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Peripheral elastic and inelastic scattering of 17,18O on light
targets at 12 MeV/nucleon

F. Carstoiu∗, T. Al-Abdullah†, C.A. Gagliardi∗∗ and L. Trache∗∗

∗National Institute for Physics and Nuclear Engineering Horia Hulubei, Bucharest, Romania
†Physics Department, The Hashemite University. Zarqa, Jordan

∗∗Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

Abstract. The elastic and inelastic scattering of 17,18O with light targets has been undertaken at 12 MeV/nucleon in order
to determine the optical potentials needed for the transfer reaction 13C(17O,18O)12C. Optical potentials in both incoming and
outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate
to the 17F(p,γ)18Ne which is essential to estimate the production of 18F at stellar energies in ONe novae. We demonstrate the
stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The
peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and
internal barrier components. Comparison between elastic scattering of 17O, 18O and 16O projectiles is made.
Keywords: Woods-Saxon potential, folding potentials, WKB.
PACS: 25.70.Bc, 25.70.Hi, 24.10.Ht.

INTRODUCTION

The 17F(p,γ)18Ne reaction is important for understanding nucleosynthesis in novae and plays a role in determining if
radioactive nuclei with characteristic gamma-ray signature are produced in sufficient yield to be observed by gamma-
ray satellites. The reaction rate is expected to be dominated by direct-capture cross section at nova temperatures and
influences the abundances of 15O, 17F, 18F and 18Ne [1]. The rate also determines the 17O/18O ratio that is produced and
explains the transition sequence from the HCNO cycle to the rp-process [2]. The primary goal of the experiment was
the measurement of the peripheral neutron transfer reaction 13C(17O,18O)12C. Optical potentials in the incoming and
outgoing channels have been obtained by measuring elastic scattering angular distributions 17O+ 13C and 18O+ 12C at
12 MeV/nucleon incident energy. The quality of the obtained potentials has been also checked from inelastic scattering
to selected states in 17O∗ and 18O∗. Since the ANC method assumes the peripherality of the reaction mechanism, we
discuss here rather extensively this issue by decomposing semiclassically the total scattering amplitude into barrier
and internal barrier subcomponents. We show that the internal barrier subcomponent, which corresponds to the flux
penetrating the barrier, gives negligible small contribution to the total cross section, and thus the reaction is peripheral.
The elastic scattering 17O+13C includes a weakly bound target.
Previously, 18O+12C elastic scattering at barrier energies was measured by Robertson et al.[3], by Szilner et al.[4]

and Rudchik et al.[5] at some 5-7 MeV/nucleon. Fresnel scattering of 18O on 28Si was measured by Mermaz et al.[6]
at 56 MeV. For the 17O+ 13C reaction the data are rather scarce, we identified a single fusion study and poor elastic
angular distributions at barrier energies [7]. The main conclusion of these studies was that the interaction of 17,18O
nuclei with light targets is slightly more absorptive compared with that of the closed shell nucleus 16O and that no
significant effects due to the neutron excess were identified.
In Sec. II we give a short description of the experiment. Elastic scattering data and the derivation of the OM

potentials are discussed in Sec. III. The semiclassical (WKB) method is used in Sec IV to decompose the total
scattering amplitude into barrier and internal barrier components. Inelastic angular distributions to selected states
in 18O∗ and 17O∗ are discussed in Sec. V. Our conclusions are summarized in Sec. VI.

THE EXPERIMENT

The experiment was carried out with two separate 17O and 18O beams from K500 superconducting cyclotron at Texas
A&M University. Each beam was transported through the beam analysis system to the scattering chamber of the
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FIGURE 1. (Color online) Low-lying spectrum of 18O
versus the particle position in the focal plane, measured at
the spectrometer angle of 4◦. The peaks at the right of the
elastic peak are due to Si and Ta contaminants in the target.
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FIGURE 2. (Color online) Cross section and far
side/near side (F/N) decomposition of the scattering
amplitude for WS potentials in Table 1. Each calcu-
lation is identified by its real volume integral JV and
shifted by factors X to increase the visibility.

multipole-dipole-multipole (MDM) magnetic spectrometer [8], where it interacted with 100 μg/cm2 self-supporting
targets.
First, the 17O beam impinged on 13C target enriched up to 99%.We continuously monitored the excitation of the 4.44

MeV state in 12Cin order to estimate the carbon deposition during the exposure and found negligible small contribution.
The elastic scattering angular distribution was measured for the spectrometer angles 4◦-25◦ in the laboratory system.
Fine tuned RAYTRACE [9] calculations were used to reconstruct the position of particles in the focal plane and the
scattering angle at the target. A 4◦ ×1◦ wide-opening mask and an angle mask consisting of five narrow (Δθ = 0.1◦)
slits were used for each spectrometer angle to double-check the absolute values of the cross section and the quality of
the angle calibration. The instrumental setup, including the focal plane detector, and processes for energy and angle
calibrations, are identical to that described in Ref. [10]. Second, the 12C target was bombarded by 18O beam with 216
MeV total laboratory energy. The elastic scattering cross section was measured at 4◦-22◦ spectrometer angles.

ELASTIC SCATTERING

Woods-Saxon formfactors

The measured elastic scattering data at Elab=216 and 204MeV are shown in Figs. 2 and 3. The data are first analyzed
using optical potentials with conventional Woods-Saxon (WS) form factors for the nuclear term, supplemented with a
Coulomb potential generated by a uniform charge distribution with a reduced radius fixed to rc=1 fm. No preference
has been found for volume or surface localized absorption and throughout the paper only volume absorption is
considered. In the absence of any spin dependent observables, spin-orbit or tensor interactions have been ignored.
Ground state reorientation couplings have been neglected also. The potential is defined by six parameters specifying
the depth and geometry of the real and imaginary terms, with the standard notations, the same as used in Ref. [11].
The number of data points N is quite large, and consequently the usual goodness of fit criteria (χ2) normalized to N
has been used.
Using the strength of the real component of the optical potential as a control parameter, a grid search procedure
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FIGURE 3. (Color online) Cross sections and F/N
decomposition for theWS potentials Table 1. The far
side component shows Airy oscillation which moves
to forward angles with increased value of the real
volume integral.
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FIGURE 4. (Color online) Elastic scattering 16O+12C at
11.3 MeV/nucleon. The real part of the WS optical poten-
tial is much stronger and the far side component shows
several deep Airy oscillations. Experimental data are taken
from [12].

TABLE 1. Discrete solutions obtained with WS form factors for 18O+12C at 216 MeV and 17O+13C at 204 MeV.
The line labeled PP9 is a WS phase equivalent of the JLM1 solution.

pot V W rV rW aV aW χ2 σR JV RV JW RW
MeV MeV fm fm fm fm mb MeV fm3 fm MeV fm3 fm

18O+12C at 216 MeV
PP5 89.18 25.24 0.88 1.16 0.88 0.68 5.12 1712 197 4.69 103 5.09
PP6 195.40 25.59 0.68 1.16 0.96 0.67 6.39 1702 257 4.40 104 5.07
PP7 295.82 26.00 0.60 1.16 0.95 0.67 7.54 1696 297 4.20 106 5.06
PP8 374.41 26.19 0.58 1.16 0.90 0.68 9.78 1695 334 4.01 107 5.06
PP9 75.68 26.16 0.89 1.15 0.93 0.66 5.31 1677 178 4.85 104 5.02

17O+13C at 204 MeV
T1 94.69 26.91 .91 1.13 .84 .67 4.47 1659 215 4.67 99 4.96
T2 188.40 24.95 .72 1.12 .94 .69 4.62 1667 271 4.44 92 4.99
T3 248.75 26.36 .69 1.13 .90 .66 4.53 1659 318 4.27 99 4.97
T4 275.49 25.63 .73 1.15 .81 .65 5.90 1660 365 4.11 100 5.00

revealed a number of discrete solutions. Their parameters are presented in Table 1. The ambiguity in the optical
potential has two main sources: the limited range of the measured angles and the strong absorption. When the strong
absorption dominates the reaction mechanism, then the interaction is sensitive only to the surface and several phase
equivalent optical potentials will appear. The patterns shown in Figs 2 and 3 show rapid oscillation at forward angles
followed by a smooth fall-off at intermediate angles. Assuming pure Fraunhofer scattering at forward angles, we
extract a grazing angular momentum �g ≈ 36 from the angular spacing Δθ = π/(�g+1/2). The corresponding grazing
distance is quite large, Rg ≈ 7 fm, much larger than the distance of touching configuration. We systematically find
diffuse real potentials (aV ≈ 0.9 fm). This effect may be tentatively attributable to the neutron excess. We find also quite
constant volume integrals and rms radii for the imaginary component. As a consequence the total reaction cross section
seems to be a well defined observable. Weighted average values from Table 1 and Table 2 are σR = 1713±35 mb and
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FIGURE 5. (Color online) Cross section calculated with
folding form factors using the M3Y and GOGNY models.
The real volume integral is indicated on each curve. The
far side/near side components of the cross section are de-
noted by F/N. Experimental data and calculation have been
shifted by factor X to increase visibility.
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FIGURE 6. (Color online) The same as in Fig.5 but for
the JLM model.

σR = 1699± 36 mb for 18O+12C and 17O+13C reactions respectively. For the largest real volume integral an Airy
oscillation forward to a primary rainbow becomes apparent. Usually, the dominance of the far-side component beyond
the Fraunhofer crossover is interpreted as a signature of refractive effects due to a strongly attractive real potential and
weak absorption. We will show bellow that the strong absorption is still the dominant reaction mechanism.
A comparison with the scattering of the tightly bound nucleus 16O is in order. Experimental data [12] and our

calculation for 16O+12C at 11.3 MeV/nucleon are displayed in Fig. 4. We did not find any reasonable WS solution with
JV < 300 MeV fm3 and so the solution with the lowest acceptable real volume integral is plotted. Since the potential
is strong, the far-side component of the cross section is much more structured. While the Fraunhofer (diffractive) part
at forward angles is similar to our reactions, strong refractive effects appear at θ > 40◦ as deep Airy oscillations.

Folding formfactors

In the following we discuss the ability of the folding model to describe our data. We start by a quite simple model
in which the spin-isospin independent formfactor of the OMP is given by the double folding integral,

Vfold(R) =
∫
d�r1d�r2ρ1(r1)ρ2(r2)vM3Y (s) (1)

where vM3Y is theM3Y parametrization of the G-matrix obtained from the Paris NN interaction [13], and�s=�r1+�R−�r2
is the NN separation distance. For the reaction 17O+13C we add the small isovector component arising from the
nonnegligible neutron skin present in both interacting partners. The Coulomb component of the optical potential is
calculated by replacing the nuclear s.p. densities with proton densities and using vcoul(s) = e2/s as effective interaction.
The small effect arising from finite proton size is ignored. In the simplest version of this model, dubbed here as
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TABLE 2. Unique solutions obtained with folding form factors for 18O+12C at 216 MeV and 17O+13C
at 204 MeV.

pot NV NW tV tW χ2 σR JV RV JW RW
mb MeV fm3 fm MeV fm3 fm

18O+12C at 216 MeV
M3YZR 0.37 0.20 0.88 0.80 10.72 1812 163 4.60 86 5.06
M3YFR 0.33 0.21 0.88 0.86 8.15 1737 164 4.68 103 4.83
GOGNY1 0.28 0.18 0.89 0.87 7.27 1707 158 4.70 103 4.83
GOGNY3 0.37 0.21 0.91 0.84 7.39 1767 158 4.69 89 5.08
JLM1 0.33 0.93 0.87 0.86 6.87 1675 178 4.55 109 4.80
JLM3 0.36 1.02 0.86 0.85 6.75 1708 180 4.56 102 4.85

17O+13C at 204 MeV
M3YZR 0.46 0.22 0.91 0.85 5.24 1742 203 4.48 95 4.80
M3YFR 0.38 0.18 0.93 0.86 5.16 1738 196 4.52 94 4.87
GOGNY1 0.32 0.15 0.94 0.85 5.74 1748 188 4.53 88 4.99
GOGNY3 0.41 0.20 0.95 0.87 6.03 1729 186 4.53 88 4.97
JLM1 0.35 0.72 0.89 0.84 6.06 1691 196 4.47 84 4.96
JLM3 0.37 0.80 0.88 0.83 5.63 1719 192 4.49 81 5.00

M3YZR, the knockon exchange component is simulated by a zero range potential with a slightly energy dependent
strength,

J00(E) =−276(1−0.005E/A) (2)

We keep the number of fitting parameters at the minimum level and take the OMP in the form,

U(R) = NVV (R, tV )+ iNWV (R, tW ) (3)

where NV,W are normalization constants and tV,W are range parameters defined by the scaling transformation,

V (R, t)→ t3Vfold(tR) (4)

This transformation conserves the volume integral of the folding potential and modifies the radius as,

< R2 >V=
1
t2

< R2 > f old (5)

Thus the strength of the formfactor is controlled by the parameters NV,W . Note that the transformation in Eq. (4)
ensures that only the rms radius of the bare folding potential is changed. Based on Eq. (5) one may estimate in an
average way the importance of the dynamic polarization potential (DPP) and finite range effects. Throughout this
paper we use single particle densities obtained from a spherical Hartree-Fock (HF+BCS) calculation based on the
density functional of Beiner and Lombard [15]. The obtained rms charge radii are very close to the experimental
values [16] and the model predicts a neutron skin Δr = rn− rp of 0.1, 0.18 and 0.1 fm for 13C, 18O, 17O respectively.
The calculated neutron rms radii are 2.84 and 2.76 fm for 18O, 17O in good agreement with the values extracted
by Khoa et al.[17] from high energy interaction cross section. Note that for the weakly bound 13C (Sn = 4.9 MeV)
this model predicts a small occupation probability for the neutron 2s1/2 level of v22s1/2 = 0.0016 but this has a small
influence on the tail of the s.p. density. A more elaborate calculation leads to a nonlocal knockon exchange kernel [18],

Uex(�R+,�R−) = μ3vex(μR−)
∫
d�X1ρ1(X1) ĵ1(k f1(X1)

(A1−1)A2
A1+A2

R−) (6)

×ρ2(|�R+−�X1|) ĵ1(k f2(|�R+−�X1|) (A2−1)A1
A1+A2

R−)

where A1,2 are mass numbers, μ is the reduced mass of the system, k f1,2 are Fermi momenta, R+,− are the usual
nonlocal coordinates and vex is the exchange component of the interaction including the long range OPEP tail.
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FIGURE 7. (Color online) Cross section and F/N de-
composition with folding form factors. Parameters are
taken from Table 2.
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Eq. (6) already shows that the nonlocality is small and behaves as ∼ μ−1. In the lowest order of the Perey-Saxon
approximation, the local equivalent of the nonlocal kernel is obtained by solving the nonlinear equation,

UL(R) = 4π
∫
d�r1d�r2ρ1(r1)ρ2(r2)

∫
s2dsvex(s) ĵ1(k f1(r1)β1s) ĵ1(k f2(r1)β2s) j0(

1
μ
K(R)s)δ (�r2−�r1+�R) (7)

Above βi = (Ai− 1)/Ai are recoil corrections, ĵ1(x) = 3 j1(x)/x and j0,1 are spherical Bessel functions. The local
Fermi momenta k f are evaluated in an extended Thomas-Fermi approximation [19]. The local momentum for the
relative motion is given by,

K2(R) =
2μ
h̄2

(Ec.m.−UD(R)−UL(R)) (8)

where UD is the total direct component of the potential including the Coulomb term. In Eq. (8) we assumed a purely
real local momentum of the relative motion since the absorptive component of the OMP is small compared with the
real part. The effective mass correction [21], μ�

μ = 1− ∂U
∂E is of the order of a few percent for our systems and is

absorbed in the renormalization parameter NW . Calculations with finite range model are dubbed M3YFR.
Neglecting the spin-orbit component, the Gogny NN effective interaction can be expressed as a sum of a central,

finite range term and a zero range density dependent term,

v(�r12) =
2

∑
i=1

(Wi+BiPσ −HiPτ −MiPσPτ)e
− r212

μ2i + t3(1+Pσ )ρα(�R12)δ (�r12) (9)

where�r12 =�r1−�r2 , �R12 = (�r1+�r2)/2 and standard notations have been used for parameter strengths and spin-isospin
exchange operators. The strengths parameters and the ranges are taken from [22]. Antisymmetrization of the density
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dependent term is trivial, so that the sum of direct and exchange term reads,

vρ
D(r12)+ v

ρ
ex(r12) =

3t3
4

ρα δ (�r12) (10)

The local equivalent of the finite range knockon exchange is calculated with Eq. (7). Two approximations were used
for the overlap density,

ρ = (ρ1(r1)ρ2(r2))1/2 (11)

and
ρ =

1
2
(ρ1(r1)+ρ2(r2)) (12)
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The calculated OM potentials are dubbed GOGNY1 and GOGNY3 respectively. Both definitions represent crude
approximations of the overlap density but are widely used in the estimation of the density dependence effects in the
folding model.
We further examine the density dependence effects by using the nuclear matter approach of Jeukenne, Lejeune

and Mahaux (JLM) [14] which incorporates a complex, energy and density dependent parametrization of the NN
effective interaction obtained in a Brueckner Hartree-Fock approximation from the Reid soft core NN potential. The
systematic study [11] of the elastic scattering between p-shell nuclei at energies around 10 MeV/nucleon leads to the
surprising result that on average, the imaginary part of the folded JLM potential was perfectly adequate to describe
such reactions and did not need any renormalization (NW = 1.00±0.09), while the real component needed a substantial
renormalization, in line with other effective interactions used in folding models. We examine here to which extent this
feature is conserved for tightly bound nuclei in the d shell in the presence of a small neutron excess. Exchange effects
are included in this model at the level of N-target interaction. Calculations with this model are dubbed JLM1 and
JLM3, depending on which definition we use for the overlap density (Eqs.(11) and (12) respectively).
A grid search on the real volume integral reveals a unique solution for all six versions of the effective interaction,

see Table 2 and Figs 5, 6, 7 and 8. The folding model validates only the solution with the lowest real volume integral
found with the WS parametrization. Averaging over all six folding calculations, we find JV = 167± 9 MeV fm3 for
18O and JV = 194± 5 MeV fm3 for 17O and so the interaction of 17O is slightly more refractive. Again imaginary
volume integrals are quite small pointing to a some transparency of the potential. Correction due to the finite range
effects are quite large, of the order of ΔR ≈ 0.5 fm for the real potential and much larger for the imaginary potential.
The folding calculation reproduces perfectly the diffractive pattern at forward angles and the Fraunhofer F/N crossover
produces always an interference maximum. Beyond the cross-over the far-side component decays quite smoothly and
shows some glory effects at θ > 60◦.
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FIGURE 15. (Color online) Inelastic cross section to 2+1
(1.982 MeV) state in 18O. The DWBA calculation is based
on the potentials in Table 1.
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FIGURE 16. (Color online) Inelastic cross section to 2+2
(3.92 MeV) state in 18O. The DWBA calculation is based
on the potentials in Table 1.

A close examination of the results in Table 2 shows that we have obtained consistent results for all effective
interactions used in the folding model. Our results confirm the conjecture that one can extract from the elastic scattering
at best only the low momenta of the interaction (volume integrals and rms radii). Corrections in the range parameters
are large especially for the imaginary component of the optical potential. We found substantial renormalization for the
real part of the optical potential, on average NV = 0.36±0.05 in line with the previous study [11]. This can be easily
understood: the bare folding formfactor has a volume integral around JV ≈ 450 MeV fm3, while the data requires
precise values around 160-190 MeV fm3. Noteworthy, the renormalization of the imaginary component in the JLM
model is again quite close to unity. Although the density dependence in the GOGNY and JLM effective interactions is
very different, one cannot disentangle between the two models for the overlap density based on the present data, since
both of them give identical results.

SEMICLASSICAL BARRIER AND INTERNAL BARRIER AMPLITUDES

Once we have established the main features of the average OM potential, we turn now to study the reaction mechanism
using semiclassical methods.
The semiclassical uniform approximation for the scattering amplitude of Brink and Takigawa [26] is well adapted

to describe situations in which the scattering is controlled by at most three active, isolated, complex turning points.
An approximate multireflection series expansion of the scattering function can be obtained, the terms of which have
the same simple physical meaning as in the exact Debye expansion for the scattering of light on a spherical well. The
major interest in this theory comes from the fact that it can give precious information on the response of a nuclear
system to the nuclear interior.
We take as an example the potential PP9 in Table 1 which is a WS phase equivalent to the JLM1 optical potential.

We discard the absorptive term and define the effective potential as,

Ve f f (r) =V (r)+
h̄2

2μ
λ 2

r2
, λ = �+

1
2

(13)
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where the Langer prescription has been used for the centrifugal term. This guarantees the correct behavior of the
semiclassical wave function at the origin. Then we calculate the deflection function,

Θ(λ ) = π −2
∫ ∞

r1

√
h̄2
2μ λdr

r2
√
Ec.m.−Ve f f

(14)

where r1 is the outer zero of the square root, i.e. the radius of closest approach to the scatterer and μ is the reduced
mass. Note that with the replacement h̄λ = b

√
2μE, Eq. 14 becomes identical with the classical deflection function

Θ(b), where b is the impact parameter. The result is shown in Fig. 9. The behavior of Θ(λ ) is the one expected for
an attractive nuclear potential. The nuclear rainbow angle is θR ≈ 36◦. All the measured angular range is classically
illuminated and only a few points were measured in the dark side. This explains partially the ambiguities found with
the WS formfactors.
However this simple calculation does not provide too much information about the interference effects of the

corresponding semiclassical trajectories. Going into the complex r-plane we search for complex turning points, i.e.
the complex roots of the quantity Ec.m.−Ve f f − iW . This is an intricate numerical problem, because, for a WS optical
potential, the turning points are located near the potential singularities and there are an infinite number of such poles.
The situation for integer angular momenta is depicted in Fig. 10. Active turning points are located near the poles of the
real formfactor. Inactive turning points are located quite far from the real axis and give negligible small contribution
to the total S-matrix. We observe an ideal situation with three, well isolated, turning points for each partial wave. The
multireflection expansion of the scattering function in the Brink-Takigawa approach reads,

SWKB(�) =
∞

∑
q=0
Sq(�) (15)

where,

S0(�) =
exp(2iδ �

1)

N(S21/π)
(16)

and for q �= 0,

Sq(�) = (−)q+1
exp [2i(qS32+S21+δ �

1)]

Nq+1(S21/π)
(17)

In these equations δ �
1 is the WKB (complex) phase shift corresponding to the turning point r1, N(z) is the barrier

penetrability factor,

N(z) =
√
2π

Γ(z+ 1
2 )
exp(z lnz− z) (18)

and Si j is the action integral calculated between turning points ri and r j,

Si j =
∫ r j

ri
dr{2μ

h̄2
[Ec.m.−Ve f f − iW ]}1/2 (19)

S21 and S32 are independent of the integration path provided they lie on the first Riemann sheet and collision with
potential poles is avoided. Each term in Eq. 15 has a simple physical interpretation. The first term (the barrier term,
denoted also SB) retains contributions from trajectories reflected at the barrier, not penetrating the internal region. The
qth term corresponds to trajectories refracted q times in the nuclear interior with q-1 reflections at the barrier turning
point r2. Summation of terms q≥ 1 can be recast into a single term,

SI =
exp [2i(S32+S21+δ �

1)]

N(S21/π)2
1

1+ exp [2iS32]/N(S21/π)
(20)

and is known as the internal barrier scattering function. The last factor in Eq. 20, the enhancement factor, is responsible
for the multiple reflections of the wave within the potential pocket. When the absorption in the nuclear interior is large,
the enhancement factor reduces to unity. Since the semiclassical scattering function is decomposed additively, SWKB =
SB+SI , the corresponding total scattering amplitude is decomposed likewise as fWKB = fB+ fI and conveniently the
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FIGURE 17. (Color online) Inelastic cross section to
5/2− (3.84 MeV) state in 17O. The DWBA calculation is
based on the potentials in Table 1.
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FIGURE 18. (Color online) Inelastic cross section to
1/2+ (6.36 MeV) state in 17O. The DWBA calculation is
based on the potentials in Table 1.

corresponding barrier and internal barrier angular distributions are calculated as σB,I = | fB,I |2, using the usual angular
momentum expansion of the amplitudes.
The poles of the semiclassical S-matrix are given by,

N(iε)+ e2iS32 = 0 ; ε =− i
π
S21 (21)

Semiclassical Regge poles of Eq. 21 are too far from the real axis to have a noticeable influence on the total
cross section. The accuracy of the semiclassical calculation has been checked by comparing the barrier and internal
barrier absorption profiles with the exact quantum-mechanical result in Fig. 11. One observes that the semiclassical
B/I expansion is an exact decomposition of the quantum result. They are virtually identical at the scale of the figure.
The internal component gets significant values up to the grazing angular momentum (�g=36) and is negligible small
beyond this value. The barrier component resembles a strong absorption profile and this justifies the interpretation that
it corresponds to that part of the flux not penetrating into the nuclear interior. Second, the B/I components are almost
decoupled in the angular momentum space and therefore they will contribute in different angular ranges.
Semiclassical cross sections are compared with the data in Fig. 12. Better insight into this technique is obtained

by further decomposing the B/I components into far and near (BF/BN and IF/IN) subcomponents. Clearly, the barrier
component dominates the entire measured angular range. Fraunhofer diffractive oscillations appear as the result of BF
and BN interference. At large angles, the internal contribution is negligible and the reaction is peripheral.
The Argand diagrams corresponding to the B/I decomposition is displayed in Fig. 13. The barrier amplitude (panel

c) is almost identical with the exact quantum result (panel a) while the internal barrier component shows a nice orbiting
effect, but the corresponding dynamical content (SI(�) is too small to have any sizeable effect in the total cross section.
A similar analysis was performed for the reaction 17O+13C based on the WS potential, parameter set T1 Table 1.

Again we find that the WKB cross section is identical with the exact quantum result based on the same potential. The
barrier component match perfectly the data in the entire angular range, while the internal barrier component gives
negligible contribution, see Fig.14. Thus the peripherality character of our reactions is completely demonstrated.
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INELASTIC TRANSITIONS

TABLE 3. Average deformation ob-
tained from inelastic scattering.

Nucleus Jπ βλ
17O 5/2− 0.66 ± 0.03
17O 1/2+ 0.19 ± 0.01
18O 2+1 0.38 ± 0.04
18O 2+2 0.52 ± 0.05

We examine in this section the ability of our optical potentials to describe the measured data for inelastic transitions
to selected states in 18O ( Jπ = 2+1 , Ex = 1.982 MeV, Fig. 15 and Jπ = 2+2 , Ex = 3.92 MeV, Fig. 16) and two transitions
in 17O (Jπ = 5

2
−
,Ex = 3.843 MeV, Fig. 17 and Jπ = 1

2
+
,Ex = 6.36 MeV, Fig. 18).

The pattern of our data shows a clear diffractive character since they obey fairly well to the Blair phase rule [27]
and therefore a standard DWBA should be an appropriate approach. The deformation table [28] indicates a quadrupole
deformation β2 = 0.107 for 18O. The systematic by Raman et al.[29] gives a value of 0.355(8). Since the DWBA
cross section scales with β 2

2 , we execute a number of calculations using β2 = 0.015− 0.6, chosen rather arbitrary
in the range of suggested values. DWUCK4 and FRESCO give identical shapes for these values using the usual
formfactor for inelastic transitionsVλ =− δλ√

4π
dU
dr where δλ is the deformation length and U is the potential. Optimum

deformation parameters were obtained by averaging over various optical potentials and different angular ranges in the
angular distributions. The scaled calculations that match the data are shown in Fig. 15 and Fig. 16 and the optimum
deformation parameters are given in Table 3.
The shape of the calculated cross section is virtually identical for all the potentials at the scale of the figure. This

proves once again that our potentials are almost phase equivalent, small differences appearing only at large angles much
beyond the measured angular range. Remarkably, the calculation with the PP9 parameter set, which is a WS potential
phase equivalent to JLM1 folding potential describes the data as well as the other parameter sets. The situation is
similar for the other folding potentials. Thus we have obtained a consistent description of both elastic and inelastic
cross section using a large palette of optical potentials.
The pattern of the measured transitions in 17O is quite different. The cross section decays almost exponentially at

large angles with small amplitude wiggles. The experimental study by Cunsolo et al.[30] using three particle transfer
reaction showed that the low-lying negative parity state in 17O, Jπ = 5

2
−
,Ex = 3.843 MeV is a member of 16O K+

α-rotational band coupled to p1/2 neutron, and thus has a pure 4p− 3h configuration. The state Jπ = 1
2
+
,Ex = 6.36

MeV, located only 3 keV bellow the α threshold in 17O is weakly populated in the reaction 13C(6Li,d)17O [31]. This
state is astrophysically important since it is considered the main source of the 13C(α ,n)16O reaction rate uncertainty.
According to Cunsolo et al.[32] this state has a dominant 3p−2h structure and belongs to a (sd)3,T=1/2 17O rotational
band. Repeating the procedure used for 18O, we obtain a satisfactory description of our data with the deformation
parameters given in Table III, see Figs. 17 and 18.

CONCLUSIONS

We have measured elastic scattering cross sections for 18O+12C and 17O+13C at 12 MeV/nucleon as well as inelastic
transition to selected states in 18O∗ and 17O∗ in order to determine the optical potentials needed to study the one neutron
pickup reaction 13C(17O,18O)12C. Optical potentials in both incoming and outgoing channels were extracted from a
standard analysis using Woods-Saxon formfactors. Analysis in terms of semimicroscopic double folding formfactors,
using six different approximations for the NN effective interactions helped us to eliminate the ambiguities found
with WS potentials. Thus a unique solution emerged from the analysis, which is quite surprising when the reaction
mechanism is dominated by strong absorption. We found that the neutron excess over the closed d shell leads to a
less refractive interaction as compared with the closed shell nucleus 16O. We found that the absorptive component
of the JLM is adequate for the d shell heavy ion interaction. The well known Gogny effective interaction, designed
mainly for HFB calculations gives excellent results for scattering provided that the knockon exchange and isovector
components are properly included. A detailed semiclassical analysis in terms of barrier and internal barrier amplitudes
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of Brink and Takigawa demonstrated that the flux penetrating the barrier has negligible contribution to the total cross
section, and thus the reactions are peripheral. This provides a complete justification for the use of ANC method to
extract spectroscopic information from the transfer reaction.

ACKNOWLEDGMENTS

This work was supported by CNCSIS (Romania) Grant PN-II-PCE-55/2011 . T. A-A. thanks the Hashemite University
for support. We thanks V. Balanica for technical support and to dr. Vlad Avrigeanu for correspondence.

REFERENCES

1. A. Garcia. E. G. Adelberger, P. V. Magnus, D. M. Markoff, K. B. Swartz, M. S. Smith, K. I. Hahn, N. Bateman and P. D.
Parker, Phys. Rev. C43, 2012 (1991).

2. R. K. Wallace and S. E. Woosley, Astrophys. J. Suppl. Ser. 45, 389 (1981).
3. B. C. Robertson, J. T. Sample, D. R. Goosman, K. Nagatani and K. W. Jones, Phys. Rev. C4, 2176 (1971).
4. S. Szilner, M. P. Nicoli, Z. Basrak, R. M. Freeman, F. Haas, A. Morsad, M. E. Brandan, and G. R. Satchler, Phys. Rev. C64,

064614 (2001).
5. A. T. Rudchik et al., Eur. Phys. J. A44, 221 (2010).
6. M. C. Mermaz, M. A. G. Fernandes, A. Greiner, B. T. Kim and N. Lisbona, Phys. Rev. C19, 794 (1979).
7. B. Heusch, C. Beck, J. P. Coffin, P. Engelstein, R. M. Freeman, G. Guillaume, F. Haas, and P. Wagner, Phys. Rev. C26, 542

(1982).
8. D. M. Pringle, W. N. Catford, J. S. Winfield, D. G. Lewis, N. A. Jelley, K. W. Allen and J. H. Coupland, Nucl. Instrum.

Methods Phys. Res. A245, 230 (1986).
9. S. Kowalski and H. A. Enge, computer code RAYTRACE (unpublished), University of Oxford, England, UK, 1986.
10. A. M. Mukhamedzhanov, V. Burjan, F. Carstoiu, J. Cejpek, H. L. Clark, C. A. Gagliardi, Y.-W. Lui, V. Kroha, L. Trache, R.

E. Tribble, H. M. Xu and X. G. Zhou, Phys. Rev. C56, 1302 (1997).
11. L. Trache, A. Azhari, H. L. Clark, C. A. Gagliardi, Y.-W. Lui, A. M. Mukhamedzhanov, X. Tang, N. Timofeyuk, R. E. Tribble

and F. Carstoiu, Phys. Rev. C61, 024612 (2000).
12. Yu. A. Glukhov, S. A. Goncharov, A. S. Dem’yanova, A. A. Ogloblin, M. V. Rozhkov, V. P. Rudakov, V. Trashka, J. Izv. Ross.

Akad. Nauk, Ser. Fiz. 65, 647 (2001).
13. N. Anantaraman, H. Toki and G. F. Bertsch, Nucl. Phys. A398, 269 (1983).
14. J. P. Jeukenne, A. Lejeune and C. Mahaux, Phys. Rev. C16, 80 (1977).
15. M. Beiner and R. J. Lombard, Ann. Phys. (N.Y.) 86, 262 (1974).
16. I. Angeli, Heavy Ion Physics, 8, 23 (1998).
17. Dao T. Khoa, Hoang Sy Than, Tran Hoai Nam, Marcella Grasso, and Nguyen Van Giai Phys. Rev. C 69, 044605 (2004).
18. F. Carstoiu and M. Lassaut, Nucl. Phys. 597, 269 (1996).
19. Dao T. Khoa, Phys. Rev. C63, 034007 (2001).
20. X. Campi and A. Bouyssy, Phys. Lett. 73B, 263 (1978).
21. J. W. Negele and K. Yazaki, Phys. Rev. Lett. 47, 71 (1981).
22. D. Gogny, Proc. Int. Conf. on Nucl. Physics, Munich 1973, eds J. de Boer and H. J. Mang, Vol. 1, p. 48.
23. D. H. Youngblood, H. L. Clark and Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999).
24. G. Colo, N. Van Giai, P. F. Bortignon and M. R. Quaglia, Phys. Lett. B485, 362 (2000).
25. J. P. Auger and R. J. Lombard, Phys. Lett. 90B, 200 (1980).
26. D. M. Brink and N. Takigawa, Nucl. Phys. A279, 159 (1977).
27. J. S. Blair, Phys. Rev. 115, 928 (1959).
28. P. Möller, J. R. Nix, W. D. Myers and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
29. S. Raman, C. W. Nestor, Jr. and P. Tikkanen, Atomic Data and Nuclear Data Tables 78, 1 (2001).
30. A. Cunsolo, A. Foti, G. Immé, G. Pappalardo, G. Raciti, N. Saunier, Phys. Rev. C24, 2127 (1981).
31. S. Kubono, K. Abe, S. Kato, T. Teranishi, M. Kurokawa, X. Liu, N. Imai, K. Kumagai, P. Strasser, M. H. Tanaka, Y. Fuchi, C.

S. Lee, Y. K. Kwon, L. Lee, J. H. Ha and Y. K. Kim, Phys. Rev. Lett. 90, 062501 (2003).
32. A. Cunsolo, A. Foti, G. Immé, G. Pappalardo and G. Raciti, Phys. Lett. 124B, 439 (1983).

51
 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP:  194.102.58.6 On: Thu, 27 Oct 2016 16:39:54


