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We review the semiclassical theory for heavy ion orbiting insisting on the con-
nection with Regge poles and barrier-top resonances. Although the physical content
of the phenomenon is well understood semiclassically, a clear signature is hard to be
found because the relation between the observation angle and the deflection angle is not
one to one.
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1. INTRODUCTION

We have a long-term program to understand and describe nucleus-nucleus col-
lisions in terms of one body interaction potential, the optical model potential (OMP).
A good understanding of all phenomena occurring in the elastic nucleus-nucleus scat-
tering, which are used typically to extract OMP, and the interpretation of the origin
of different aspects, including the well known potential ambiguities, are of crucial
importance for finding and justifying the procedures used for predicting nucleus-
nucleus OMP in the era of radioactive nuclear beams (RNB), including ours based
on double folding [1]. The reliability of these potentials is crucial for the correct
description of a number of reactions involving RNBs, from elastic to transfer and
breakup, at energies ranging from a few to a few hundred MeV/nucleon. Of particu-
lar interest for us is to support the absolute values of the calculated cross sections for
reactions used in indirect methods for nuclear astrophysics, see [2] and [3] for the
most recent results. In this framework, we treat here the case of heavy ion orbiting,
one of the phenomena found over the years to occur in special cases of elastic scatter-
ing, well understood semi-classically, but not well documented by specific examples.

The anomalous large-angle scattering of α-particles at moderate energies from
elements throughout the periodic table has been a subject of considerable experimen-
tal study and has evoked a wide range of novel theoretical explanations [4, 5]. The
conventional nuclear optical potential can explain much, if not all, of the anomalous
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2 Heavy ion orbiting and Regge poles (I) 401

scattering. The dominant physical parameter determining back-angle scattering is the
strength, W, of the imaginary part of the optical potential. Lowering of W by a mod-
est factor of two or three lead to changes in back-angle scattering by several orders
of magnitude. This effect was dubbed in literature improperly as incomplete absorp-
tion. This severe sensitivity of back-angle scattering to the imaginary strength of the
optical potential was explained as a sudden emergence of the giant resonances of the
high-partial-wave strength functions, as W decreases [6]. A more popular explana-
tion is the interference between the wave reflected at the internal angular momentum
barrier with the wave reflected at the nuclear radius.

Analysis of several heavy ion elastic scattering angular distribution in the energy
range of 4-10 MeV/A conclude that backward-angle structures are caused by very
few partial waves close to grazing collision value `= kR. Consequently, all theoret-
ical approaches have to strengthen the contribution from these partial waves relative
to the normal optical or diffraction model. Cowley and Heymann [7] and McVoy
[8] parametrize the scattering amplitude by a Regge pole expansion in angular mo-
mentum. The explanation in terms of a sequence of Regge poles suggests that the
physical mechanism behind the large angle structures could be heavy ion orbiting.

Orbiting could be understood simply in terms of the classical equation of mo-
tion. Let a particle m in a strong attractive potential V (r). Then the motion is given
by

1

2
mṙ2 +

1

2

L2

mr2
+V (r) = E (1)

Let the effective interaction U(r,L) = 1
2
L2

mr2 +V (r) and assume that for a certain
angular momentum L = Lorb the effective interaction has a maximum Umax and
Umax =E. If this condition is satisfied then the radial velocity ṙ = 0 and the particle
is orbiting indefinitely with a radius corresponding to the maximum. For E close to
the critical energy the particle remains a finite time in this state.

In this paper we review the semiclassical theory of Brink and Takigawa [9] in
relation with heavy ion orbiting, barrier-top resonances and Regge poles. In a second
part of the paper we examine the ability of the double folding model of the optical
potential to describe orbiting.

2. ORBITING AND REGGE POLES

We start from the radial Schrödinger equation for a real spherical potential

− ~2

2µ

(
∂

∂r2
− `(`+ 1)

r2

)
Ψ +V (r)Ψ = EΨ (2)
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and assume that the effective potential

Veff(r) = V (r) +
~2

2µ

`(`+ 1)

r2
(3)

has a barrier at a finite radius say r = rB . Then close to the barrier we may write:

Veff(r)≈ VB−
1

2
µω2

B(r− rB)2 (4)

− ~2

2µ

∂2Ψ

∂r2
− 1

2
µω2

B(r− rB)2Ψ = (E−VB)Ψ (5)

In fact a Taylor series expansion of Veff gives:

Veff(r) = Veff(rB) +
1

2
(r− rB)2V ′′eff

∣∣∣∣
rB

(6)

VB = Veff(rB) (7)

ωB =

√
−
V ′′eff(rB)

µ
(8)

In Eq.(5) we change the variable

x=

√
µωB
~

(r− rB) (9)

and Eq.(5) becomes

∂2Ψ

∂x2
+x2Ψ + 2εΨ = 0

with ε= E−VB
~ωB

(10)

Friedman and Goebel [10] have shown that resonances (poles in complex energy
plane) emerge when

εn =−
(
n+

1

2

)
i (11)

which is just the quantization of the inverted harmonic oscillator well. It results that

En = VB− i
(
n+

1

2

)
~ωB (12)

These are poles for fixed angular momentum in complex energy plane. The orbiting
angular momentum is defined by

VB(`orb(E)) = E (13)
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For ` close to `orb we expand to first order

VB(`) = VB(`orb) +
∂VB
∂`

(`− `orb) = E+~ωorb(`− `orb) (14)

where

~ωorb =
∂VB
∂`

∣∣∣∣
`=`orb

=
∂

∂`

[
~2

2µ

`(`+ 1)

r2
B

]∣∣∣∣
`=`orb

=
~2

2µr2
B

∂

∂`
(`2 + l)

∣∣∣∣
`=`orb

=
~2

2µr2
B

(2`orb + 1) (15)

The orbiting frequency at the top of the barrier reads :

ωorb =
~
µr2

B

(
`orb +

1

2

)
(16)

We can write Eq.(14) in the form

E−VB(`) =−~ωorb(`− `orb) (17)

and continue with Eq.(10)

E−VB(`) = ~ωBε=−~ωorb(`− `orb) (18)

The reduced momentum reads
E−VB(`)

~ωB
=−~ωorb

~ωB
(`− `orb)≡−λ (19)

Therefore we have λ=−ε and the barrier-top resonances translate into Regge poles
at

λn =

(
n+

1

2

)
i (20)

or

(`n− `orb)
ωorb

ωB
=

(
n+

1

2

)
i (21)

We get

`n = `orb +
ωB
ωorb

(
n+

1

2

)
i (22)

or

`n = `orb + Γ`

(
n+

1

2

)
i (23)

so the lowest pole is exactly at `0 = `orb + iΓ`
2 with Γ` = ωB

ωorb
. Note that Γ` depends

on `orb through relation (16)

Γ` =
ωB
ωorb

=

√
−V ′′

eff(rB)

µ

~
µr2

B

(
`orb + 1

2

) (24)
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where in Eq.(24) the primes denote the derivative with respect to rB . We have

Veff(rB) = V (rB) +
~2

2µ

`(`+ 1)

r2
B

(25)

V ′eff(rB) = V ′(rB)− ~2

2µ
`(`+ 1)

2

r3
B

= V ′(rB)− ~2

µ

`(`+ 1)

r3
B

(26)

V ′′eff(rB) = V ′′(rB) +
~2

µ

3`(`+ 1)

r4
B

(27)

In the presence of absorption, Friedman and Goebel [10] conjectured that the pole
will be shifted by the quantity

∆`n = i
ω(rB)

ωorb
. (28)

3. SEMICLASSICAL ORBITING

We turn now to study the reaction mechanism governing orbiting using semi-
classical methods. The far-side dominance observed in some heavy ion elastic scat-
tering angular distributions is not able to explain the behavior of the S-matrix ele-
ments at low angular momentum. The reason is of course that the far/near (F/N)
decomposition method does not perform a dynamic decomposition of the scattering
function, but merely decomposes the scattering amplitude into traveling waves. The
intermediate angle structures, have been repeatedly interpreted as arising from the
interference of two ranges in angular momenta, `< and `>, contributing to the same
negative deflection angle. However, the corresponding cross sections, σF< and σF>,
cannot be isolated because their dynamic content (S-matrix) is not accessible.

The semiclassical uniform approximation for the scattering amplitude of Brink
and Takigawa [9] is well adapted to describe situations in which the scattering is
controlled by at most three active, isolated, complex turning points. An approximate
multireflection series expansion of the scattering function can be obtained, the terms
of which have the same simple physical meaning as in the exact Debye expansion
for the scattering of light on a spherical well. The major interest in this theory comes
from the fact that it can give precious information on the response of a nuclear system
to the nuclear interior. An application [11] of this technique helped to clarify the con-
troversial problem of the ”Airy oscillation” seen in low energy 16O+12C scattering
[13].
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We discard the absorptive term in the optical potential and define the effective
potential as,

Veff(r) = V (r) +
~2

2µ

λ2

r2
, λ= `+

1

2
(29)

where the Langer prescription has been used for the centrifugal term. This guarantees
the correct behavior of the semiclassical wave function at the origin [14]. Then we
calculate the deflection function,

Θ(λ) = π−2

∫ ∞
r1

√
~2

2µλdr

r2
√
Ec.m.−Veff(r)

(30)

where r1 is the outer zero of the square root, i.e. the radius of closest approach to the
scatterer and µ is the reduced mass. Note that with the replacement ~λ = b

√
2µE,

Eq.(30) becomes identical with the classical deflection function Θ(b), where b is the
impact parameter. The behavior of Θ(λ) is the one expected for a strong nuclear
potential in a near orbiting kinematical situation in which the c.m. energy approxi-
mately equals that of the top of the barrier for some specific angular momentum. All
the measured angular range is classically illuminated. The deflection function exhibit
no genuine minima, but rather a pronounced cusp close to an orbiting logarithmic sin-
gularity. Therefore any interpretation of structures in angular distributions in terms
of Airy oscillations can be discarded. Rather we need an interpretation appropriate
for orbiting, a well documented situation in classical physics [15]. We identify the
cusp angular momentum as orbiting momentum (λorb) since this is related to the co-
alescence of two (barrier) turning points and the innermost turning point given by
the centrifugal barrier becomes classically accessible. There are two branches that
can be distinguished, an internal branch for low active momenta λ < λorb related
to semiclassical trajectories which penetrate into the nuclear pocket and a less de-
veloped external (barrier) branch (λ > λorb) related to trajectories deflected at the
diffuse edge of the potential.

However this simple calculation cannot determine the relative importance of
these branches and provides no information about the interference effects of the cor-
responding semiclassical trajectories. To clarify these points it is best to go into the
complex r-plane and look for complex turning points, i.e. the complex roots of the
quantity Ec.m.−Veff − iW . This is an intricate numerical problem, because, for a
WS optical potential, the turning points are located near the potential singularities
and there are an infinite number of such poles. We consider an ideal situation with
three, well isolated, turning points for each partial wave.

The multireflection expansion of the scattering function in the Brink-Takigawa

RJP 61(Nos. 3-4), 400–412 (2016) (c) 2016 - v.1.3a*2016.4.24



406 F. Carstoiu et al. 7

approach reads,

SWKB(`) =

∞∑
q=0

Sq(`) (31)

where,

S0(`) =
exp(2iδ`1)

N(−iε)
(32)

and for q 6= 0,

Sq(`) = (−)q+1 exp[2i(qS32 +S21 + δ`1)]

N q+1(−iε)
(33)

In these equations, ε= S21/π and δ`1 is the WKB (complex) phase-shift correspond-
ing to the turning point r1, N(z) is the barrier penetrability factor,

N(z) =

√
2π

Γ
(
z+ 1

2

) exp(z lnz−z) (34)

and Sij is the action integral calculated between turning points ri and rj ,

Sij =

∫ rj

ri

dr

{
2µ

~2
[Ec.m.−Veff(r)− iW (r)]

}1/2

(35)

S21 and S32 are independent of the integration path provided they lie on the first
Riemann sheet and collision with potential poles is avoided. Each term in Eq.(31)
has a simple physical interpretation. The first term (the barrier term, denoted also
SB) retains contributions from trajectories reflected at the barrier, not penetrating the
internal region. The q-th term corresponds to trajectories refracted q times in the
nuclear interior with q− 1 reflections at the barrier turning point r2. Summation of
terms q ≥ 1 can be recast into a single term,

SI =
exp[2i(S32 +S21 + δ`1)]

N(−iS21/π)2

1

1 + exp[2iS32]/N(−iS21/π)
(36)

and is known as the internal barrier scattering function. When the absorption in
the nuclear interior is large, the second factor in the above equation reduces to one
and we are left with the expression used in [16]. Since the semiclassical scatter-
ing function is decomposed additively, SWKB = SB +SI , the corresponding total
scattering amplitude is decomposed likewise as fWKB = fB + fI and conveniently
the corresponding barrier and internal barrier angular distributions are calculated as
σB,I = |fB,I |2, using the usual angular momentum expansion of the amplitudes.

The accuracy of the semiclassical calculation is usually checked by comparing
the barrier and internal barrier absorption profiles with the exact quantum-mechanical
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result. When the action integrals are calculated accurately, the semiclassical B/I ex-
pansion is an exact decomposition of the quantum result. The internal component
gets significant values up to the grazing angular momentum `g and is negligibly small
beyond this value. The barrier component resembles a strong absorption profile and
this justifies the interpretation that it corresponds to that part of the flux not penetrat-
ing into the nuclear interior. For values near the orbiting angular momentum `orb,
the two components interfere and a downward spike appears in the total profile, in
complete agreement with the quantum result. This is the famous Grühn-Wall spike
[17] introduced phenomenologically to explain ALAS for α-particle scattering, and
appears here as a strong interference between barrier and internal barrier amplitudes.
Second, the B/I components are almost decoupled in the angular momentum space
and therefore they will contribute in different angular ranges.

A better insight into this technique is obtained by further decomposing the
B/I components into far and near (BF/BN and IF/IN) subcomponents. The barrier
component dominates the forward angle region. Fraunhofer diffractive oscillations
appear as the result of BF and BN interference. At large angles, the internal contri-
bution accounts for the full cross section.

Thus, the intermediate angle exotic structure in angular distributions for the
elastic scattering of 6Li on 16O [18] can be understood as a result of coherent in-
terference of two far-side subamplitudes generated by different terms in the uniform
multireflection expansion of the scattering function (terms q=0 and q=1 in Eq.(31)),
corresponding to the scattering at the barrier and the internal barrier. This interfer-
ence effect appears as a signature of a surprisingly transparent interaction potential
for loosely bound nucleus 6Li at this low energy which allows part of the incident
flux to penetrate the nuclear interior and reemerge with significant probability.

The multireflection series (31) is the uniform approximation analogue of the
Debye expansion of the scattering function. Anni [11] used Eq.(31) to interpret
16O+12C scattering data at 132 MeV assuming a surface transparent optical poten-
tials and convincingly showed that medium angle structures are given by interference
effects of the barrier/internal amplitudes and more precisely by interference between
saddles appearing in the first and second term of multireflection expansion and there-
fore cannot be interpreted as a manifestation as a nuclear rainbow and associated
Airy oscillation.
In the following we will provide a third interpretation by using explicitly the orbiting
conditions and explicitly calculating Sommerfeld poles near the real axis.

We will made a totally different assumption on the physical nature of the phe-
nomenon: the absorption is negligible near the barrier but strong in the nuclear inte-
rior. In such conditions, the scattering amplitude is described by the barrier compo-
nent alone modified slightly by the barrier penetration factor :
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Sn ≈
e2iδ1(λ)

N(−iS21
π )

(37)

which is slightly changed compared with the original Brink-Takigawa formulation.
Since δ1 describes trajectories reflected at outer turning point, the scattering ampli-
tude S ∼ e2iδ1 will be very much similar to that given by the strong absorption model.
The action S21 is given by

S21 =

∫ r1

r2

[
2µ

~2
(E−Veff(r))

] 1
2

dr (38)

with

Veff(r) = V (r) +Vc(r) +
~2

2µ

λ2

r2
, λ= `+

1

2
(39)

where Vc is the Coulomb potential. Near the barrier, the absorption is small and the
effective potential is almost real and

Veff(r) = VB +
1

2
µω2

B(r− rB)2 (40)

with

ωB =

√
−
V ′′eff(r)

µ

∣∣∣∣
r=rB

(41)

where in Eq.(41) the prime denote the derivative with respect to r. Eq.(38) becomes:

S21 =

∫ r1

r2

[
2µ

~2
(E−VB−

1

2
µω2

B(r− rB)2

] 1
2

dr (42)

With the variable change,

r− rB =
~x
µωB

, x=
µωB
~

(r− rB), dx=
µωB
~

dr (43)

S21 =
~

µωB

∫ x1

x2

[
2µ

~2
(E−VB)−x2

] 1
2

dx (44)

x2 =
µωB
~

(r2− rB), x1 =
µωB
~

(r1− rB) (45)

the action integral S21 can be calculated exactly as,

S21 = π
E−VB
~ωB

(46)

So that ε entering Eq.(32) is

ε=
E−VB
~ωB

(47)
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Eqs.(32) and (34) show that the poles in S-matrix are given by the poles of the
Gamma function [12]. Taking z =−iε in Eq.(34)

1

2
− iεn =−n (48)

εn =−i
(
n+

1

2

)
(49)

En−VB
~ω

=−i
(
n+

1

2

)
(50)

En = VB− i~ωB
(
n+

1

2

)
(51)

Eq.(51) represents the Bohr-Sommerfeld quantization for the inverted oscillator well.
These are precisely the barrier-top resonances (Regge poles) of Friedman and Goebel
[10].
Now we use the orbiting condition

VB (`orb(E)) = E (52)

to obtain poles in angular momentum. For ` close to orbiting momentum we expand
the potential to first order

VB(`) = VB(`orb) +
∂VB
∂`

(`− `orb)≡ E+~ωorb(`− `orb) (53)

where the orbiting frequency is

~ωorb =
∂VB
∂`

∣∣∣∣
`orb

=
~2

µr2
B

(
`orb +

1

2

)
(54)

Taking in (53) E = En and `= `n and then combining with (51) we obtain{
VB−En = ~ωorb(`n− `orb)
VB−En = i~ωB

(
n+ 1

2

) (55)

We get

~ωorb(`n− `orb) = i~ωB
(
n+

1

2

)
(56)

so on

`n = `orb + i
ωB
ωorb

(
n+

1

2

)
(57)

These are the barrier-top poles in angular momentum space. Eq.(57) shows that the
nearest pole to real axis has a real part given precisely by the orbiting momentum and
a width:

Γ` =
ωB
ωorb

⇒ `n = `orb + iΓ`

(
n+

1

2

)
(58)
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Going back to the amplitude (37), the phase shift reads :

2iδ̃1(λ) = 2iδ1(λ) + ln

[
Γ

(
1

2
− iε

)]
− 1

2
ln(2π) + (z−z lnz)|z=−iε (59)

Taking into account the equations (47,55) or (18) we have

εn =−~ωorb

~ωB
(`n− `orb) =−~ωorb

~ωB
(λn−λorb), λ= `+

1

2
(60)

At the vicinity of λ= λorb, where ε0 is close to zero, the equation (59) is separated in
a smooth part labeled g(λ) and a part including the logarithmic singularity, namely:

2δ̃1(λ) = g(λ) + (ε0 ln(−iε0)−ε0) (61)

Here ln denotes the principal determination of the complex logarithm. We have

ln(−iε0) = ln |ε0|− i
π

2
ε0 > 0

ln(−iε0) = ln |ε0|+ i
π

2
ε0 < 0

which implies that the imaginary part of ε0 ln(−iε0)−ε0 has the same sign regardless
of whether ε0 is positive or negative. This smooth part of the singularity, namely
−iπ2 |λ−λorb|, is included in the function g and we are left with :

2δ̃1(λ) = g(λ) + (ε0 ln(|ε0|)−ε0) (62)

Using Eq.(62) and the fact that
d

dε0
(ε0 ln(|ε0|)−ε0) = ln(|ε0|) (63)

we obtain the following semiclassical deflection function

Θ(λ) = 2δ̃′1(λ) = g′(λ) +
ωorb

ωB
ln

[
ωorb

ωB
|λ−λorb|

]
(64)

(the prime being taken with respect to λ) which displays the normal logarithmic
singularity near the orbiting on angular momentum. Thus the main signature of the
heavy ion orbiting will be a logarithmic singularity in the semiclassical deflection
function.

The Equation (64) is valid for every λ−λorb positive or negative. Note that we
have neglected the weak dependence of orbiting frequency on angular momentum
(54).

4. REGGE POLES

A long standing problem in the α-nucleus scattering at energies above the
Coulomb barrier is the so called ALAS, a strong increase of the cross section at
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12 Heavy ion orbiting and Regge poles (I) 411

large angles. It was observed by Grühn and Wall [17] that a downward narrow spike
superimposed on the smooth-cut-off model for ` values near grazing ` = kR aided
materially to explain ALAS. The Grühn and Wall dip is explained semiclassically as
a strong destructive interference between the internal barrier and barrier components
of the scattering amplitude near the orbiting momentum. Alternatively, the dip is ex-
plained as an interference pole-background components of the scattering amplitude
for highly transparent potentials, such that the low absorption is not able to suppress
the resonant effects in the low partial waves. Semiclassically, these effects appear
as a consequence of multiple reflections of the internal amplitude between the most
internal complex turning points of the potential. In fact a common property of the
WS potentials which describe well the data, is that they possess several narrow shape
(molecular) resonances located in the most active waves. In this section we examine
this effect in terms of a purely phenomenological Regge pole approximation.

For this purpose we adopt the ”product” representation of the S-matrix [8],

S(`) = Sbkg(`)Spole(`) (65)
where the background (bkg) component is borrowed from the strong absorption
model of Ericson [19],

Sbkg =

[
1 +β exp(−iα)exp

(
L− l

∆

)]−1

(66)

We note that an alternative description in terms of additive pole-background compo-
nents is possible [7]. For the pole term we adopt the expression,

Spole(`) =
2∏
j=1

[
1 + i

Dj(`)

l−Lj− iΓ̂j(`)/2

]
(67)

This term describes resonances in ` centered at Lj with total width Γ̂j . In line with
McVoy [8] we assume the zeros and the widths slowly ` dependent and vanishing
exponentially as `→∞,

Dj(`) =
Dj

1 + exp( l−L∆j
)

(68)

Γ̂j(`) =
Γj

1 + exp( l−L∆j
)

(69)

Clearly, D measures the distance between the pole (p = 1/2Γ) and the zero
(z = 1/2Γ−D). The model has 12 parameters, twice as much as the WS model.
The reason is that we were not able to find a single pole unitary solution for both
background and pole components. Since the problem is highly nonlinear there is no
guarantee for the uniqueness of the solution. We used a Monte Carlo procedure to
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412 F. Carstoiu et al. 13

generate input parameters and then minimized the usual χ2 objective function.

5. CONCLUSIONS

We have reviewed the semiclassical theory of Brink and Takigawa [9] in con-
nection with heavy ion orbiting. The phenomenon is quite frequent for α-particle
scattering on light targets in the energy range 5-10 MeV/A where significant increase
in the cross section at large angles is found. A possible signature will be to find a
logarithmic singularity is the semiclassical deflection function associate with a down-
ward spike in the absorption profile near the grazing angular momentum `= kR.
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