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I. INTRODUCTION

The spheroidal harmonic oscillator (SHO) has been used in various branches of Physics. The
famous single-particle Nilsson model [1] is very successful in Nuclear Physics. Its variants [2, 3]
are of particular interest for atomic clusters [4]. Major spherical-shells N = 2,8, 20, 40, 58,92 have
been found [2] in the mass spectra of sodium clusters of N atoms per cluster, and the Clemenger’s
shell model [3] was able to explain this sequence of spherical magic numbers.

We shall write explicitly the analytical expressions for the energy levels of SHO and derive the
solutions for a semi-spheroidal harmonic oscillator (SSHO) which may be useful to study atomic
clusters deposited on planar surfaces. The energy levels may be used as the input data for shell
correction calculations [2, 3, 5-10]. The nanostructured coating of surfaces by cluster deposition is
at present a rapidly growing field [11]. By using an atomic force microscope it is possible to observe
the shapes of such clusters (see e.g. Fig. 1 of ref. [12], or Figs. 3, 4 and 9 of ref. [13]). They can
be approximated in the first order by a hemispheroid. This gives us a motivation to develop the
SSHO. Another argument relies on the 2D measurement [14] of the strong magicity at the number
equal to 6, which can be approximated as a limiting case of an extremely large oblate deformation
in our model.

In all studies using an harmonic oscillator published since 1955, the maximum degeneracy of
the quantum states was reached for a spherical shape, explaining the high stability of the doubly
magic nuclei or of the metal clusters with spherical closed shells. To our surprise the maximum

stability of the hemispheroidal quantum harmonic oscillator occurs at a superdeformed prolate



shape (semiaxes ratio a/c = 1/2), a shape which is also the most stable one within the LDM [15].

II. SPHEROIDAL HARMONIC OSCILLATOR

A. The wave functions and the energy levels

For spheroidal equipotential surfaces, generated by a potential with cylindrical symmetry, the

states of the valence electrons were found [3] by using an effective single-particle Hamiltonian with
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We begin with this Hamiltonian and neglect for the moment an additional term proportional to

a potential
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(12— (12),,). Then we investigate its influence in the next subsection. The deformation ¢ is defined
by expressing the dimensionless two semiaxes (in units of the radius of a sphere with the same

volume, Ry = rsN/3, where r, is the Wigner-Seitz radius, 2.117 A for Na [8, 16]) as
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We use dimensionless cylindrical coordinates p and z. Volume conservation leads to a’?c = 1. One
can separate the variables in the Schrédinger equation, HV = EW. As a result the wave function

[17, 18] may be written as

U(n, &, ¢) = Yne (M) P () Zn. () (3)

where each component is orthonormalized, n = R3p2 /ai, m = (n; —2i) with ¢ = 0,1,... up to
(ny —1)/2 for an odd n, or to (ny — 2)/2 for an even n, n. = (ny — |m|)/2, oy = /h/Mw,.
We are interested in the z-component
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where £ = Roz/a, o, = \/m, and the main quantum number n =n, +n, =0,1,2,.... The
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parity of the Hermite polynomials H,,_(§) is given by (—1)
The eigenvalues in units of hwg are
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The low lying energy levels for the six shells (main quantum number n = 0,1,2,3,4,5) can be seen

in the left-hand side of figure 1. Each level, labelled by n |, n, may accommodate 2n | + 2 particles.



One has 23 " _(ny+1) = (n+1)(n+2) atoms in a completely filled shell characterized by n, and
the total number of states of the low-lying n+1 shellsis . (n+1)(n+2) = (n+1)(n+2)(n+3)/3
leading to the magic numbers 2, 8, 20, 40, 70, 112, 168... for a spherical shape. Besides the important
degeneracy at a spherical shape (6 = 0), one also has degeneracies at some superdeformed shapes,

e.g. for prolate shapes at the ratio ¢/a = (2 +0)/(2 —d) = 2 i.e. 6 = 2/3. The first four shells
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FIG. 1: Energy levels in units of Awy vs. the deformation parameter § of a spheroidal harmonic oscillator

before (colour) and after (black and white) introducing the term proportional to [? in the Hamiltonian.

can reproduce the experimental magic numbers 2,8,20,40; in order to describe the other ones
(58,92) one has to introduce the term proportional to (1 — (1?),,) in the Hamiltonian (see the next

subsection).

B. Influence of the term proportional to [°

The 12-term must be added in order to broaden the lower part of the oscillator potential. It
will lift the degeneracies for the same principal quantum number, here n = 2n, + |m|. The term
is: Vi2 = —Uhwo[1> — n(n + 3)/2]. In order to introduce the deformation dependence we employ

the expression 12 = V'V g X P, and by using the creation and anihilation operators one has:

2 =051 +1717) +12 (6)



The matrix elements for the calculation of the 1"~ and 1, are given elsewhere [19]. The completion
relation leads to:
(n)mn, 11" [n,mn,) = Z(n' m'n’ 1" [nym" nl) (nym" n[17|n,mn.) (7)
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and similarly for 1717, In this way we obtain the matrix elements for the 12-potential vs deforma-

tion. The 1, operator is diagonal and yields the additional energy:
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where the dimensionless strength of interaction U = 0.04. As a result of the diagonalization

one obtains the total deformed level energy shown in the right hand side of the fig. 1. The

experimentally determined magic numbers [2] are reproduced.

III. SEMI-SPHEROIDAL HARMONIC OSCILLATOR

A. The energy levels obtained ignoring the [ term

The radius of the hemisphere at the deformation d; = 0 is Rs. Volume conservation leads to
R, = 2Y3R,. We shall give p, z,a,c in units of R, instead of Ry, so that again a’c = 1. The
definition of the J5 is the same as that of § in eq. (2), but now a and ¢ are expressed in terms
of R, instead of Ry. The new potential well along the symmetry axis, V,(z), has a wall of an
infinitely large height at z = 0, and concerns only positive values of z, implying opacity of the
surface. In this case the wave functions should vanish in the origin, so that only negative parity
Hermite polynomials (n, odd) should be taken into consideration. From the energy levels given in
the left-hand side of the figure 1 we have to select only those corresponding to this condition. In
this way the former lowest level with n = 0,n; = 0 should be excluded. From the two levels with
n = 1 we can retain the level with n; = 0 i.e. n, = 1. This will be the lowest level for the SSHO
and will accommodate 2n | +2 = 2 atoms. Again, each level, labelled by n | ,n, may accommodate
2n | + 2 particles.

The equation (5) from the harmonic oscillator, in units of fiwy is still valid, but one should only
allow the values of n and n, for which n, = n —n; > 1 are odd numbers. The energy levels
are plotted in the left hand side of fig. 2. The striking result is that the maximum degeneracy is
obtained at a superdeformed prolate shape (65 = 2/3). The magic numbers (MN) of SSHO are
those of spherical shape (6 = 0) SHO. The MN of oblate, 63 = —0.4, SSHO are identical to those



of hyperdeformed oblate, § = —1, SHO. The MN of hemispherical, 63 = 0, SSHO are the same as
of the superdeformed oblate, 6 = —2/3, SHO, etc.
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FIG. 2: Energy levels in units of fwg vs. the deformation parameter  of a semi-spheroidal harmonic oscillator

before (colour) and after (black and white) introducing the term proportional to [? in the Hamiltonian.

B. Influence of the term proportional to [?

By including a term proportional to (12 — (I1?),,) in the Hamiltonian
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with the dimensionless quantity U = 0.04 and (12),, = n(n + 3)/2 like in Ref. [3] for the spheroidal

oscillator, we obtained again an analytical relationship for the energy levels
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The terms proportional to U are both diagonal, the first one —Um?/(4a*) representing the contri-
bution of the lz part of the angular momentum operator. The possible nondiagonal terms coming
from (Z+[_ + [‘ﬁ) /2 are not present since their contribution vanishes due to the selection rules
excluding even values of the quantum number n,. As we mentioned above the quantum number
m = (ny —2i) with ¢ =0, 1, ..., so that for n; = 0 one has m = 0 — the energy level is not changed.

When n; =1, m = +1 and the energy is changed but the degeneracy of 4 remains unlifted. For



TABLE I: TOP: Deformed magic numbers of the spheroidal harmonic oscillator. BOTTOM: Deformed

magic numbers of the hemispheroidal harmonic oscillator.

OBLATE PROLATE
0 a/c Magic numbers d  a/c Magic numbers
~0.8/3 17/13 2, 8, 18, 20, 34, 38, 58, 64, 0.8/3 13/17 2, 8, 20, 22, 42, 46, 76, 82
92, 100, 136, 148, ... 124, 134 ..
04 1.5 2,6,8, 14, 18, 28, 34, 48, 0.4 2/3 2,8, 10, 22, 26, 46, 54, 66
58, 76, 90, 114, 132, ... 84, 96, 114, 138, 156, ...
“2/3 2 2,6, 14, 26, 44, 68, 100, 2/3 0.5 2, 4, 10, 16, 28, 40, 60, 80
140, ... 110, 140, ...
13 2,6,12,22,36,54,78,108, 1 1/3 4,12, 18, 24, 36, 48, 60, 80,
144 100, 120, 150, ...

g eee

—0.8/3 17/13 2, 6, 12, 22, 26, 36, 42, 56, 0.8/3 13/17 2, 6, 8, 14, 18, 28, 34, 48

64, 82, 92, 114, 126, 154, ... 58, 76, 90, 114, 132, ...
—04 15 2,6,12,22,36,54,78,108, 0.4 2/3 2,8, 18,20, 34, 38, 50, 58
144, ... 64, 80, 92, 100, ...
—2/3 2 2,6,12, 20,32, 48, 68,92, 2/3 0.5 2,8, 20, 40, 70, 112, 168
122, 158, ...
~1 3 2,6,12,20,30,42,58,78, 1 1/3 2, 8,10, 14, 22, 26, 46, 54
102, 130, ... 66, 84, 96, 114, 138, 156, ..

n, = 2, m = £2,0 so that one has a split leading to one level with m = 0 and the degeneracy
2, and another with m = 42 and the degeneracy 4, etc. In this way we obtain the level scheme
in the right hand side of fig. 2. For the lower levels (say up to 10 closed shells), the sequence of
the magic numbers at the maximum degeneracy, taking place at the superdeformed prolate shape
d = 2/3, remain the same: N = 2,8,20,40,70,112,168. Another remarkable fact is that for very
large oblate deformations, leading to “pan-cake” shapes approximating a 2D situation, one of the

magic number is 6, in agreement with the experiments performed by Chiu et al. [14].

C. Influence of the intermediate shapes

As may be seen from figures 1 an 2, the nuclear shape is extremely important: the magic
numbers obtained at some oblate and prolate deformations are different from those obtained at the
spherical shape in case of the spheroidal harmonic oscillator (SHO) or at the hemispherical shape

in case of semi-spheroidal harmonic oscillator (SSHO).



As an example we give the table 1 in which the remarkable properties of symmetry can be
also seen. The magic numbers (MN) of the oblate (6 = —0.4) semi-spheroidal harmonic oscillator
(SSHO) are identical to those of the hyperdeformed oblate (5 = —1) spheroidal harmonic oscillator
(SHO). MN of a semi-spherical (6 = 0) SSHO are identical to MN of superdeformed oblate (6 =
—2/3) SHO. MN of the superdeformed prolate (6 = 2/3) SSHO are the same as MN of spherical

(06 =0) SHO (mazimum degeneracy).
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