv (see the table I).

For a spherical neutral cluster with N atoms, the binding energy is given by

EN = λV N + λSN2/3 + λcurvN
1/3 = E0

V + E0

S + E0

curv (9)

with energy constants λV , λS, and λcurv, given in table I for sodium, potassium and argon clusters.

The volume energy, E0

V is proportional to the volume (assumed to be conserved), the surface energy

E0

S is proportional to the surface area and the surface tension σ

E0

S = 4πR2

0σ = 4πr2

sσN2/3 (10)

hence 4πr2
sσ = 0.541 eV for Na clusters. The curvature energy E0

curv = 0.154N 1/3 eV is propor-

tional to the integrated curvature ant to the curvature tension γc

E0

curv = 4πR0γc = 4πrsγcN
1/3 (11)

where 4πrsγc = 0.154 eV for Na clusters. When the cluster is ionized, one should add the Coulomb

energy term in eq. 9. The numerical coefficients in eq. (9) have been determined [16, 17] by fitting

the extended Thomas-Fermi local density approximation total energy [19] for spherical shapes. In

the fig. 2 of ref. [16] the smooth line expressed by eq. (9) is compared to the dots from ref. [19].

The two sets of data coincide at magic numbers. Shell effects, explaining the deformation energy

of non-spherical atomic clusters, may be added by using Strutinsky’s [8] procedure.
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For a spherical Na cluster with N atoms, the binding energy in eV is

EN = −2.252N + 0.541N 2/3 + 0.154N 1/3 (12)

where E0
v = −2.252N eV is proportional to the volume. The binding energy per atom (−Eb/N)
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FIG. 1: Binding energy per atom (−Eb/N) versus the number of atoms N for spherical Na (left) and Ar

(right) clusters.

versus the number of atoms N for Na clusters is presented in the left-hand side of figure 1.

For noble gases the Lennard-Jones potential plays an important role

ULJ(rij) = ε

[

1

2

(

r0

rij

)12

−

(

r0

rij

)6
]

(13)

where r0 is the equilibrium pair separation with r0 = 3.8 Å for Ar-Ar [20] and 3.83 Å for C-Ar. ε

is the pair well depth with ε = 2.46 · 10−2 eV for Ar-Ar and 0.99 · 10−2 eV for C-Ar. The binding

energy per atom for LJ clusters as a function of cluster size was calculated for different types of

packing [20].

For a spherical Ar cluster with N atoms the binding energy [20] in eV is given by

EN = −0.105701N + 0.189956N 2/3 − 0.082291N 1/3 (14)

In the right-hand side of figure 1 we present the binding energy per atom (−Eb/N) versus the

number of atoms N for Ar clusters.

By comparing the two plots in figure 1 one can see, as suggested by the different signs of λcurv

for sodium and argon clusters in table I, that in the former case the curvature energy has a negative

contribution to the total binding energy, while in the later it increases the total binding.

The deformation energy with respect to spherical shape (surface + curvature) of a semi-spherical

cluster is given by

E − E0 = (Es − E0

s ) + (Ecurv − E0

curv) = E0

s

(

Es

E0
s

− 1

)

+ E0

curv

(

Ecurv

E0
curv

− 1

)

(15)

or

E − E0 = E0

s (Bsurf − 1) + E0

curv(Bcurv − 1) (16)
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where Bsurf = Es/E
0
s and Bcurv = Ecurv/E

0
curv. For the relative surface energy of a semi-sphere
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FIG. 2: Binding energy per atom (−Eb/N) versus the number of atoms N for Na (left) and Ar (right)

clusters. Comparison between spherical and semi-spherical shapes.

(deformation δ = 0) we obtain

Bsurf(δ = 0) = (4πR2

s/2 + πR2

s)/(4πR2

0) = (3/4)R2

s/R
2

0 = 3/42/3 (17)

and the corresponding curvature energy

Bcurv(0) = K/4πR0 = (4πRs/2)/(4πR0) = (1/2)(Rs/R0) = 1/41/3 (18)

The mean curvature of a plane is zero, and for a sphere it is 4π.

Consequently, the liquid drop part (volume, surface, and curvature terms) of the binding energy

of a semi-spherical cluster will be:

EsN = λV N +
3

42/3
λSN2/3 +

1

41/3
λcurvN

1/3 (19)

A cluster with a spherical shape is more tightly bound than a cluster with a semi-spherical shape,

as shown in figure 2 for sodium and argon clusters.
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