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We discuss two specific examples of heavy ion orbiting. A first example, α+16O
at 54.1 MeV reaction dominated by strong optical potentials shows all characteristics of
a strongly refractive scattering: Fraunhofer cross over at very forward angles, deep Airy
oscillation, rainbow bump, significant increase of the cross section at large angles. We
demonstrate semiclassically that this in fact is a typical orbiting reaction. In a second
example, α+28Si at 18.0 MeV, we describe a special kind of heavy ion orbiting-butterfly
scattering, with diffractive oscillations in the entire physical angular range, determined
by Regge pole dominance.

Key words: G-matrix effective interactions, folding potentials, WKB, Regge
poles.
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1. INTRODUCTION

Significant progress has been achieved during the last decades in our under-
standing of the optical potential between light heavy-ions as a consequence of the
measurement of accurate and extensive elastic differential cross sections. In many
cases angular distributions have been measured to sufficiently large angles and thus
the reaction mechanism gouverning the interaction could be identified with precision,
ranging from diffraction due to strong absorption to refractive effects (rainbows). A
good understanding of all phenomena occurring in the elastic nucleus-nucleus scat-
tering, which are used typically to extract OMP, and the interpretation of the origin
of different aspects, including the well known potential ambiguities, are of crucial
importance for finding and justifying the procedures used for predicting nucleus-
nucleus OMP in the era of radioactive nuclear beams (RNB) see e.g. [1]. The re-
liability of these potentials is essential for the correct description of a number of
reactions involving RNBs, from elastic to nucleon transfer and nucleon removal, at
energies ranging from a few to a few hundred MeV/nucleon. The folding model is
central to this understanding, coupled with increased insight into the nature of real-
istic effective nucleon-nucleon interactions. Of particular interest for us is to support
the absolute values of the calculated cross sections for reactions used in indirect me-
thods for nuclear astrophysics, see [2] and [3] for the most recent results. In this
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framework, we treat here the case of heavy ion orbiting, one of the phenomena found
over the years to occur in special cases of elastic scattering, well understood semi-
classically, but not well documented by specific examples.

In Sect. 2 we remind the basic ingredients of the double folding model. Sect. 3
is devoted to the analysis of 4He+16O at 54.1 MeV. In Sect. 4 the reaction 4He+28Si
at 18 MeV is discussed. Our conclusions are presented in Sect. 5.

2. FOLDING FORMFACTORS

In the following we discuss the ability of the folding model to describe orbit-
ing/resonant elastic scattering. We start by a quite simple model in which the spin-
isospin independent formfactor of the OMP is given by the double folding integral,

Vfold(R) =

∫
dr⃗1dr⃗2ρ1(r1)ρ2(r2)vM3Y (s) (1)

where vM3Y is the M3Y parametrization of the G-matrix obtained from the Paris NN
interaction [4], and s⃗= r⃗1+ R⃗− r⃗2 is the NN separation distance. A small isovector
component arising from a nonnegligible neutron skin is added if necessary. The
Coulomb component of the optical potential is calculated by replacing the nuclear
s.p. densities with proton densities and using vcoul(s) = e2/s as effective interaction.
The small effect arising from finite proton size is ignored. In the simplest version of
this model, dubbed here as M3YZR, the knockon exchange component is simulated
by a zero range potential with a slightly energy dependent strength,

J00(E) =−276(1−0.005E/A) (2)

We keep the number of fitting parameters at the minimum level and take the
OMP in the form,

U(R) =NV V (R,tV )+ iNWV (R,tW ) (3)

where NV,W are normalization constants and tV,W are range parameters defined by
the scaling transformation,

V (R,t)→ t3Vfold(tR) (4)

This transformation conserves the volume integral of the folding potential and mod-
ifies the radius as,

<R2 >V =
1

t2
<R2 >fold (5)

Thus the strength of the formfactor is controlled by the parameters NV,W . Note that
the transformation in Eq. (4) ensures that only the rms radius of the bare folding po-
tential is changed. This is in line with the original prescription of [5] which proposed
a smearing procedure in terms of a normalized Gaussian function. We found that the
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3 Heavy ion orbiting and Regge poles (II) 859

transformation in Eq. (4) is more efficient and less time consuming. Based on Eq.
(5) one may estimate in an average way the importance of the dynamic polarization
potential (DPP) and finite range effects. Throughout this paper we use single par-
ticle densities obtained from a spherical Hartree-Fock (HF+BCS) calculation based
on the density functional of Beiner and Lombard [6]. The obtained rms charge radii
are very close to the experimental values [7]. A more elaborate calculation leads to a
nonlocal knockon exchange kernel [8],

Uex(R⃗
+, R⃗−) = µ3vex(µR

−)

∫
dX⃗1ρ1(X1)ĵ1

(
kf1(X1)

(A1−1)A2

A1+A2
R−

)
(6)

×ρ2(|R⃗+− X⃗1|)ĵ1
(
kf2(|R⃗+− X⃗1|)

(A2−1)A1

A1+A2
R−

)
where A1,2 are mass numbers, µ is the reduced mass of the system, kf1,2 are Fermi
momenta, R+,− are the usual nonlocal coordinates and vex is the exchange compo-
nent of the interaction including the long range OPEP tail. Eq. (6) already shows that
the nonlocality is small and behaves as ∼µ−1. In the lowest order of the Perey-Saxon
approximation, the local equivalent of the nonlocal kernel is obtained by solving the
nonlinear equation,

UL(R) = 4π

∫
dr⃗1dr⃗2ρ1(r1)ρ2(r2)

×
∫

s2dsvex(s)ĵ1(kf1(r1)β1s)ĵ1(kf2(r2)β2s)

×j0

(
1

µ
K(R)s

)
δ(r⃗2− r⃗1+ R⃗) (7)

Above βi = (Ai−1)/Ai are recoil corrections, ĵ1(x) = 3j1(x)/x and j0,1 are spher-
ical Bessel functions. The local Fermi momenta kf are evaluated in an extended
Thomas-Fermi approximation [9]. We have explored also the extended Slater appro-
ximation for the mixed densities of Campi and Bouyssy [10] but did not obtained
substantial improvements over the usual Slater approximation. The local momentum
for the relative motion is given by,

K2(R) =
2µ

ℏ2
(Ec.m.−UD(R)−UL(R)) (8)

where UD is the total direct component of the potential including the Coulomb term.
In Eq. (8) we assumed a purely real local momentum of the relative motion since the
absorptive component of the OMP is small compared with the real part. The effective
mass correction [11], µ⋆

µ = 1− ∂U
∂E is of the order of a few percent for our systems

and is absorbed in the renormalization parameter NW . Some tens of iterations are
needed to solve the coupled Eq. (7) and (8) in order to obtain a precision of 10−7

in the entire radial range (Rmax = 25fm). We start the iteration process by using
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U
(0)
L = UD. Calculations with finite range model are dubbed M3YFR. Neglecting

the spin-orbit component, the Gogny NN effective interaction can be expressed as a
sum of a central, finite range term and a zero range density dependent term,

v(r⃗12) =

2∑
i=1

(Wi+BiPσ−HiPτ −MiPσPτ )e
− r212

µ2
i (9)

+t3(1+Pσ)ρ
α(R⃗12)δ(r⃗12)

where r⃗12 = r⃗1− r⃗2 , R⃗12 = (r⃗1+ r⃗2)/2 and standard notations have been used for
parameter strengths and spin-isospin exchange operators. The strengths parameters
and the ranges are taken from [12]. The isoscalar and isovector components of the
effective interaction are constructed in the standard way. The interest in this interac-
tion resides in its excellent description (at the HF level) of the saturation properties of
the nuclear matter in line with modern estimation from the isoscalar giant monopole
[13] or dipole resonance [14] studies. Antisymmetrization of the density dependent
term is trivial, so that the sum of direct and exchange term reads,

vρD(r12)+vρex(r12) =
3t3
4

ραδ(r⃗12) (10)

The local equivalent of the finite range knockon exchange is calculated with Eq. (7).
Two approximations were used for the overlap density,

ρ= (ρ1(r1)ρ2(r2))
1/2 (11)

and

ρ=
1

2
(ρ1(r1)+ρ2(r2)) (12)

The first approximation Eq. (11) has the merit that the overlap density goes to zero
when one of the interacting nucleons is far from the bulk. In Eq. (12) a factor
1/2 was introduced such as the overlap density does not exceeds the equilibrium
density for normal nuclear matter. At large density overlaps, the fusion and other
inelastic processes are dominant and the elastic scattering amplitude is negligible
small. The calculated OM potentials are dubbed GOGNY1 (11) and GOGNY3 (12).
Both definitions represent crude approximations of the overlap density but are widely
used in the estimation of the density dependence effects in the folding model. We
further examine the density dependence effects by using the nuclear matter approach
of Jeukenne, Lejeune and Mahaux (JLM) [5] which incorporates a complex, energy
and density dependent parametrization of the NN effective interaction obtained in a
Brueckner Hartree-Fock approximation from the Reid soft core NN potential. The
systematic study [1] of the elastic scattering between p-shell nuclei at energies around
10 MeV/nucleon leads to the surprising result that on average, the imaginary part
of the folded JLM potential was perfectly adequate to describe such reactions and
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did not need any renormalization (NW = 1.00± 0.09), while the real component
needed a substantial renormalization, in line with other effective interactions used in
folding models. We examine here to which extent this feature is conserved for tightly
bound nuclei. Exchange effects are included in this model at the level of N-target
interaction. Calculations with this model are dubbed JLM1 and JLM3, depending on
which definition we use for the overlap density (Eqs.(11) and (12) respectively).

3. 4HE+16O AT 54.1 MeV

The reaction 4He+16O at Elab= 54.1 MeV was measured by Abele et al. [15]
and discussed extensively within the folding model in [16]. An optical potential
description of both α+16O elastic scattering and α-cluster states in 20Ne was given
by Michel et al. [17]. The corresponding global potential α+16O gives a reasonable
description of the α-structure in 20Ne. However such a global approach cannot be
used to reveal a delicate phenomenon such as orbiting. A more detailed analysis is
necessary.

Table 1
Discrete solutions with WS1 form factors for the reaction 4He+16O at 54.1 MeV.

V W rV rW rc aV aW χ2 σR JV RV JW RW

135. 10.57 0.7231 1.0741 1.0 0.8022 0.6867 8.72 1050. 399. 3.7646 74. 4.2654
160. 18.17 0.8773 0.9618 1.0 0.5993 0.5083 7.87 999. 624. 3.5712 85. 3.5963
214. 24.42 0.9104 0.9553 1.0 0.5066 0.1188 7.72 986. 865. 3.4548 97. 3.0712

Table 2
Unique solution with WS2 form factors for the reaction 4He+16O at 54.1 MeV.

V W rV rW rc aV aW χ2 σR JV RV JW RW

155. 14.75 0.9088 1.1628 1.0 1.2026 1.0812 4.19 1028. 393. 3.6687 75. 4.0902

A grid search using standard WS1 formfactors for the optical potential revealed
a number of discrete solutions, see Table 1 and Figure 1a. Although almost all phy-
sical angular range was measured the data are not able to fix uniquely the potential
of a WS shape. The members of the potential family are very strong, reaching high
values of the normalized real volume integral. The rms radii of the real and imagi-
nary component get smaller as the potential is stronger. However the reaction cross
section is almost constant which suggests that the members of the potential sequence
are almost phase equivalent. Examination of the Figure 2a shows quite similar cross
section with the exception of the solution with Jv = 399 MeV fm3 which show a
very deep Airy oscillation near θ = 60◦ just at the end of the Fraunhofer sector. This
structure which is followed by a wide bump together with the far side dominance is
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Fig. 1 – (Color online) Grid search with WS1(a) and WS2(b) form factors for the reaction 4He+16O at
54.1 MeV, Table 1.

Fig. 2 – (Color online) F/N decomposition for the WS1(a) and WS2(b) potentials.
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7 Heavy ion orbiting and Regge poles (II) 863

usually interpreted a a strong refractive effect of a quite transparent potential. This
picture has been already challenged by Anni [18] for the simple reason that the far
side amplitude has never been decomposed into subamplitudes which would explain
the interference. A subsequent analysis in terms of WS2 formfactors (squared WS)
revealed a single solution in the range Jv < 1000 MeV fm3, see Table 2 and Figure
1b. The uniqueness of the solution cannot be guaranteed by our search procedure.
Remarkably, the WS2 solution and the first WS1 solution in Table 1 have almost
identical bulk average parameters (volume integrals, rms radii and reaction cross
section) which suggests that this is the physical solution. The far and near side (F
and N) amplitudes have the same structure with a deep Airy oscillation carried en-
tirely by the far side component. We shall use later this solution for our semiclassical
analysis.

Table 3
Unique solutions obtained with folding form factors for the reaction 4He+16O at 54.1 MeV

pot NV NW tV tW χ2 σR JV RV JW RW

M3YZR 0.8400 0.1718 1.0178 0.8536 4.63 1083. 374.10 3.603 75.61 4.286
M3YFR 0.8250 0.1689 1.0020 0.8887 4.94 1069. 397.46 3.661 80.70 4.120

GOGNY1 0.6850 0.1420 1.0143 0.9147 5.81 1057. 401.73 3.657 82.67 4.049
GOGNY3 0.8800 0.1830 1.0278 0.9340 6.05 1058. 406.87 3.666 84.06 4.029

JLM1 0.6750 0.5947 0.9620 0.8801 4.23 1037. 391.99 3.626 77.48 4.076
JLM3 0.7250 0.6736 0.9577 0.8773 4.27 1042. 388.28 3.619 76.96 4.107

In the folding model we use three different effective interactions, namely the
density independent M3Y, and two density dependent GOGNY and JLM in six dif-
ferent versions. A grid search using the strength Nv as a control parameter revealed a
unique solution for all model interactions. We have obtained an almost unique shape
for the function χ2(Jv) see Table 3 and Figure 3. The folding solutions are fully con-
sistent with the WS model. The average real volume integral is Jv = 392±18 MeV
fm3 and the real rms radius Rv = 3.65± 0.02 fm. The normalization for the real
component ranges from Nv ≈ 0.7 to Nv ≈ 0.9 strengthen once again the conjecture
that the true physical parameter is the volume integral and not the normalization pa-
rameter. A standard far side/near side decomposition is plotted in Figures 4a and 4b
showing the same far side dominance and an Airy minimum forward to a ”rainbow”
bump. There are some glories at very large angles due to a strong F/N interference
since both amplitudes become large in this sector. We start a WKB analysis [19] by
searching the turning point trajectories in the complex r plane. We use the WS1 po-
tential with real volume integral Jv = 399 MeV fm3. We observe an ideal situation
with three active well separated turning points close to the real axis, Figure 5a. The
active points, which give the essential contribution to the action integrals are corre-
lated with the poles of the real component of the optical potential (left hand stars in
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Fig. 3 – (Color online) Grid search with folding form factors. Unique solution, Table 3

Fig. 4 – (Color online) F/N decomposition for the folding potentials from Table 3.
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9 Heavy ion orbiting and Regge poles (II) 865

Fig. 5 – (Color online) (a) Complex turning points for the WS potential with JV = 399 MeV fm3.
(b) Semiclassical deflection function for the WS potential with JV = 399 MeV fm3. The pattern is

close to a near orbiting situation with the orbiting momentum ℓ∼ 12.

Fig. 6 – (Color online) (a) Absorption profile for the WS potential with JV = 399 MeV fm3 (see text).
(b) Semiclassical (WKB) analysis of the reaction 4He+16O at 54.1 MeV based on the WS potential

with JV = 399 MeV fm3 (see text).

the figure). The inactive turning points are correlated with the poles of the imaginary
potential and give negligible small contribution to the action integrals. The semiclas-
sical deflection function is shown in Figure 5b. There are at most 20 partial waves
which contribute significantly to the scattering. The Coulomb rainbow is embedded
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Fig. 7 – (Color online) (a) The semiclassical (WKB) cross section is decomposed into barrier (B, red
line) and internal barrier (I, green line). The deep Airy minimum appears as a strong interference of
the B/I components. The internal barrier component dominates at large angles, reaching exceptionally
large values (σI/σR ∼ 20 at θ ∼ 180◦). (b) Argand diagram for the semiclassical S-matrix based on
the WS potential with JV = 399 MeV fm3. The trajectory for the SWKB matches perfectly the exact
quantum result SQ. The internal barrier component, which reaches exceptionally large values, rotates

several times around the origin suggesting the orbiting.

in the Fraunhofer sector. Clearly there is a logarithmic singularity near lorb = 12
and therefore the reaction is dominated by orbiting. The semiclassical absorption
profile (modulus of the scattering amplitude as a function of the angular momentum)
is shown in Figure 6a. The semiclassical profile (curve) is identical with the exact
quantum-mechanically result (black dots) which strengthen the conjecture that the
WKB decomposition of the scattering amplitude is exact, at least for this reaction.
The internal barrier component (I) is quite large, characteristic for strongly refractive
reactions [20] and is negligibly small beyond the orbiting momentum. The barrier
(B) and internal barrier (I) components of the scattering amplitude interfere destruc-
tively giving rise to a shallow Grühn-Wall dip near the orbiting momentum. The
semiclassical (WKB), barrier (B) and internal barrier (I) cross sections as well as
their far side/near side subcomponents are shown in Figures 6b and 7a. The barrier
component (left lower panel) is responsible for the diffractive Fraunhofer sector and
becomes again significant near θ=180◦. The internal barrier component (right lower
panel) is significant at all intermediate angles and the destructive interference with
the barrier component explains the Airy minimum near θ = 60◦. The internal bar-
rier cross section is exceptionally large near θ = 180◦ where σI/σR = 20. Finally,
the Argand diagram for the semiclassical (WKB) S-matrix is shown in Figure 7b.
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The exact quantum result (Q) is shown for comparison. The WKB S-matrix is de-
composed into barrier (B) and internal barrier (I) components. The orbiting/resonant
effect is evident in the low partial waves sector. The barrier component is free for
resonances. The entire resonant effect is isolated into the internal barrier component
(right lower panel) where the S-matrix rotates anti-clockwise several times around
the origin. These are resonances /Regge poles of the orbiting mechanism.

Table 4
Discrete solutions with folding form factors for the reaction 4He+28Si at 18.0 MeV.

pot NV NW tV tW χ2 σR JV RV JW RW

M3YZR
0.4900 0.0673 0.8469 0.9997 4.47 1183. 220.80 4.649 30.63 3.946
0.7450 0.0581 0.8675 1.2983 6.58 1287. 336.18 4.540 27.00 3.051

M3YFR
0.4300 0.0647 0.8750 1.1067 4.49 1141. 210.15 4.572 32.09 3.627
0.6650 0.0539 0.8971 1.1402 6.13 1233. 325.48 4.461 26.78 3.522

GOGNY1
0.3600 0.0564 0.8900 1.1525 4.69 1138. 208.14 4.541 33.18 3.520
0.5550 0.0432 0.9126 1.2495 5.64 1215. 321.34 4.430 25.58 3.251

JLM1
0.3550 0.2354 0.8367 1.1387 4.19 1143. 212.48 4.568 30.92 3.629
0.5450 0.1889 0.8560 1.3226 5.92 1242. 326.64 4.466 25.09 3.133

JLM3
0.3900 0.3019 0.8321 1.1436 4.20 1138. 212.10 4.572 30.29 3.642
0.6000 0.2502 0.8527 1.3011 6.10 1241. 326.77 4.463 25.35 3.209

Table 5
Discrete solutions with WS1 form factors for the reaction 4He+28Si at 18.0 MeV.

V W rV rW rc aV aW χ2 σR JV RV JW RW

53. 3.44 0.9174 1.2304 1.0 0.9271 0.2423 4.43 1089. 223. 4.7611 24. 4.4982
88. 4.70 0.8756 1.2234 1.0 0.8542 0.2368 5.08 1140. 314. 4.4623 32. 4.4693

128. 5.70 0.8550 1.2244 1.0 0.7962 0.2270 5.45 1159. 414. 4.2585 39. 4.4659

Table 6
Unitary solutions with Regge pole amplitudes for the reaction 4He+28Si at 18.0 MeV.

Set L ∆ α β L1 ∆1 D1 Γ1 L2 ∆2 D2 Γ2 χ2 σR
R1 8.14 4.00 -1.66 2.13 7.73 0.415 10.3 20.6 8.68 0.204 10.9 2.61 2.64 1680
R2 7.85 4.16 -1.67 2.37 7.98 0.421 13.6 27.4 8.06 0.413 11.3 1.38 2.69 1703

4. 4HE+28SI AT 18 MEV

We discuss here another reaction, 4He+28Si at Elab = 18 MeV measured by
Ahlfeld et al. [21]. The incident energy is quite low, just at the limit where the
reaction mechanism starts to be dominated by direct interactions over compound
elastic. The interest in this reaction resides in the fact that it displays a special kind
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Fig. 8 – (Color online) Search for discrete solutions with folding form factors.

Fig. 9 – (Color online) (a) F/N decomposition with M3YZR. There are normalization problems at
forward angles. (b) Argand diagram for the S-matrix calculated with several folding solutions with real

volume integral JV ∼ 210 MeV fm3.
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13 Heavy ion orbiting and Regge poles (II) 869

Fig. 10 – (Color online) (a) F/N decomposition with M3YFR. (b) F/N decomposition with GOGNY1.

of orbiting-butterfly scattering. The angular distribution is almost symmetric with
respect to θ = 90◦ and displays diffractive oscillations in the entire physical angular
range. Our analysis go through the same steps as for the preceding reaction. Since
the energy is quite low, we expect a significant number of discrete solutions with
both WS and folding optical potentials see Tables 4 and 5. The χ2 landscape is ex-
plored in Figures 8 and 12b. Remarkably two solutions with Jv ≈ 200 MeV fm3 and
Jv ≈ 300 MeV fm3 appear in all six model calculations. The far side/near side de-
composition is shown in Figures 9a-11b and 13a. For all solutions there is a clear far
side dominance and a particularly deep Airy minimum near θ = 80◦ for the solution
with Jv ≈ 300 MeV fm3. This should in principle indicates a strongly refractive re-
action mechanism. But we shall see that is not the case. The first hint is given by the
large angle oscillations which can be fitted by a renormalized P 2

8 (θ) amplitude which
suggests the presence of a Regge pole near ℓ = 8 For the moment we are interested
if there are other traces of resonant scattering in our reaction. We show the Argand
diagram for the folding S-matrix in Figure 9b. The figure shows convincingly that
the corresponding folding potentials are phase equivalent since the S-matrix trajec-
tories in angular momentum space are identical. Second, there is a cluster of points
in the low angular momentum sector which in fact is a signature of the orbiting. The
absorption profile for the same S-matix are shown in Figure 12a. There is a signif-
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Fig. 11 – (Color online) F/N decomposition with JLM1(a) and JLM3(b).
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Fig. 12 – (Color online) (a) Absorption profile calculated with several folding solutions. The arrows
indicate the position of the Regge pole. (b) Search for discrete solutions with WS1 form factors.

icant odd-even staggering at low partial waves (multiple Regge poles). The arrow
indicates the location of the main Regge pole near ℓ = 8. The trajectories of the
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Fig. 13 – (Color online) (a) F/N decomposition with WS1. This calculation did not solved the nor-
malization problem at forward angles. (b) F/N decomposition using Regge pole amplitudes. The pole

components dominate the cross section in the entire angular range.

complex turning points for the WS1 potential with Jv = 223 MeV fm3 are shown
in Figure 14b. The barrier turning point r2 and the outer point r1 have an unusual
trajectory shape due to the fact that the imaginary component of the optical potential
has complex poles located close to the real axis (right hand stars), see in Table 5
potentials with very small aw. The calculation of the action integrals requires a care-
ful numerical evaluation since the poles should be avoided. Figure 15a displays the
semiclassical deflection function with a typical orbiting singularity near λ=9.5. The
semiclassical absorption profile, shown in Figure 15b, indicate a quite strong internal
barrier component. The semiclassical profile do not reproduce the exact Grühn-Wall
spike (black dots) but still appears as a B/I interference near the orbiting momentum.
The internal barrier component (I) is negligibly small beyond the orbiting momen-
tum. The semiclassical cross section are calculated and displayed in Figure 16a. The
barrier component, typical for strong absorption, follows quite well the experimental
cross section, though it is the internal barrier component which dominates the cross
section at large angles. The Argand diagram shown in Figure 16b shows a strong
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Fig. 14 – (Color online) (a) Absorption profile using Regge pole amplitude R2. The main pole located
near ℓ=8 produced a deep Grühn-Wall spike in the total S-matrix. (b) Complex turning point trajectory

for the WS1 potential with real volume integral JV = 223 MeV fm3.

Fig. 15 – (Color online) (a) Deflection function. The orbiting angular momentum is λ0 = 9.5.
(b) Semiclassical (WKB) absorption profile red curve. The quantum mechanical solution (black dots)
is shown for comparison. The WKB solution is decomposed into barrier (B) and internal barrier (I)

components.

orbiting effect in both semiclassical (WKB) and quantum (Q) S-matrix. The entire
resonant effect is isolated into the internal barrier component (I). Finally we search
the Regge poles directly from the data. We proceed as follows: we guess a reasonable
background-two pole solution, as described in the preceding paper and then generate
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Fig. 16 – (Color online) (a) Semiclassical (WKB) cross section compared with the data. The regular
oscillations at large angles are triggered by the barrier component. But their amplitude is determined
by the internal barrier component (green curve). The B/I components are further decomposed into F/N
subcomponents. (b) Argand diagram for the semiclassical (WKB) S-matrix is compared with the exact
quantum mechanical result (Q). The orbiting effect is isolated into the internal barrier component (I).

about 106 input solution by Monte Carlo for our searching code which minimizes a
standard χ2 function. We are looking for solutions for which both the background
and the pole component are unitary, since we want to isolate the pole contribution to
the cross section. Two fully unitary solutions are given in Table 6 and confirms the
preceding analysis with a main pole located near λ= 8. The cross sections obtained
with this model are plotted in Fig.13b. The butterfly effect is even more evident
in this calculation The background component is important only at forward angles,
while the pole component contributes significantly at all angles. The background ab-
sorption profile shown in Fig. 14a is typical for strong absorption regime while the
Grühn-Wall spike of exceptional amplitude appears here as carried out by the pole
component alone.

5. CONCLUSION

We have analyzed here two apparently obscure angular distribution for heavy
ion scattering which proved to be extremely rich in information about the reaction
mechanism. The first example α+16O at 54.1 MeV show all characteristics of a
strongly refractive reaction but proves to be in fact a typical example of heavy ion
orbiting. A second example, α+28Si at 18.0 MeV taken at the limit where the direct
interaction starts to dominate over the compound elastic, show a special case of heavy
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ion orbiting, butterfly scattering with diffractive oscillations in the entire physical
angular range due to Regge pole dominance. In the light of our analysis it is evident
that a lot of reactions dubbed improperly as ALAS (strong increase of the cross
section at large angles) should be reanalyzed since most if not all of them could
be in fact cases of nuclear orbiting.
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